A. 小學數學的知識點有哪些
小學數學公式大全,
第一部分: 概念。
1,加法交換律:兩數相加交換加數的位置,和不變。
2,加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第三個數相加,和不變。
3,乘法交換律:兩數相乘,交換因數的位置,積不變。
4,乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。
5,乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。
如:(2+4)×5=2×5+4×5
6,除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。 0除以任何不是0的數都得0。
簡便乘法:被乘數,乘數末尾有0的乘法,可以先把0前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。
7,什麼叫等式 等號左邊的數值與等號右邊的數值相等的式子叫做等式。
等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,等式仍然成立。
8,什麼叫方程式 答:含有未知數的等式叫方程式。
9, 什麼叫一元一次方程式 答:含有一個未知數,並且未知數的次 數是一次的等式叫做一元一次方程式。
學會一元一次方程式的例法及計算。即例出代有χ的算式並計算。
10,分數:把單位「1」平均分成若干份,表示這樣的一份或幾分的數,叫做分數。
11,分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
12,分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。
異分母的分數相比較,先通分然後再比較;若分子相同,分母大的反而小。
13,分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。
14,分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。
15,分數除以整數(0除外),等於分數乘以這個整數的倒數。
16,真分數:分子比分母小的分數叫做真分數。
17,假分數:分子比分母大或分子和分母相等的分數叫做假分數。假分數大於或等於1。
18,帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。
19,分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小不變。
20,一個數除以分數,等於這個數乘以分數的倒數。
21,甲數除以乙數(0除外),等於甲數乘以乙數的倒數。
分數的加,減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
分數的乘法則:用分子的積做分子,用分母的積做分母。
22,什麼叫比:兩個數相除就叫做兩個數的比。如:2÷5或3:6或1/3
比的前項和後項同時乘以或除以一個相同的數(0除外),比值不變。
23,什麼叫比例:表示兩個比相等的式子叫做比例。如3:6=9:18
24,比例的基本性質:在比例里,兩外項之積等於兩內項之積。
25,解比例:求比例中的未知項,叫做解比例。如3:χ=9:18
26,正比例:兩種相關聯的量,一種量變化,另一種量也隨著化,如果這兩種量中相對應的的比值(也就是商k)一定,這兩種量就叫做成正比例的量,它們的關系就叫做正比例關系。如:y/x=k( k一定)或kx=y
27,反比例:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,它們的關系就叫做反比例關系。 如:x×y = k( k一定)或k / x = y
28,百分數:表示一個數是另一個數的百分之幾的數,叫做百分數。百分數也叫做百分率或百分比。
29,把小數化成百分數,只要把小數點向右移動兩位,同時在後面添上百分號。其實,把小數化成百分數,只要把這個小數乘以100%就行了。
30,把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。
31,把分數化成百分數,通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。其實,把分數化成百分數,要先把分數化成小數後,再乘以100%就行了。
32,把百分數化成分數,先把百分數改寫成分數,能約分的要約成最簡分數。
33,要學會把小數化成分數和把分數化成小數的化發。
34,最大公約數:幾個數都能被同一個數一次性整除,這個數就叫做這幾個數的最大公約數。(或幾個數公有的約數,叫做這幾個數的公約數。其中最大的一個, 叫做最大公約數。)
35,互質數: 公約數只有1的兩個數,叫做互質數。
36,最小公倍數:幾個數公有的倍數,叫做這幾個數的公倍數,其中最小的一個叫做這幾個數的最小公倍數。
37,通分:把異分母分數的分別化成和原來分數相等的同分母的分數,叫做通分。(通分用最小公倍數)
38,約分:把一個分數化成同它相等,但分子,分母都比較小的分數,叫做約分。(約分用最大公約數)
39,最簡分數:分子,分母是互質數的分數,叫做最簡分數。
40,分數計算到最後,得數必須化成最簡分數。
41,個位上是0,2,4,6,8的數,都能被2整除,即能用2進行約分。個位上是0或者5的數,都能被5整除,即能用5進行約分。在約分時應注意利用。
43,偶數和奇數:能被2整除的數叫做偶數。不能被2整除的數叫做奇數。
44,質數(素數):一個數,如果只有1和它本身兩個約數,這樣的數叫做質數(或素數)。
45,合數:一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數。1不是質數,也不是合數。
46,利息=本金×利率×時間(時間一般以年或月為單位,應與利率的單位相對應)
47,利率:利息與本金的比值叫做利率。一年的利息與本金的比值叫做年利率。一月的利息與本金的比值叫做月利率。
48,自然數:用來表示物體個數的整數,叫做自然數。0也是自然數。
49,循環小數:一個小數,從小數部分的某一位起,一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做循環小數。如3。 141414
50,不循環小數:一個小數,從小數部分起,沒有一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做不循環小數。如圓周率:3。 141592654
51,無限不循環小數:一個小數,從小數部分起到無限位數,沒有一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做無限不循環小數。如3。 141592654……
52,什麼叫代數 代數就是用字母代替數。
53,什麼叫代數式 用字母表示的式子叫做代數式。如:3x =ab+c
小學數學公式大全,第二部分:計算公式。
數量關系式:
1, 每份數×份數=總數 總數÷每份數=份數 總數÷份數=每份數
2, 1倍數×倍數=幾倍數 幾倍數÷1倍數=倍數 幾倍數÷倍數=1倍數
3, 速度×時間=路程 路程÷速度=時間 路程÷時間=速度
4, 單價×數量=總價 總價÷單價=數量 總價÷數量=單價
5, 工作效率×工作時間=工作總量 工作總量÷工作效率=工作時間 工作總量÷工作時間=工作效率
6, 加數+加數=和 和-一個加數=另一個加數
7, 被減數-減數=差 被減數-差=減數 差+減數=被減數
8, 因數×因數=積 積÷一個因數=另一個因數
9, 被除數÷除數=商 被除數÷商=除數 商×除數=被除數
和差問題的公式
(和+差)÷2=大數(和-差)÷2=小數
和倍問題的公式
和÷(倍數-1)=小數小數×倍數=大數(或者 和-小數=大數)
差倍問題
差÷(倍數-1)=小數小數×倍數=大數(或 小數+差=大數)
B. 小升初考試必備數學一到六年級的知識點
小升初數學考的知識點是一到六年級的知識點,整理出不同年級的小學數學重要知識點,對於備考很有用,我在這里整理了相關資料,希望能幫助到那您。
一年級的知識重點
1數與計算
(1)20以內數的認識,加法和減法。
數數。數的組成、順序、大小、讀法和寫法。加法和減法。連加、連減和加減混合式題
(2)100以內數的認識。
加法和減法。數數。個位、十位。數的順序、大小、讀法和寫法。
兩位數加、減整十數和兩位數加、減一位數的口算。兩步計算的加減式題。
2量與計量
鍾面的認識(整時)。人民幣的認識和簡單計算。
3幾何初步知識
長方體、正方體、圓柱和球的直觀認識。
長方形、正方形、三角形和圓的直觀認識。
4應用題
比較容易的加法、減法一步計算的應用題。多和少的應用題(抓有效信息的能力)
5實踐活動
選擇與生活密切聯系的內容。例如根據本班男、女生人數,每組人數分布情況,想到哪些數學問題。
二年級的知識重點
1數與計算
(1)兩位數加、減兩位數。兩位數加、減兩位數。加、減法豎式。兩步計算的加減式題。
(2)表內乘法和表內除法。乘法的初步認識。乘法口訣。乘法豎式。除法的初步認識。用乘法口訣求商。除法豎式。有餘數除法。兩步計算的式題。
(3)萬以內數的讀法和寫法。數數。百位、千位、萬位。數的讀法、寫法和大小比較。
(4)加法和減法。加法,減法。連加法。加法驗算,用加法驗算減法。
(5)混合運算。先乘除後加減。兩步計算式題。小括弧。
2量與計量
時、分、秒的認識。
米、分米、厘米的認識和簡單計算。
千克(公斤)的認識。
3幾何初步知識
直線和線段的初步認識。角的初步認識。直角。
4應用題
加法和減法一步計算的應用題。乘法和除法一步計算的應用題。比較容易的兩步計算的應用題。
5實踐活動
與生活密切聯系的內容。例如調查家中本周各項消費的開支情況,想到哪些數學問題。
三年級的知識重點
1數與計算
(1)一位數的乘、除法。
一個乘數是一位數的乘法(另一個乘數一般不超過三位數)。0的乘法。連乘。除數是一位數的除法。0除以一個數。用乘法驗算除法。連除。
(2)兩位數的乘、除法。
一個乘數是兩位數的乘法(另一個乘數一般不超過三位數)。乘數末尾有0的簡便演算法。乘法驗算。除數是兩位數的除法。連乘、連除的簡便演算法。
(3)四則混合運算。
兩步計算的式題。小括弧的使用。
(4)分數的初步認識。
分數的初步認識,讀法和寫法。看圖比較分數的大小。簡單的同分母分數加、減法。
2量與計量
千米(公里)、毫米的認識和簡單計算。噸、克的認識和簡單計算。
3幾何初步知識
長方形和正方形的特徵。長方形和正方形的周長。平行四邊形的直觀認識。周長的含義。長方形、正方形的周長。
4應用題常見的數量關系。
解答兩步計算的應用題。
5實踐活動
聯系周圍接觸到的事物組織活動。例如記錄10天內的天氣情況,分類整理,並作簡單分析。
四年級的知識重點
1數與計算
(1)億以內數的讀法和寫法。
計數單位「十萬」、「百萬」、「千萬」。相鄰計數單位間的十進關系。讀法和寫法。數的大小比較。以萬作單位的近似數。
(2)加法和減法。
加法,減法。
接近整十、整百數的加、減法的簡便演算法。
加、減法算式中各部分之間的關系。求未知數x。
(3)乘、除數是三位數的乘、除法。
乘數是三位數的乘法。積的變化。除數是三位數的除法。商不變的性質。被除數和除數末尾有0的簡便演算法。
乘、除計算的簡單估算。
乘數接近整十、整百的簡便演算法。
乘、除法算式中各部分之間的關系。求未知數x。
(4)四則混合運算。
中括弧。三步計算的式題。
(5)整數及其四則運算的關系和運算定律。
自然數與整數。十進制計數法。讀法和寫法。
四則運算的意義。加法與減法、乘法與除法之間的關系。整除和有餘數的除法。
運算定律。簡便運算。
(6)小數的意義、性質,加法和減法。
小數的意義、性質。小數大小的比較。小數點移位引起小數大小的變化。小數的近似值加法和減法。加法運算定律推廣到小數。
2量與計量
年、月、日。平年、閏年。世紀。24時計時法。
角的度量。
面積單位。
3幾何初步知識
直線的測定。測量距離(工具測、步測、目測)。
射線。直角、銳角、鈍角、平角、*周角。垂線。畫垂線。平行線。畫平行線。
三角形的特徵。
三角形的內角和。
4統計初步知識
簡單數據整理。簡單統計圖表的初步認識。平均數的意義。求簡單的平均數。
5應用題列綜合算式
解答比較容易的三步計算的應用題。
五年級的知識重點
1計算
小數乘法,小數除法,簡易方程,觀察物體,多邊形的面積,統計與可能性,數學廣角和數學綜合運用等。
在前面學習整數四則運算和小數加、減法的基礎上,繼續培養學生小數的四則運算能力。
2方程
用字母表示數、等式的性質、解簡單的方程、用方程表示等量關系進而解決簡單的實際問題等內容,進一步發展學生的抽象思維能力,提高解決問題的能力。
3空間與物體
在空間與圖形方面,這一冊教材安排了觀察物體和多邊形的面積兩個單元。在已有知識和經驗的基礎上,通過豐富的現實的數學活動,讓學生獲得探究學習的經歷,能辨認從不同方位看到的物體的形狀和相對位置。
4圖形的轉換
探索並體會各種圖形的特徵、圖形之間的關系,及圖形之間的轉化,掌握平行四邊形、三角形、梯形的面積公式及公式之間的關系,滲透平移、旋轉、轉化的數學思想方法,促進學生空間觀念的進一步發展。
5統計與概率
教材讓學生學習有關可能性和中位數的知識。通過操作與實驗,讓學生體驗事件發生的等可能性以及游戲規則的公平性,學會求一些事件發生的可能性。
6平均數
理解平均數和中位數各自的統計意義、各自的特徵和適用范圍;進一步體會統計和概率在現實生活中的作用。
7實際應用
通過觀察、猜測、實驗、推理等活動向學生滲透初步的數字編碼的數學思想方法,體會運用數字的有規律排列可以使人與人之間的信息交換變得安全、有序、快捷,給人們的生活和工作帶來便利,感受數學的魅力。
六年級的知識重點
1數與計算
(1)分數的乘法和除法,分數乘法的意義,分數乘法,乘法的運算定律推廣到分數,倒數,分數除法的意義,分數除法。
(2)分數四則混合運算,分數四則混合運算。
(3)百分數,百分數的意義和寫法,百分數和分數、小數的互化。
2比和比例
比的意義和性質,比例的意義和基本性質,解比例,成正比例的量和成反比例的量。
3幾何初步知識
圓的認識,圓周率,畫圓,圓的周長和面積,扇形的認識,軸對稱圖形的初步認識,圓柱的認識,圓柱的表面積和體積,圓錐的認識,圓錐的體積,球和球的半徑、直徑的初步認識。
4統計初步知識
統計表,條形統計圖,折線統計圖,扇形統計圖。
5應用題
分數四則應用題(包括工程問題),百分數的實際應用(包括發芽率、合格率、利率、稅率等的計算),比例尺,按比例分配。
6實踐活動
聯系學生所接觸到的社會情況組織活動,例如就家中的卧室,畫一個平面圖。
C. 小學數學的知識點總結
常用的數量關系式
1、每份數×份數=總數 總數÷每份數=份數 總數÷份數=每份數
2、1倍數×倍數=幾倍數 幾倍數÷1倍數=倍數 幾倍數÷倍數=1倍數
3、速度×時間=路程 路程÷速度=時間 路程÷時間=速度
4、單價×數量=總價 總價÷單價=數量 總價÷數量=單價
5、工作效率×工作時間=工作總量 工作總量÷工作效率=工作時間 工作總量÷工作時間=工作效率
6、加數+加數=和 和-一個加數=另一個加數
7、被減數-減數=差 被減數-差=減數 差+減數=被減數
8、因數×因數=積 積÷一個因數=另一個因數
9、被除數÷除數=商 被除數÷商=除數 商×除數=被除數
小學數學圖形計算公式
1、正方形 (C:周長 S:面積 a:邊長 )
周長=邊長×4 C=4a 面積=邊長×邊長 S=a×a
2、正方體 (V:體積 a:棱長 )
表面積=棱長×棱長×6 S表=a×a×6 體積=棱長×棱長×棱長 V=a×a×a
3、長方形( C:周長 S:面積 a:邊長 )
周長=(長+寬)×2 C=2(a+b) 面積=長×寬 S=ab
4、長方體 (V:體積 s:面積 a:長 b: 寬 h:高)
(1)表面積(長×寬+長×高+寬×高)×2 S=2(ab+ah+bh) (2)體積=長×寬×高 V=abh
5、三角形 (s:面積 a:底 h:高)
面積=底×高÷2 s=ah÷2 三角形高=面積 ×2÷底 三角形底=面積 ×2÷高
6、平行四邊形 (s:面積 a:底 h:高)
面積=底×高 s=ah
7、梯形 (s:面積 a:上底 b:下底 h:高)
面積=(上底+下底)×高÷2 s=(a+b)× h÷2
8、圓形 (S:面積 C:周長 л d=直徑 r=半徑)
(1)周長=直徑×л=2×л×半徑 C=лd=2лr (2)面積=半徑×半徑×л
9、圓柱體 (v:體積 h:高 s:底面積 r:底面半徑 c:底面周長)
(1)側面積=底面周長×高=ch(2лr或лd) (2)表面積=側面積+底面積×2
(3)體積=底面積×高 (4)體積=側面積÷2×半徑
10、圓錐體 (v:體積 h:高 s:底面積 r:底面半徑)
體積=底面積×高÷3
11、總數÷總份數=平均數
12、和差問題的公式:(和+差)÷2=大數 (和-差)÷2=小數
13、和倍問題: 和÷(倍數-1)=小數 小數×倍數=大數 (或者 和-小數=大數)
14、差倍問題: 差÷(倍數-1)=小數 小數×倍數=大數 (或 小數+差=大數)
15、相遇問題
相遇路程=速度和×相遇時間; 相遇時間=相遇路程÷速度和; 速度和=相遇路程÷相遇時間
16、濃度問題
溶質的重量+溶劑的重量=溶液的重量 溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量 溶質的重量÷濃度=溶液的重量
17、利潤與折扣問題
利潤=售出價-成本; 利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比; 利息=本金×利率×時間; 稅後利息=本金×利率×時間×(1-20%)
常用單位換算
長度單位換算
1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米
面積單位換算:
1平方千米=100公頃 1公頃=10000平方米 1平方米=100平方分米
1平方分米=100平方厘米 1平方厘米=100平方毫米
體(容)積單位換算:
1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升
1立方厘米=1毫升 1立方米=1000升
重量單位換算: 1噸=1000 千克 1千克=1000克 1千克=1公斤
人民幣單位換算: 1元=10角 1角=10分 1元=100分
時間單位換算:
1世紀=100年 1年=12月 大月(31天)有:1\3\5\7\8\10\12月 小月(30天)的有:4\6\9\11月
平年2月28天, 閏年2月29天 平年全年365天, 閏年全年366天 1日=24小時
1時=60分 1分=60秒 1時=3600秒
基本概念
第一章 數和數的運算
一 概念
(一)整數
1 整數的意義: 自然數和0都是整數。
2 自然數:
我們在數物體的時候,用來表示物體個數的1,2,3……叫做自然數。
一個物體也沒有,用0表示。0也是自然數。
3計數單位
一(個)、十、百、千、萬、十萬、百萬、千萬、億……都是計數單位。
每相鄰兩個計數單位之間的進率都是10。這樣的計數法叫做十進制計數法。
4 數位: 計數單位按照一定的順序排列起來,它們所佔的位置叫做數位。
5數的整除
整數a除以整數b(b ≠ 0),除得的商是整數而沒有餘數,我們就說a能被b整除,或者說b能整除a 。
如果數a能被數b(b ≠ 0)整除,a就叫做b的倍數,b就叫做a的約數(或a的因數)。倍數和約數是相互依存的。
因為35能被7整除,所以35是7的倍數,7是35的約數。
一個數的約數的個數是有限的,其中最小的約數是1,最大的 約數是它本身。例如:10的約數有1、2、5、10,其中最小的約數是1,最大的約數是10。
一個數的倍數的個數是無限的,其中最小的倍數是它本身。3的倍數有:3、6、9、12……其中最小的倍數是3 ,沒有最大的倍數。
個位上是0、2、4、6、8的數,都能被2整除,例如:202、480、304,都能被2整除。。
個位上是0或5的數,都能被5整除,例如:5、30、405都能被5整除。。
一個數的各位上的數的和能被3整除,這個數就能被3整除,例如:12、108、204都能被3整除。
一個數各位數上的和能被9整除,這個數就能被9整除。
能被3整除的數不一定能被9整除,但是能被9整除的數一定能被3整除。
一個數的末兩位數能被4(或25)整除,這個數就能被4(或25)整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。
一個數的末三位數能被8(或125)整除,這個數就能被8(或125)整除。例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。
能被2整除的數叫做偶數。
不能被2整除的數叫做奇數。
0也是偶數。自然數按能否被2 整除的特徵可分為奇數和偶數。
一個數,如果只有1和它本身兩個約數,這樣的數叫做質數(或素數),100以內的質數有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數,例如 4、6、8、9、12都是合數。
1不是質數也不是合數,自然數除了1外,不是質數就是合數。如果把自然數按其約數的個數的不同分類,可分為質數、合數和1。
每個合數都可以寫成幾個質數相乘的形式。其中每個質數都是這個合數的因數,叫做這個合數的質因數,例如15=3×5,3和5 叫做15的質因數。
把一個合數用質因數相乘的形式表示出來,叫做分解質因數。
例如把28分解質因數
幾個數公有的約數,叫做這幾個數的公約數。其中最大的一個,叫做這幾個數的最大公約數,例如12的約數有1、2、3、4、6、12;18的約數有1、2、3、6、9、18。其中,1、2、3、6是12和1 8的公約數,6是它們的最大公約數。
公約數只有1的兩個數,叫做互質數,成互質關系的兩個數,有下列幾種情況:
1和任何自然數互質。
相鄰的兩個自然數互質。
兩個不同的質數互質。
當合數不是質數的倍數時,這個合數和這個質數互質。
兩個合數的公約數只有1時,這兩個合數互質,如果幾個數中任意兩個都互質,就說這幾個數兩兩互質。
如果較小數是較大數的約數,那麼較小數就是這兩個數的最大公約數。
如果兩個數是互質數,它們的最大公約數就是1。
幾個數公有的倍數,叫做這幾個數的公倍數,其中最小的一個,叫做這幾個數的最小公倍數,如2的倍數有2、4、6 、8、10、12、14、16、18 ……
3的倍數有3、6、9、12、15、18 …… 其中6、12、18……是2、3的公倍數,6是它們的最小公倍數。。
如果較大數是較小數的倍數,那麼較大數就是這兩個數的最小公倍數。
如果兩個數是互質數,那麼這兩個數的積就是它們的最小公倍數。
幾個數的公約數的個數是有限的,而幾個數的公倍數的個數是無限的。
(二)小數
1 小數的意義
把整數1平均分成10份、100份、1000份…… 得到的十分之幾、百分之幾、千分之幾…… 可以用小數表示。
一位小數表示十分之幾,兩位小數表示百分之幾,三位小數表示千分之幾……
一個小數由整數部分、小數部分和小數點部分組成。數中的圓點叫做小數點,小數點左邊的數叫做整數部分,小數點左邊的數叫做整數部分,小數點右邊的數叫做小數部分。
在小數里,每相鄰兩個計數單位之間的進率都是10。小數部分的最高分數單位「十分之一」和整數部分的最低單位「一」之間的進率也是10。
2小數的分類
純小數:整數部分是零的小數,叫做純小數。例如: 0.25 、 0.368 都是純小數。
帶小數:整數部分不是零的小數,叫做帶小數。 例如: 3.25 、 5.26 都是帶小數。
有限小數:小數部分的數位是有限的小數,叫做有限小數。 例如: 41.7 、 25.3 、 0.23 都是有限小數。
無限小數:小數部分的數位是無限的小數,叫做無限小數。 例如: 4.33 …… 3.1415926 ……
無限不循環小數:一個數的小數部分,數字排列無規律且位數無限,這樣的小數叫做無限不循環小數。 例如:∏
循環小數:一個數的小數部分,有一個數字或者幾個數字依次不斷重復出現,這個數叫做循環小數。 例如: 3.555 …… 0.0333 …… 12.109109 ……
一個循環小數的小數部分,依次不斷重復出現的數字叫做這個循環小數的循環節。 例如: 3.99 ……的循環節是「 9 」 , 0.5454 ……的循環節是「 54 」 。
純循環小數:循環節從小數部分第一位開始的,叫做純循環小數。 例如: 3.111 …… 0.5656 ……
混循環小數:循環節不是從小數部分第一位開始的,叫做混循環小數。 3.1222 …… 0.03333 ……
寫循環小數的時候,為了簡便,小數的循環部分只需寫出一個循環節,並在這個循環節的首、末位數字上各點一個圓點。如果循環 節只有 一個數字,就只在它的上面點一個點。例如: 3.777 …… 簡寫作 0.5302302 …… 簡寫作 。
(三)分數
1 分數的意義
把單位「1」平均分成若干份,表示這樣的一份或者幾份的數叫做分數。
在分數里,中間的橫線叫做分數線;分數線下面的數,叫做分母,表示把單位「1」平均分成多少份;分數線下面的數叫做分子,表示有這樣的多少份。
把單位「1」平均分成若干份,表示其中的一份的數,叫做分數單位。
2 分數的分類
真分數:分子比分母小的分數叫做真分數。真分數小於1。
假分數:分子比分母大或者分子和分母相等的分數,叫做假分數。假分數大於或等於1。
帶分數:假分數可以寫成整數與真分數合成的數,通常叫做帶分數。
3 約分和通分
把一個分數化成同它相等但是分子、分母都比較小的分數 ,叫做約分。
分子分母是互質數的分數,叫做最簡分數。
把異分母分數分別化成和原來分數相等的同分母分數,叫做通分。
(四)百分數
1 表示一個數是另一個數的百分之幾的數 叫做百分數,也叫做百分率 或百分比。百分數通常用"%"來表示。百分號是表示百分數的符號。
運算定律
1. 加法交換律:
兩個數相加,交換加數的位置,它們的和不變,即a+b=b+a 。
2. 加法結合律:
三個數相加,先把前兩個數相加,再加上第三個數;或者先把後兩個數相加,再和第一個數相加它們的和不變,即(a+b)+c=a+(b+c) 。
3. 乘法交換律:
兩個數相乘,交換因數的位置它們的積不變,即a×b=b×a。
4. 乘法結合律:
三個數相乘,先把前兩個數相乘,再乘以第三個數;或者先把後兩個數相乘,再和第一個數相乘,它們的積不變,即(a×b)×c=a×(b×c) 。
5. 乘法分配律:
兩個數的和與一個數相乘,可以把兩個加數分別與這個數相乘再把兩個積相加,即(a+b)×c=a×c+b×c 。
6. 減法的性質:
從一個數里連續減去幾個數,可以從這個數里減去所有減數的和,差不變,即a-b-c=a-(b+c) 。
D. 求小學數學的知識點歸納總結
小學數學總復習各模塊知識
數的認識 簡易方程
一、數和數的運算 數的整除 二、代數初步知識
數的運算 比和比例
一般復合應用題 長度
典型應用題 面積
三、應用題 分數、百分數應用題 四、量的計量 體積
列方程解應用題 重量
比和比例應用題 時間
人民幣
線 統計表
平面圖形的認識與計算 角 六、統計與概率
五、空間與圖形 平面圖形 統計圖
長方體、正方體
立體圖形的認識與計算
圓柱體、圓錐體
一、數和數的運算
(一)數的認識
整數的含義:像…-3,-1,0,1,2,3,…這樣的數統稱整數。
正數和負數的含義:像1,+5,6,…這樣的數叫做正數;像-3,-2,-9,…這樣的數叫做負數。
佔位
0是最小的自然數,0是偶數,0的作用 表示起點
表示界線
自然數 1是最小的一位數,是自然數的基本單位;1既不是質數,也不是合數。
數的意義: 是整數的一部分,可表示基數也可以表示序數
意義:把單位「1」平均分成若干份,表示這樣一份或幾份的數叫做分數。表示其中一份的數就是分數單位
分數
真分數——分子比分母小(小於1)
分類: 假分數——分子大於或等於分母(大於或等於1)
帶分數——分子比分母大(大於1)
意義:把整體「1」平均分成10份、100份、1000份……這樣的一份或幾份
是十分之幾,百分之幾,千分之幾……可以用小數表示
有限小數
按小數部分分 無限不循環小數
小數 無限小數 純循環小數
分類 純小數 循環小數
按整數部分分 混循環小數
帶小數
整數和小數數位順序表
整數部分 小數部分
… 億級 萬級 個級
數位 … 千億位 百億位 十億位
億位 千萬位 百萬位 十萬位
萬位
千位
百位
十位
個位 十分位 百分位 千分位 萬分位 …
計數單位 … 千億 百億 十億
億 千萬 百萬 十萬
萬
千
百
十
一
十分之一 百分之一 千分之一 萬分之一 …
百分數:表示一個數是另一個數的百分之幾的數叫做百分數。(百分率或百分比)
折扣*:商業用名詞,幾折就是十分之幾,成數,幾成就是百之幾十。
注意:百分數、折扣只表示兩個數的倍比關系,而分數除倍比關系外還可以表示具體數量。
數的讀寫:
1、整數的讀法:從高位到低位,一級一級地讀,每級末尾的0都不讀,其他數位連續有幾個0都只讀一個0。
2、整數的寫法:從高位到低位,一級一級地寫,哪一個數位上一個單位也沒有,就在那個數位上寫0。
3、小數的讀寫:整數部分按整數來讀(寫),小數點讀作「點」,小數部分依次讀(寫)出每一位上的數字。
數的改寫
寫成用「萬」或「億」作單位的數
1、多位數的改寫和省略: 省略「萬」或「億」位後面的尾數
2、分數、小數、百分數的互化
改寫成分母是10、100、1000…的分數再約分
小數 分數
用分子除以分母
小數點向右移動兩位,同時添上%
小數 百分數
去掉%,小數點向左移動兩位
寫成分數形式並約分
百分數 分數
先寫成小數,再寫成百分數
數的大小比較:
1、整數的大小比較:先看位數,位數多的數大:位數相同,從高位看起相同數位上的數大的那個數就大
2、小數大小的比較:先比較兩個數的整數部分,整數部分大的那個數就大;整數部分相同就看小數部分從高位看起,依數位比較
3、分數大小比較:分母相同分子大的分數大;分子相同分母小的分數大;分母不同,先通分再比較。
數的基本性質:
1、分數的基本性質:分數的分子和分母同時乘上或者除以相同的數(0除外),分數的大小不變。
2、小數的基本性質:小數的末尾添「0」或者去掉「0」,小數的大小不變。
(二)數的整除
定義:(小學階段研究「數的整除」時所說的數一般指非0自然數)
數a除以b(b≠0)的商正好是整數而沒有餘數,我們就說a能被b整除(或者說b能整除a)。
倍數 公倍數 最小公倍數
整除 因數 公因數 最大公因數
質數 合數 互質數(已刪除)
質因數 分解質因數(已刪除)
2的倍數的特徵:個位是0、2、4、6、8。
偶數 奇數(能被2整數的數叫偶數,不能被2整除的數叫奇數。)
3的倍數的特徵:各位上的數的和是3的倍數
5的倍數的特徵:個位上是0或者5的數。
(三)數的運算
1、四則運算的意義
數的
分類
運算名稱 整數 小數 分數
加法 把兩個數合並成一個數的運算。
減法 已知兩個加數的和與其中一個加數,求另一個加數的運算。
乘法 求幾個相同加數的和的簡便運算。 小數乘整數與整數乘法意義相同。 分數乘整數與整數乘法意義相同。
一個數乘小數,就是求這個數的十分之幾,百分之幾…是多少。 一個數乘分數,就是求這個數的幾分之幾是多少。
除法 已知兩個因數的積與其中一個因數,求另一個因數的運算。
2、四則運算的法則
整數 小數 分數
加減 相同數位對齊,從低位算起
加法:滿十就向前一位進一
減法:不夠減就從前一位退,退一當十 小數點對齊,從低位算起,按整數加減法進行計算,結果中的小數點和加減的數的小數點對齊。 1、同分母分數相加減,分母不變,分子相加減。
2、異分母分數相加減,先通分,然後再按同分母分數相加減的方法計算。
3、結果能約分的要約分。
乘法 1、從個位乘起,依次用第二個因數每一位上的數去乘第一個因數。
2、用第二個因數哪一位上的數去乘,得數的末位就和第二個因數的哪一位對齊。
3、再把幾次乘得的數加起來。 1、按整數乘法法則算出積。
2、看因數中一共有幾位小數,就從積的右邊起數出幾位點上小數點。 1、分數乘分數,用分子相乘的積作分子,分母相乘的積作分母。
2、有整數的把整數看作分母是1的假分數。
3、有帶分數的,通常先把帶分數化成假分數。
除法 除數是整數:從被除數的高位除起,除數是幾位就先看被除數的前幾位,如果不夠除,就要多看一位,除到哪一位就要把商寫在哪一位的上面。商的小數點和被除數的小數點對齊。 除數是小數:先移動除數的小數點,使它變成整數,除數的小數點向右移動幾位,被除數的小數點也向右移動相同的位數(位數不夠的補0),然後按照除數是整數的除法進行計算。 甲數除以乙數(0除外),等於甲數乘以乙數的倒數。
3、四則運算各部分的關系:
加數+加數=和 被減數—減數=差
一個加數=和—另一個加數 減法 被減數=減數+差
減數=被減數—差
因數×因數=積 被除數÷除數=商
一個因數=積÷另一個因數 除法 被除數=商×除數
除數=被除數÷商
4、運算定律和運算性質
加法交換律 : a+b=b+a
加法結合律 : (a+b)+c=a+(b+c)
乘法交換律 : a×b=b×a
乘法結合律 : (a×b)×c=a×(b×c)
乘法分配律 : (a+b)×c=a×c+b×c
減法的運算性質: a-b-c=a-(b+c)
除法的運算性質: a÷(b×c)=a÷b÷c
5、四則運算的順序:
在一個沒有括弧的算式里,如果只含有同一級運算,要從左往右依次計算;如果含有兩級運算,要先算第二級運算,再算第一級運算。
有括弧的算式里,要先算括弧里的,再算括弧外的。
二、代數的初步知識
(一)簡易方程
1、用字母表示數:
(1) 用字母可以表示我們學過的自然數、整數、小數、百分數……
(2) 用含有字母的式子,可以簡明地表達數學概念、運算定律和數學計算公式。還可以簡明地表達數量關系。
2、簡易方程
(1) 等式:表示相等關系的式子。
(2) 方程:含有未知數的等式。
(3) 方程的解:使方程左右兩邊相等的未知數的值。
(4) 解方程:求方程的解的過程。
(5) 解方程的依據:等式的基本性質(天平平衡的道理)
(二)比和比例:
1、 比和比例的意義與性質
比 比例
意義 兩個數相除又叫做兩個數的比 表示兩個比相等的式子叫做比例
基本
性質 比的前項和後項同時乘上或者除以相同的數(0除外),比值不變。 在比例里,兩個內項的積等於兩個外項的積。
2、 比、分數與除法的關系
比 比號 前項 後項 比值
分數 分數線 分子 分母 分數值
除法 除號 被除數 除數 商
3、 求比值和化簡比的區別與聯系
一般方法 結果
求比值 根據比值的意義,用前項除以後項。 是一個商,可以是整數,小數或分數。
化簡比 根據比的基本性質,把比的前項和後項同時乘上或同時除以相同的數(0除外)。 是一個比 ,它的前項和後項都是整數。
4、 比例尺
圖上距離和實際距離的比,叫做這幅圖的比例尺。
5、正比例和反比例的區別與聯系
相同點 不同點
特徵 關系式
正比例關系 兩種相關聯的量,一種量變化,另一種量也隨著變化。 兩種量中相對應的兩個數的比值一定。
反比例關系 兩種量中相對應的兩個數的積一定。
ху=k (一定)
三、應用題
(一) 一般復合應用題
1、一般復合應用題的解法
(1)分析法:從問題入手,逐步分析題里的已知條件。
(2)綜合法:從應用題的已知條件入手,逐步推出未知。
(3)分析綜合法:將分析法、綜合法結合起來交替使用的方法。當已知條件中有明顯計算過程時就用綜合法順推,遇到困難時再轉向原題所提的問題用分析法幫忙,逆推幾步,順推和逆推聯繫上了,問題便解決了。
2、一般復合應用題的解題步驟:
(1)審清題意,並找出已知條件和所求問題;
(2)分析題目里的數量間的關系,從而確定先算什麼,再算什麼,最後算什麼;
(3)列式,算出結果;
(4)進行檢驗,寫出答案。
(二)典型應用題(有一定解答規律的應用題)
1、求平均數問題
(1) 求平均數問題的特點:把各「部分量」合並為「總量」,然後按「總份數」平均,求其中一份是多少。
(2) 求平均數問題的解題規律:關鍵是先求出「總量」和「總份數」,然後用「總量÷總份數=平均數」,特殊情況可用「移多補少法」解答。
2、歸一應用題
(1) 歸一應用的特點:從已知條件中求出「單一量」,再以「單一量」為標准去計算所求的量。歸一問題通常分為正歸一和反歸一。
(2) 歸一問題的解題規律:首先求出一個單位數量,然後以這個「單位量」為標准,根據題目的要求,用乘法算出若干個「單位量」是多少,這是正歸一的解題規律。或用除法算出總量包含多少個「單位量」,這是反歸一的解題規律。歸一問題還可以用倍比問題的解題方法求解。
3、相遇問題
(1)特點:A、兩個運動物體;B、運動方向相向;C、運動時間同時。
(2)解題規律:速度和×相遇時間=路程
路程 ÷速度和=相遇時間
路程 ÷相遇時間=速度和
(三)分數、百分數應用題
1、分數乘法應用題
已知一個數,求它的幾分之幾(百分之幾)是多少,用乘法。即:「一個數×幾分之幾(百分之幾)」。
已知條件:表示單位「1」的量;單位「1」的幾分之幾(或百分之幾)(又稱:分率)
特徵:
所求問題:求單位「1」的幾分之幾(百分之幾)是多少(又稱:部分量)
用等式表示三量的關系:單位「1」的量×分率=部分量
對應關系
2、分數除法應用題
(1)已知一個數的幾分之幾(百分之幾)是多少,求這個數,用除法。即「多少÷幾分之幾」
已知條件:單位「1」的幾分之幾(分率);單位「1」的幾分之幾是多少
(部分量)
特徵
所求問題:單位「1」的量
用等式表示三量的關系:部分量÷分率=單位「1」的量
對應關系
(2)求一個數是另一個數的幾分之幾(百分之幾)用除法。即「一個數÷另一個數」。
已知條件:表示單位「1」的量;單位「1」的幾分之幾是多少(部分量)
特徵
所求問題:求部分量是單位「1」的幾分之幾(百分之幾)
用等式表示三量的關系:部分量÷單位「1」的量=分率
對應關系
3、工程問題的應用題
把工作總量用「1」表示,工作效率用單位時間內做工作總量的「幾分之一」表示。根據工作總量與工作效率,就能求出合作完成的工作時間。
三量之間的關系式:工作效率×工作時間=工作總量
工作總量÷工作效率=工作時間
工作總量÷工作時間= 工作效率
(四)列方程解應用題
1、列方程解應用題的思考方法:用字母代替應用題中的未知數,根據數量間的相等關系列方程,解方程。
2、列方程解應用題的一般步驟
(1)弄清題意,找出未知數並用X表示。
(2)找出數量間的相等關系,列出方程。
(3)解方程。
(4)檢驗並答。
(五)比和比例應用題
比和比例應用題包括:比例尺、按比例分配、和正反比例應用題。
1、比例尺中解題關系式:圖上距離∶實際距離=比例尺
2、按比例分配應用題 :要分配的總量×各部分量的分率=各部分量。
3、正比例 у/χ=X/Y 反比例χу=XY(正、反比例應用題已刪去)
四、量與計量
(一)量、計量和計量單位的意義
事物的多少、長短、大小、輕重、快慢等,這些可以測定的客觀事物的特徵叫做量。把一個要測定的量同一個作為標準的量相比較叫做計量。用來作為計量標準的量叫做計量單位。
(二)常用的計量單位及其進率
1、長度、面積、地積、體積、容積、重量單位及其進率
長度 1千米(km)=1000米(m) 1米(m) =10分米 (dm)
1分米(dm)=10厘米(cm) 1厘米(cm)=10毫米(mm)
面積 1平方千米=1000000平方米
1平方米=100平方分米
1平方分米=100平方厘米
1平方厘米=100平方毫米 地積 1平方千米=100公頃
1公頃=10000平方米
體積 1立方米=1000立方分米
1立方分米=1000立方厘米
1立方厘米=1000立方毫米 容積 1升=1000毫升
1立方分米=1升
1立方厘米=1毫升
重量 1噸=1000千克 1千克=1000克
2、常用時間單位及其關系
世紀 年 月 日 時 分 秒
100 12 24 60 60
每月31天的有1、3、5、7、8、10、12各月;每月30天的有4、6、9、11各月;平年全年365天,平年二月28天;閏年全年366天,閏年二月29天。
3、人民幣:1元=10角 1角=10分
(三)同類計量單位之間的轉化
(化法)乘以進率
高級單位的數 低級單位的數
(化法)除以進率
五、空間與圖形
(一)平面圖形的認識和計算
1、線
線段:用直尺把兩點連接起來就得到一條線段。
線段的長就是這兩點間的距離。(有兩個端點)
直線:把線段的兩端無限延 平行線:在同一平面內不相交的兩條直線,叫做
長可以得到一條直線 平行線。
(沒有端點) 垂線:兩條直線相交成直角,這兩條直線叫做互
相垂直,其中一條直線叫另一條直線的垂線。
射線:把線段的一端無限延長可以得到一條射線。(有一個端點)
2、角:從一點引出兩條射線所組成的圖形
銳角:小於90度的角
直角:等於90度的角
鈍角:大於90度而小於180度的角
平角:180度的角
周角:360度的角
3、平面圖形
(1)三角形:由三條線段首尾相互連接圍成的圖形
銳角三角形:三個角都是銳角
按角分 直角三角形:有一個角是直角
鈍角三角形:有一個角是鈍角
三角形
等腰三角形:兩條邊相等
按邊分 等邊三角形:三條邊相等
不等邊三角形:三條邊都不相等
(2)四邊形:由四條線段首尾依次連接圍成的圖形。 扇形
平行四邊形 長方形 正方形 (3)圓形
四邊形 環形
直角梯形
梯形
等腰梯形
(畫線段、畫角、畫高、量線段、畫垂線、畫圓、畫對稱軸)
(4)特徵及周長、面積計算公式:
名稱 圖形 字母意義 特 征 周長面積公式
正方形
a a:邊長 四條邊都相等,四個角都是直角 C=4a
S=a²
長方形 b
a a:長
b:寬 對邊相等,四個角都是直角 C=2(a+b)
S=ab
平行四 邊形 h
a a:底
h:高 兩組對邊分別平行且相等 S=ah
三角形 h
a a:底
h:高 有三條邊,三個角,內角的和是180度 S=ah÷2
梯形 a
h
b a:上底
b:下底
h:高 只有一組對邊平行 S=(a+b)h÷2
圓 d
r d:直徑
r:半徑 同圓內半徑相等,直徑相等,直徑是半徑的2倍 C=πd=2πr
S=πr²
(二)立體圖形的認識和計算
1、長方體與正方體特徵的區別與聯系
特徵
名稱 相同點 不同點
面 棱 頂點 面的特點 棱長
長方體
6個 12條 8
個 6個面一般都是長方形(也可能有兩個相對的面是正方形),相對的面的面積相等 每組(有3組,分別叫長、寬、高)互相平行的4條棱相等
正方體
6個 12條 8
個 6個面都是相等的正方形 12條棱都相等
2、圓柱、圓錐的特徵
名稱 圖形 特徵
圓
柱
上、下底面是面積相等的圓,兩個底面之間的距離叫做高。側面沿高展開是長方形(或正方形)。有無數條高
圓
錐
底面是圓形,頂點到底面圓心的距離叫做高。只有一條高。
3、立體圖形的表面積和體積的計算公式
名稱 圖形 字母意義 表面積s , 體積v
正方體
a:棱長 S=6a² V=a³
長方體
a:長 b:寬
h:高 S=(ab+ah+bh)x 2 V=abh
圓柱體
r:底面半徑 h:高
c:底面周長 S側=ch=πdh =2πrh
S表=S側 +2S底面 V=sh=πr²h
圓錐體
r:底面半徑
h:高 V=sh÷3
=πr²h÷3
六、統計與概率
單式統計表
統計表 復式統計表
百分數統計表
統計表包括:總標題、縱欄標題、橫欄標題、數據資料欄、數量單位、製表日期
條形統計圖(單式、復式)
統計圖 折線統計圖(單式、復式)
扇形統計圖
統計圖的製法與特點
製法 特點
條形
統計圖 1、 整理數據,畫出橫、縱軸,單位長度表示一定的數量2、根據數量多少畫直條
3、寫名稱、製表日期、圖例 很容易看出數量的多少
折線
統計圖 1、 整理數據,畫出橫、縱軸,單位長度表示一定的數量
2、 根據數量多少描點,再把各點用線段順次連接起來。
3、 寫名稱、製表日期、圖例 不但可表示數量的多少,而且能夠表示數量的增減變化
扇形
統計圖 1、計算各部分佔總數的百分比,再算出與各部分所對應的扇形的圓心角的度數。2、取適當半徑畫圓,用量角器量出各扇形的圓心角,作扇形。3、註明各扇形表示內容和所佔百分比,並用不同的標記加以區別,4、寫上標題及制圖日期。 清楚的表示出各部分與總數及部分與部分的關系
數學《北師大版》與(人教版)增、刪知識
《北師大版》比(人教版)新增知識
1、分類(按一定標准或不同標准進行分類)
2、位置與順序(前、後、左、右、上、下)
3、位置與方向(東、南、西、北)
4、方向與路線(東南、東北、西南、西北)
5、觀察物體(正面、上面、左面或右面)
6、可能性(大、小;可能、不可能、一定;分數表示、幾種結果)
7、生活中的推理(列表解決)
8、對稱、平移或旋轉(軸對稱圖形、方向、幾格)
9、圖形變換(繞點、方向、旋轉90°、平移幾格)
10、確定位置(方向、北偏××度,距離;數對)
11、生活中的負數(0既不是正數,也不是負數)
12、數圖形(數角、數三角形、數長方形)
13、游戲公式(公平性)
14、圖形規律(擺三角形、擺正方形、列表解決)
15、嘗試與猜測(雞兔同籠、點陣中的規律,圖表解決)
16、生活中的數(數據世界、數字用處、身份證)
17、看圖找關系(足球場內聲音、行為、成員間關系)
18、中位數和眾數
19、成數、折數
20、因數、公因數、最大公因數
21、字母單位:m、dm、cm、mm、km;g、kg、t、L、ML
22、搭配的學問(兩種物品以上)
23、比賽場次(循環賽)
24、組合圖形面積(只限兩個圖形)
25、觀察范圍
26、方程(加減或乘除同一個數、等式性質)
《北師大版》比《人教版》刪去知識
1、約數、公約數、最大公約數
2、互質數
3、分解質因數
4、用比例知識解應用題
E. 小學數學知識點
一、教學目標
1、知識目標與技能:
①通過學習,學生能應用百分數解決實際問題。理解稅率、利率、折扣的含義。
②學生在經歷觀察、操作等活動的過程中認識圓柱和圓錐的特徵,能正確地判斷圓柱和圓錐,理解、掌握圓柱的表面積、圓柱和圓錐體積的計算方法,會正確地進行計算。
③學生結合實例認識扇形統計圖,理解眾數和平均數。
④初步掌握用方向和距離確定物體位置的方法。
⑤學生在解決實際問題的的過程中,學會用轉化的策略尋求解決問題的思路,並能根據具體的問題確定合理的解題方法,從而有效地觶決問題。
⑥學生理解比例的意義和基本性質,會解比例;認識比例尺,會看比例尺,會進行比例尺的有關計算;理解正比例和反比例的意義,能夠判斷兩種量是否成正比例或反比例,理解用比例關系解應用題的方法,學會用比例知識解答比較容易的應用題。
⑦學生通過系統的復習,鞏固和加深理解小學階段所學的數學知識,更好地培養比較合理的、靈活的計算能力,發展思維能力和空間觀念,並提高綜合運用所學數學知識解決簡單的實際問題的能力。
2、過程與方法:
本學期教學內容要緊密聯系學生生活環境,從學生的經驗和已有知識出發,創設有助於學生自主學習、合作交流,使學生通過觀察、操作、歸納、交流、反思活動,獲得基本的數學知識、技能,進一步發展思維能力,讓學生在情境體驗中,理解數學,增強空間觀念,發展形象思維,重視學生應用數學的意識和能力。能應用「轉換」的策略解決一些簡單的實際問題,進一步增強解決問題的策略意識和反思意識,體會解決問題策略的多樣性,培養根據實際問題的特點選擇相應策略的能力。
3、情感態度與價值觀:
①能積極參與各項數學活動,感受自己在數學知識和方法等方面的收獲與進步,增強對數學的好奇心與求知慾,進一步樹立學好數學的信心。
②在探索和理解百分數的計算方法,比例的基本性質,圓柱和圓錐的體積公式等活動中,進一步感受數學思考的嚴謹和數學結論的確定性,獲得一些成功的體驗,鍛煉克服困難的意志。
③通過閱讀「你知道嗎」以及參與「實踐與綜合應用」等活動,進一步了解有關數學知識的背景,體會數學對人類歷史發展的作用,培養民族自豪感,增強創新意識,鍛煉實踐能力。
4、質量目標:
各單元測試平均分達83以上,期末質量驗收平均分達85以上,優秀率、及格率分別達40%及95%以上。
二、教材分析
1、本學期教材的知識結構體系分析和技能訓練要求:
這冊教材包括下面地些內容:百分數的應用、圓柱和圓錐、比例、確定位置、正反比例、解決問題的策略、統計以及小學六年來所學數學內容的總復習。 本冊教材的這些內容是在前幾冊的基礎上按照完成小學數學的全部教學任務安排的,著重使學生認識一些常見的立體圖形,掌握它們的體積等計算方法,進一步發展空間觀念;進一步形成統計的觀念,掌握用扇形統計圖表示數據整理結果的方法,提高依據統計數據的分析、預測、判斷能力;理解比例、正比例、反比例的概念,加深認識一些常見的數量關系,會用比例知識解答比較容易的應用題。然後把小學數學的主要內容加以系統的整理和復習,鞏固所學的數學知識,使學生能夠綜合運用所學的數學知識解決比較簡單的實際問題;結合新的教學內容與系統的整理和復習,進一步發展思維能力,培養思維品質,進行思想品德教育。
2、教學重點:
本冊教材中的圓柱和圓錐、比例都是小學數學的重要內容。首先,認識圓柱和圓錐的特徵,掌握圓柱和圓錐的一些計算,既可以為進一步學習其他形體的表面積和體積及其計算打好基礎,進一步發展空間觀念,也可以增強解決問題的策略和方法,逐步增強學生收集、處理信息的意識和能力。最後學習好比例的知識,不僅可以增強學生用數學方法處理數學問題的能力,而且也使學生獲得初步的函數觀念,為進一步學習相關知識作初步的准備。因此,讓學生認識這些內容的概念,學會應用這些概念、方法和計算解決一些實際問題,是教學的重點。
F. 小學數學里的綜合與實踐可以分為哪些知識點
第一在數與代數領域,看起來簡單實則內容加深。第二,在空間與圖形領域,變簡單。第三,在統計與概率領域,由簡便難。由認識到自己作圖。第四,在實踐與綜合應用領域,應用題基本和實際相結合。
G. 小學一至六年級數學知識點
小學數學知識點總結
一年級上冊
1、 數一數(1~10)
2、 比一比(多少、長短、高矮、)
3、 1~5的認識和加減法(比大小、第幾、幾和幾、加法、減法、0的認識)
4、 認識物體和圖形(長方體、正方體、圓柱、球、長方形、正方形、三角形、圓)
5、 分類
6、 6~10的認識和加減法(連加、連減、加減混合)
7、 11~20個數的認識(數位的認識)
8、 認識鍾表(整時、半時)
9、 20以內的進位加法 (湊十、9、8、7、6加幾,5、4、3、2加幾)
10、 總復習
一年級下冊
1、 位置(上下、左右、前後、位置)
2、 20以內的退位加法
3、 圖形的拼組
4、 100以內數的認識(數數、數的組成,讀數、寫數,數的順序、比較大小、整十數加一位數及相應的減法)
5、 認識人民幣(簡單的計算)
6、 100以內的加法和減法(一)(1、整十數加減整十數2、兩位數加一位數和整十數3、兩位數減一位數和整十數)
7、 認識時間
8、 找規律
9、 統計(條形統計圖)
10、 總復習
二年級上冊
1、 長度單位
2、 100以內的加法和減法(二)(1、兩位數加兩位數、不進位加、進位加2、兩位數減兩位數、不退位減、退位減3、連加、連減和加減混合、加減混合、加減估算)
3、 角的初步認識
4、 表內乘法(一)(1、乘法的初步認識2、2~6的乘法口訣)
5、 觀察物體
6、 表內乘法(二)(7、8、9的乘法口訣)
7、 統計
8、 數學廣角
9、 總復習
二年級下冊
1、 解決問題
2、 表內除法(一)(1、除法的初步認識、平均分、除法2、用2~6的乘法口訣求商)
3、 圖形與轉換(銳角和鈍角、平移和旋轉)
4、 表內除法(二)(用7、8、9的乘法口訣求商、解決問題)
5、 萬以內數的認識(1000以內數的認識、10000以內數的認識、整百整千數的加減法)
6、 克和千克
7、 萬以內的加法和減法(一)
8、 統計
9、 找規律
10、 總復習
三年級上冊
1、 測量(毫米、分米的認識,千米的認識,噸的認識)
2、 萬以內的加法和減法(二)(1、加法,2、減法3、加減法的驗算)
3、 四邊形(四邊形、平行四邊形、周長、長方形和正方形的周長、估計)
4、 有餘數的除法
5、 時、分、秒(秒的認識、時間的計算)
6、 多位數乘一位數(1、口算乘法,2、筆算乘法)
7、 分數的初步認識(1、分數的初步認識<幾分之一、幾分之幾>,2、分數的簡單計算)
8、 可能性
9、 數學廣角
10、 總復習
三年級下冊
1、 位置和方向
2、 除數是一位數的除法(1、口算除法,2、筆算乘法)
3、 統計(1、簡單的數據分析,2、平均數)
4、 年、月、日(年月日、24小時計時法)
5、 兩位數乘兩位數(1、口算乘法,2、筆算乘法)
6、 面積(面積和面積單位、長方形和正方形面積的計算、面積單位間的進率、公頃與平方千米)
7、 小數的初步認識(認識小數、簡單的小數加減法)
8、 解決問題
9、 數學廣角
10、 總復習
四年級上冊
1、 大數的認識(億以內數的認識、數的產生、億以上數的認識、計算工具的認識、用計算器計算)
2、 角的度量(直線、射線和角,角的度量、角的分類、畫角)
3、 三位數乘兩位數(1、口算乘法,2筆算乘法)
4、 平行四邊形和梯形(垂直與平行、平行四邊形與梯形)
5、 除數是兩位數的除法(1、口算除法,2、筆算除法)
6、 統計
7、 數學廣角(烙餅問題)
8、 總復習
四年級下冊
1、 四則運算
2、 位置和方向
3、 運算定律與簡便計算(1、加法運算定律,2、乘法運算定律,3、簡便計算)
4、 小數的意義和性質(1、小數的意義和讀寫法<小數的產生和意義、小數的讀法和寫法>,2、小數的性質和大小比較<小數的大小比較、小數點移動>,3、生活中的小數,4求一個小數的近似數)
5、 三角形(三角形的特性、三角形的分類、三角形的內角和、圖形的拼組)
6、 小數的加法和減法
7、 統計
8、 數學廣角
9、 總復習
五年級上冊
1、 小數乘法(小數乘整數、小數乘小數、積的近似數,連乘、乘加、乘減,整數乘法定律推廣到小數)
2、 小數除法(小數除以整數、一個數除以小數、商的近似數、循環小數、用計算器探索規律、解決問題)
3、 觀察物體
4、 簡易方程(1、用字母表示數,1、解建議方程<方程的意義、解方程、稍復雜的方程>)
5、 多邊形的面積(平行四邊形的面積、三角形的面積、梯形的面積、組合圖形的面積)
6、 統計與可能性
7、 數學廣角
8、 總復習
五年級下冊
1、 圖形的變換(軸對稱、旋轉、欣賞設計)
2、 因數與倍數(1、因數和倍數,2、2、5、3倍數的特徵,指數和和數)
3、 長方體和正方體(1、長方體和正方體的認識,2、長方體和正方體的表面積,3、長方體和正方體的體積、體積單位間的進率、容積和容積單位)
4、 分數的意義和性質(1、分數的意義<分數的產生\分數的意義\分數與除法>,2、真分數和假分數,3、分數的基本性質,4、約分<最大公因數、約分>,5、通分<最小公倍數、通分>,6、分數和小數的互化)
5、 分數的加法和減法(1、同分母分數加減法,2、異分母分數加減法,3、分數加減混合運算)
6、 統計
7、 數學廣角
8、 總復習
六年級上冊
1、 位置
2、 分數的乘法(1、分數乘法,2、解決問題,3、倒數的認識)
3、 分數的除法(1、分數的除法,2、解決問題,3、比和比的應用<比的意義、比的基本性質、比的應用>)
4、 圓(1、認識圓,2、圓的周長,3、圓的面積)
5、 百分數(1、百分數的意義和寫法,2、百分數和分數、小數的互化,3、用百分數解決問題、折扣、納稅、合理存款)
6、 統計
7、 數學廣角
8、 總復習
六年級下冊
1、 負數
2、 圓柱與圓錐(1、圓柱<圓柱的認識、圓柱的表面積、圓柱的體積>,2、圓錐<圓錐的認識、圓錐的體積>)
3、 比例(1、比例的意義和基本性質<比例的意義、比例的基本性質、解比例>,2、正比例和反比例的意義<成正比例的量、成反比例的量>3、比例的應用<比例尺、圖形的放大與縮小、用比例解決問題>)
4、 統計
5、 數學廣角
6、 整理和復習(1、數和代數、數的運算、式與方程、常見的量、比和比例,2、空間與圖形<圖形的認識和測量、圖形與變換、圖形與位置>、3、統計與可能性,4、綜合應用)
以上回答你滿意么?
H. 小學數學知識點總結(全部)
對於那些成績較差的小學生來說,學習小學數學都有很大的難度,其實小學數學屬於基礎類的知識比較多,只要掌握一定的技巧還是比較容易掌握的.在小學,是一個需要養成良好習慣的時期,注重培養孩子的習慣和學習能力是重要的一方面,那小學數學有哪些技巧?
由此可見小學數學的技巧就是多做練習題,掌握基本知識.另外就是心態,不能見考試就膽怯,調整心態很重要.所以大家可以遵循這些技巧,來提高自己的能力,使自己進入到數學的海洋中去.
I. 一年級數學重要基礎知識點
學習這件事不在乎有沒有人教你,最重要的是在於你自己有沒有覺悟和恆心。任何科目 學習 方法 其實都是一樣的,不斷的記憶與練習,使知識刻在腦海里。下面是我給大家整理的一些 一年級數學 的知識點,希望對大家有所幫助。
一年級數學基本知識點
前後(前後的位置關系)
【知識點】:
1、注意用前、後等詞語描述物體的順序與描述物體的准確位置兩者之間的區別。
2、鹿在最前面,誰在它的後面?這個答案不,不僅僅有一個松鼠,還有兔子、烏龜和蝸牛都在鹿的後面。
3、注意讓學生會用前、後等詞語描述物體的相對位置。
上下(上下的位置關系)
【知識點】:
1、在具體的情境中理解「上下」的相對性。
2、能用語言表達實際情境中物體的「上下」位置關系。
左右(左右的位置關系)
【知識點】:
1、能用語言描述物體的左右位置關系。
2、能在情境中體會左右位置的相對性。進一步再體會:兩人如果面向同一方向,他們所看到的左右位置與順序是一致的;如果面對著面,他們看到的左右位置與順序是相反的。
教室(前後、上下、左右綜合應用)
【知識點】:
綜合運用前面三課所學的知識,進行物品的位置與順序的描述活動
小學一年級數學知識點
1. 數的認識
(1)數數,讀數,寫數
(2)比大小(「<」或「>」〉,排序
(3)數的組成
(4)基數,序數
2.0的認識---表示沒有,表示起點。
3.計算:
加法計算---意義的理解,認識加號。
減法計算---意義的理解,認識減號。
會相關的計算(5以內):加法、減法、0的計算。
1到5的加減法練習題:
1 + 3 =( )1 + 1 =( )3 - 3 =( )2 + 3 =( )
4 - 4 =( )3 - 3 =( )3 - 1 =( )2 - 2 =( )
1 + 1 =( )3 + 1 =( )2 + 3 =( )1 + 4 =( )
1 + 2 =( )3 - 2 =( )4 - 3 =( )2 - 2 =( )
1 + 1 =( )2 - 1 =( )3 - 1 =( )4 + 1 =( )
2 - 2 =( )4 - 2 =( )3 - 3 =( )2 + 3 =( )
4 - 3 =( )2 + 2 =( )3 - 2 =( )2 + 2 =( )
4 - 4 =( )3 - 1 =( )2 + 2 =( )3 - 2 =( )
4 - 4 =( )2 + 3 =( )3 + 1 =( )3 + 1 =( )
1 - 1 =( )4 - 3 =( )4 - 1 =( )4 + 1 =( )
3 + 1 =( )1 + 2 =( )4 - 2 =( )2 - 2 =( )
3 - 1 =( )3 + 1 =( )4 + 1 =( )1 + 1 =( )
2 + 2 =( )1 - 1 =( )3 + 1 =( )2 + 1 =( )
數學學習方法 技巧
.復習是一個鞏固和改進你所學到的東西的過程
三十二知道事情應該是什麼意味著你是聰明的;知道事情是什麼,你是有 經驗 的;知道如何使事情變得更好意味著你是有才華的
人們常說,時間就是生命,所以要控制時間控制的生活,學會管理自己的時間,我們可以做時間的主人、生活的主人,自己的主人
碎片似乎是麻煩,但實際上它是非常有效的,因為它符合人腦記憶的規則,但可以節省時間
.隱喻可以將枯燥的知識轉化為生動有趣的知識教師總是善於運用隱喻來加深學生的理解學生也應該善於使用隱喻來幫助他們記憶
.深入理解的基礎是深層記憶,以理解和應用記憶的方式教學知識是最合適的,如果有類似的公式、定理等,可以用列表記憶的方式進行比較
.不要把學習看成是一個枯燥的 邏輯思維 過程,在自己的學習生活中,大膽運用 想像力 ,對提高學業成績很有幫助
如果我們把每節課都看成是一場小小的戰斗,那麼在課前進行充分的預習是非常必要的,就像戰前的警察一樣
歲面對挫折,有意識地調整自己的心理狀態,不要專注於痛苦的經驗
四十保持健康,保持機體活力,是一項持久的工作,應注重培養自己的良好習慣,堅持鍛煉,保證生活節欲有序
.學會清理和表達自己的情緒和情緒,了解情緒與身心健康之間的巨大關系,學會調節和控制自己的情緒,擁有健康快樂的青春
學習是一項長期而艱巨的腦力勞動如果學習過於緊張,持續時間過長,就會導致學習疲勞
.學習疲勞不僅會影響你的學習效率,更重要的是過度的學習疲勞也會傷害你的身體,影響你的健康
.俗話說,一分鍾辛苦,一分鍾收獲要長大,我們必須付出努力,學習不是一件容易的事情,為了取得好的結果,我們必須付出相應的勞動
.數字與形式的內在關系,特別是其本質屬性和科學規律,僅靠感覺、感知或表象是難以理解的只有通過思考,它們才能被深刻地理解和牢牢地抓住
.一個人不僅要靠與生俱來的東西,還要靠他從學習中學到的東西來塑造自己
、急功近利容易導致失敗,學習應循序漸進
針對不同類型的問題,我們可以使用各種各樣的方法,在實踐中根據實際情況選擇正確的方法,它可以節省時間和精力完成的問題
.聽課教師應始終遵循思路,善於掌握教師講解中的關鍵詞,建立自己的知識結構
五十通過對上節課解題過程中的分析推理過程進行 反思 和提煉,有助於理解新課程的內容
使用圖表進行比較和復習可以幫助我們准確地、准確地復習知識
.對於具有明顯遞進關系的知識,可以繪制知識電路圖
.做練習是鞏固知識最有效的方法,是學習過程中的一個重要環節
.不要以為教科書上的老師說過,即使過去,要知道這些例子往往是的考試,你的基礎知識是否掌握牢固
.問題後思維是提高知識水平、深化思維深度、提高思維緊張度的有效途徑
.將已完成的結果替換為問題,看原問題所給出的已知量是否可以反向求解,或者從得到的結論到已知條件是否與原問題的已知條件一致
「做一個好工作,必須首先加強他的「——好學生非常善於使用學習材料來鞏固記憶,從而提高成績
.教科書一直是學生學習的重點因此,我們不僅要把握教科書中的概念和公式,而且不能忽視教科書中的一些細節
.參考書上不需要做三類問題:完全掌握的問題不必做,超出考試大綱的問題不必做,太奇怪的問題不必做
教師提問往往是相關知識、難點或學生容易犯錯的地方當其他學生說話時,他們應該注意聽,聽和分析
一年級數學重要基礎知識點相關 文章 :
★ 一年級數學的學習重點
★ 一年級數學重點知識點總結
★ 小學一年級數學重點知識點總結
★ 小學一年級數學知識點
★ 一年級數學知識點難點及學習方法總結
★ 一年級數學上冊知識點學習
★ 一年級數學上冊知識點
★ 小學一年級,數學學習方法與知識點總結
★ 各年級數學學習方法大全
J. 小學六年級數學應用題知識點歸納
小學六年級數學應用題知識點歸納
1 簡單應用題
(1) 簡單應用題:只含有一種基本數量關系,或用一步運算解答的應用題,通常叫做簡單應用題。
(2) 解題步驟:
a 審題理解題意:了解應用題的內容,知道應用題的條件和問題。讀題時,不丟字不添字邊讀邊思考,弄明白題中每句話的意思。也可以復述條件和問題,幫助理解題意。
b選擇演算法和列式計算:這是解答應用題的中心工作。從題目中告訴什麼,要求什麼著手,逐步根據所給的條件和問題,聯系四則運算的含義,分析數量關系,確定演算法,進行解答並標明正確的單位名稱。
C檢驗:就是根據應用題的條件和問題進行檢查看所列算式和計算過程是否正確,是否符合題意。如果發現錯誤,馬上改正。
2 復合應用題
(1)有兩個或兩個以上的基本數量關系組成的,用兩步或兩步以上運算解答的應用題,通常叫做復合應用題。
(2)含有三個已知條件的兩步計算的應用題。
求比兩個數的和多(少)幾個數的應用題。
比較兩數差與倍數關系的應用題。
(3)含有兩個已知條件的兩步計算的應用題。
已知兩數相差多少(或倍數關系)與其中一個數,求兩個數的和(或差)。
已知兩數之和與其中一個數,求兩個數相差多少(或倍數關系)。
(4)解答連乘連除應用題。
(5)解答三步計算的應用題。
(6)解答小數計算的應用題:小數計算的加法、減法、乘法和除法的應用題,他們的`數量關系、結構、和解題方式都與正式應用題基本相同,只是在已知數或未知數中間含有小數。
(7)常見的數量關系:
總價= 單價×數量
路程= 速度×時間
工作總量=工作時間×工效
總產量=單產量×數量
3、典型應用題
具有獨特的結構特徵的和特定的解題規律的復合應用題,通常叫做典型應用題。
(1)平均數問題:平均數是等分除法的發展。
解題關鍵:在於確定總數量和與之相對應的總份數。
算術平均數:已知幾個不相等的同類量和與之相對應的份數,求平均每份是多少。數量關系式:數量之和÷數量的個數=算術平均數。
(2) 歸一問題:已知相互關聯的兩個量,其中一種量改變,另一種量也隨之而改變,其變化的規律是相同的,這種問題稱之為歸一問題。
數量關系式:單一量×份數=總數量(正歸一)
總數量÷單一量=份數(反歸一)
(7)行程問題:
關於走路、行車等問題,一般都是計算路程、時間、速度,叫做行程問題。解答這類問題首先要搞清楚速度、時間、路程、方向、速度和、速度差等概念,了解他們之間的關系,再根據這類問題的規律解答。
(13)雞兔問題:已知「雞兔」的總頭數和總腿數。求「雞」和「兔」各多少只的一類應用題。通常稱為「雞兔問題」又稱雞兔同籠問題
解題關鍵:解答雞兔問題一般採用假設法,假設全是一種動物(如全是「雞」或全是「兔」,然後根據出現的腿數差,可推算出某一種的頭數。
解題規律:(總腿數-雞腿數×總頭數)÷一隻雞兔腿數的差=兔子只數
兔子只數=(總腿數-2×總頭數)÷2
如果假設全是兔子,可以有下面的式子:
雞的只數=(4×總頭數-總腿數)÷2
兔的頭數=總頭數-雞的只數
例 雞兔同籠共 50 個頭, 170 條腿。問雞兔各有多少只?
兔子只數 ( 170-2 × 50 )÷ 2 =35 (只)
雞的只數 50-35=15 (只)
;