當前位置:首頁 » 基礎知識 » 初中數學函數知識點總結
擴展閱讀
一年級兒童怎麼鍛煉靜坐 2024-12-29 17:36:32

初中數學函數知識點總結

發布時間: 2022-02-27 16:07:28

㈠ 初三數學二次函數知識點總匯

一、內容綜述:

四種常見函數的圖象和性質總結 圖象
特殊點
性質









與x軸交點

與y軸交點(0,b)
(1)當k>0時,y隨x的增大而增大;

(2)當k<0時,y隨x的增大而減小.











與x、y軸交點是原點(0,0)。
(1)當k>0時,y隨x的增大而增大,且直線經過第一、三象限;

(2)當k<0時,y隨x的增大而減小,且直線經過第二、四象限











與坐標軸沒有交點,但與坐標軸無限靠近。
(1)當k>0時,雙曲線經過第一、三象限,在每個象限內,y隨x的增大而減小;

(2) 當k<0時,雙曲線經過第二、四象限,在每個象限內,y隨x的增大而增大。









與x軸交點或,其中是方程的解,與y軸交點,頂點坐標是 (-,)。
(1)當a>0時,拋物線開口向上,並向上無限延伸;對稱軸是直線x=-, y最小值=。

(2)當 a<0時,拋物線開口向下,並向下無限延伸;對稱軸是直線x=-, y最大值=

注意事項總結:

1.關於點的坐標的求法:

方法有兩種,一種是直接利用定義,結合幾何直觀圖形,先求出有關垂線段的長,再根據該點的位置,明確其縱、橫坐標的符號,並注意線段與坐標的轉化,線段轉換為坐標看象限加符號,坐標轉換為線段加絕對值;另一種是根據該點縱、橫坐標滿足的條件確定,例如直線y=2x和y=-x-3的交點坐標,只需解方程組就可以了。

2.對解析式中常數的認識:

一次函數y=kx+b (k≠0)、二次函數y=ax2+bx+c(a≠0)及其它形式、反比例函數y=(k≠0),不同常數對圖像位置的影響各不相同,它們所起的作用,一般是按其正、零、負三種情況來考慮的,一定要建立起圖像位置和常數的對應關系。

3.對於二次函數解析式,除了掌握一般式即:y=ax2+bx+c((a≠0)之外,還應掌握「頂點式」y=a(x-h)2+k及「兩根式」y=a(x-x1)(x-x2),(其中x1,x2即為圖象與x軸兩個交點的橫坐標)。當已知圖象過任意三點時,可設「一般式」求解;當已知頂點坐標,又過另一點,可設「頂點式」求解;已知拋物線與x軸交點坐標時,可設「兩根式」求解。總之,在確定二次函數解析式時,要認真審題,分析條件,恰當選擇方法,以便運算簡便。

4.二次函數y=ax2與y=a(x-h)2+k的關系:圖象開口方向相同,大小、形狀相同,只是位置不同。y=a(x-h)2+k圖象可通過y=ax2平行移動得到。當h>0時,向右平行移動|h|個單位;h<0向左平行移動|h|個單位;k>0向上移動|k|個單位;k<0向下移動|k|個單位;也可以看頂點的坐標的移動, 頂點從(0,0)移到(h,k),由此容易確定平移的方向和單位。

二、例題分析:

例1.已知P(m, n)是一次函數y=-x+1圖象上的一點,二次函數y=x2+mx+n的圖象與x軸兩個交點的橫坐標的平方和為1,問點N(m+1, n-1)是否在函數y=-圖象上。

分析:P(m, n)是圖象上一點,說明P(m, n)適合關系式y=-x+1,代入則可得到關於m,n的一個關系,二次函數y=x2+mx+n與x軸兩個交點的橫坐標是方程x2+mx+n=0的兩個根,則x1+x2=-m, x1x2=n, 由平方和為1即x12+x22=(x1+x2)2-2x1x2=1,又可得到關於m, n的一個關系,兩個關系聯立成方程組,可解出m, n,這種利用構造方程求函數系數的思想最為常見。

解:∵P(m,n)在一次函數y=-x+1的圖象上,

∴ n=-m+1, ∴ m+n=1.

設二次函數y=x2+mx+n的圖象與x軸的兩個交點的橫坐標為x1,x2,

∴x12+x22=1,

又∵x1+x2=-m, x1x2=n,

∴ (x1+x2)2-2x1x2=1, 即m2-2n=1

由解這個方程組得:或。

把m=-3, n=4代入x2+mx+n=0,

x2-3x+4=0, Δ<0.

∴ m=-3, n=4(捨去).

把m=1, n=0代入x2+mx+n=0,

x2+x=0, Δ>0

∴點N(2,-1),

把點N代入y=-,當x=2時,y=-3≠-1.

∴點N(2,-1)不在圖象y=-上。

說明:這是一道綜合題,包括二次函數與一次函數和反比例函數,而且需要用到代數式的恆等變形,與一元二次方程的根與系數關系結合,求出m、n值後,需檢驗判別式,看是否與x軸有兩個交點。當m=-3, n=4時,Δ<0,所以二次函數與x軸無交點,與已知不符,應在解題過程中捨去。是否在y=-圖象上,還需把點(2,-1)代入y=-,滿足此函數解析式,點在圖象上,否則點不在圖象上。

例2.直線 y=-x與雙曲線y=-的兩個交點都在拋物線y=ax2+bx+c上,若拋物線頂點到y軸的距離為2,求此拋物線的解析式。

分析:兩函數圖象交點的求法就是將兩函數的解析式聯立成方程組,方程組的解既為交點坐標。

解:∵直線y=-x與雙曲線y=-的交點都在拋物線y=ax2+bx+c上,

由解這個方程組,得x=±1.

∴當x=1時,y=-1.

當x=-1時,y=1.

經檢驗:,都是原方程的解。

設兩交點為A、B,∴A(1,-1),B(-1,1)。

又∵拋物線頂點到y軸的距離為2,∴ 拋物線的對稱軸為直線x=2或x=-2,

當對稱軸為直線x=2時,

設所求的拋物線解析式為y=a(x-2)2+k,又∵過A(1,-1),B(-1,1),

∴解方程組得

∴ 拋物線的解析式為y=(x-2)2-

即 y=x2-x-.

當對稱軸為直線x=-2時,設所求拋物線解析式為y=a(x+2)2+k,

則有解方程組得,

∴ 拋物線解析式為y=-(x+2)2+

y=-x2-x+.

∴所求拋物線解析式為:y=x2-x-或y=-x2-x+。

說明:在求直線和雙曲線的交點時,需列出方程組,通過解方程組求出x, y值,雙曲線的解析式為分式方程,所以所求x, y值需檢驗。拋物線頂點到y軸距離為2,所以對稱軸可在y軸左側或右側,所以要分類討論,求出拋物線的兩個解析式。

例3、已知∠MAN=30°,在AM上有一動點B,作BC⊥AN於C,設BC的長度為x,△ABC的面積為y,試求y與x之間的函數關系式。

分析:求兩個變數y與x之間的函數關系式,就是想辦法用x表示y,,BC=x,則想辦法先用含x的代數式表示AC。

解:如圖

在Rt△ABC中,

∵∠A=30°,∠BCA=90° BC=x,

∴AC=BC=x



說明:在含有30°、45°、60°的直角三角形中,應注意利用邊之間的特殊倍數關系(如AC=BC)。

例4、如圖,銳角三角形ABC的邊長BC=6,面積為12,P在AB上,Q在AC上,且PQ∥BC,正方形PQRS的邊長為x,正方形PQRS與△ABC的公共部分的面積為y。
(1)當SR恰落在BC上時,求x,
(2)當SR在△ABC外部時,求y與x間的函數關系式;
(3)求y的最大值。

略解:(1)由已知,△ABC的高AD=4。

∵△APQ∽△ABC,(如圖一)

設AD與PQ交於點E∴





(2)當SR在△ABC的外部時, 同樣有,

則,即AE=

∴y=ED·PQ=x(4-)=-2+4x()

(3)∵a=-<0,y=-其中,

∴當x=3時,y取得最大值6.

說明:此例將線段PQ的長設為x,正方形PQRS與△ABC的公共部分的面積設為y,尋找它們之間的函數關系.注意自變數的取值范圍;在y取最大值時,要注意頂點(3,6)的橫坐標是否在取值范圍內.

例5.( 濰坊市中考題)某公園草坪的護欄是由50段形狀相同的拋物線組成的,為牢固起見,每段護欄需按間距0.4m加設不銹鋼管(如圖一)作成的立柱。為了計算所需不銹鋼管立柱的總長度,設計人員利用圖二所示的坐標系進行計算。
(1)求該拋物線的解析式; (2)計算所需不銹鋼管立柱的總長度。



分析:圖中給出了一些數量,並已經過護欄中心建立了平面直角坐標系, 所以求二次函數的解析式關鍵是找到一些條件建立方程組。因為對稱軸是 y軸,所以b=0,可以設二次函數為y=ax2+c.

解:(1)在如圖所示坐標中,設函數解析式為y=ax2+c,B點坐標為(0,0.5),C點坐標為(1,0)。

分別代入y=ax2+c得:

,解得

拋物線的解析式為:y=-0.5x2+0.5

(2)分別過AC的五等分點,C1,C2,C3,C4,作x軸的垂線,交拋物線於B1,B2,B3,B4,則C1B1,C2B2,C3B3,C4B4的長就是一段護欄內的四條立柱的長,點C3,C4的坐標為(0.2,0)、(0.6,0),則B3,B4點的橫坐標分別為x3=0.2,x4=0.6.
將x3=0.2和x4=0.6分別代入

y=-0.5x2+0.5得y3=0.48,y4=0.32

由對稱性得知,B1,B2點的縱坐標:y1=0.32,y2=0.48

四條立柱的長為:C1B1=C4B4=0.32(m)

C2B2=C3B3=0.48(m)

所需不銹鋼立柱的總長為

(0.32+0.48)×2×50=80(m)。

答:所需不銹鋼立柱的總長為80m。

㈡ 初中數學知識點總結

很多的學生到了初中之後,發現自己的分數會有一定的下降,這可能是由於上初中之後數學科目的難度加大,所以分數會有一定的降低,那麼初中數學應該怎樣學?應該使用什麼方式哪?

知識點

當老師在講完內容之後會講一些課外的內容,一般是定理、概念等等,會讓你對這些知識更加的了解,所以如果對這類題目有問題的同學可以多看一些課外的題目,當然想要提升分數是離不開練習題的,想要多好就需要多做一些習題,但是不可以過多,需要邊做邊思考才可以,這樣所學的知識就會運用出來.

以上就是初中數學應該怎樣學習的內容,如果在這個階段對自己分數不滿意的同學可以借鑒一下以上的內容,或許會對你有一定的幫助,將自身的分數提升.

㈢ 初中數學知識點整理

初中數學寶典,你知道學習數學最重要的是什麼嗎?

在初中學習數學這們課程的時候很多的學生都是比較煩惱的,因為這們課程是非常難的,並且難點非常多,很多的學生在剛開始學習的時候還可以更得上,但是過一段時間之後就會變得非常的吃力,那麼你知道初中數學寶典是什麼嗎?我們來了解一下吧!

復習知識點

以上就是初中數學寶典的內容,當學習吃力的時候可以先復習一下之前的內容,當然這個時候之前記得筆記就可以用來復習了,這樣可以更好的幫助我們學習後期的內容,並且可以改善學習吃力的問題.

㈣ 初中數學函數知識講解

一、關於函數教材的地位
函數關系是量與量之間關系的抽象,凡涉及到量的關系就少不了要用函數概念去描述、去刻畫,並通過它去研究客觀實際中的數量關系,所以無論就業或升學都要學點函數概念.
高中代數教材是以函數為中心,函數又比較抽象、難學,所以在初中講點函數為高中作點准備也是必要的.
就以初中代數本身而言,像解三角形、二次不等式等也都離不開函數的有關概念.在物理、化學中像勻速運動、波義耳定律、拋射運動、自由落體也都要有相應的函數作基礎.
因此,初中學習函數初步是相當必要的.
二、初中函數教學的特點
首先,從整個中學階段來看,函數教學大致可劃分為下面三個階段:
第一,感性認識階段
這一階段以積累材料為其主要特徵.在正式引入函數概念之前,基本上都屬於這一階段.
這一階段教學的基本內容,大致有以下幾個方面:
(1)通過各種關型的算術運算,讓學生觀察運算的結果與組成這一運算的各項之間的相互關系.如:和數與被加數、加數之間的相互關系,商數與被除數、除數之間的相互關系等.
(2)通過代數式和方程的學習,讓學生進一步認識到如何用文字來表示一般的數量關系;如何用代數式來表示量與量之間的關系等.
(3)通過數的概念的發展,來積累學生關於「集合」這一概念的初步思想.例如在講被開方數的容許值時,可以引導學生注意非負數集合.課本有意識地滲透了一些集合思想,這對以後講函數概念是極其有幫助的.
(4)通過數軸和坐標的教學積累關於「對應」這一概念的初步思想.
第二,理性認識階段
這一階段是函數教學的主要階段.它分為二個小循環.第一個循環是初中的「函數及其圖像」;第二個循環是高中從集合開始一直講到三角函數及其圖像.這一階段的教學任務是正確地形成函數的一般概念,較深刻地理解函數關系,掌握繪制簡單的函數圖像和討論它們的性質的方法,學會應用函數的性質來解決某些比較簡單的實際問題,把學生的認識水平和思維水平向前推進一步.
第三,深化和發展階段
這一階段的主要任務是了解函數的變化趨勢,並通過它,初步掌握極限的方法——無限精確化的方法;利用微積分這一工具,對函數的增減、極值再作深一步的研究,並指出利用初等方法研究函數的局限性.
這三個階段是彼此銜接的,由此可見,初中的函數教學具有承上啟下的作用,對它學習的好壞,會直接影響後面的學習.
其次,初中的函數教學,無論對函數概念還是函數性質的教學,都是一種描述性的.這樣,准確性和通俗性是其教學特點.盡管是描述性的,但交待要准確,不要給學生以錯覺,並且交待又要遇俗易懂,讓學生易於接受.為此需要多舉實例,多運用圖形、表格等直觀手段.
三、關於函數概念
關於函數定義,常常有要素說的提法,如函數是由三個要素組成:定義域、對應法則、值域.這種提法不太科學,最好不要提要素,而應該重點放在函數概念的本質特徵上.因為要素並未完全反映本質特徵.
函數概念,它的本質特徵是兩條:一條是「隨處定義」,一條是「單值對應」(名詞可不必向學生提).
「隨處定義」是指:在一個 R:X→Y的關系中,如果定義域和X相等,則R便是一個隨處定義的關系.也就是說,X中的任一個元x都有Y中的元y和它對應.所以隨處定義的條件是
在圖39所表示的關系中,(1)是隨處定義的,而(2)不是.
單值對應是指:若R為由集X到集Y的關系,而對任何一個x∈X都只有一個y∈Y和它對應,則說R是單值的,即
圖40的(1)、(2)是單值對應,(3)不是單值對應.
在初中代數的函數定義中,本質就是這兩條:「對於x在某一個確定的范圍內的每一個確定的值(隨處定義),y都有唯一確定
的值與它對應(單值對應).」這兩條缺一條就不成為其函數了,所以強調本質特徵比強調要素明確得多了.
此外,還要防止學生把函數都看成式,不然,就縮小了函數概念的外延.為此,在講授函數概念時,還要舉出不能用式子表示的函數的例子.
四、關於函數定義域的教學
中學課本對定義域有兩個方面要求:如果用式子給出,不指明定義域,那是指自然定義域,即使式子有意義的自變數x的取值范圍.課本還指出「遇到實際問題時,確定函數的自變數取值范圍,必須使實際問題也有意義」.所以教學時要有所反映.
求函數定義域要涉及到諸如解方程、不等式、分式、根式等知識,所以是以新帶舊很好的材料,這在教學中應作適當要求,但是題目應該是最基本的,不要故意去搞一些很做作的題,因為這種訓練是沒有多大意義的.
五、關於函數圖像的教學
由於函數往往涉及無窮集,因而一般來說圖像應無限延伸,但這在畫圖像方面有局限,只能用有限來表示無限.這樣,一方面要求有限圖像能反映出無限圖像的主要特徵(如與軸的交點、峰點等要表現出來);另一方面,要反映出無限的趨勢(如與x軸無限接近等).這兩點也是畫函數圖像總的要求.
要讓學生掌握描繪函數圖像的下述技能:設數、計算(或查表)、設坐標單位、標點、補點、用光滑曲線連接.
這里要分兩種情況:
一種情況是事先並不知所畫圖像是什麼樣子,也不知其什麼性質.這時候設點應該密一些,並正、負都有,如果自變數及對應值數值較大,那麼坐標單位可設小一些;如果彎曲處點還不夠,則應適當補點,總之不要讓圖像走樣.
另一種情況是事先已知圖像是什麼樣子,那麼設點可以根據圖像特點來設.如正比例函數,只需設一個點,再與原點連結即可.一次函數可任意設兩點.反比例函數若k>0,只需設第一象限的點,第三象限的點可用原點對稱的點得到.k<0,只需設第二象限的點,第四象限的點可用與原點對稱的點得到.對於二次函數可設頂點、與x軸的兩個交點等.
以上這些技能都應讓學生掌握.
教學中要注意函數圖像在解方程、不等式中的作用.
六、關於反比例函數的教學
反比例函數無論從定義、圖像、性質來說,都是教學的難點.這反映在的敘述方式與正比例函數極其相似,就容易給人以誤解.
(2)反比例函數圖像是曲線而不是直線(第一次出現曲線),畫曲線圖像技能的培養,如曲線是兩支、曲線不與任何軸相交,且與x軸、y軸無限接近等都是難點.
(3)在講授單調性時,對於「負值絕對值越大就越小」,就常常被圖像的表面現象迷惑而錯誤理解,從而對單調性得出錯誤結論.
這些都是應該予以重視的.
七、關於二次函數的教學
二次函數是初中字習函數的高潮和重點.它一方面與二次方程、二次不等式等密切相關,即把二次方程、二次不等式統一在函數觀點下,可把兩者有機地聯系起來;另一方面,在講授二次函數時,又要學習如「沿橫、縱軸平移」、「配方」、「極值」等重要的數學思想、概念和方法,因此二次函數教材具有重要的培養性.
「參數a的意義」、「對稱軸方程」、「沿軸平移」、「極值的意義」等,都是教學的難點.教學中克服這些難點,要從學生實際出發,採用具體的、形象的方法來講授.
有關二次函數的題目難度要適當控制,題型要適當歸類,重點應放在培養分析問題的能力上.

㈤ 急求!!初中數學二次函數所有知識的歸納。

不知道怎麼發給你 我亂刪減了很多····你還是到文庫里看看吧。。丫的就要中考了,我也很緊張啊

1、各象限內點的坐標的特徵
點P(x,y)在第一象限
點P(x,y)在第二象限
點P(x,y)在第三象限
點P(x,y)在第四象限
2、坐標軸上的點的特徵
點P(x,y)在x軸上 ,x為任意實數
點P(x,y)在y軸上 ,y為任意實數
點P(x,y)既在x軸上,又在y軸上 x,y同時為零,即點P坐標為(0,0)
3、兩條坐標軸夾角平分線上點的坐標的特徵
點P(x,y)在第一、三象限夾角平分線上 x與y相等
點P(x,y)在第二、四象限夾角平分線上 x與y互為相反數
4、和坐標軸平行的直線上點的坐標的特徵
位於平行於x軸的直線上的各點的縱坐標相同。
位於平行於y軸的直線上的各點的橫坐標相同。
5、關於x軸、y軸或遠點對稱的點的坐標的特徵
點P與點p』關於x軸對稱 橫坐標相等,縱坐標互為相反數
點P與點p』關於y軸對稱 縱坐標相等,橫坐標互為相反數
點P與點p』關於原點對稱 橫、縱坐標均互為相反數
6、點到坐標軸及原點的距離
點P(x,y)到坐標軸及原點的距離:
(1)點P(x,y)到x軸的距離等於
(2)點P(x,y)到y軸的距離等於
(3)點P(x,y)到原點的距離等於
考點三、函數及其相關概念 (3~8分)
1、變數與常量
在某一變化過程中,可以取不同數值的量叫做變數,數值保持不變的量叫做常量。
一般地,在某一變化過程中有兩個變數x與y,如果對於x的每一個值,y都有唯一確定的值與它對應,那麼就說x是自變數,y是x的函數。
2、函數解析式
用來表示函數關系的數學式子叫做函數解析式或函數關系式。
使函數有意義的自變數的取值的全體,叫做自變數的取值范圍。
3、函數的三種表示法及其優缺點
(1)解析法
兩個變數間的函數關系,有時可以用一個含有這兩個變數及數字運算符號的等式表示,這種表示法叫做解析法。
(2)列表法
把自變數x的一系列值和函數y的對應值列成一個表來表示函數關系,這種表示法叫做列表法。
(3)圖像法
用圖像表示函數關系的方法叫做圖像法。
4、由函數解析式畫其圖像的一般步驟
(1)列表:列表給出自變數與函數的一些對應值
(2)描點:以表中每對對應值為坐標,在坐標平面內描出相應的點
(3)連線:按照自變數由小到大的順序,把所描各點用平滑的曲線連接起來。
考點四、正比例函數和一次函數 (3~10分)
1、正比例函數和一次函數的概念
一般地,如果 (k,b是常數,k 0),那麼y叫做x的一次函數。
特別地,當一次函數 中的b為0時, (k為常數,k 0)。這時,y叫做x的正比例函數。
2、一次函數的圖像
所有一次函數的圖像都是一條直線
3、一次函數、正比例函數圖像的主要特徵:一次函數 的圖像是經過點(0,b)的直線;正比例函數 的圖像是經過原點(0,0)的直線。
k的符號 b的符號 函數圖像 圖像特徵
k>0 b>0 y

0 x

圖像經過一、二、三象限,y隨x的增大而增大。
b<0 y

0 x

圖像經過一、三、四象限,y隨x的增大而增大。
K<0 b>0 y

0 x

圖像經過一、二、四象限,y隨x的增大而減小
b<0
y

0 x

圖像經過二、三、四象限,y隨x的增大而減小。
註:當b=0時,一次函數變為正比例函數,正比例函數是一次函數的特例。
4、正比例函數的性質,,一般地,正比例函數 有下列性質:
(1)當k>0時,圖像經過第一、三象限,y隨x的增大而增大;
(2)當k<0時,圖像經過第二、四象限,y隨x的增大而減小。
5、一次函數的性質,,一般地,一次函數 有下列性質:
(1)當k>0時,y隨x的增大而增大
(2)當k<0時,y隨x的增大而減小
6、正比例函數和一次函數解析式的確定
確定一個正比例函數,就是要確定正比例函數定義式 (k 0)中的常數k。確定一個一次函數,需要確定一次函數定義式 (k 0)中的常數k和b。解這類問題的一般方法是待定系數法。
考點五、反比例函數 (3~10分)
1、反比例函數的概念
一般地,函數 (k是常數,k 0)叫做反比例函數。反比例函數的解析式也可以寫成 的形式。自變數x的取值范圍是x 0的一切實數,函數的取值范圍也是一切非零實數。
2、反比例函數的圖像
反比例函數的圖像是雙曲線,它有兩個分支,這兩個分支分別位於第一、三象限,或第二、四象限,它們關於原點對稱。由於反比例函數中自變數x 0,函數y 0,所以,它的圖像與x軸、y軸都沒有交點,即雙曲線的兩個分支無限接近坐標軸,但永遠達不到坐標軸。
3、反比例函數的性質
反比例函數

k的符號 k>0 k<0
圖像
y

O x

y

O x

性質 ①x的取值范圍是x 0,
y的取值范圍是y 0;
②當k>0時,函數圖像的兩個分支分別
在第一、三象限。在每個象限內,y
隨x 的增大而減小。 ①x的取值范圍是x 0,
y的取值范圍是y 0;
②當k<0時,函數圖像的兩個分支分別
在第二、四象限。在每個象限內,y
隨x 的增大而增大。
4、反比例函數解析式的確定
確定及誒是的方法仍是待定系數法。由於在反比例函數 中,只有一個待定系數,因此只需要一對對應值或圖像上的一個點的坐標,即可求出k的值,從而確定其解析式。
5、反比例函數中反比例系數的幾何意義
如下圖,過反比例函數 圖像上任一點P作x軸、y軸的垂線PM,PN,則所得的矩形PMON的面積S=PM PN= 。 。
二次函數
考點一、二次函數的概念和圖像 (3~8分)
1、二次函數的概念
一般地,如果 ,那麼y叫做x 的二次函數。
叫做二次函數的一般式。
2、二次函數的圖像
二次函數的圖像是一條關於 對稱的曲線,這條曲線叫拋物線。
拋物線的主要特徵:
①有開口方向;②有對稱軸;③有頂點。
3、二次函數圖像的畫法
五點法:
(1)先根據函數解析式,求出頂點坐標,在平面直角坐標系中描出頂點M,並用虛線畫出對稱軸
(2)求拋物線 與坐標軸的交點:
當拋物線與x軸有兩個交點時,描出這兩個交點A,B及拋物線與y軸的交點C,再找到點C的對稱點D。將這五個點按從左到右的順序連接起來,並向上或向下延伸,就得到二次函數的圖像。
當拋物線與x軸只有一個交點或無交點時,描出拋物線與y軸的交點C及對稱點D。由C、M、D三點可粗略地畫出二次函數的草圖。如果需要畫出比較精確的圖像,可再描出一對對稱點A、B,然後順次連接五點,畫出二次函數的圖像。
考點二、二次函數的解析式 (10~16分)
二次函數的解析式有三種形式:
(1)一般式:
(2)頂點式:
(3)當拋物線 與x軸有交點時,即對應二次好方程 有實根 和 存在時,根據二次三項式的分解因式 ,二次函數 可轉化為兩根式 。如果沒有交點,則不能這樣表示。
考點三、二次函數的最值 (10分)如果自變數的取值范圍是全體實數,那麼函數在頂點處取得最大值(或最小值),即當 時, 。
如果自變數的取值范圍是 ,那麼,首先要看 是否在自變數取值范圍 內,若在此范圍內,則當x= 時, ;若不在此范圍內,則需要考慮函數在 范圍內的增減性,如果在此范圍內,y隨x的增大而增大,則當 時, ,當 時, ;如果在此范圍內,y隨x的增大而減小,則當 時, ,當 時, 。
考點四、二次函數的性質 (6~14分) 1、二次函數的性質
函數 二次函數

圖像 a>0 a<0

y

0 x

y

0 x

性質 (1)拋物線開口向上,並向上無限延伸;
(2)對稱軸是x= ,頂點坐標是( , );
(3)在對稱軸的左側,即當x< 時,y隨x的增大而減小;在對稱軸的右側,即當x> 時,y隨x的增大而增大,簡記左減右增;
(4)拋物線有最低點,當x= 時,y有最小值,
(1)拋物線開口向下,並向下無限延伸;
(2)對稱軸是x= ,頂點坐標是( , );
(3)在對稱軸的左側,即當x< 時,y隨x的增大而增大;在對稱軸的右側,即當x> 時,y隨x的增大而減小,簡記左增右減;
(4)拋物線有最高點,當x= 時,y有最大值,

2、二次函數 中, 的含義: 表示開口方向: >0時,拋物線開口向上,,, <0時,拋物線開口向下
與對稱軸有關:對稱軸為x=
表示拋物線與y軸的交點坐標:(0, )
3、二次函數與一元二次方程的關系
一元二次方程的解是其對應的二次函數的圖像與x軸的交點坐標。
因此一元二次方程中的 ,在二次函數中表示圖像與x軸是否有交點。
當 >0時,圖像與x軸有兩個交點;
當 =0時,圖像與x軸有一個交點;
當 <0時,圖像與x軸沒有交點。
補充:
1、兩點間距離公式(當遇到沒有思路的題時,可用此方法拓展思路,以尋求解題方法)
y
如圖:點A坐標為(x1,y1)點B坐標為(x2,y2)
則AB間的距離,即線段AB的長度為 A

0 x
B

2、函數平移規律(中考試題中,只佔3分,但掌握這個知識點,對提高答題速度有很大幫助,可以大大節省做題的時間)
3、直線斜率: b為直線在y軸上的截距
4、直線方程: 一般兩點斜截距
1,一般 一般 直線方程 ax+by+c=0
2,兩點 由直線上兩點確定的直線的兩點式方程,簡稱兩點式:
--最最常用,記牢
3,點斜 知道一點與斜率
4,斜截 斜截式方程,簡稱斜截式: y=kx+b(k≠0)

5 ,截距 由直線在 軸和 軸上的截距確定的直線的截距
式方程,簡稱截距式:
記牢可大幅提高運算速度
5、設兩條直線分別為, : :
若 ,則有 且 。

6、點P(x0,y0)到直線y=kx+b(即:kx-y+b=0) 的距離:
對於點P(x0,y0)到直線滴一般式方程 ax+by+c=0 滴距離有

常用記牢
中考點擊
考點分析:
內容 要求
1、函數的概念和平面直角坐標系中某些點的坐標特點 Ⅰ
2、自變數與函數之間的變化關系及圖像的識別,理解圖像與變數的關系 Ⅰ
3、一次函數的概念和圖像 Ⅰ
4、一次函數的增減性、象限分布情況,會作圖 Ⅱ
5、反比例函數的概念、圖像特徵,以及在實際生活中的應用 Ⅱ
6、二次函數的概念和性質,在實際情景中理解二次函數的意義,會利用二次函數刻畫實際問題中變數之間的關系並能解決實際生活問題 Ⅱ
命題預測:函數是數形結合的重要體現,是每年中考的必考內容,函數的概念主要用選擇、填空的形式考查自變數的取值范圍,及自變數與因變數的變化圖像、平面直角坐標系等,一般佔2%左右.一次函數與一次方程有緊密地聯系,是中考必考內容,一般以填空、選擇、解答題及綜合題的形式考查,佔5%左右.反比例函數的圖像和性質的考查常以客觀題形式出現,要關注反比例函數與實際問題的聯系,突出應用價值,3—6分;二次函數是初中數學的一個十分重要的內容,是中考的熱點,多以壓軸題出現在試卷中.要求:能通過對實際問題情景分析確定二次函數的表達式,並體會二次函數的意義;會用描點法畫二次函數圖像,能叢圖像上分析二次函數的性質;會根據公式確定圖像的頂點、開口方向和對稱軸,並能解決實際問題.會求一元二次方程的近似值.
分析近年中考,尤其是課改實驗區的試題,預計2007年除了繼續考查自變數的取值范圍及自變數與因變數之間的變化圖像,一次函數的圖像和性質,在實際問題中考查對反比例函數的概念及性質的理解.同時將注重考查二次函數,特別是二次函數的在實際生活中應用.
初中數學助記口訣(函數部分)
特殊點坐標特徵:坐標平面點(x,y),橫在前來縱在後;(+,+),(-,+),(-,-)和(+,-),四個象限分前後;X軸上y為0,x為0在Y軸。
對稱點坐標:對稱點坐標要記牢,相反數位置莫混淆,X軸對稱y相反,Y軸對稱,x前面添負號;原點對稱最好記,橫縱坐標變符號。
自變數的取值范圍:分式分母不為零,偶次根下負不行;零次冪底數不為零,整式、奇次根全能行。
函數圖像的移動規律:若把一次函數解析式寫成y=k(x+0)+b、二次函數的解析式寫成y=a(x+h)2+k的形式,則用下面後的口訣「同左上加,異右下減」。

一次函數圖像與性質口訣:一次函數是直線,圖像經過仨象限;正比例函數更簡單,經過原點一直線;兩個系數k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來相見,k為正來右上斜,x增減y增減;k為負來左下展,變化規律正相反;k的絕對值越大,線離橫軸就越遠。
二次函數圖像與性質口訣:二次函數拋物線,圖象對稱是關鍵;開口、頂點和交點,它們確定圖象現;開口、大小由a斷,c與Y軸來相見,b的符號較特別,符號與a相關聯;頂點位置先找見,Y軸作為參考線,左同右異中為0,牢記心中莫混亂;頂點坐標最重要,一般式配方它就現,橫標即為對稱軸,縱標函數最值見。若求對稱軸位置,符號反,一般、頂點、交點式,不同表達能互換。
反比例函數圖像與性質口訣:反比例函數有特點,雙曲線相背離的遠;k為正,圖在一、三(象)限,k為負,圖在二、四(象)限;圖在一、三函數減,兩個分支分別減。圖在二、四正相反,兩個分支分別添;線越長越近軸,永遠與軸不沾邊。
正比例函數是直線,圖象一定過圓點,k的正負是關鍵,決定直線的象限,負k經過二四限,x增大y在減,上下平移k不變,由引得到一次線,向上加b向下減,圖象經過三個限,兩點決定一條線,選定系數是關鍵。
反比例函數雙曲線,待定只需一個點,正k落在一三限,x增大y在減,圖象上面任意點,矩形面積都不變,對稱軸是角分線x、y的順序可交換。
二次函數拋物線,選定需要三個點,a的正負開口判,c的大小y軸看,△的符號最簡便,x軸上數交點,a、b同號軸左邊拋物線平移a不變,頂點牽著圖象轉,三種形式可變換,配方法作用最關鍵。
1. 一元一次不等式解題的一般步驟:
去分母、去括弧,移項時候要變號;
同類項、合並好,再把系數來除掉;
兩邊除(以)負數時,不等號改向別忘了。
2. 特殊點坐標特徵:
坐標平面點(x,y),橫在前來縱在後;
(+,+),(-,+),(-,-)和(+,-),四個象限分前後;
X軸上y為0,x為0在Y軸。
3. 平行某軸的直線:
平行某軸的直線,點的坐標有講究,
直線平行X軸,縱坐標相等橫不同;
直線平行於Y軸,點的橫坐標仍照舊。
4. 對稱點坐標:
對稱點坐標要記牢,相反數位置莫混淆,
X軸對稱y相反, Y軸對稱,x前面添負號;
原點對稱最好記,橫縱坐標變符號。
5. 自變數的取值范圍:
分式分母不為零,偶次根下負不行;
零次冪底數不為零,整式、奇次根全能行。
6. 函數圖像的移動規律:
若把一次函數解析式寫成y=k(x+0)+b,
二次函數的解析式寫成y=a(x+h)2+k的形式,
則用下面後的口訣:
「左右平移在括弧,上下平移在末稍,
左正右負須牢記,上正下負錯不了」。
7. 一次函數圖像與性質口訣:
一次函數是直線,圖像經過仨象限;
正比例函數更簡單,經過原點一直線;
兩個系數k與b,作用之大莫小看,
k是斜率定夾角,b與Y軸來相見,
k為正來右上斜,x增減y增減;k為負來左下展,變化規律正相反;
k的絕對值越大,線離橫軸就越遠。
8. 二次函數圖像與性質口訣:
二次函數拋物線,圖象對稱是關鍵;
開口、頂點和交點,它們確定圖象限;
開口、大小由a斷,c與Y軸來相見,b的符號較特別,符號與a相關聯;頂點位置先找見,Y軸作為參考線,左同右異中為0,牢記心中莫混亂;頂點坐標最重要,一般式配方它就現,橫標即為對稱軸,縱標函數最值見。若求對稱軸位置, 符號反,一般、頂點、交點式,不同表達能互換。
9. 反比例函數圖像與性質口訣:
反比例函數有特點,雙曲線相背離的遠;
k為正,圖在一、三(象)限;k為負,圖在二、四(象)限;
圖在一、三函數減,兩個分支分別減;圖在二、四正相反,兩個分支分別添;線越長越近軸,永遠與軸不沾邊。
函數學習口決:正比例函數是直線,圖象一定過原點,k的正負是關鍵,決定直線的象限,負k經過二四限,x增大y在減,上下平移k不變,由引得到一次線,向上加b向下減,圖象經過三個限,兩點決定一條線,選定系數是關鍵;
反比例函數雙曲線,待定只需一個點,正k落在一三限,x增大y在減,圖象上面任意點,矩形面積都不變,對稱軸是角分線x、y的順序可交換;
二次函數拋物線,選定需要三個點,a的正負開口判,c的大小y軸看,△的符號最簡便,x軸上數交點,a、b同號軸左邊拋物線平移a不變,頂點牽著圖象轉,三種形式可變換,配方法作用最關鍵。
10. 求定義域:
求定義域有講究,四項原則須留意。
負數不能開平方,分母為零無意義。
指是分數底正數,數零沒有零次冪。
限制條件不唯一,滿足多個不等式。
求定義域要過關,四項原則須注意。
負數不能開平方,分母為零無意義。
分數指數底正數,數零沒有零次冪。
限制條件不唯一,不等式組求解集。
11. 解一元一次不等式:
先去分母再括弧,移項合並同類項。
系數化「1」有講究,同乘除負要變向。
先去分母再括弧,移項別忘要變號。
同類各項去合並,系數化「1」注意了。
同乘除正無防礙,同乘除負也變號。
12. 解一元一次不等式組:
大於頭來小於尾,大小不一中間找。
大大小小沒有解,四種情況全來了。
同向取兩邊,異向取中間。
中間無元素,無解便出現。
幼兒園小鬼當家,(同小相對取較小)
敬老院以老為榮,(同大就要取較大)
軍營里沒老沒少。(大小小大就是它)
大大小小解集空。(小小大大哪有哇)
13. 解一元二次不等式:
首先化成一般式,構造函數第二站。
判別式值若非負,曲線橫軸有交點。
a正開口它向上,大於零則取兩邊。
代數式若小於零,解集交點數之間。
方程若無實數根,口上大零解為全。
小於零將沒有解,開口向下正相反。
13.1 用公式法解一元二次方程
要用公式解方程,首先化成一般式。
調整系數隨其後,使其成為最簡比。
確定參數abc,計算方程判別式。
判別式值與零比,有無實根便得知。
有實根可套公式,沒有實根要告之。
14. 用常規配方法解一元二次方程:
左未右已先分離,二系化「1」是其次。
一系折半再平方,兩邊同加沒問題。
左邊分解右合並,直接開方去解題。
該種解法叫配方,解方程時多練習。
15. 用間接配方法解一元二次方程:
已知未知先分離,因式分解是其次。
調整系數等互反,和差積套恆等式。
完全平方等常數,間接配方顯優勢
【注】 恆等式
16. 解一元二次方程:
方程沒有一次項,直接開方最理想。
如果缺少常數項,因式分解沒商量。
b、c相等都為零,等根是零不要忘。
b、c同時不為零,因式分解或配方,
也可直接套公式,因題而異擇良方。
17. 正比例函數的鑒別:
判斷正比例函數,檢驗當分兩步走。
一量表示另一量, 有沒有。
若有再去看取值,全體實數都需要。
區分正比例函數,衡量可分兩步走。
一量表示另一量, 是與否。
若有還要看取值,全體實數都要有。
18. 正比例函數的圖象與性質:
正比函數圖直線,經過 和原點。
K正一三負二四,變化趨勢記心間。
K正左低右邊高,同大同小向爬山。
K負左高右邊低,一大另小下山巒。
19. 一次函數:
一次函數圖直線,經過 點。
K正左低右邊高,越走越高向爬山。
K負左高右邊低,越來越低很明顯。
K稱斜率b截距,截距為零變正函。
20. 反比例函數:
反比函數雙曲線,經過 點。
K正一三負二四,兩軸是它漸近線。
K正左高右邊低,一三象限滑下山。
K負左低右邊高,二四象限如爬山。
21. 二次函數:
二次方程零換y,二次函數便出現。
全體實數定義域,圖像叫做拋物線。
拋物線有對稱軸,兩邊單調正相反。
A定開口及大小,線軸交點叫頂點。
頂點非高即最低。上低下高很顯眼。
如果要畫拋物線,平移也可去描點,
提取配方定頂點,兩條途徑再挑選。
列表描點後連線,平移規律記心間。
左加右減括弧內,號外上加下要減。
二次方程零換y,就得到二次函數。
圖像叫做拋物線,定義域全體實數。
A定開口及大小,開口向上是正數。
絕對值大開口小,開口向下A負數。
拋物線有對稱軸,增減特性可看圖。
線軸交點叫頂點,頂點縱標最值出。
如果要畫拋物線,描點平移兩條路。
提取配方定頂點,平移描點皆成圖。
列表描點後連線,三點大致定全圖。
若要平移也不難,先畫基礎拋物線,
頂點移到新位置,開口大小隨基礎。
【注】基礎拋物線
22. 列方程解應用題:
列方程解應用題,審設列解雙檢答。
審題弄清已未知,設元直間兩辦法。
列表畫圖造方程,解方程時守章法。
檢驗准且合題意,問求同一才作答。
23. 兩點間距離公式:
同軸兩點求距離,大減小數就為之。
與軸等距兩個點,間距求法亦如此。
平面任意兩個點,橫縱標差先求值。
差方相加開平方,距離公式要牢記。

二次函數知識點:1.二次函數的概念:一般地,形如 ( 是常數, )的函數,叫做二次函數。 這里需要強調:和一元二次方程類似,二次項系數 ,而 可以為零.二次函數的定義域是全體實數.
2. 二次函數 的結構特徵:
⑴ 等號左邊是函數,右邊是關於自變數 的二次式, 的最高次數是2.
⑵ 是常數, 是二次項系數, 是一次項系數, 是常數項.
二次函數的基本形式
1. 二次函數基本形式: 的性質:

結論:a 的絕對值越大,拋物線的開口越小。
總結:

的符號
開口方向 頂點坐標 對稱軸 性質

向上

時, 隨 的增大而增大; 時, 隨 的增大而減小; 時, 有最小值 .

向下

時, 隨 的增大而減小; 時, 隨 的增大而增大; 時, 有最大值 .

2. 的性質:

結論:上加下減。同左上加,異右下減
總結:
的符號
開口方向 頂點坐標 對稱軸 性質

向上

時, 隨 的增大而增大; 時, 隨 的增大而減小; 時, 有最小值 .

向下

時, 隨 的增大而減小; 時, 隨 的增大而增大; 時, 有最大值 .

3. 的性質:

結論:左加右減。同左上加,異右下減
總結:
的符號
開口方向 頂點坐標 對稱軸 性質

向上
X=h 時, 隨 的增大而增大; 時, 隨 的增大而減小; 時, 有最小值 .

向下
X=h 時, 隨 的增大而減小; 時, 隨 的增大而增大; 時, 有最大值 .

4. 的性質:

總結:
的符號
開口方向 頂點坐標 對稱軸 性質

向上
X=h 時, 隨 的增大而增大; 時, 隨 的增大而減小; 時, 有最小值 .

㈥ 初中數學知識點哪本書總結的好

下面是我們老師總結的,電子版的,就都發出來了
一、基本知識一、數與代數A、數與式:1、有理數有理數:①整數→正整數/0/負整數②分數→正分數/負分數數軸:①畫一條水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規定直線上向右的方向為正方向,就得到數軸。②任何一個有理數都可以用數軸上的一個點來表示。③如果兩個數只有符號不同,那麼我們稱其中一個數為另外一個數的相反數,也稱這兩個數互為相反數。在數軸上,表示互為相反數的兩個點,位於原點的兩側,並且與原點距離相等。④數軸上兩個點表示的數,右邊的總比左邊的大。正數大於0,負數小於0,正數大於負數。絕對值:①在數軸上,一個數所對應的點與原點的距離叫做該數的絕對值。②正數的絕對值是他的本身、負數的絕對值是他的相反數、0的絕對值是0。兩個負數比較大小,絕對值大的反而小。有理數的運算:加法:①同號相加,取相同的符號,把絕對值相加。②異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數的符號,並用較大的絕對值減去較小的絕對值。③一個數與0相加不變。減法:減去一個數,等於加上這個數的相反數。乘法:①兩數相乘,同號得正,異號得負,絕對值相乘。②任何數與0相乘得0。③乘積為1的兩個有理數互為倒數。除法:①除以一個數等於乘以一個數的倒數。②0不能作除數。乘方:求N個相同因數A的積的運算叫做乘方,乘方的結果叫冪,A叫底數,N叫次數。混合順序:先算乘法,再算乘除,最後算加減,有括弧要先算括弧里的。2、實數 無理數:無限不循環小數叫無理數平方根:①如果一個正數X的平方等於A,那麼這個正數X就叫做A的算術平方根。②如果一個數X的平方等於A,那麼這個數X就叫做A的平方根。③一個正數有2個平方根/0的平方根為0/負數沒有平方根。④求一個數A的平方根運算,叫做開平方,其中A叫做被開方數。立方根:①如果一個數X的立方等於A,那麼這個數X就叫做A的立方根。②正數的立方根是正數、0的立方根是0、負數的立方根是負數。③求一個數A的立方根的運算叫開立方,其中A叫做被開方數。實數:①實數分有理數和無理數。②在實數范圍內,相反數,倒數,絕對值的意義和有理數范圍內的相反數,倒數,絕對值的意義完全一樣。③每一個實數都可以在數軸上的一個點來表示。3、代數式代數式:單獨一個數或者一個字母也是代數式。合並同類項:①所含字母相同,並且相同字母的指數也相同的項,叫做同類項。②把同類項合並成一項就叫做合並同類項。③在合並同類項時,我們把同類項的系數相加,字母和字母的指數不變。4、整式與分式整式:①數與字母的乘積的代數式叫單項式,幾個單項式的和叫多項式,單項式和多項式統稱整式。②一個單項式中,所有字母的指數和叫做這個單項式的次數。③一個多項式中,次數最高的項的次數叫做這個多項式的次數。整式運算:加減運算時,如果遇到括弧先去括弧,再合並同類項。冪的運算:AM+AN=A(M+N) (AM)N=AMN (A/B)N=AN/BN 除法一樣。整式的乘法:①單項式與單項式相乘,把他們的系數,相同字母的冪分別相乘,其餘字母連同他的指數不變,作為積的因式。②單項式與多項式相乘,就是根據分配律用單項式去乘多項式的每一項,再把所得的積相加。③多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。公式兩條:平方差公式/完全平方公式整式的除法:①單項式相除,把系數,同底數冪分別相除後,作為商的因式;對於只在被除式里含有的字母,則連同他的指數一起作為商的一個因式。②多項式除以單項式,先把這個多項式的每一項分別除以單項式,再把所得的商相加。分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式。方法:提公因式法、運用公式法、分組分解法、十字相乘法。分式:①整式A除以整式B,如果除式B中含有分母,那麼這個就是分式,對於任何一個分式,分母不為0。②分式的分子與分母同乘以或除以同一個不等於0的整式,分式的值不變。分式的運算:乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。除法:除以一個分式等於乘以這個分式的倒數。加減法:①同分母分式相加減,分母不變,把分子相加減。②異分母的分式先通分,化為同分母的分式,再加減。分式方程:①分母中含有未知數的方程叫分式方程。②使方程的分母為0的解稱為原方程的增根。B、方程與不等式1、方程與方程組一元一次方程:①在一個方程中,只含有一個未知數,並且未知數的指數是1,這樣的方程叫一元一次方程。②等式兩邊同時加上或減去或乘以或除以(不為0)一個代數式,所得結果仍是等式。解一元一次方程的步驟:去分母,移項,合並同類項,未知數系數化為1。二元一次方程:含有兩個未知數,並且所含未知數的項的次數都是1的方程叫做二元一次方程。二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。適合一個二元一次方程的一組未知數的值,叫做這個二元一次方程的一個解。二元一次方程組中各個方程的公共解,叫做這個二元一次方程的解。解二元一次方程組的方法:代入消元法/加減消元法。一元二次方程:只有一個未知數,並且未知數的項的最高系數為2的方程1)一元二次方程的二次函數的關系大家已經學過二次函數(即拋物線)了,對他也有很深的了解,好像解法,在圖象中表示等等,其實一元二次方程也可以用二次函數來表示,其實一元二次方程也是二次函數的一個特殊情況,就是當Y的0的時候就構成了一元二次方程了。那如果在平面直角坐標系中表示出來,一元二次方程就是二次函數中,圖象與X軸的交點。也就是該方程的解了2)一元二次方程的解法大家知道,二次函數有頂點式(-b/2a,4ac-b2/4a),這大家要記住,很重要,因為在上面已經說過了,一元二次方程也是二次函數的一部分,所以他也有自己的一個解法,利用他可以求出所有的一元一次方程的解(1)配方法利用配方,使方程變為完全平方公式,在用直接開平方法去求出解(2)分解因式法提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時候也一樣,利用這點,把方程化為幾個乘積的形式去解(3)公式法這方法也可以是在解一元二次方程的萬能方法了,方程的根X1={-b+√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a3)解一元二次方程的步驟:(1)配方法的步驟:先把常數項移到方程的右邊,再把二次項的系數化為1,再同時加上1次項的系數的一半的平方,最後配成完全平方公式(2)分解因式法的步驟:把方程右邊化為0,然後看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式(3)公式法就把一元二次方程的各系數分別代入,這里二次項的系數為a,一次項的系數為b,常數項的系數為c4)韋達定理利用韋達定理去了解,韋達定理就是在一元二次方程中,二根之和=-b/a,二根之積=c/a也可以表示為x1+x2=-b/a,x1x2=c/a。利用韋達定理,可以求出一元二次方程中的各系數,在題目中很常用5)一元一次方程根的情況利用根的判別式去了解,根的判別式可在書面上可以寫為「△」,讀作「diao ta」,而△=b2-4ac,這里可以分為3種情況:I當△>0時,一元二次方程有2個不相等的實數根;II當△=0時,一元二次方程有2個相同的實數根;III當△<0時,一元二次方程沒有實數根(在這里,學到高中就會知道,這里有2個虛數根)2、不等式與不等式組不等式:①用符號〉,=,〈號連接的式子叫不等式。②不等式的兩邊都加上或減去同一個整式,不等號的方向不變。③不等式的兩邊都乘以或者除以一個正數,不等號方向不變。④不等式的兩邊都乘以或除以同一個負數,不等號方向相反。不等式的解集:①能使不等式成立的未知數的值,叫做不等式的解。②一個含有未知數的不等式的所有解,組成這個不等式的解集。③求不等式解集的過程叫做解不等式。一元一次不等式:左右兩邊都是整式,只含有一個未知數,且未知數的最高次數是1的不等式叫一元一次不等式。一元一次不等式組:①關於同一個未知數的幾個一元一次不等式合在一起,就組成了一元一次不等式組。②一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。③求不等式組解集的過程,叫做解不等式組。一元一次不等式的符號方向:在一元一次不等式中,不像等式那樣,等號是不變的,他是隨著你加或乘的運算改變。在不等式中,如果加上同一個數(或加上一個正數),不等式符號不改向;例如:A>B,A+C>B+C在不等式中,如果減去同一個數(或加上一個負數),不等式符號不改向;例如:A>B,A-C>B-C在不等式中,如果乘以同一個正數,不等號不改向;例如:A>B,A*C>B*C(C>0)在不等式中,如果乘以同一個負數,不等號改向;例如:A>B,A*C<B*C(C<0)如果不等式乘以0,那麼不等號改為等號所以在題目中,要求出乘以的數,那麼就要看看題中是否出現一元一次不等式,如果出現了,那麼不等式乘以的數就不等為0,否則不等式不成立; 3、函數變數:因變數,自變數。在用圖象表示變數之間的關系時,通常用水平方向的數軸上的點自變數,用豎直方向的數軸上的點表示因變數。一次函數:①若兩個變數X,Y間的關系式可以表示成Y=KX+B(B為常數,K不等於0)的形式,則稱Y是X的一次函數。②當B=0時,稱Y是X的正比例函數。一次函數的圖象:①把一個函數的自變數X與對應的因變數Y的值分別作為點的橫坐標與縱坐標,在直角坐標系內描出它的對應點,所有這些點組成的圖形叫做該函數的圖象。②正比例函數Y=KX的圖象是經過原點的一條直線。③在一次函數中,當K〈0,B〈O,則經234象限;當K〈0,B〉0時,則經124象限;當K〉0,B〈0時,則經134象限;當K〉0,B〉0時,則經123象限。④當K〉0時,Y的值隨X值的增大而增大,當X〈0時,Y的值隨X值的增大而減少。二空間與圖形A、圖形的認識1、點,線,面點,線,面:①圖形是由點,線,面構成的。②面與面相交得線,線與線相交得點。③點動成線,線動成面,面動成體。展開與折疊:①在稜柱中,任何相鄰的兩個面的交線叫做棱,側棱是相鄰兩個側面的交線,稜柱的所有側棱長相等,稜柱的上下底面的形狀相同,側面的形狀都是長方體。②N稜柱就是底面圖形有N條邊的稜柱。截一個幾何體:用一個平面去截一個圖形,截出的面叫做截面。視圖:主視圖,左視圖,俯視圖。多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。弧、扇形:①由一條弧和經過這條弧的端點的兩條半徑所組成的圖形叫扇形。②圓可以分割成若干個扇形。2、角線:①線段有兩個端點。②將線段向一個方向無限延長就形成了射線。射線只有一個端點。③將線段的兩端無限延長就形成了直線。直線沒有端點。④經過兩點有且只有一條直線。比較長短:①兩點之間的所有連線中,線段最短。②兩點之間線段的長度,叫做這兩點之間的距離。角的度量與表示:①角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點。②一度的1/60是一分,一分的1/60是一秒。角的比較:①角也可以看成是由一條射線繞著他的端點旋轉而成的。②一條射線繞著他的端點旋轉,當終邊和始邊成一條直線時,所成的角叫做平角。始邊繼續旋轉,當他又和始邊重合時,所成的角叫做周角。③從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。平行:①同一平面內,不相交的兩條直線叫做平行線。②經過直線外一點,有且只有一條直線與這條直線平行。③如果兩條直線都與第3條直線平行,那麼這兩條直線互相平行。垂直:①如果兩條直線相交成直角,那麼這兩條直線互相垂直。②互相垂直的兩條直線的交點叫做垂足。③平面內,過一點有且只有一條直線與已知直線垂直。垂直平分線:垂直和平分一條線段的直線叫垂直平分線。垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據射線和直線可以無限延長有關,再看後面的,垂直平分線是一條直線,所以在畫垂直平分線的時候,確定了2點後(關於畫法,後面會講)一定要把線段穿出2點。垂直平分線定理:性質定理:在垂直平分線上的點到該線段兩端點的距離相等;判定定理:到線段2端點距離相等的點在這線段的垂直平分線上角平分線:把一個角平分的射線叫該角的角平分線。定義中有幾個要點要注意一下的,就是角的角平分線是一條射線,不是線段也不是直線,很多時,在題目中會出現直線,這是角平分線的對稱軸才會用直線的,這也涉及到軌跡的問題,一個角個角平分線就是到角兩邊距離相等的點性質定理:角平分線上的點到該角兩邊的距離相等判定定理:到角的兩邊距離相等的點在該角的角平分線上正方形:一組鄰邊相等的矩形是正方形性質:正方形具有平行四邊形、菱形、矩形的一切性質判定:1、對角線相等的菱形2、鄰邊相等的矩形二、基本定理1、過兩點有且只有一條直線 2、兩點之間線段最短3、同角或等角的補角相等 4、同角或等角的餘角相等5、過一點有且只有一條直線和已知直線垂直6、直線外一點與直線上各點連接的所有線段中,垂線段最短7、平行公理 經過直線外一點,有且只有一條直線與這條直線平行8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行9、同位角相等,兩直線平行10、內錯角相等,兩直線平行11、同旁內角互補,兩直線平行12、兩直線平行,同位角相等13、兩直線平行,內錯角相等14、兩直線平行,同旁內角互補15、定理 三角形兩邊的和大於第三邊16、推論 三角形兩邊的差小於第三邊17、三角形內角和定理 三角形三個內角的和等於180°18、推論1 直角三角形的兩個銳角互餘19、推論2 三角形的一個外角等於和它不相鄰的兩個內角的和20、推論3 三角形的一個外角大於任何一個和它不相鄰的內角21、全等三角形的對應邊、對應角相等22、邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等23、角邊角公理( ASA)有兩角和它們的夾邊對應相等的 兩個三角形全等24、推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等25、邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等26、斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等27、定理1 在角的平分線上的點到這個角的兩邊的距離相等28、定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上29、角的平分線是到角的兩邊距離相等的所有點的集合30、等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角)31、推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊32、等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合33、推論3 等邊三角形的各角都相等,並且每一個角都等於60°34、等腰三角形的判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)35、推論1 三個角都相等的三角形是等邊三角形36、推論 2 有一個角等於60°的等腰三角形是等邊三角形37、在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半38、直角三角形斜邊上的中線等於斜邊上的一半39、定理 線段垂直平分線上的點和這條線段兩個端點的距離相等40、逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上41、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合42、定理1 關於某條直線對稱的兩個圖形是全等形43、定理 2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線44、定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上45、逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱46、勾股定理 直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a2+b2=c247、勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a2+b2=c2,那麼這個三角形是直角三角形48、定理 四邊形的內角和等於360°49、四邊形的外角和等於360°50、多邊形內角和定理 n邊形的內角的和等於(n-2)×180°51、推論 任意多邊的外角和等於360°52、平行四邊形性質定理1 平行四邊形的對角相等53、平行四邊形性質定理2 平行四邊形的對邊相等54、推論 夾在兩條平行線間的平行線段相等55、平行四邊形性質定理3 平行四邊形的對角線互相平分56、平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形57、平行四邊形判定定理2 兩組對邊分別相等的四邊 形是平行四邊形58、平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形59、平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形60、矩形性質定理1 矩形的四個角都是直角61、矩形性質定理2 矩形的對角線相等62、矩形判定定理1 有三個角是直角的四邊形是矩形63、矩形判定定理2 對角線相等的平行四邊形是矩形64、菱形性質定理1 菱形的四條邊都相等65、菱形性質定理2 菱形的對角線互相垂直,並且每一條對角線平分一組對角

㈦ 人教版初中八年級下冊函數知識點總結

㈧ 初中數學的知識點總結

一、基本運算方法
1、配方法
所謂配方,就是把一個解析式利用恆等變形的方法,把其中的某些項配成一個或幾個多項式正整數次冪的和形式。通過配方解決數學問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數學中一種重要的恆等變形的方法,它的應用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數的極值和解析式等方面都經常用到它。
2、因式分解法
因式分解,就是把一個多項式化成幾個整式乘積的形式。因式分解是恆等變形的基礎,它作為數學的一個有力工具、一種數學方法在代數、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數等等。
3、換元法
換元法是數學中一個非常重要而且應用十分廣泛的解題方法。我們通常把未知數或變數稱為元,所謂換元法,就是在一個比較復雜的數學式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易於解決。
4、判別式法與韋達定理
一元二次方程ax2+bx+c=0(a、b、c屬於R,a≠0)根的判別,△=b2-4ac,不僅用來判定根的性質,而且作為一種解題方法,在代數式變形,解方程(組),解不等式,研究函數乃至幾何、三角運算中都有非常廣泛的應用。
韋達定理除了已知一元二次方程的一個根,求另一根;已知兩個數的和與積,求這兩個數等簡單應用外,還可以求根的對稱函數,計論二次方程根的符號,解對稱方程組,以及解一些有關二次曲線的問題等
5、待定系數法
在解數學問題時,若先判斷所求的結果具有某種確定的形式,其中含有某些待定的系數,而後根據題設條件列出關於待定系數的等式,最後解出這些待定系數的值或找到這些待定系數間的某種關系,從而解答數學問題,這種解題方法稱為待定系數法。它是中學數學中常用的方法之一。
6、構造法
在解題時,我們常常會採用這樣的方法,通過對條件和結論的分析,構造輔助元素,它可以是一個圖形、一個方程(組)、一個等式、一個函數、一個等價命題等,架起一座連接條件和結論的橋梁,從而使問題得以解決,這種解題的數學方法,我們稱為構造法。運用構造法解題,可以使代數、三角、幾何等各種數學知識互相滲透,有利於問題的解決。
7、反證法
反證法是一種間接證法,它是先提出一個與命題的結論相反的假設,然後,從這個假設出發,經過正確的推理,導致矛盾,從而否定相反的假設,達到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結論的反面只有一種)與窮舉反證法(結論的反面不只一種)。用反證法證明一個命題的步驟,大體上分為:(1)反設;(2)歸謬;(3)結論。
反設是反證法的基礎,為了正確地作出反設,掌握一些常用的互為否定的表述形式是有必要的,例如:是、不是;存在、不存在;平行於、不平行於;垂直於、不垂直於;等於、不等於;大(小)於、不大(小)於;都是、不都是;至少有一個、一個也沒有;至少有n個、至多有(n一1)個;至多有一個、至少有兩個;唯一、至少有兩個。
歸謬是反證法的關鍵,導出矛盾的過程沒有固定的模式,但必須從反設出發,否則推導將成為無源之水,無本之木。推理必須嚴謹。導出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設矛盾;自相矛盾。
8、面積法
平面幾何中講的面積公式以及由面積公式推出的與面積計算有關的性質定理,不僅可用於計算面積,而且用它來證明平面幾何題有時會收到事半功倍的效果。運用面積關系來證明或計算平面幾何題的方法,稱為面積方法,它是幾何中的一種常用方法。
用歸納法或分析法證明平面幾何題,其困難在添置輔助線。面積法的特點是把已知和未知各量用面積公式聯系起來,通過運算達到求證的結果。所以用面積法來解幾何題,幾何元素之間關系變成數量之間的關系,只需要計算,有時可以不添置補助線,即使需要添置輔助線,也很容易考慮到。
9、幾何變換法
在數學問題的研究中,常常運用變換法,把復雜性問題轉化為簡單性的問題而得到解決。所謂變換是一個集合的任一元素到同一集合的元素的一個一一映射。中學數學中所涉及的變換主要是初等變換。有一些看來很難甚至於無法下手的習題,可以藉助幾何變換法,化繁為簡,化難為易。另一方面,也可將變換的觀點滲透到中學數學教學中。將圖形從相等靜止條件下的研究和運動中的研究結合起來,有利於對圖形本質的認識。
幾何變換包括:(1)平移;(2)旋轉;(3)對稱。
10、客觀性題的解題方法
選擇題是給出條件和結論,要求根據一定的關系找出正確答案的一類題型。選擇題的題型構思精巧,形式靈活,可以比較全面地考察學生的基礎知識和基本技能,從而增大了試卷的容量和知識覆蓋面。
填空題是標准化考試的重要題型之一,它同選擇題一樣具有考查目標明確,知識復蓋面廣,評卷准確迅速,有利於考查學生的分析判斷能力和計算能力等優點,不同的是填空題未給出答案,可以防止學生猜估答案的情況。
要想迅速、正確地解選擇題、填空題,除了具有準確的計算、嚴密的推理外,還要有解選擇題、填空題的方法與技巧。下面通過實例介紹常用方法。
(1)直接推演法:直接從命題給出的條件出發,運用概念、公式、定理等進行推理或運算,得出結論,選擇正確答案,這就是傳統的解題方法,這種解法叫直接推演法。
(2)驗證法:由題設找出合適的驗證條件,再通過驗證,找出正確答案,亦可將供選擇的答案代入條件中去驗證,找出正確答案,此法稱為驗證法(也稱代入法)。當遇到定量命題時,常用此法。
(3)特殊元素法:用合適的特殊元素(如數或圖形)代入題設條件或結論中去,從而獲得解答。這種方法叫特殊元素法。
(4)排除、篩選法:對於正確答案有且只有一個的選擇題,根據數學知識或推理、演算,把不正確的結論排除,餘下的結論再經篩選,從而作出正確的結論的解法叫排除、篩選法。
(5)圖解法:藉助於符合題設條件的圖形或圖象的性質、特點來判斷,作出正確的選擇稱為圖解法。圖解法是解選擇題常用方法之一。
(6)分析法:直接通過對選擇題的條件和結論,作詳盡的分析、歸納和判斷,從而選出正確的結果,為分析法。

㈨ 初中數學的知識點總結,急,快中考了。

1 過兩點有且只有一條直線
2 兩點之間線段最短
3 同角或等角的補角相等
4 同角或等角的餘角相等
5 過一點有且只有一條直線和已知直線垂直
6 直線外一點與直線上各點連接的所有線段中,垂線段最短
7 平行公理 經過直線外一點,有且只有一條直線與這條直線平行
8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9 同位角相等,兩直線平行
10 內錯角相等,兩直線平行
11 同旁內角互補,兩直線平行
12 兩直線平行,同位角相等
13 兩直線平行,內錯角相等
14 兩直線平行,同旁內角互補
15 定理 三角形兩邊的和大於第三邊
16 推論 三角形兩邊的差小於第三邊
17 三角形內角和定理 三角形三個內角的和等於180°
18 推論1 直角三角形的兩個銳角互余
19 推論2 三角形的一個外角等於和它不相鄰的兩個內角的和
20 推論3 三角形的一個外角大於任何一個和它不相鄰的內角
21 全等三角形的對應邊、對應角相等
22 邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等
23 角邊角公理( ASA)有兩角和它們的夾邊對應相等的兩個三角形全等
24 推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等
25 邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等
26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等
27 定理1 在角的平分線上的點到這個角的兩邊的距離相等
28 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上
29 角的平分線是到角的兩邊距離相等的所有點的集合
30 等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角)
31 推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊
32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33 推論3 等邊三角形的各角都相等,並且每一個角都等於60°
34 等腰三角形的判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)
35 推論1 三個角都相等的三角形是等邊三角形
36 推論 2 有一個角等於60°的等腰三角形是等邊三角形
37 在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半
38 直角三角形斜邊上的中線等於斜邊上的一半
39 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等
40 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42 定理1 關於某條直線對稱的兩個圖形是全等形
43 定理 2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線
44定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上
45逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱
46勾股定理 直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a^2+b^2=c^2
47勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a^2+b^2=c^2 ,那麼這個三角形是直角三角形
48定理 四邊形的內角和等於360°
49四邊形的外角和等於360°
50多邊形內角和定理 n邊形的內角的和等於(n-2)×180°
51推論 任意多邊的外角和等於360°
52平行四邊形性質定理1 平行四邊形的對角相等
53平行四邊形性質定理2 平行四邊形的對邊相等
54推論 夾在兩條平行線間的平行線段相等
55平行四邊形性質定理3 平行四邊形的對角線互相平分
56平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形
57平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形
58平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形
59平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形
60矩形性質定理1 矩形的四個角都是直角
61矩形性質定理2 矩形的對角線相等
62矩形判定定理1 有三個角是直角的四邊形是矩形
63矩形判定定理2 對角線相等的平行四邊形是矩形
64菱形性質定理1 菱形的四條邊都相等
65菱形性質定理2 菱形的對角線互相垂直,並且每一條對角線平分一組對角
66菱形面積=對角線乘積的一半,即S=(a×b)÷2
67菱形判定定理1 四邊都相等的四邊形是菱形
68菱形判定定理2 對角線互相垂直的平行四邊形是菱形
69正方形性質定理1 正方形的四個角都是直角,四條邊都相等
70正方形性質定理2正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角
71定理1 關於中心對稱的兩個圖形是全等的
72定理2 關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分
73逆定理 如果兩個圖形的對應點連線都經過某一點,並且被這一
點平分,那麼這兩個圖形關於這一點對稱
74等腰梯形性質定理 等腰梯形在同一底上的兩個角相等
75等腰梯形的兩條對角線相等
76等腰梯形判定定理 在同一底上的兩個角相等的梯形是等腰梯形
77對角線相等的梯形是等腰梯形
78平行線等分線段定理 如果一組平行線在一條直線上截得的線段
相等,那麼在其他直線上截得的線段也相等
79 推論1 經過梯形一腰的中點與底平行的直線,必平分另一腰
80 推論2 經過三角形一邊的中點與另一邊平行的直線,必平分第
三邊
81 三角形中位線定理 三角形的中位線平行於第三邊,並且等於它
的一半
82 梯形中位線定理 梯形的中位線平行於兩底,並且等於兩底和的
一半 L=(a+b)÷2 S=L×h
83 (1)比例的基本性質 如果a:b=c:d,那麼ad=bc
如果ad=bc,那麼a:b=c:d
84 (2)合比性質 如果a/b=c/d,那麼(a±b)/b=(c±d)/d
85 (3)等比性質 如果a/b=c/d=…=m/n(b+d+…+n≠0),那麼
(a+c+…+m)/(b+d+…+n)=a/b
86 平行線分線段成比例定理 三條平行線截兩條直線,所得的對應
線段成比例
87 推論 平行於三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例
88 定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那麼這條直線平行於三角形的第三邊
89 平行於三角形的一邊,並且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例
90 定理 平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似
91 相似三角形判定定理1 兩角對應相等,兩三角形相似(ASA)
92 直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
93 判定定理2 兩邊對應成比例且夾角相等,兩三角形相似(SAS)
94 判定定理3 三邊對應成比例,兩三角形相似(SSS)
95 定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三
角形的斜邊和一條直角邊對應成比例,那麼這兩個直角三角形相似
96 性質定理1 相似三角形對應高的比,對應中線的比與對應角平
分線的比都等於相似比
97 性質定理2 相似三角形周長的比等於相似比
98 性質定理3 相似三角形面積的比等於相似比的平方
99 任意銳角的正弦值等於它的餘角的餘弦值,任意銳角的餘弦值等
於它的餘角的正弦值
100任意銳角的正切值等於它的餘角的餘切值,任意銳角的餘切值等
於它的餘角的正切值
101圓是定點的距離等於定長的點的集合
102圓的內部可以看作是圓心的距離小於半徑的點的集合
103圓的外部可以看作是圓心的距離大於半徑的點的集合
104同圓或等圓的半徑相等
105到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半
徑的圓
106和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直
平分線
107到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
108到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距
離相等的一條直線
109定理 不在同一直線上的三點確定一個圓。
110垂徑定理 垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧
111推論1 ①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧
②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧
112推論2 圓的兩條平行弦所夾的弧相等
113圓是以圓心為對稱中心的中心對稱圖形
114定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦
相等,所對的弦的弦心距相等
115推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩
弦的弦心距中有一組量相等那麼它們所對應的其餘各組量都相等
116定理 一條弧所對的圓周角等於它所對的圓心角的一半
117推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
118推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所
對的弦是直徑
119推論3 如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形
120定理 圓的內接四邊形的對角互補,並且任何一個外角都等於它
的內對角
121①直線L和⊙O相交 d<r
②直線L和⊙O相切 d=r
③直線L和⊙O相離 d>r
122切線的判定定理 經過半徑的外端並且垂直於這條半徑的直線是圓的切線
123切線的性質定理 圓的切線垂直於經過切點的半徑
124推論1 經過圓心且垂直於切線的直線必經過切點
125推論2 經過切點且垂直於切線的直線必經過圓心
126切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等,
圓心和這一點的連線平分兩條切線的夾角
127圓的外切四邊形的兩組對邊的和相等
128弦切角定理 弦切角等於它所夾的弧對的圓周角
129推論 如果兩個弦切角所夾的弧相等,那麼這兩個弦切角也相等
130相交弦定理 圓內的兩條相交弦,被交點分成的兩條線段長的積
相等
131推論 如果弦與直徑垂直相交,那麼弦的一半是它分直徑所成的
兩條線段的比例中項
132切割線定理 從圓外一點引圓的切線和割線,切線長是這點到割
線與圓交點的兩條線段長的比例中項
133推論 從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等
134如果兩個圓相切,那麼切點一定在連心線上
135①兩圓外離 d>R+r ②兩圓外切 d=R+r
③兩圓相交 R-r<d<R+r(R>r)
④兩圓內切 d=R-r(R>r) ⑤兩圓內含d<R-r(R>r)
136定理 相交兩圓的連心線垂直平分兩圓的公共弦
137定理 把圓分成n(n≥3):
⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形
⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
138定理 任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓
139正n邊形的每個內角都等於(n-2)×180°/n
140定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
141正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長
142正三角形面積√3a/4 a表示邊長
143如果在一個頂點周圍有k個正n邊形的角,由於這些角的和應為
360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
144弧長計算公式:L=n兀R/180
145扇形面積公式:S扇形=n兀R^2/360=LR/2
146內公切線長= d-(R-r) 外公切線長= d-(R+r)

乘法與因式分解 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b

|a-b|≥|a|-|b| -|a|≤a≤|a|

一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a

根與系數的關系 X1+X2=-b/a X1*X2=c/a 註:韋達定理

判別式
b2-4ac=0 註:方程有兩個相等的實根
b2-4ac>0 註:方程有兩個不等的實根
b2-4ac<0 註:方程沒有實根,有共軛復數根

三角函數公式

兩角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

半形公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))

和差化積
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB

某些數列前n項和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理 a/sinA=b/sinB=c/sinC=2R 註: 其中 R 表示三角形的外接圓半徑

餘弦定理 b2=a2+c2-2accosB 註:角B是邊a和邊c的夾角

圓的標准方程 (x-a)2+(y-b)2=r2 註:(a,b)是圓心坐標
圓的一般方程 x2+y2+Dx+Ey+F=0 註:D2+E2-4F>0
拋物線標准方程 y2=2px y2=-2px x2=2py x2=-2py

直稜柱側面積 S=c*h 斜稜柱側面積 S=c'*h
正棱錐側面積 S=1/2c*h' 正稜台側面積 S=1/2(c+c')h'
圓台側面積 S=1/2(c+c')l=pi(R+r)l 球的表面積 S=4pi*r2
圓柱側面積 S=c*h=2pi*h 圓錐側面積 S=1/2*c*l=pi*r*l

弧長公式 l=a*r a是圓心角的弧度數r >0 扇形面積公式 s=1/2*l*r

錐體體積公式 V=1/3*S*H 圓錐體體積公式 V=1/3*pi*r2h
斜稜柱體積 V=S'L 註:其中,S'是直截面面積, L是側棱長
柱體體積公式 V=s*h 圓柱體 V=pi*r2h
sin30:二分之一 sin45:二分之根二 sin60:二分之根三
cos30:二分之根三 cos45:二分之根二 cos60:二分之一
tan30:三分之根三 cos45:一 tan60:根三
等比數列:
若q=1 則S=n*a1
若q≠1
推倒過程:
S=a1+a1*q+a1*q^2+……+a1*q^(n-1)
等式兩邊同時乘q
S*q=a1*q+a1*q^2+a1*q^3+……+a1*q^
1式-2式 有
S=a1*(1-q^n)/(1-q)

等差數列
推導過程:
S=a1+(a1+d)+(a1+2d)+……(a1+(n-1)*d)
把這個公式倒著寫一遍
S=(a1+(n-1)*d) +(a1+(n-2)*d)+(a1+(n-3)*d)+……+a1
上兩式相加有
S=(2a1+(n-1)d)*n/2=n*a1+n*(n-1)*d/2