當前位置:首頁 » 基礎知識 » 數學知識大全初中筆記
擴展閱讀
知足就常樂怎麼活歌詞 2024-11-20 23:22:49
如何去除動漫原本的聲音 2024-11-20 23:14:56
雲vr教育是什麼意思 2024-11-20 23:03:46

數學知識大全初中筆記

發布時間: 2022-12-30 23:10:15

『壹』 初二數學知識點筆記

對世界上的一切學問與知識的掌握也並非難事,只要持之以恆地學習,努力掌握規律,達到熟悉的境地,就能融會貫通,運用自如。學習需要持之以恆。下面是我給大家整理的一些初二數學的知識點,希望對大家有所幫助。

初二數學上冊知識點 總結

三角形知識點

1、全等三角形的對應邊、對應角相等。

2、邊角邊公理(SAS)有兩邊和它們的夾角對應相等的兩個三角形全等。

3、角邊角公理(ASA)有兩角和它們的夾邊對應相等的兩個三角形全等。

4、推論(AAS)有兩角和其中一角的對邊對應相等的兩個三角形全等。

5、邊邊邊公理(SSS)有三邊對應相等的兩個三角形全等。

6、斜邊、直角邊公理(HL)有斜邊和一條直角邊對應相等的兩個直角三角形全等。

7、定理1在角的平分線上的點到這個角的兩邊的距離相等。

8、定理2到一個角的兩邊的距離相同的點,在這個角的平分線上。

9、角的平分線是到角的兩邊距離相等的所有點的集合。

10、等腰三角形的性質定理等腰三角形的兩個底角相等(即等邊對等角)。

函數與方程知識點

1、一次函數也叫做線性函數,一般在X,Y坐標軸中用一條直線來表示,當一次函數中的一個變數的值確定的情況下,可以用一元一次方程來解答出另一個變數的值。

2、任何一個一元一次方程都可以轉化成ax+b=0(a,b為常數,a≠0)的形式,所以解一元一次方程可以轉化為:當某個一次函數的值為0時,求相應的自變數的值(從數的角度);從圖像上來看,就相當於已知直線y=ax+b,確定它與x軸的交點橫坐標的值(從形的角度)。

3、利用函數圖像解方程:-2x+2=0,可以轉化為求一次函數y=-2x+2與x軸交點的橫坐標。而y=-2x+2與x軸交點的橫坐標為1,所以方程-2x+2=0的解為x=1。

注意:解一元一次方程ax+b=0(a≠0)與求函數y=ax+b(a≠0)的圖像與x軸交點的橫坐標是同一個問題。不同的是前者從數的角度來解決問題,後者從形的角度來解決問題。

4、每個二元一次方程組都對應兩個一次函數,從數的角度來看,解方程組相當於考慮自變數為何值時兩個函數的值相等,以及這個函數是何值;從形的角度來看,解方程組相當於確定兩條直線交點的坐標,從而使方程組得出答案。

5、解答一次函數的作法最簡單的就是列表法,取一個滿足一次函數表達式的兩個點的坐標,來確定另一個未知數的值。還有一個描點法。一般取兩個點,根據「兩點確定一條直線」的道理,也可叫「兩點法」。通常情況下y=kx+b(k≠0)的圖象過(0,b)和(-b/k,0)兩點即可畫出。

初二數學上冊期中知識點歸納

一、在平面內,確定物體的位置一般需要兩個數據。

二、平面直角坐標系及有關概念

1、平面直角坐標系

在平面內,兩條互相垂直且有公共原點的數軸,組成平面直角坐標系。其中,水平的數軸叫做x軸或橫軸,取向右為正方向;鉛直的數軸叫做y軸或縱軸,取向上為正方向;x軸和y軸統稱坐標軸。它們的公共原點O稱為直角坐標系的原點;建立了直角坐標系的平面,叫做坐標平面。

2、為了便於描述坐標平面內點的位置,把坐標平面被x軸和y軸分割而成的四個部分,分別叫做第一象限、第二象限、第三象限、第四象限。

注意:x軸和y軸上的點(坐標軸上的點),不屬於任何一個象限。

3、點的坐標的概念

對於平面內任意一點P,過點P分別x軸、y軸向作垂線,垂足在上x軸、y軸對應的數a,b分別叫做點P的橫坐標、縱坐標,有序數對(a,b)叫做點P的坐標。

點的坐標用(a,b)表示,其順序是橫坐標在前,縱坐標在後,中間有「,」分開,橫、縱坐標的位置不能顛倒。平面內點的坐標是有序實數對,當時,(a,b)和(b,a)是兩個不同點的坐標。

平面內點的與有序實數對是一一對應的。

4、不同位置的點的坐標的特徵

(1)各象限內點的坐標的特徵

點P(x,y)在第一象限:x;0,y;0

點P(x,y)在第二象限:x;0,y;0

點P(x,y)在第三象限:x;0,y;0

點P(x,y)在第四象限:x;0,y;0

(2)坐標軸上的點的特徵

點P(x,y)在x軸上,y=0,x為任意實數

點P(x,y)在y軸上,x=0,y為任意實數

點P(x,y)既在x軸上,又在y軸上,x,y同時為零,即點P坐標為(0,0)即原點

(3)兩條坐標軸夾角平分線上點的坐標的特徵

點P(x,y)在第一、三象限夾角平分線(直線y=x)上,x與y相等

點P(x,y)在第二、四象限夾角平分線上,x與y互為相反數

(4)和坐標軸平行的直線上點的坐標的特徵

位於平行於x軸的直線上的各點的縱坐標相同。

位於平行於y軸的直線上的各點的橫坐標相同。

(5)關於x軸、y軸或原點對稱的點的坐標的特徵

點P與點p』關於x軸對稱橫坐標相等,縱坐標互為相反數,即點P(x,y)關於x軸的對稱點為P』(x,-y)

點P與點p』關於y軸對稱縱坐標相等,橫坐標互為相反數,即點P(x,y)關於y軸的對稱點為P』(-x,y)

點P與點p』關於原點對稱橫、縱坐標均互為相反數,即點P(x,y)關於原點的對稱點為P』(-x,-y)

初二上學期數學知識點歸納

三角形知識概念

1、三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。

2、三邊關系:三角形任意兩邊的和大於第三邊,任意兩邊的差小於第三邊。

3、高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。

4、中線:在三角形中,連接一個頂點和它對邊中點的線段叫做三角形的中線。

5、角平分線:三角形的一個內角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。

6、三角形的穩定性:三角形的形狀是固定的,三角形的這個性質叫三角形的穩定性。

7、多邊形:在平面內,由一些線段首尾順次相接組成的圖形叫做多邊形。

8、多邊形的內角:多邊形相鄰兩邊組成的角叫做它的內角。

9、多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角。

10、多邊形的對角線:連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線。

11、正多邊形:在平面內,各個角都相等,各條邊都相等的多邊形叫正多邊形。

12、平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面。

13、公式與性質:

(1)三角形的內角和:三角形的內角和為180°

(2)三角形外角的性質:

性質1:三角形的一個外角等於和它不相鄰的兩個內角的和。

性質2:三角形的一個外角大於任何一個和它不相鄰的內角。

(3)多邊形內角和公式:邊形的內角和等於?180°

(4)多邊形的外角和:多邊形的外角和為360°

(5)多邊形對角線的條數:①從邊形的一個頂點出發可以引條對角線,把多邊形分成個三角形。②邊形共有條對角線。

位置與坐標

1、確定位置

在平面內,確定一個物體的位置一般需要兩個數據。

2、平面直角坐標系

①含義:在平面內,兩條互相垂直且有公共原點的數軸組成平面直角坐標系。

②通常地,兩條數軸分別置於水平位置與豎直位置,取向右與向上的方向分別為兩條數軸的正方向。水平的數軸叫做x軸或者橫軸,豎直的數軸叫y軸和縱軸,二者統稱為坐標軸,它們的公共原點o被稱為直角坐標系的原點。

③建立了平面直角坐標系,平面內的點就可以用一組有序實數對來表示。

④在平面直角坐標系中,兩條坐標軸將坐標平面分成了四部分,右上方的部分叫第一象限,其他三部分按逆時針方向叫做第二象限,第三象限,第四象限,坐標軸上的點不在任何一個象限。

⑤在直角坐標系中,對於平面上任意一點,都有的一個有序實數對(即點的坐標)與它對應;反過來,對於任意一個有序實數對,都有平面上的一點與它對應。

3、軸對稱與坐標變化

關於x軸對稱的兩個點的坐標,橫坐標相同,縱坐標互為相反數;關於y軸對稱的兩個點的坐標,縱坐標相同,橫坐標互為相反數。

初二數學 復習 方法

按部就班

數學是環環相扣的一門學科,哪一個環節脫節都會影響整個學習的進程。所以,平時學習不應貪快,要一章一章過關,不要輕易留下自己不明白或者理解不深刻的問題。

強調理解

概念、定理、公式要在理解的基礎上記憶。每新學一個定理,嘗試先不看答案,做一次例題,看是否能正確運用新定理;若不行,則對照答案,加深對定理的理解。

基本訓練

學習數學是不能缺少訓練的,平時多做一些難度適中的練習,當然莫要陷入死鑽難題的誤區,要熟悉高考的題型,訓練要做到有的放矢。

重視錯誤

訂一個錯題本,專門搜集自己的錯題,這些往往就是自己的薄弱之處。復習時,這個錯題本也就成了寶貴的復習資料。

數學的學習有一個循序漸進的過程,妄想一步登天是不現實的。熟記書本內容後將書後習題認真寫好,有些同學可能認為書後習題太簡單不值得做,這種想法是極不可取的,書後習題的作用不僅幫助你將書本內容記牢,還輔助你將書寫格式規范化,從而使自己的解題結構緊密而又嚴整,公式定理能夠運用的恰如其分,以減少考試中無謂的失分。

平時的數學學習:

○1課前認真預習.預習的目的是為了能更好得聽老師講課,通過預習,掌握度要達到百分之八十.帶著預習中不明白的問題去聽老師講課,來解答這類的問題.預習還可以使聽課的整體效率提高.具體的預習方法:將書上的題目做完,畫出知識點,整個過程大約持續15-20分鍾.在時間允許的情況下,還可以將練習冊做完.

○2讓數學課學與練結合.在數學課上,光聽是沒用的.當老師讓同學去黑板上演算時,自己也要在草稿紙上練.如果遇到不懂的難題,一定要提出來,不能不求甚解.否則考試遇到類似的題目就可能不會做.聽老師講課時一定要全神貫注,要注意細節問題,否則「千里之堤,毀於蟻穴」.

○3課後及時復習.寫完作業後對當天老師講的內容進行梳理,可以適當地做25分鍾左右的課外題.可以根據自己的需要選擇適合自己的課外書.其課外題內容大概就是今天上的課.

○4單元測驗是為了檢測近期的學習情況.其實分數代表的是你的過去,關鍵的是對於每次考試的總結和吸取教訓,是為了讓你在期中、期末考得更好.老師經常會在沒通知的情況下進行考試,所以要及時做到「課後復習」.


初二數學知識點筆記相關 文章 :

★ 初二數學人教版知識點歸納

★ 初二數學上冊知識點總結

★ 初二數學知識點歸納上冊人教版

★ 初二數學課文知識點筆記

★ 初二數學上冊知識點歸納總結

★ 初二數學知識點歸納總結

★ 初二數學重要知識點

★ 初二數學知識點歸納梳理

★ 初二數學重點知識點歸納總結

★ 初二數學知識點歸納

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

『貳』 初一到初三數學知識點歸納總結

很多同學都是談數學色變,覺得數學很難學好。其實只要找到正確的數學學習方法你也可以輕松學習數學。以下是我分享給大家的初一到初三數學知識點歸納,希望可以幫到你!
初一到初三數學知識點歸納
有理數的加法運算:同號相加一邊倒;異號相加"大"減"小",符號跟著大的跑;絕對值相等"零"正好。[注]"大"減"小"是指絕對值的大小。

合並同類項:合並同類項,法則不能忘,只求系數和,字母、指數不變樣。

去、添括弧法則:去括弧、添括弧,關鍵看符號,括弧前面是正號,去、添括弧不變號,括弧前面是負號,去、添括弧都變號。

一元一次方程:已知未知要分離,分離方法就是移,加減移項要變號,乘除移了要顛倒。

恆等變換:兩個數字來相減,互換位置最常見,正負只看其指數,奇數變號偶不變。(a-b)2n+1=-(b-a)2n+1(a-b)2n=(b-a)2n平方差公式:平方差公式有兩項,符號相反切記牢,首加尾乘首減尾,莫與完全公式相混淆。

完全平方:完全平方有三項,首尾符號是同鄉,首平方、尾平方,首尾二倍放中央;首±尾括弧帶平方,尾項符號隨中央。

因式分解:一提(公因式)二套(公式)三分組,細看幾項不離譜,兩項只用平方差,三項十字相乘法,陣法熟練不馬虎,四項仔細看清楚,若有三個平方數(項),就用一三來分組,否則二二去分組,五項、六項更多項,二三、三三試分組,以上若都行不通,拆項、添項看清楚。

"代入"口訣:挖去字母換上數(式),數字、字母都保留;換上分數或負數,給它帶上小括弧,原括弧內出(現)括弧,逐級向下變括弧(小-中-大)

單項式運算:加、減、乘、除、乘(開)方,三級運算分得清,系數進行同級(運)算,指數運算降級(進)行。

一元一次不等式解題的一般步驟:去分母、去括弧,移項時候要變號,同類項、合並好,再把系數來除掉,兩邊除(以)負數時,不等號改向別忘了。

一元一次不等式組的解集:大大取較大,小小取較小,小大,大小取中間,大小,小大無處找。

一元二次不等式、一元一次絕對值不等式的解集:大(魚)於(吃)取兩邊,小(魚)於(吃)取中間。

分式混合運演算法則:分式四則運算,順序乘除加減,乘除同級運算,除法符號須變(乘);乘法進行化簡,因式分解在先,分子分母相約,然後再行運算;加減分母需同,分母化積關鍵;找出最簡公分母,通分不是很難;變號必須兩處,結果要求最簡。

分式方程的解法步驟:同乘最簡公分母,化成整式寫清楚,求得解後須驗根,原(根)留、增(根)舍別含糊。

最簡根式的條件:最簡根式三條件,號內不把分母含,冪指(數)根指(數)要互質,冪指比根指小一點。

特殊點坐標特徵:坐標平面點(x,y),橫在前來縱在後;(+,+),(-,+),(-,-)和(+,-),四個象限分前後;X軸上y為0,x為0在Y軸。

象限角的平分線:象限角的平分線,坐標特徵有特點,一、三橫縱都相等,二、四橫縱確相反。

平行某軸的直線:平行某軸的直線,點的坐標有講究,直線平行X軸,縱坐標相等橫不同;直線平行於Y軸,點的橫坐標仍照舊。

對稱點坐標:對稱點坐標要記牢,相反數位置莫混淆,X軸對稱y相反,Y軸對稱,x前面添負號;原點對稱最好記,橫縱坐標變符號。

自變數的取值范圍:分式分母不為零,偶次根下負不行;零次冪底數不為零,整式、奇次根全能行。

函數圖像的移動規律:若把一次函數解析式寫成y=k(x+0)+b、二次函數的解析式寫成y=a(x+h)2+k的形式,則用下面的口訣"左右平移在括弧,上下平移在末稍,左正右負須牢記,上正下負錯不了"。

一次函數圖像與性質口訣:一次函數是直線,圖像經過仨象限;正比例函數更簡單,經過原點一直線;兩個系數k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來相見,k為正來右上斜,x增減y增減;k為負來左下展,變化規律正相反;k的絕對值越大,線離橫軸就越遠。

二次函數圖像與性質口訣:二次函數拋物線,圖象對稱是關鍵;開口、頂點和交點,它們確定圖象現;開口、大小由a斷,c與Y軸來相見,b的符號較特別,符號與a相關聯;頂點位置先找見,Y軸作為參考線,左同右異中為0,牢記心中莫混亂;頂點坐標最重要,一般式配方它就現,橫標即為對稱軸,縱標函數最值見。若求對稱軸位置,符號反,一般、頂點、交點式,不同表達能互換。

反比例函數圖像與性質口訣:反比例函數有特點,雙曲線相背離的遠;k為正,圖在一、三(象)限,k為負,圖在二、四(象)限;圖在一、三函數減,兩個分支分別減。圖在二、四正相反,兩個分支分別添;線越長越近軸,永遠與軸不沾邊。

巧記三角函數定義:初中所學的三角函數有正弦、餘弦、正切、餘切,它們實際是三角形邊的比值,可以把兩個字用/隔開,再用下面的一句話記定義:一位不高明的廚子教徒弟殺魚,說了這么一句話:正對魚磷(余鄰)直刀切。正:正弦或正切,對:對邊即正是對;余:餘弦或餘弦,鄰:鄰邊即余是鄰;切是直角邊。

三角函數的增減性:正增余減特殊三角函數值記憶:首先記住30度、45度、60度的正弦值、餘弦值的分母都是2、正切、餘切的分母都是3,分子記口訣"123,321,三九二十七"既可。

平行四邊形的判定:要證平行四邊形,兩個條件才能行,一證對邊都相等,或證對邊都平行,一組對邊也可以,必須相等且平行。對角線,是個寶,互相平分"跑不了",對角相等也有用,"兩組對角"才能成。

梯形問題的輔助線:移動梯形對角線,兩腰之和成一線;平行移動一條腰,兩腰同在"△"現;延長兩腰交一點,"△"中有平行線;作出梯形兩高線,矩形顯示在眼前;已知腰上一中線,莫忘作出中位線。

添加輔助線歌:輔助線,怎麼添?找出規律是關鍵,題中若有角(平)分線,可向兩邊作垂線;線段垂直平分線,引向兩端把線連,三角形邊兩中點,連接則成中位線;三角形中有中線,延長中線翻一番。

圓的證明歌:圓的證明不算難,常把半徑直徑連;有弦可作弦心距,它定垂直平分弦;直徑是圓最大弦,直圓周角立上邊,它若垂直平分弦,垂徑、射影響耳邊;還有與圓有關角,勿忘相互有關聯,圓周、圓心、弦切角,細找關系把線連。同弧圓周角相等,證題用它最多見,圓中若有弦切角,夾弧找到就好辦;圓有內接四邊形,對角互補記心間,外角等於內對角,四邊形定內接圓;直角相對或共弦,試試加個輔助圓;若是證題打轉轉,四點共圓可解難;要想證明圓切線,垂直半徑過外端,直線與圓有共點,證垂直來半徑連,直線與圓未給點,需證半徑作垂線;四邊形有內切圓,對邊和等是條件;如果遇到圓與圓,弄清位置很關鍵,兩圓相切作公切,兩圓相交連公弦。

圓中比例線段:遇等積,改等比,橫找豎找定相似;不相似,別生氣,等線等比來代替,遇等比,改等積,引用射影和圓冪,平行線,轉比例,兩端各自找聯系。

正多邊形訣竅歌:份相等分割圓,n值必須大於三,依次連接各分點,內接正n邊形在眼前。

經過分點做切線,切線相交n個點。N個交點做頂點,外切正n邊形便出現。正n邊形很美觀,它有內接,外切圓,內接、外切都唯一,兩圓還是同心圓,它的圖形軸對稱,n條對稱軸都過圓心點,如果n值為偶數,中心對稱很方便。正n邊形做計算,邊心距、半徑是關鍵,內切、外接圓半徑,邊心距、半徑分別換,分成直角三角形2n個整,依此計算便簡單。

函數學習口決:正比例函數是直線,圖象一定過圓點,k的正負是關鍵,決定直線的象限,負k經過二四限,x增大y在減,上下平移k不變,由引得到一次線,向上加b向下減,圖象經過三個限,兩點決定一條線,選定系數是關鍵。

反比例函數雙曲線,待定只需一個點,正k落在一三限,x增大y在減,圖象上面任意點,矩形面積都不變,對稱軸是角分線x、y的順序可交換。

二次函數拋物線,選定需要三個點,a的正負開口判,c的大小y軸看,△的符號最簡便,x軸上數交點,b的食物中毒結全算,a、b同號軸左邊拋物線平移a不變,頂點牽著圖象轉,三種形式可變換,配方法作用最關鍵。
初中數學復習方法
課前要“預、做、復”

每堂新課之前,做到先預習,特別要把難點或不懂之處用彩筆劃出,以便上課時更加註意。每節內容後面的練習自己可以先做一做,做到看懂70%的新內容,會做80%的練習題。

每節新內容學完後,要按照課本內容,從易到難,從簡到繁,一步一步地把學過的知識進行比較復習,對概念、定理、公式做出歸納、總結,加深對知識的理解,最好能把課本上的例題自己做一遍。對課本上的概念、定理、公式推理一遍,以形成對知識的整體認識。

課上要“聽、記、練”

怎樣才能提高聽課的效率呢?

首先,做好課前的准備。充分做好課前的准備工作是聽好課基礎。一般情況下,應做好三個方面的准備:

第一,知識准備。每一門學科,都有其嚴密的知識體系,尤其是數學,其嚴密性更強,它好像一條鎖鏈,一環套一環,環環緊扣,前面的知識沒有掌握好,後面的知識就難以理解。所以上課前要復習舊課並預習新課,了解新舊知識的聯系,明確新課的學習要求。如果舊的知識接不上,就要想辦法補上。

第二,物質准備。課前要准備好課本、文具在內的課堂上必需學慣用品,如:課堂筆記本,草稿本,三角板,圓規,量角器等。

第三,精神准備。提前入座,穩定情緒,並可利用這短暫的時間作知識回顧,上一節學了什麼?這堂課將學什麼?這樣有助於一上課就進入“角色”。

其次,聽講全神貫注。部分同學為什麼學習成績上不去?為什麼課後做作業感到費力?其中一個重要的原因就是上課不專心聽講。有的同學上課靜不下來,注意力容易分散,這就需要專門的訓練。

再次,要主動獲取知識。主動聽課是指積極配合老師的每一個教學環節,主動思考。例如,老師在黑板上寫出一道例題,有些同學等待教師講解,而有些同學則不然,他立即開動腦筋,搶在老師講解前分析問題的條件和結論,並考慮解題思路,久而久之,就能提高自己的解題能力和思維能力。

最後,還要做好課堂筆記。課堂上以聽為主,以記為輔。記筆記求精求快,而不求多。課堂上主要記教材以外的補充內容、學習中的難點、老師的歸納小結及解題的方法技巧。課後再對筆記進行適當整理;就能將課堂所獲得的知識納入自己的知識倉庫。

課後要“思、問、集”

課後作業一定要養成獨立思考的習慣,多從不同的方法、角度入手,多從典型題目中探索多種解題方法,從中得到聯想和啟發。同時,還應多樹立數學解題思想。如:方程的思想、函數的思想、數形結合的思想、整體的思想、分類的思想等常用方法;對於難題,要多問幾個為什麼,如改變條件、添加條件、結論與條件互換,原結論還成立嗎?另外,對於自己作業、試卷中出現的錯誤,最好能准備一本錯題集,以便今後復習中使用,做到絕不出現第二次類似錯誤。
初中數學學習建議
1課前課上及課後

先來說說大家都熟知的一些學習方法,也是一些基本的方法,這些方法確實是一些好的方法,主要就是看大家能不能真正的做好這些事情。下面讓我們來具體地看看。

課前:課前需要預習,預習需要我們去把接下來要上的內容整體上看一遍,然後找出其中的重點與難點,以及自己無法很好理解的內容,分別做上不同的標記,以便在上課的時候針對自己的問題去認真聽課與重點理解。

課上:在上課的時候不太可能整節課都集中精神,這時候就更顯現出我們課前預習的重要性了。我們需要在上課的時候集中精神聽講預習中所遇到的重點與難點,盡量地在課堂上去理解吸收。同時也可以看看老師講的重點與自己課前預習所確定的重點是否一致。另外,對於老師重點講解的東西需要做下相應的筆記,以便之後復慣用。

課後:課後的復習一定要及時跟上,不僅當天要對學習的內容進行復習,在之後的幾天里也應該要花一定的時間去復習,同時可以跟上一些練習進行檢測與鞏固。如果復習的時候發現還有不明白的地方,一定要及時的去詢問老師或是其他同學,將其弄懂。

課前課上及課後三個步驟環環相扣,一定要把每一步都做到位。

2提高作業效率

現在很多學生以及家長都反應說作業太多,來不及或是沒有時間去完成作業,導致學習成績不佳。但是我們應該要想一想,我們大家的時間都是一樣多的,而大家的作業也是一樣多的,為什麼有的人能夠完成,而有的人不能夠完成呢。這里就要說到學習的效率了,有的學生能夠先復習,然後再做作業,做作業的時候集中注意力,能夠很快速地完成。而有的學生就與之相反了,首先可能課上就沒有聽好,然後做作業之前也沒有進行復習,而是直接開始做的,同時也可能是做作業的時候不夠集中注意力,即使作業不是很多,也需要花很長的時間去完成。

其實這都是因為一種不好的學習習慣,導致了做作業的效率不高。那麼我們應該如何去提高做作業的效率呢?下面我給出了幾個建議,供大家參考一下。

一、要有端正的寫作業的態度。

從思想上要認真對待,如果養成懶散的習慣了,以後問題就會更多,今日不努力,明日就會失去更多,再要改善起來,就更難了。因為一個好習慣的養成是要下決心去堅持的,雖然由於以前的習慣不好或者遺留問題太多導致在堅持的過程中會容易產生抵觸的情緒,甚至有時還容易放棄,但是要知道,一旦好習慣養成之後,原來所經常遇到的問題就會越來越少,成績也自然提高了起來。

二、注意力一定要集中。

不要在寫作業的時候干其他的事或想其他事,一心不能二用。盡快地反作業做完了才能夠去做別的事情。

三、要學會總結。

如果在看到題目後能很快反映出這題目所需要的知識點,那麼做題速度就會提高,在做題之後也要總結一下思路。多總結一下會發現很多題目都有規律可循,這樣可以起到事半功倍的效果,以後再碰到類似問題時,就可以很輕鬆了。

四、營造一個良好的寫作業環境。

孩子寫作業時盡量保持安靜,書桌上除了放書、學慣用品等之外,不要放其他的東西,以免分散他們的注意力。家長也不要過度的嘮叨和訓斥,要多鼓勵孩子。

3加強計算能力

計算一直是數學的一個核心內容,幾乎每一個數學問題都需要通過計算。那麼,計算的准確率就顯得尤為重要了。想要提高數學成績,計算的准確率是一定要提高的。那麼如何提高計算的准確率呢?這里我也同樣給出了幾條建議。

一、強化學生的有意注意和良好的計算習慣

(1)仔細審題的習慣。拿到題目後認真審題,看清題目的要求,想明白過程中應該注意哪些問題。

(2)細心檢查的習慣。先從思路上檢查一遍看是否有遺漏,再將答案代回原來的問題驗算。若為計算題則仔細檢查每一個步驟。

(3)認真書寫的習慣。書寫要干凈整潔,這樣能使自己在做題時看清題目,避免錯誤的發生。

二、強化口算能力

任何計算都是以口算為基礎的,口算能力的高低,直接影響到學生其它運算能力的提高。要提高口算能力,首先要抓好口算的基本訓練,所以應當經常性的進行一些口算的練習。

三、速算巧算

平時在做計算的時候要注意運算技巧地運用,加快運算速度,特別是在分數計算的部分,有時候數字比較大比較多,通分將會很困難,這時可能把分母寫成乘積的形式將是一種更好的選擇。

四、強化估算能力

很多的問題,特別是應用題,當看到問題後就能夠大概地去估計一下結果大概會是一個什麼范圍的數,有了這種估計能力之後,有時候發生計算錯誤就能夠一下子看出來。所以在做題之前我們也可以估計一下答案的范圍,如果算得的答案不在這個范圍,那就需要我們去檢查了。

五、合理利用一些數的性質

比如說奇數乘以偶數一定是一個偶數,各位數字和是3的倍數的數一定能被3整除等等性質,都可以幫助我們對運算是否准確做一些輔助的判斷。

猜你喜歡:

1. 初一數學上冊知識點匯總整理

2. 初一數學上冊知識點復習梳理歸納

3. 初一數學知識點整理

4. 初一數學上冊知識點匯總歸納

5. 初中數學知識點總結大全

『叄』 初中數學知識點總結

初中數學知識點總結
一、基本知識
一、數與代數A、數與式:1、有理數有理數:①整數→正整數/0/負整數②分數→正分數/負分數
數軸:①畫一條水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規定直線上向右的方向為正方向,就得到數軸。②任何一個有理數都可以用數軸上的一個點來表示。③如果兩個數只有符號不同,那麼我們稱其中一個數為另外一個數的相反數,也稱這兩個數互為相反數。在數軸上,表示互為相反數的兩個點,位於原點的兩側,並且與原點距離相等。④數軸上兩個點表示的數,右邊的總比左邊的大。正數大於0,負數小於0,正數大於負數。
絕對值:①在數軸上,一個數所對應的點與原點的距離叫做該數的絕對值。②正數的絕對值是他的本身、負數的絕對值是他的相反數、0的絕對值是0。兩個負數比較大小,絕對值大的反而小。
有理數的運算:加法:①同號相加,取相同的符號,把絕對值相加。②異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數的符號,並用較大的絕對值減去較小的絕對值。③一個數與0相加不變。
減法:減去一個數,等於加上這個數的相反數。
乘法:①兩數相乘,同號得正,異號得負,絕對值相乘。②任何數與0相乘得0。③乘積為1的兩個有理數互為倒數。
除法:①除以一個數等於乘以一個數的倒數。②0不能作除數。
乘方:求N個相同因數A的積的運算叫做乘方,乘方的結果叫冪,A叫底數,N叫次數。
混合順序:先算乘法,再算乘除,最後算加減,有括弧要先算括弧里的。
2、實數 無理數:無限不循環小數叫無理數
平方根:①如果一個正數X的平方等於A,那麼這個正數X就叫做A的算術平方根。②如果一個數X的平方等於A,那麼這個數X就叫做A的平方根。③一個正數有2個平方根/0的平方根為0/負數沒有平方根。④求一個數A的平方根運算,叫做開平方,其中A叫做被開方數。
立方根:①如果一個數X的立方等於A,那麼這個數X就叫做A的立方根。②正數的立方根是正數、0的立方根是0、負數的立方根是負數。③求一個數A的立方根的運算叫開立方,其中A叫做被開方數。
實數:①實數分有理數和無理數。②在實數范圍內,相反數,倒數,絕對值的意義和有理數范圍內的相反數,倒數,絕對值的意義完全一樣。③每一個實數都可以在數軸上的一個點來表示。
3、代數式
代數式:單獨一個數或者一個字母也是代數式。
合並同類項:①所含字母相同,並且相同字母的指數也相同的項,叫做同類項。②把同類項合並成一項就叫做合並同類項。③在合並同類項時,我們把同類項的系數相加,字母和字母的指數不變。
4、整式與分式
整式:①數與字母的乘積的代數式叫單項式,幾個單項式的和叫多項式,單項式和多項式統稱整式。②一個單項式中,所有字母的指數和叫做這個單項式的次數。③一個多項式中,次數最高的項的次數叫做這個多項式的次數。
整式運算:加減運算時,如果遇到括弧先去括弧,再合並同類項。
冪的運算:AM+AN=A(M+N)
(AM)N=AMN
(A/B)N=AN/BN 除法一樣。
整式的乘法:①單項式與單項式相乘,把他們的系數,相同字母的冪分別相乘,其餘字母連同他的指數不變,作為積的因式。②單項式與多項式相乘,就是根據分配律用單項式去乘多項式的每一項,再把所得的積相加。③多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。
公式兩條:平方差公式/完全平方公式
整式的除法:①單項式相除,把系數,同底數冪分別相除後,作為商的因式;對於只在被除式里含有的字母,則連同他的指數一起作為商的一個因式。②多項式除以單項式,先把這個多項式的每一項分別除以單項式,再把所得的商相加。
分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式。
方法:提公因式法、運用公式法、分組分解法、十字相乘法。
分式:①整式A除以整式B,如果除式B中含有分母,那麼這個就是分式,對於任何一個分式,分母不為0。②分式的分子與分母同乘以或除以同一個不等於0的整式,分式的值不變。
分式的運算:
乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。
除法:除以一個分式等於乘以這個分式的倒數。
加減法:①同分母分式相加減,分母不變,把分子相加減。②異分母的分式先通分,化為同分母的分式,再加減。
分式方程:①分母中含有未知數的方程叫分式方程。②使方程的分母為0的解稱為原方程的增根。
B、方程與不等式
1、方程與方程組
一元一次方程:①在一個方程中,只含有一個未知數,並且未知數的指數是1,這樣的方程叫一元一次方程。②等式兩邊同時加上或減去或乘以或除以(不為0)一個代數式,所得結果仍是等式。
解一元一次方程的步驟:去分母,移項,合並同類項,未知數系數化為1。
二元一次方程:含有兩個未知數,並且所含未知數的項的次數都是1的方程叫做二元一次方程。
二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。
適合一個二元一次方程的一組未知數的值,叫做這個二元一次方程的一個解。
二元一次方程組中各個方程的公共解,叫做這個二元一次方程的解。
解二元一次方程組的方法:代入消元法/加減消元法。
一元二次方程:只有一個未知數,並且未知數的項的最高系數為2的方程
1)一元二次方程的二次函數的關系
大家已經學過二次函數(即拋物線)了,對他也有很深的了解,好像解法,在圖象中表示等等,其實一元二次方程也可以用二次函數來表示,其實一元二次方程也是二次函數的一個特殊情況,就是當Y的0的時候就構成了一元二次方程了。那如果在平面直角坐標系中表示出來,一元二次方程就是二次函數中,圖象與X軸的交點。也就是該方程的解了
2)一元二次方程的解法
大家知道,二次函數有頂點式(-b/2a,4ac-b2/4a),這大家要記住,很重要,因為在上面已經說過了,一元二次方程也是二次函數的一部分,所以他也有自己的一個解法,利用他可以求出所有的一元一次方程的解
(1)配方法
利用配方,使方程變為完全平方公式,在用直接開平方法去求出解
(2)分解因式法
提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時候也一樣,利用這點,把方程化為幾個乘積的形式去解
(3)公式法
這方法也可以是在解一元二次方程的萬能方法了,方程的根X1={-b+√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a
3)解一元二次方程的步驟:
(1)配方法的步驟:
先把常數項移到方程的右邊,再把二次項的系數化為1,再同時加上1次項的系數的一半的平方,最後配成完全平方公式
(2)分解因式法的步驟:
把方程右邊化為0,然後看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式
(3)公式法
就把一元二次方程的各系數分別代入,這里二次項的系數為a,一次項的系數為b,常數項的系數為c
4)韋達定理
利用韋達定理去了解,韋達定理就是在一元二次方程中,二根之和=-b/a,二根之積=c/a
也可以表示為x1+x2=-b/a,x1x2=c/a。利用韋達定理,可以求出一元二次方程中的各系數,在題目中很常用
5)一元一次方程根的情況
利用根的判別式去了解,根的判別式可在書面上可以寫為「△」,讀作「diao ta」,而△=b2-4ac,這里可以分為3種情況:
I當△>0時,一元二次方程有2個不相等的實數根;
II當△=0時,一元二次方程有2個相同的實數根;
III當△<0時,一元二次方程沒有實數根(在這里,學到高中就會知道,這里有2個虛數根)
2、不等式與不等式組
不等式:①用符號〉,=,〈號連接的式子叫不等式。②不等式的兩邊都加上或減去同一個整式,不等號的方向不變。③不等式的兩邊都乘以或者除以一個正數,不等號方向不變。④不等式的兩邊都乘以或除以同一個負數,不等號方向相反。
不等式的解集:①能使不等式成立的未知數的值,叫做不等式的解。②一個含有未知數的不等式的所有解,組成這個不等式的解集。③求不等式解集的過程叫做解不等式。
一元一次不等式:左右兩邊都是整式,只含有一個未知數,且未知數的最高次數是1的不等式叫一元一次不等式。
一元一次不等式組:①關於同一個未知數的幾個一元一次不等式合在一起,就組成了一元一次不等式組。②一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。③求不等式組解集的過程,叫做解不等式組。
一元一次不等式的符號方向:
在一元一次不等式中,不像等式那樣,等號是不變的,他是隨著你加或乘的運算改變。
在不等式中,如果加上同一個數(或加上一個正數),不等式符號不改向;例如:A>B,A+C>B+C
在不等式中,如果減去同一個數(或加上一個負數),不等式符號不改向;例如:A>B,A-C>B-C
在不等式中,如果乘以同一個正數,不等號不改向;例如:A>B,A*C>B*C(C>0)
在不等式中,如果乘以同一個負數,不等號改向;例如:A>B,A*C<B*C(C<0)
如果不等式乘以0,那麼不等號改為等號
所以在題目中,要求出乘以的數,那麼就要看看題中是否出現一元一次不等式,如果出現了,那麼不等式乘以的數就不等為0,否則不等式不成立;
3、函數
變數:因變數,自變數。
在用圖象表示變數之間的關系時,通常用水平方向的數軸上的點自變數,用豎直方向的數軸上的點表示因變數。
一次函數:①若兩個變數X,Y間的關系式可以表示成Y=KX+B(B為常數,K不等於0)的形式,則稱Y是X的一次函數。②當B=0時,稱Y是X的正比例函數。
一次函數的圖象:①把一個函數的自變數X與對應的因變數Y的值分別作為點的橫坐標與縱坐標,在直角坐標系內描出它的對應點,所有這些點組成的圖形叫做該函數的圖象。②正比例函數Y=KX的圖象是經過原點的一條直線。③在一次函數中,當K〈0,B〈O,則經234象限;當K〈0,B〉0時,則經124象限;當K〉0,B〈0時,則經134象限;當K〉0,B〉0時,則經123象限。④當K〉0時,Y的值隨X值的增大而增大,當X〈0時,Y的值隨X值的增大而減少。
二空間與圖形
A、圖形的認識
1、點,線,面
點,線,面:①圖形是由點,線,面構成的。②面與面相交得線,線與線相交得點。③點動成線,線動成面,面動成體。
展開與折疊:①在稜柱中,任何相鄰的兩個面的交線叫做棱,側棱是相鄰兩個側面的交線,稜柱的所有側棱長相等,稜柱的上下底面的形狀相同,側面的形狀都是長方體。②N稜柱就是底面圖形有N條邊的稜柱。
截一個幾何體:用一個平面去截一個圖形,截出的面叫做截面。
視圖:主視圖,左視圖,俯視圖。
多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。
弧、扇形:①由一條弧和經過這條弧的端點的兩條半徑所組成的圖形叫扇形。②圓可以分割成若干個扇形。
2、角
線:①線段有兩個端點。②將線段向一個方向無限延長就形成了射線。射線只有一個端點。③將線段的兩端無限延長就形成了直線。直線沒有端點。④經過兩點有且只有一條直線。
比較長短:①兩點之間的所有連線中,線段最短。②兩點之間線段的長度,叫做這兩點之間的距離。
角的度量與表示:①角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點。②一度的1/60是一分,一分的1/60是一秒。
角的比較:①角也可以看成是由一條射線繞著他的端點旋轉而成的。②一條射線繞著他的端點旋轉,當終邊和始邊成一條直線時,所成的角叫做平角。始邊繼續旋轉,當他又和始邊重合時,所成的角叫做周角。③從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。
平行:①同一平面內,不相交的兩條直線叫做平行線。②經過直線外一點,有且只有一條直線與這條直線平行。③如果兩條直線都與第3條直線平行,那麼這兩條直線互相平行。
垂直:①如果兩條直線相交成直角,那麼這兩條直線互相垂直。②互相垂直的兩條直線的交點叫做垂足。③平面內,過一點有且只有一條直線與已知直線垂直。
垂直平分線:垂直和平分一條線段的直線叫垂直平分線。
垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據射線和直線可以無限延長有關,再看後面的,垂直平分線是一條直線,所以在畫垂直平分線的時候,確定了2點後(關於畫法,後面會講)一定要把線段穿出2點。
垂直平分線定理:
性質定理:在垂直平分線上的點到該線段兩端點的距離相等;
判定定理:到線段2端點距離相等的點在這線段的垂直平分線上
角平分線:把一個角平分的射線叫該角的角平分線。
定義中有幾個要點要注意一下的,就是角的角平分線是一條射線,不是線段也不是直線,很多時,在題目中會出現直線,這是角平分線的對稱軸才會用直線的,這也涉及到軌跡的問題,一個角個角平分線就是到角兩邊距離相等的點
性質定理:角平分線上的點到該角兩邊的距離相等
判定定理:到角的兩邊距離相等的點在該角的角平分線上
正方形:一組鄰邊相等的矩形是正方形
性質:正方形具有平行四邊形、菱形、矩形的一切性質
判定:1、對角線相等的菱形2、鄰邊相等的矩形
二、基本定理
1、過兩點有且只有一條直線
2、兩點之間線段最短
3、同角或等角的補角相等
4、同角或等角的餘角相等
5、過一點有且只有一條直線和已知直線垂直
6、直線外一點與直線上各點連接的所有線段中,垂線段最短
7、平行公理 經過直線外一點,有且只有一條直線與這條直線平行
8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9、同位角相等,兩直線平行
10、內錯角相等,兩直線平行
11、同旁內角互補,兩直線平行
12、兩直線平行,同位角相等
13、兩直線平行,內錯角相等
14、兩直線平行,同旁內角互補
15、定理 三角形兩邊的和大於第三邊
16、推論 三角形兩邊的差小於第三邊
17、三角形內角和定理 三角形三個內角的和等於180°
18、推論1 直角三角形的兩個銳角互余
19、推論2 三角形的一個外角等於和它不相鄰的兩個內角的和
20、推論3 三角形的一個外角大於任何一個和它不相鄰的內角
21、全等三角形的對應邊、對應角相等
22、邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等
23、角邊角公理( ASA)有兩角和它們的夾邊對應相等的 兩個三角形全等
24、推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等
25、邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等
26、斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等
27、定理1 在角的平分線上的點到這個角的兩邊的距離相等
28、定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上
29、角的平分線是到角的兩邊距離相等的所有點的集合
30、等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角)
31、推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊
32、等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33、推論3 等邊三角形的各角都相等,並且每一個角都等於60°
34、等腰三角形的判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)
35、推論1 三個角都相等的三角形是等邊三角形
36、推論 2 有一個角等於60°的等腰三角形是等邊三角形
37、在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半
38、直角三角形斜邊上的中線等於斜邊上的一半
39、定理 線段垂直平分線上的點和這條線段兩個端點的距離相等
40、逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42、定理1 關於某條直線對稱的兩個圖形是全等形
43、定理 2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線
44、定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上
45、逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱
46、勾股定理 直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a2+b2=c2
47、勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a2+b2=c2,那麼這個三角形是直角三角形
48、定理 四邊形的內角和等於360°
49、四邊形的外角和等於360°
50、多邊形內角和定理 n邊形的內角的和等於(n-2)×180°
51、推論 任意多邊的外角和等於360°
52、平行四邊形性質定理1 平行四邊形的對角相等
53、平行四邊形性質定理2 平行四邊形的對邊相等
54、推論 夾在兩條平行線間的平行線段相等
55、平行四邊形性質定理3 平行四邊形的對角線互相平分
56、平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形
57、平行四邊形判定定理2 兩組對邊分別相等的四邊 形是平行四邊形
58、平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形
59、平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形
60、矩形性質定理1 矩形的四個角都是直角
61、矩形性質定理2 矩形的對角線相等
62、矩形判定定理1 有三個角是直角的四邊形是矩形
63、矩形判定定理2 對角線相等的平行四邊形是矩形
64、菱形性質定理1 菱形的四條邊都相等
65、菱形性質定理2 菱形的對角線互相垂直,並且每一條對角線平分一組對角
66、菱形面積=對角線乘積的一半,即S=(a×b)÷2
67、菱形判定定理1 四邊都相等的四邊形是菱形
68、菱形判定定理2 對角線互相垂直的平行四邊形是菱形
69、正方形性質定理1 正方形的四個角都是直角,四條邊都相等
70、正方形性質定理2正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角
71、定理1 關於中心對稱的兩個圖形是全等的
72、定理2 關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分
73、逆定理 如果兩個圖形的對應點連線都經過某一點,並且被這一點平分,那麼這兩個圖形關於這一點對稱
74、等腰梯形性質定理 等腰梯形在同一底上的兩個角相等
75、等腰梯形的兩條對角線相等
76、等腰梯形判定定理 在同一底上的兩個角相等的梯 形是等腰梯形
77、對角線相等的梯形是等腰梯形
78、平行線等分線段定理 如果一組平行線在一條直線上截得的線段相等,那麼在其他直線上截得的線段也相等
79、推論1 經過梯形一腰的中點與底平行的直線,必平分另一腰
80、推論2 經過三角形一邊的中點與另一邊平行的直線,必平分第三邊
81、三角形中位線定理 三角形的中位線平行於第三邊,並且等於它的一半
82、梯形中位線定理 梯形的中位線平行於兩底,並且等於兩底和的一半 L=(a+b)÷2 S=L×h
83、(1)比例的基本性質:如果a:b=c:d,那麼ad=bc 如果 ad=bc ,那麼a:b=c:d
84、(2)合比性質:如果a/b=c/d,那麼(a±b)/b=(c±d)/d
85、(3)等比性質:如果a/b=c/d=…=m/n(b+d+…+n≠0),
那麼(a+c+…+m)/(b+d+…+n)=a/b
86、平行線分線段成比例定理 三條平行線截兩條直線,所得的對應線段成比例
87、推論 平行於三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例
88、定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那麼這條直線平行於三角形的第三邊
89、平行於三角形的一邊,並且和其他兩邊相交的直線, 所截得的三角形的三邊與原三角形三邊對應成比例
90、定理 平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似
91、相似三角形判定定理1 兩角對應相等,兩三角形相似(ASA)
92、直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
93、判定定理2 兩邊對應成比例且夾角相等,兩三角形相似(SAS)
94、判定定理3 三邊對應成比例,兩三角形相似(SSS)
95、定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那麼這兩個直角三角形相似
96、性質定理1 相似三角形對應高的比,對應中線的比與對應角平分線的比都等於相似比
97、性質定理2 相似三角形周長的比等於相似比
98、性質定理3 相似三角形面積的比等於相似比的平方
99、任意銳角的正弦值等於它的餘角的餘弦值,任意銳角的餘弦值等於它的餘角的正弦值
100、任意銳角的正切值等於它的餘角的餘切值,任意銳角的餘切值等於它的餘角的正切值
101、圓是定點的距離等於定長的點的集合
102、圓的內部可以看作是圓心的距離小於半徑的點的集合
103、圓的外部可以看作是圓心的距離大於半徑的點的集合
104、同圓或等圓的半徑相等
105、到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓
106、和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線
107、到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
108、到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線
109、定理 不在同一直線上的三點確定一個圓。
110、垂徑定理 垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧
111、推論1
①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧
②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧
112、推論2 圓的兩條平行弦所夾的弧相等
113、圓是以圓心為對稱中心的中心對稱圖形
114、定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
115、推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那麼它們所對應的其餘各組量都相等
116、定理 一條弧所對的圓周角等於它所對的圓心角的一半
117、推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
118、推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑
119、推論3 如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形
120、定理 圓的內接四邊形的對角互補,並且任何一個外角都等於它的內對角
121、①直線L和⊙O相交 d<r
②直線L和⊙O相切 d=r
③直線L和⊙O相離 d>r
122、切線的判定定理 經過半徑的外端並且垂直於這條半徑的直線是圓的切線
123、切線的性質定理 圓的切線垂直於經過切點的半徑
124、推論1 經過圓心且垂直於切線的直線必經過切點
125、推論2 經過切點且垂直於切線的直線必經過圓心
126、切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等圓心和這一點的連線平分兩條切線的夾角
127、圓的外切四邊形的兩組對邊的和相等
128、弦切角定理 弦切角等於它所夾的弧對的圓周角
129、推論 如果兩個弦切角所夾的弧相等,那麼這兩個弦切角也相等
130、相交弦定理 圓內的兩條相交弦,被交點分成的兩條線段長的積相等
131、推論 如果弦與直徑垂直相交,那麼弦的一半是它分直徑所成的兩條線段的比例中項
132、切割線定理 從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項
133、推論 從圓外一點引圓的兩條割線,這一點到每條 割線與圓的交點的兩條線段長的積相等
134、如果兩個圓相切,那麼切點一定在連心線上

135、①兩圓外離 d>R+r ②兩圓外切 d=R+r③兩圓相交 R-r<d<R+r(R>r)
④兩圓內切 d=R-r(R>r) ⑤兩圓內含 d<R-r(R>r)
136、定理 相交兩圓的連心線垂直平分兩圓的公共弦
137、定理 把圓分成n(n≥3):
⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形
⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
138、定理 任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓
139、正n邊形的每個內角都等於(n-2)×180°/n
140、定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
141、正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長
142、正三角形面積√3a/4 a表示邊長
143、如果在一個頂點周圍有k個正n邊形的角,由於這些角的和應為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
144、弧長計算公式:L=n兀R/180
145、扇形面積公式:S扇形=n兀R^2/360=LR/2
146、內公切線長= d-(R-r) 外公切線長= d-(R+r)

『肆』 北師版初三數學知識點總結

求學的三個條件是:多觀察、多吃苦、多研究。每一門科目都有自己的 學習 方法 ,但其實都是萬變不離其中的,也是要記、要背、要講練的。下面是我給大家整理的一些初三數學的知識點,希望對大家有所幫助。

初三新學期數學知識點

一、圓的定義

1、以定點為圓心,定長為半徑的點組成的圖形。

2、在同一平面內,到一個定點的距離都相等的點組成的圖形。

二、圓的各元素

1、半徑:圓上一點與圓心的連線段。

2、直徑:連接圓上兩點有經過圓心的線段。

3、弦:連接圓上兩點線段(直徑也是弦)。

4、弧:圓上兩點之間的曲線部分。半圓周也是弧。

(1)劣弧:小於半圓周的弧。

(2)優弧:大於半圓周的弧。

5、圓心角:以圓心為頂點,半徑為角的邊。

6、圓周角:頂點在圓周上,圓周角的兩邊是弦。

7、弦心距:圓心到弦的垂線段的長。

三、圓的基本性質

1、圓的對稱性

(1)圓是圖形,它的對稱軸是直徑所在的直線。

(2)圓是中心對稱圖形,它的對稱中心是圓心。

(3)圓是對稱圖形。

2、垂徑定理。

(1)垂直於弦的直徑平分這條弦,且平分這條弦所對的兩條弧。

(2)推論:

平分弦(非直徑)的直徑,垂直於弦且平分弦所對的兩條弧。

平分弧的直徑,垂直平分弧所對的弦。

3、圓心角的度數等於它所對弧的度數。圓周角的度數等於它所對弧度數的一半。

(1)同弧所對的圓周角相等。

(2)直徑所對的圓周角是直角;圓周角為直角,它所對的弦是直徑。

4、在同圓或等圓中,兩條弦、兩條弧、兩個圓周角、兩個圓心角、兩條弦心距五對量中只要有一對量相等,其餘四對量也分別相等。

5、夾在平行線間的兩條弧相等。

6、設⊙O的半徑為r,OP=d。

7、(1)過兩點的圓的圓心一定在兩點間連線段的中垂線上。

(2)不在同一直線上的三點確定一個圓,圓心是三邊中垂線的交點,它到三個點的距離相等。

(直角的外心就是斜邊的中點。)

8、直線與圓的位置關系。d表示圓心到直線的距離,r表示圓的半徑。

直線與圓有兩個交點,直線與圓相交;直線與圓只有一個交點,直線與圓相切;

直線與圓沒有交點,直線與圓相離。

九年級數學 重要知識點

圓的必考知識點

(1)圓

在一個平面內,一動點以一定點為中心,以一定長度為距離旋轉一周所形成的封閉曲線叫做圓。圓有無數條對稱軸。

(2)圓的相關特點

1)徑

連接圓心和圓上的任意一點的線段叫做半徑,字母表示為r

通過圓心並且兩端都在圓上的線段叫做直徑,字母表示為d

直徑所在的直線是圓的對稱軸。在同一個圓中,圓的直徑d=2r

2)弦

連接圓上任意兩點的線段叫做弦.在同一個圓內最長的弦是直徑。直徑所在的直線是圓的對稱軸,因此,圓的對稱軸有無數條。

3)弧

圓上任意兩點間的部分叫做圓弧,簡稱弧,以「⌒」表示。

大於半圓的弧稱為優弧,小於半圓的弧稱為劣弧,所以半圓既不是優弧,也不是劣弧。優弧一般用三個字母表示,劣弧一般用兩個字母表示。優弧是所對圓心角大於180度的弧,劣弧是所對圓心角小於180度的弧。

在同圓或等圓中,能夠互相重合的兩條弧叫做等弧。

4)角

頂點在圓心上的角叫做圓心角。

頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角。圓周角等於相同弧所對的圓心角的一半。

初三數學復習五大方法

一、回歸課本,夯實基礎,做好預習。

數學的基本概念、定義、公式,數學知識點之間的內在聯系,基本的數學解題思路與方法,是復習的重中之重。回歸課本,要先對知識點進行梳理,把教材上的每一個例題、習題再做一遍,確保基本概念、公式等牢固掌握,要穩扎穩打,不要盲目攀高,欲速則不達。復習課的內容多、時間緊。要提高復習效率,必須使自己的思維與老師的思維同步。而預習則是達到這一目的的重要途徑。沒有預習,聽老師講課,會感到老師講的都重要,抓不住老師講的重點;而預習了之後,再聽老師講課,就會在記憶上對老師講的內容有所取捨,把重點放在自己還未掌握的內容上,提高學習效率。

二、抓住關鍵,突出重點,不以題量論英雄

學好數學要做大量的題,但反過來做了大量的題,數學不一定好。「不要以題量論英雄」,題海戰術,有時候往往起到事倍功半的效果,因此要提高解題的效率。做題的目的在於檢查你學的知識,方法是否掌握得很好。如果你掌握得不準,甚至有偏差,那麼多做題的結果,反而鞏固了你的缺欠,在准確地把握住基本知識和方法的基礎上做一定量的練習是必要的,但是要有針對性地做題,突出重點,抓住關鍵。

復習中,所謂突出重點,主要是指突出教材中的重點知識,突出不易理解或尚未理解深透的知識,突出數學思想與解題方法。數學思想與方法是數學的精髓,是聯系數學中各類知識的紐帶。要抓住教材中的重點內容,掌握分析方法,從不同角度出發思索問題,由此探索一題多解、一題多變和一題多用之法。培養正確地把日常語言轉化為代數、幾何語言。並逐步掌握聽、說、讀、寫譯的數學語言技能。

三、提高復習興趣,克服「高原現象」

高原現象在數學復習階段表現得十分明顯。平時授新課,新鮮有趣;搞復習,要重復已學的內容,有的同學會覺得單調、枯燥無味,致使成績提高緩慢,甚至下降。針對這種情況,提醒同學們,一方面要從思想上提高對復習的認識,主動進行復習;另一方面,要以「新」提高復習的積極性。諸如制訂新的復習計劃;採用靈活的 復習方法 ;抓住新穎有趣的內容和習題,把知識串連起來,使書「由厚變薄」。

四、提高課堂聽課效率,多動腦,勤動手

初三的課只有兩種形式:復習課和評講課,到初三所有課都進入復習階段,通過復習,學生要知道自己哪些知識點掌握的比較好,哪些知識點有待提高,因此在復習課之前一定要有自已的思考,這樣聽課的目的就明確了。現在學生手中都會有一些復習資料,在老師講課之前,要把例題做一遍,做題中發現的難點,就是聽課的重點;對預習中遇到的沒有掌握好的舊知識,可進行查漏補缺,以減少聽課過程中的困難,自己理解了的東西與老師的講解進行比較、分析即可提高自己的數學思維;體會分析問題的思路和解決問題的思想方法,堅持下去,就一定能舉一反三,事半功倍。此外對於老師講課中的難點,重點要作好筆記,筆記不是記錄而是將上述聽課中的要點,思維方法等作出簡單扼要的記錄,以便復習,消化,思考。

五、要養成良好的解題習慣

如仔細閱讀題目,看清數字,規范解題格式,部分同學(尤其是腦子比較好的同學),自己感覺很好,平時做題只是寫個答案,不注重解題過程,書寫不規范,在正規考試中即使答案對了,由於過程不完整被扣分較多。部分同學平時學習過程中自信心不足,做作業時免不了互相對答案,也不認真找出錯誤原因並加以改正。這些同學到了考場上常會出現心理性錯誤,導致「會而不對」,或是為了保證正確率,反復驗算,浪費很多時間,影響整體得分。這些問題都很難在短時間得以解決,必須在平時下功夫努力改正。「會而不對」是初三數學學習的大忌,常見的有審題失誤、計算錯誤等,平時都以為是粗心,其實這是一種不良的學習習慣,必須在第一輪復習中逐步克服,否則,後患無窮。


北師版初三數學知識點 總結 相關 文章 :

★ 北師大初中數學知識總結

★ 北師大初中數學知識點

★ 北師大版初中數學知識點提綱

★ 各年級數學學習方法大全

★ 九年級學習方法指導

★ 初三數學學習方法指導與學習方法總結

★ 各年級數學學習方法大全

★ 北師大初中數學知識點下冊

★ 北師大初中數學知識點總結七年級下

★ 北師大初中數學知識點八年級下

『伍』 七年級數學全冊知識點梳理

知識是取之不盡,用之不竭的。只有限度地挖掘它,才能體會到學習的樂趣。任何一門學科的知識都需要大量的記憶和練習來鞏固。雖然辛苦,但也伴隨著快樂!下面是我給大家整理的一些 七年級數學 的知識點,希望對大家有所幫助。

初中 一年級數學 上冊知識點

二元一次方程組

1.二元一次方程:含有兩個未知數,並且含未知數項的次數是1,這樣的方程是二元一次方程.注意:一般說二元一次方程有無數個解.

2.二元一次方程組:兩個二元一次方程聯立在一起是二元一次方程組.

3.二元一次方程組的解:使二元一次方程組的兩個方程,左右兩邊都相等的兩個未知數的值,叫二元一次方程組的解.注意:一般說二元一次方程組只有解(即公共解).

4.二元一次方程組的解法:

(1)代入消元法;(2)加減消元法;

(3)注意:判斷如何解簡單是關鍵.

※5.一次方程組的應用:

(1)對於一個應用題設出的未知數越多,列方程組可能容易一些,但解方程組可能比較麻煩,反之則難列易解

(2)對於方程組,若方程個數與未知數個數相等時,一般可求出未知數的值;

(3)對於方程組,若方程個數比未知數個數少一個時,一般求不出未知數的值,但總可以求出任何兩個未知數的關系.

一元一次不等式(組)

1.不等式:用不等號,把兩個代數式連接起來的式子叫不等式.

2.不等式的基本性質:

不等式的基本性質1:不等式兩邊都加上(或減去)同一個數或同一個整式,不等號的方向不變;

不等式的基本性質2:不等式兩邊都乘以(或除以)同一個正數,不等號的方向不變;

不等式的基本性質3:不等式兩邊都乘以(或除以)同一個負數,不等號的方向要改變.

3.不等式的解集:能使不等式成立的未知數的值,叫做這個不等式的解;不等式所有解的集合,叫做這個不等式的解集.

4.一元一次不等式:只含有一個未知數,並且未知數的次數是1,系數不等於零的不等式,叫做一元一次不等式;它的標准形式是ax+b0或ax+b0,(a0).

5.一元一次不等式的解法:一元一次不等式的解法與解一元一次方程的解法類似,但一定要注意不等式性質3的應用;注意:在數軸上表示不等式的解集時,要注意空圈和實點.

七年級下冊數學知識點

概率

一、事件:

1、事件分為必然事件、不可能事件、不確定事件。

2、必然事件:事先就能肯定一定會發生的事件。也就是指該事件每次一定發生,不可能不發生,即發生的可能是100%(或1)。

3、不可能事件:事先就能肯定一定不會發生的事件。也就是指該事件每次都完全沒有機會發生,即發生的可能性為零。

4、不確定事件:事先無法肯定會不會發生的事件,也就是說該事件可能發生,也可能不發生,即發生的可能性在0和1之間。

二、等可能性:是指幾種事件發生的可能性相等。

1、概率:是反映事件發生的可能性的大小的量,它是一個比例數,一般用P來表示,P(A)=事件A可能出現的結果數/所有可能出現的結果數。

2、必然事件發生的概率為1,記作P(必然事件)=1;

3、不可能事件發生的概率為0,記作P(不可能事件)=0;

4、不確定事件發生的概率在0—1之間,記作0

三、幾何概率

1、事件A發生的概率等於此事件A發生的可能結果所組成的面積(用SA表示)除以所有可能結果組成圖形的面積(用S全表示),所以幾何概率公式可表示為P(A)=SA/S全,這是因為事件發生在每個單位面積上的概率是相同的。

2、求幾何概率:

(1)首先分析事件所佔的面積與總面積的關系;

(2)然後計算出各部分的面積;

(3)最後代入公式求出幾何概率。

初一數學的 學習 方法 技巧

1、做好預習:

單元預習時粗讀,了解近階段的學習內容,課時預習時細讀,注重知識的形成過程,對難以理解的概念、公式和法則等要做好記錄,以便帶著問題聽課。

2、認真聽課:

聽課應包括聽、思、記三個方面。聽,聽知識形成的來龍去脈,聽重點和難點,聽例題的解法和要求。思,一是要善於聯想、類比和歸納,二是要敢於質疑,提出問題。記,指課堂筆記——記方法,記疑點,記要求,記注意點。

3、認真解題:

課堂練習是最及時最直接的反饋,一定不能錯過。不要急於完成作業,要先看看你的 筆記本 ,回顧學習內容,加深理解,強化記憶。

4、及時糾錯:

課堂練習、作業、檢測,反饋後要及時查閱,分析錯題的原因,必要時強化相關計算的訓練。不明白的問題要及時向同學和老師請教了,不能將問題處於懸而未解的狀態,養成今日事今日畢的好習慣。

5、學會 總結 :

馮老師說:「數學一環扣一環,知識間的聯系非常緊密,階段性總結,不僅能夠起到復習鞏固的作用,還能找到知識間的聯系,做到瞭然於心,融會貫通。

6、學會管理:

管理好自己的筆記本,作業本,糾錯本,還有做過的所有練習卷和測試卷。馮老師稱,這可是大考復習時最有用的資料,千萬不可疏忽。

目前初中學生學習數學存在一個嚴重的問題就是不善於讀數學教材,他們往往是死記硬背。重視閱讀方法對提高初中學生的學習能力是至關重要的。新學一個章節內容,先粗粗讀一遍,即瀏覽本章節所學內容的枝幹,然後一邊讀一邊勾,粗略懂得教材的內容及其重點、難點所在,對不理解的地方打上記號。然後細細地讀,即根據每章節後的學習要求,仔細閱讀教材內容,理解數學概念、公式、法則、思想方法的實質及其因果關系,把握重點、突破難點。再次帶著研究者的態度去讀,即帶著發展的觀點研討知識的來龍去脈、結構關系、編排意圖,並歸納要點,把書讀懂,並形成知識網路,完善認識結構,當學生掌握了這三種讀法,形成習慣之後,就能從本質上改變其學習方式,提高學習效率了。

提高聽課質量要培養會聽課,聽懂課的習慣。注意聽教師每節課強調的學習重點,注意聽對定理、公式、法則的引入與推導的方法和過程,注意聽對例題關鍵部分的提示和處理方法,注意聽對疑難問題的解釋及一節課最後的小結,這樣,抓住重、難點,沿著知識的發生發展的過程來聽課,不僅能提高聽課效率,而且能由「聽會」轉變為「會聽」。

有疑必問是提高學習效率的有效辦法學習過程中,遇到疑問,抓緊時間問老師和同學,把沒有弄懂,沒有學明白的知識,最短的時間內掌握。建立自己的錯題本,經常翻閱,提醒自己同樣的錯誤不要犯第二次。從而提高學習效率。


七年級數學全冊知識點梳理相關 文章 :

★ 七年級數學知識點整理大全

★ 七年級數學知識點梳理總結

★ 七年級數學知識點整理部編版

★ 初一數學知識點梳理歸納

★ 初中七年級數學知識點歸納整理

★ 初一數學上冊知識點歸納

★ 初一數學上冊知識點梳理

★ 初一上冊數學知識點歸納整理

★ 七年級數學知識點總結

★ 初一數學知識點梳理

『陸』 初中數學常用數學公式歸納

初中數學的基礎知識部分,直接關繫到對整個數學的理解掌握以及後續學習,需要引起格外重視。下面是我為大家整理的關於初中數學常用數學公式歸納,希望對您有所幫助。歡迎大家閱讀參考學習!

初中數學常用數學公式歸納

公式分類公式表達式

乘法與因式分解 a2-b2=(a+b)(a-b)

a3+b3=(a+b)(a2-ab+b2)

a3-b3=(a-b(a2+ab+b2)

一元二次方程的解 -b+√(b2-4ac)/2a

-b-√(b2-4ac)/2a

根與系數的關系 X1+X2=-b/a

X1_X2=c/a 註:韋達定理

某些數列前n項和

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2

2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

13+23+33+43+53+63+…n3=n2(n+1)2/41_2+2_3+3_4+4_5+5_6+6_7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理 a/sinA=b/sinB=c/sinC=2R

註:其中R表示三角形的外接圓半徑

餘弦定理 b2=a2+c2-2accosB

註:角B是邊a和邊c的夾角

初中幾何常見輔助線作法歌訣匯編

圖中有角平分線,可向兩邊作垂線。

也可將圖對折看,對稱以後關系現。

角平分線平行線,等腰三角形來添。

角平分線加垂線,三線合一試試看。

線段垂直平分線,常向兩端把線連。

要證線段倍與半,延長縮短可試驗。

三角形中兩中點,連接則成中位線。

三角形中有中線,延長中線等中線。

平行四邊形出現,對稱中心等分點。

梯形裡面作高線,平移一腰試試看。

平行移動對角線,補成三角形常見。

證相似,比線段,添線平行成習慣。

等積式子比例換,尋找線段很關鍵。

直接證明有困難,等量代換少麻煩。

斜邊上面作高線,比例中項一大片。

半徑與弦長計算,弦心距來中間站。

圓上若有一切線,切點圓心半徑連。

切線長度的計算,勾股定理最方便。

要想證明是切線,半徑垂線仔細辨。

是直徑,成半圓,想成直角徑連弦。

弧有中點圓心連,垂徑定理要記全。

圓周角邊兩條弦,直徑和弦端點連。

弦切角邊切線弦,同弧對角等找完。

要想作個外接圓,各邊作出中垂線。

還要作個內接圓,內角平分線夢圓。

如果遇到相交圓,不要忘作公共弦。

內外相切的兩圓,經過切點公切線。

若是添上連心線,切點肯定在上面。

要作等角添個圓,證明題目少困難。

輔助線,是虛線,畫圖注意勿改變。

假如圖形較分散,對稱旋轉去實驗。

基本作圖很關鍵,平時掌握要熟練。

初中數學知識點 總結

很多的學生到了初中之後,發現自己的分數會有一定的下降,這可能是由於上初中之後數學科目的難度加大,所以分數會有一定的降低,那麼初中數學應該怎樣學?應該使用什麼方式哪?

知識點

一般來說這像科目小學與初中的區別是非常大的,知識點需要了解的非常多,並且難點也是非常多的,解題的步驟要求會更加嚴厲,一般初中開始學習一些思想如方程思想等等,這是常見的.

初中數學應該怎麼學?--難點了解

初中的時候一般對計算能力要求比較高,各種方式比如,有理數等等這都需要多種方式的計算並且非常看重解答題目的能力,函數等等都會用到概念以及一些公式,下來就是四邊形等等,這些都需要完全的了解知識點之後在進行測試,並且在學習完之後大約在初三的時候就需要備戰中考,要將學過的知識全部都復習一次,需要全方面的了解各個方面的難點等等,所以在房價的時候需要找出一定的空閑時間進行復習以及預習的工作.

初中數學應該怎麼學?--知識圖

一般來說,畫出完成的知識圖可以使我們更快的清楚這方面的內容,要想學好的話必須要全面的熟悉這些知識點的運用,當遇到難點的時候可以換個角度去考慮,慢慢的就會找到自己的解題方式.

還需要了解各種的概念、公式、法則等等,這們課程是需要非常強的連貫性的,如果在遇到一些難點,那可能是某一點遇到了困難,某一些知識沒有懂,需要及時的找到然後解決,這樣分數才會有一定的提升.

知識點

當老師在講完內容之後會講一些課外的內容,一般是定理、概念等等,會讓你對這些知識更加的了解,所以如果對這類題目有問題的同學可以多看一些課外的題目,當然想要提升分數是離不開練習題的,想要多好就需要多做一些習題,但是不可以過多,需要邊做邊思考才可以,這樣所學的知識就會運用出來.

以上就是初中數學應該怎樣學習的內容,如果在這個階段對自己分數不滿意的同學可以借鑒一下以上的內容,或許會對你有一定的幫助,將自身的分數提升.

初中數學知識點整理

初中數學寶典,你知道學習數學最重要的是什麼嗎?

在初中學習數學這們課程的時候很多的學生都是比較煩惱的,因為這們課程是非常難的,並且難點非常多,很多的學生在剛開始學習的時候還可以更得上,但是過一段時間之後就會變得非常的吃力,那麼你知道初中數學寶典是什麼嗎?我們來了解一下吧!

復習筆記

初中數學寶典----復習

很多的學生在剛開始的時候學習這們課程不費勁但是往後可能會學的非常吃力,其實這就是因為在學習後邊的內容時將之前的內容忘掉了,所以會導致學習比較吃力,所以現在就需要用到我們的初中數學寶典--復習.

在數學的復習上,我們一定要去研究解題的思路和解題的步驟,這樣我們的成績才會提高,數學試題無論如何變化都離不開最為基本的理論,因此我們要在自己的腦海中建立一個數學的知識樹.

我們在復習數學的時候,一定要對基礎的知識進行整理和回顧,數學是一個階梯式的課程,因此我們要建立起一個數學的知識樹,我們要先在大腦中設想這棵知識樹,然後找出自己的不足所在,在進行針對性的回顧,對於那寫容易搞混的知識點,要進行梳理並且做到完全的區分,最重要的一點是,我們應該多層次的去分析問題,舉一反三,將重點放在我們的解題思路上.

數學的復習,要秉承一個原則,那就是小題突破大題穩定,我們不可能在大題上做到突破但是在小題上可以做到這一點,有意識的練習自己選擇題和填空題的答題速度,當然速度是在正確的情況下,這樣會給下面的試題留下很多的思考時間,使用各種 方法 來進行解答.

在數學的復習上,我們一定要去研究解題的思路和解題的步驟,這樣我們的成績才會提高,數學試題無論如何變化都離不開最為基本的理論,因此在腦海中建立一個數學的知識樹是非常必要的,這可以更快速的幫助自己解題.

復習知識點

以上就是初中數學寶典的內容,當學習吃力的時候可以先復習一下之前的內容,當然這個時候之前記得筆記就可以用來復習了,這樣可以更好的幫助我們學習後期的內容,並且可以改善學習吃力的問題.

相關 文章 :

1. 初中數學知識點總結:常用的數學公式

2. 常見的初中數學公式

3. 初一數學知識點公式定理大全

4. 初中數學常用的10種解題方法

5. 初中數學的常考知識點20條

『柒』 七年級數學知識點總結

高效的學習,要學會給自己定定目標,這樣學習會有一個方向;然後要學會梳理自身學習情況,以課本為基礎,結合自己做的筆記、試卷、掌握的薄弱環節、存在的問題等,合理的分配時間,有針對性、具體的去一點一點的攻克、落實。本篇 文章 是我為您整理的《 七年級數學 知識點 總結 歸納》,供大家借鑒。

↓↓↓點擊獲取「七年級知識點」↓↓↓

★ 初一數學上冊知識點歸納 ★

★ 七年級下數學知識點總結 ★

★ 初一地理上冊知識點總結 ★

★ 初一下冊歷史知識點歸納 ★

七年級數學知識點總結1

1.有理數:

(1)凡能寫成形式的數,都是有理數.正整數、0、負整數統稱整數;正分數、負分數統稱分數;整數和分數統稱有理數.注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;π不是有理數;

(2)注意:有理數中,1、0、-1是三個特殊的數,它們有自己的特性;這三個數把數軸上的數分成四個區域,這四個區域的數也有自己的特性;

2.數軸:數軸是規定了原點、正方向、單位長度的一條直線.

3.相反數:

(1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0;

(2)注意:a-b+c的相反數是-a+b-c;a-b的相反數是b-a;a+b的相反數是-a-b;

4.絕對值:

(1)正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;注意:絕對值的意義是數軸上表示某數的點離開原點的距離;

(2)絕對值可表示為:

絕對值的問題經常分類討論;

(3)a|是重要的非負數,即|a|≥0;注意:|a|?|b|=|a?b|,

5.有理數比大小:(1)正數的絕對值越大,這個數越大;(2)正數永遠比0大,負數永遠比0小;(3)正數大於一切負數;(4)兩個負數比大小,絕對值大的反而小;(5)數軸上的兩個數,右邊的數總比左邊的數大;(6)大數-小數>0,小數-大數<0.

七年級數學知識點總結2

二元一次方程組

1.二元一次方程:含有兩個未知數,並且含未知數項的次數是1,這樣的方程是二元一次方程.注意:一般說二元一次方程有無數個解.

2.二元一次方程組:兩個二元一次方程聯立在一起是二元一次方程組.

3.二元一次方程組的解:使二元一次方程組的兩個方程,左右兩邊都相等的兩個未知數的值,叫二元一次方程組的解.注意:一般說二元一次方程組只有解(即公共解).

4.二元一次方程組的解法:

(1)代入消元法;(2)加減消元法;

(3)注意:判斷如何解簡單是關鍵.

※5.一次方程組的應用:

(1)對於一個應用題設出的未知數越多,列方程組可能容易一些,但解方程組可能比較麻煩,反之則難列易解

(2)對於方程組,若方程個數與未知數個數相等時,一般可求出未知數的值;

(3)對於方程組,若方程個數比未知數個數少一個時,一般求不出未知數的值,但總可以求出任何兩個未知數的關系.

一元一次不等式(組)

1.不等式:用不等號,把兩個代數式連接起來的式子叫不等式.

2.不等式的基本性質:

不等式的基本性質1:不等式兩邊都加上(或減去)同一個數或同一個整式,不等號的方向不變;

不等式的基本性質2:不等式兩邊都乘以(或除以)同一個正數,不等號的方向不變;

不等式的基本性質3:不等式兩邊都乘以(或除以)同一個負數,不等號的方向要改變.

3.不等式的解集:能使不等式成立的未知數的值,叫做這個不等式的解;不等式所有解的集合,叫做這個不等式的解集.

4.一元一次不等式:只含有一個未知數,並且未知數的次數是1,系數不等於零的不等式,叫做一元一次不等式;它的標准形式是ax+b0或ax+b0,(a0).

5.一元一次不等式的解法:一元一次不等式的解法與解一元一次方程的解法類似,但一定要注意不等式性質3的應用;注意:在數軸上表示不等式的解集時,要注意空圈和實點.

七年級數學知識點總結3

整式的加減

一、代數式

1、用運算符號把數或表示數的字母連結而成的式子,叫做代數式。單獨的一個數或字母也是代數式。

2、用數值代替代數式里的字母,按照代數式里的運算關系計算得出的結果,叫做代數式的值。

二、整式

1、單項式:

(1)由數和字母的乘積組成的代數式叫做單項式。

(2)單項式中的數字因數叫做這個單項式的系數。

(3)一個單項式中,所有字母的指數的和叫做這個單項式的次數。

2、多項式

(1)幾個單項式的和,叫做多項式。

(2)每個單項式叫做多項式的項。

(3)不含字母的項叫做常數項。

3、升冪排列與降冪排列

(1)把多項式按x的指數從大到小的順序排列,叫做降冪排列。

(2)把多項式按x的指數從小到大的順序排列,叫做升冪排列。

三、整式的加減

1、整式加減的理論根據是:去括弧法則,合並同類項法則,以及乘法分配率。

去括弧法則:如果括弧前是「十」號,把括弧和它前面的「+」號去掉,括弧里各項都不變符號;如果括弧前是「一」號,把括弧和它前面的「一」號去掉,括弧里各項都改變符號。

2、同類項:所含字母相同,並且相同字母的指數也相同的項叫做同類項。

合並同類項:

(1)合並同類項的概念:把多項式中的同類項合並成一項叫做合並同類項。

(2)合並同類項的法則:同類項的系數相加,所得結果作為系數,字母和字母的指數不變。

(3)合並同類項步驟:

a.准確的找出同類項。

b.逆用分配律,把同類項的系數加在一起(用小括弧),字母和字母的指數不變。

c.寫出合並後的結果。

(4)在掌握合並同類項時注意:

a.如果兩個同類項的系數互為相反數,合並同類項後,結果為0.

b.不要漏掉不能合並的項。

c.只要不再有同類項,就是結果(可能是單項式,也可能是多項式)。

說明:合並同類項的關鍵是正確判斷同類項。

3、幾個整式相加減的一般步驟:

(1)列出代數式:用括弧把每個整式括起來,再用加減號連接。

(2)按去括弧法則去括弧。

(3)合並同類項。

4、代數式求值的一般步驟:

(1)代數式化簡

(2)代入計算

(3)對於某些特殊的代數式,可採用「整體代入」進行計算。

圖形的初步認識

一、立體圖形與平面圖形

1、長方體、正方體、球、圓柱、圓錐等都是立體圖形。此外稜柱、棱錐也是常見的立體圖形。

2、長方形、正方形、三角形、圓等都是平面圖形。

3、許多立體圖形是由一些平面圖形圍成的,將它們適當地剪開,就可以展開成平面圖形。

二、點和線

1、經過兩點有一條直線,並且只有一條直線。

2、兩點之間線段最短。

3、點C線段AB分成相等的兩條線段AM與MB,點M叫做線段AB的中點。類似的還有線段的三等分點、四等分點等。

4、把線段向一方無限延伸所形成的圖形叫做射線。

三、角

1、角是由兩條有公共端點的射線組成的圖形。

2、繞著端點旋轉到角的終邊和始邊成一條直線,所成的角叫做平角。

3、繞著端點旋轉到終邊和始邊再次重合,所成的角叫做周角。

4、度、分、秒是常用的角的度量單位。

把一個周角360等分,每一份就是一度的角,記作1°;把1度的角60等分,每份叫做1分的角,記作1′;把1分的角60等分,每份叫做1秒的角,記作1″。

四、角的比較

從一個角的頂點出發,把這個角分成相等的兩個角的射線,叫做這個角的平分線。類似的,還有叫的三等分線。

五、餘角和補角

1、如果兩個角的和等於90(直角),就說這兩個角互為餘角。

2、如果兩個角的和等於180(平角),就說這兩個角互為補角。

3、等角的補角相等。

4、等角的餘角相等。

六、相交線

1、定義:兩條直線相交,所成的四個角中有一個角是直角,那麼這兩條直線互相垂直。其中一條直線叫做另一條直線的垂線,它們的交點叫做垂足。

2、注意:

⑴垂線是一條直線。

⑵具有垂直關系的兩條直線所成的4個角都是90。

⑶垂直是相交的特殊情況。

⑷垂直的記法:a⊥b,AB⊥CD。

3、畫已知直線的垂線有無數條。

4、過一點有且只有一條直線與已知直線垂直。

5、連接直線外一點與直線上各點的所有線段中,垂線段最短。簡單說成:垂線段最短。

6、直線外一點到這條直線的垂線段的長度,叫做點到直線的距離。

7、有一個公共的頂點,有一條公共的邊,另外一邊互為反向延長線,這樣的兩個角叫做鄰補角。

兩條直線相交有4對鄰補角。

8、有公共的頂點,角的兩邊互為反向延長線,這樣的兩個角叫做對頂角。兩條直線相交,有2對對頂角。對頂角相等。

七、平行線

1、在同一平面內,兩條直線沒有交點,則這兩條直線互相平行,記作:a∥b。

2、平行公理:經過直線外一點,有且只有一條直線與這條直線平行。

3、如果兩條直線都與第三條直線平行,那麼這兩條直線也互相平行。

4、判定兩條直線平行的 方法 :

(1)兩條直線被第三條直線所截,如果同位角相等,那麼這兩條直線平行。簡單說成:同位角相等,兩直線平行。

(2)兩條直線被第三條直線所截,如果內錯角相等,那麼這兩條直線平行。簡單說成:內錯角相等,兩直線平行。

(3)兩條直線被第三條直線所截,如果同旁內角互補,那麼這兩條直線平行。簡單說成:同旁內角互補,兩直線平行。

5、平行線的性質

(1)兩條平行線被第三條直線所截,同位角相等。簡單說成:兩直線平行,同位角相等。

(2)兩條平行線被第三條直線所截,內錯角相等。簡單說成:兩直線平行,內錯角相等。

(3)兩條平行線被第三條直線所截,同旁內角互補。簡單說成:兩直線平行,同旁內角互補。


七年級數學知識點總結相關文章:

★ 七年級數學知識點整理大全

★ 2017年中考初中數學知識點總結

★ 初中數學圓的知識點歸納

★ 初中部數學學習方法總結

★ 初一數學的知識點歸納

★ 初中數學分式知識點總結

★ 初一數學基礎知識點梳理

★ 七年級數學單元知識點

★ 初一數學知識點歸納與學習方法

★ 初一數學知識點歸納華師版

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

『捌』 初中數學知識點整理

初中數學寶典,你知道學習數學最重要的是什麼嗎?

在初中學習數學這們課程的時候很多的學生都是比較煩惱的,因為這們課程是非常難的,並且難點非常多,很多的學生在剛開始學習的時候還可以更得上,但是過一段時間之後就會變得非常的吃力,那麼你知道初中數學寶典是什麼嗎?我們來了解一下吧!

復習知識點

以上就是初中數學寶典的內容,當學習吃力的時候可以先復習一下之前的內容,當然這個時候之前記得筆記就可以用來復習了,這樣可以更好的幫助我們學習後期的內容,並且可以改善學習吃力的問題.

『玖』 初中數學知識點全總結(完美列印版)

鏈接: https://pan..com/s/1Y3loI4BuPKEQuz1uyirypQ 提取碼: hba7

作業幫精品資料:初中數學高頻考點Word文檔,網路網盤文檔。