當前位置:首頁 » 基礎知識 » 高一數學周期函數知識點梳理
擴展閱讀
朗逸與新軒逸經典哪個好 2024-11-20 17:20:25
梅西的動漫電視劇叫什麼 2024-11-20 16:52:57

高一數學周期函數知識點梳理

發布時間: 2022-12-30 06:30:59

❶ 高一數學必修一知識點總結

數學知識點是高考的基礎,掌握 高一數學 知識點將對高考復習起到重要作用,高一數學必修一知識點 總結 有哪些你知道嗎?一起來看看高一數學必修一知識點總結,歡迎查閱!

高1數學知識點總結

一、集合、簡易邏輯(14課時,8個)

1.集合;2.子集;3.補集;4.交集;5.並集;6.邏輯連結詞;7.四種命題;8.充要條件。

二、函數(30課時,12個)

1.映射;2.函數;3.函數的單調性;4.反函數;5.互為反函數的函數圖象間的關系;6.指數概念的擴充;7.有理指數冪的運算;8.指數函數;9.對數;10.對數的運算性質;11.對數函數.12.函數的應用舉例。

三、數列(12課時,5個)

1.數列;2.等差數列及其通項公式;3.等差數列前n項和公式;4.等比數列及其通頂公式;5.等比數列前n項和公式。

四、三角函數(46課時,17個)

1.角的概念的推廣;2.弧度制;3.任意角的三角函數;4.單位圓中的三角函數線;5.同角三角函數的基本關系式;6.正弦、餘弦的誘導公式;7.兩角和與差的正弦、餘弦、正切;8.二倍角的正弦、餘弦、正切;9.正弦函數、餘弦函數的圖象和性質;10.周期函數;11.函數的奇偶性;12.函數的圖象;13.正切函數的圖象和性質;14.已知三角函數值求角;15.正弦定理;16.餘弦定理;17.斜三角形解法舉例。

五、平面向量(12課時,8個)

1.向量;2.向量的加法與減法;3.實數與向量的積;4.平面向量的坐標表示;5.線段的定比分點;6.平面向量的數量積;7.平面兩點間的距離;8.平移。

六、不等式(22課時,5個)

1.不等式;2.不等式的'基本性質;3.不等式的證明;4.不等式的解法;5.含絕對值的不等式。

七、直線和圓的方程(22課時,12個)

1.直線的傾斜角和斜率;2.直線方程的點斜式和兩點式;3.直線方程的一般式;4.兩條直線平行與垂直的條件;5.兩條直線的交角;6.點到直線的距離;7.用二元一次不等式表示平面區域;8.簡單線性規劃問題;9.曲線與方程的概念;10.由已知條件列出曲線方程;11.圓的標准方程和一般方程;12.圓的參數方程。

八、圓錐曲線(18課時,7個)

1.橢圓及其標准方程;2.橢圓的簡單幾何性質;3.橢圓的參數方程;4.雙曲線及其標准方程;5.雙曲線的簡單幾何性質;6.拋物線及其標准方程;7.拋物線的簡單幾何性質。

九、直線、平面、簡單何體(36課時,28個)

1.平面及基本性質;2.平面圖形直觀圖的畫法;3.平面直線;4.直線和平面平行的判定與性質;5.直線和平面垂直的判定與性質;6.三垂線定理及其逆定理;7.兩個平面的位置關系;8.空間向量及其加法、減法與數乘;9.空間向量的坐標表示;10.空間向量的數量積;11.直線的方向向量;12.異面直線所成的角;13.異面直線的公垂線;14.異面直線的距離;15.直線和平面垂直的性質;16.平面的法向量;17.點到平面的距離;18.直線和平面所成的角;19.向量在平面內的射影;20.平面與平面平行的性質;21.平行平面間的距離;22.二面角及其平面角;23.兩個平面垂直的判定和性質;24.多面體;25.稜柱;26.棱錐;27.正多面體;28.球。

十、排列、組合、二項式定理(18課時,8個)

1.分類計數原理與分步計數原理;2.排列;3.排列數公式;4.組合;5.組合數公式;6.組合數的兩個性質;7.二項式定理;8.二項展開式的性質。

十一、概率(12課時,5個)

1.隨機事件的概率;2.等可能事件的概率;3.互斥事件有一個發生的概率;4.相互獨立事件同時發生的概率;5.獨立重復試驗。

選修Ⅱ(24個)

十二、概率與統計(14課時,6個)

1.離散型隨機變數的分布列;2.離散型隨機變數的期望值和方差;3.抽樣 方法 ;4.總體分布的估計;5.正態分布;6.線性回歸。

十三、極限(12課時,6個)

1.數學歸納法;2.數學歸納法應用舉例;3.數列的極限;4.函數的極限;5.極限的四則運算;6.函數的連續性。

十四、導數(18課時,8個)

1.導數的概念;2.導數的幾何意義;3.幾種常見函數的導數;4.兩個函數的和、差、積、商的導數;5.復合函數的導數;6.基本導數公式;7.利用導數研究函數的單調性和極值;8.函數的最大值和最小值。

十五、復數(4課時,4個)

1.復數的概念;2.復數的加法和減法;3.復數的乘法和除法;4.復數的一元二次方程和二二項方程的解法。

數學必修一知識點整理集合與函數概念

一、集合有關概念

1.集合的含義

2.集合的中元素的三個特性:

(1)元素的確定性如:世界上最高的山

(2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}

(3)元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個集合

3.集合的表示:{…}如:{我校的 籃球 隊員},{太平洋,大西洋,印度洋,北冰洋}

(1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

(2)集合的表示方法:列舉法與描述法。

注意:常用數集及其記法:XKb1.Com

非負整數集(即自然數集)記作:N

正整數集:N_或N+

整數集:Z

有理數集:Q

實數集:R

1)列舉法:{a,b,c……}

2)描述法:將集合中的元素的公共屬性描述出來,寫在大括弧內表示集合{x?R|x-3>2},{x|x-3>2}

3)語言描述法:例:{不是直角三角形的三角形}

4)Venn圖:

4、集合的分類:

(1)有限集含有有限個元素的集合

(2)無限集含有無限個元素的集合

(3)空集不含任何元素的集合

二、集合間的基本關系

1.「包含」關系—子集

注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

反之:集合A不包含於集合B,或集合B不包含集合A,記作AB或BA

2.「相等」關系:A=B(5≥5,且5≤5,則5=5)

實例:設A={x|x2-1=0}B={-1,1}「元素相同則兩集合相等」

即:①任何一個集合是它本身的子集。A?A

②真子集:如果A?B,且A?B那就說集合A是集合B的真子集,記作AB(或BA)

③如果A?B,B?C,那麼A?C

④如果A?B同時B?A那麼A=B

3.不含任何元素的集合叫做空集,記為Φ

規定:空集是任何集合的子集,空集是任何非空集合的真子集。

4.子集個數:

有n個元素的集合,含有2n個子集,2n-1個真子集,含有2n-1個非空子集,含有2n-1個非空真子集

三、集合的運算

運算類型交集並集補集

定義由所有屬於A且屬於B的元素所組成的集合,叫做A,B的交集.記作AB(讀作『A交B』),即AB={x|xA,且xB}.

由所有屬於集合A或屬於集合B的元素所組成的集合,叫做A,B的並集.記作:AB(讀作『A並B』),即AB={x|xA,或xB}).

基本初等函數

一、指數函數

(一)指數與指數冪的運算

1.根式的概念:一般地,如果,那麼叫做的次方根(nthroot),其中>1,且∈_.

當是奇數時,正數的次方根是一個正數,負數的次方根是一個負數.此時,的次方根用符號表示.式子叫做根式(radical),這里叫做根指數(radicalexponent),叫做被開方數(radicand).

當是偶數時,正數的次方根有兩個,這兩個數互為相反數.此時,正數的正的次方根用符號表示,負的次方根用符號-表示.正的次方根與負的次方根可以合並成±(>0).由此可得:負數沒有偶次方根;0的任何次方根都是0,記作。

注意:當是奇數時,當是偶數時,

2.分數指數冪

正數的分數指數冪的意義,規定:

0的正分數指數冪等於0,0的負分數指數冪沒有意義

指出:規定了分數指數冪的意義後,指數的概念就從整數指數推廣到了有理數指數,那麼整數指數冪的運算性質也同樣可以推廣到有理數指數冪.

3.實數指數冪的運算性質

(二)指數函數及其性質

1、指數函數的概念:一般地,函數叫做指數函數(exponential),其中x是自變數,函數的定義域為R.

注意:指數函數的底數的取值范圍,底數不能是負數、零和1.

2、指數函數的圖象和性質

函數的應用

1、函數零點的概念:對於函數,把使成立的實數叫做函數的零點。

2、函數零點的意義:函數的零點就是方程實數根,亦即函數的圖象與軸交點的橫坐標。即:

方程有實數根函數的圖象與軸有交點函數有零點.

3、函數零點的求法:

求函數的零點:

1(代數法)求方程的實數根;

2(幾何法)對於不能用求根公式的方程,可以將它與函數的圖象聯系起來,並利用函數的性質找出零點.

4、二次函數的零點:

二次函數.

1)△>0,方程有兩不等實根,二次函數的圖象與軸有兩個交點,二次函數有兩個零點.

2)△=0,方程有兩相等實根(二重根),二次函數的圖象與軸有一個交點,二次函數有一個二重零點或二階零點.

3)△<0,方程無實根,二次函數的圖象與軸無交點,二次函數無零點.

必修一函數重點知識整理

1. 函數的奇偶性

(1)若f(x)是偶函數,那麼f(x)=f(-x) ;

(2)若f(x)是奇函數,0在其定義域內,則 f(0)=0(可用於求參數);

(3)判斷函數奇偶性可用定義的等價形式:f(x)±f(-x)=0或 (f(x)≠0);

(4)若所給函數的解析式較為復雜,應先化簡,再判斷其奇偶性;

(5)奇函數在對稱的單調區間內有相同的單調性;偶函數在對稱的單調區間內有相反的單調性;

2. 復合函數的有關問題

(1)復合函數定義域求法:若已知 的定義域為[a,b],其復合函數f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求 f(x)的定義域,相當於x∈[a,b]時,求g(x)的值域(即 f(x)的定義域);研究函數的問題一定要注意定義域優先的原則。

(2)復合函數的單調性由「同增異減」判定;

3.函數圖像(或方程曲線的對稱性)

(1)證明函數圖像的對稱性,即證明圖像上任意點關於對稱中心(對稱軸)的對稱點仍在圖像上;

(2)證明圖像C1與C2的對稱性,即證明C1上任意點關於對稱中心(對稱軸)的對稱點仍在C2上,反之亦然;

(3)曲線C1:f(x,y)=0,關於y=x+a(y=-x+a)的對稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

(4)曲線C1:f(x,y)=0關於點(a,b)的對稱曲線C2方程為:f(2a-x,2b-y)=0;

(5)若函數y=f(x)對x∈R時,f(a+x)=f(a-x)恆成立,則y=f(x)圖像關於直線x=a對稱;

(6)函數y=f(x-a)與y=f(b-x)的圖像關於直線x= 對稱;

4.函數的周期性

(1)y=f(x)對x∈R時,f(x +a)=f(x-a) 或f(x-2a )=f(x) (a>0)恆成立,則y=f(x)是周期為2a的周期函數;

(2)若y=f(x)是偶函數,其圖像又關於直線x=a對稱,則f(x)是周期為2︱a︱的周期函數;

(3)若y=f(x)奇函數,其圖像又關於直線x=a對稱,則f(x)是周期為4︱a︱的周期函數;

(4)若y=f(x)關於點(a,0),(b,0)對稱,則f(x)是周期為2 的周期函數;

(5)y=f(x)的圖象關於直線x=a,x=b(a≠b)對稱,則函數y=f(x)是周期為2 的周期函數;

(6)y=f(x)對x∈R時,f(x+a)=-f(x)(或f(x+a)= ,則y=f(x)是周期為2 的周期函數;

5.方程k=f(x)有解 k∈D(D為f(x)的值域);

6.a≥f(x) 恆成立 a≥[f(x)]max,; a≤f(x) 恆成立 a≤[f(x)]min;

7.(1) (a>0,a≠1,b>0,n∈R+);

(2) l og a N= ( a>0,a≠1,b>0,b≠1);

(3) l og a b的符號由口訣「同正異負」記憶;

(4) a log a N= N ( a>0,a≠1,N>0 );

8. 判斷對應是否為映射時,抓住兩點:

(1)A中元素必須都有象且唯一;(2)B中元素不一定都有原象,並且A中不同元素在B中可以有相同的象;

9. 能熟練地用定義證明函數的單調性,求反函數,判斷函數的奇偶性。

10.對於反函數,應掌握以下一些結論:(1)定義域上的單調函數必有反函數;(2)奇函數的反函數也是奇函數;(3)定義域為非單元素集的偶函數不存在反函數;(4)周期函數不存在反函數;(5)互為反函數的兩個函數具有相同的單調性;(5) y=f(x)與y=f-1(x)互為反函數,設f(x)的定義域為A,值域為B,則有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A).

11.處理二次函數的問題勿忘數形結合;二次函數在閉區間上必有最值,求最值問題用「兩看法」:一看開口方向;二看對稱軸與所給區間的相對位置關系;

12. 依據單調性,利用一次函數在區間上的保號性可解決求一類參數的范圍問題

13. 恆成立問題的處理方法:(1)分離參數法;(2)轉化為一元二次方程的根的分布列不等式(組)求解。


高一數學必修一知識點總結相關 文章 :

★ 高一數學必修一知識點匯總

★ 高中數學必修1知識點總結

★ 高一數學必修一知識點總結

★ 高一數學知識點匯總大全

★ 高一數學必修1對數函數知識點總結

★ 高一數學必修1函數的知識點歸納

★ 高一數學必修一知識點總結歸納

★ 高一數學必修1知識點歸納

★ 高中數學必修一復習提綱

★ 高一數學必修1知識整理

❷ 高一數學函數知識點

(一)、映射、函數、反函數

1、對應、映射、函數三個概念既有共性又有區別,映射是一種特殊的對應,而函數又是一種特殊的映射.

2、對於函數的概念,應注意如下幾點:

(1)掌握構成函數的三要素,會判斷兩個函數是否為同一函數.

(2)掌握三種表示法——列表法、解析法、圖象法,能根實際問題尋求變數間的函數關系式,特別是會求分段函數的解析式.

(3)如果y=f(u),u=g(x),那麼y=f[g(x)]叫做f和g的復合函數,其中g(x)為內函數,f(u)為外函數.

3、求函數y=f(x)的反函數的一般步驟:

(1)確定原函數的值域,也就是反函數的定義域;

(2)由y=f(x)的解析式求出x=f-1(y);

(3)將x,y對換,得反函數的習慣表達式y=f-1(x),並註明定義域.

注意①:對於分段函數的反函數,先分別求出在各段上的反函數,然後再合並到一起.

②熟悉的應用,求f-1(x0)的值,合理利用這個結論,可以避免求反函數的過程,從而簡化運算.

(二)、函數的解析式與定義域

1、函數及其定義域是不可分割的整體,沒有定義域的函數是不存在的,因此,要正確地寫出函數的解析式,必須是在求出變數間的對應法則的同時,求出函數的定義域.求函數的定義域一般有三種類型:

(1)有時一個函數來自於一個實際問題,這時自變數x有實際意義,求定義域要結合實際意義考慮;

(2)已知一個函數的解析式求其定義域,只要使解析式有意義即可.如:

①分式的分母不得為零;

②偶次方根的被開方數不小於零;

③對數函數的真數必須大於零;

④指數函數和對數函數的底數必須大於零且不等於1;

⑤三角函數中的正切函數y=tanx(x∈R,且k∈Z),餘切函數y=cotx(x∈R,x≠kπ,k∈Z)等.

應注意,一個函數的解析式由幾部分組成時,定義域為各部分有意義的自變數取值的公共部分(即交集).

(3)已知一個函數的定義域,求另一個函數的定義域,主要考慮定義域的深刻含義即可.

已知f(x)的定義域是[a,b],求f[g(x)]的定義域是指滿足a≤g(x)≤b的x的取值范圍,而已知f[g(x)]的定義域[a,b]指的是x∈[a,b],此時f(x)的定義域,即g(x)的值域.

2、求函數的解析式一般有四種情況

(1)根據某實際問題需建立一種函數關系時,必須引入合適的變數,根據數學的有關知識尋求函數的解析式.

(2)有時題設給出函數特徵,求函數的解析式,可採用待定系數法.比如函數是一次函數,可設f(x)=ax+b(a≠0),其中a,b為待定系數,根據題設條件,列出方程組,求出a,b即可.

(3)若題設給出復合函數f[g(x)]的表達式時,可用換元法求函數f(x)的表達式,這時必須求出g(x)的值域,這相當於求函數的定義域.

(4)若已知f(x)滿足某個等式,這個等式除f(x)是未知量外,還出現其他未知量(如f(-x),等),必須根據已知等式,再構造其他等式組成方程組,利用解方程組法求出f(x)的表達式.

(三)、函數的值域與最值

1、函數的值域取決於定義域和對應法則,不論採用何種方法求函數值域都應先考慮其定義域,求函數值域常用方法如下:

(1)直接法:亦稱觀察法,對於結構較為簡單的函數,可由函數的解析式應用不等式的性質,直接觀察得出函數的值域.

(2)換元法:運用代數式或三角換元將所給的復雜函數轉化成另一種簡單函數再求值域,若函數解析式中含有根式,當根式里一次式時用代數換元,當根式里是二次式時,用三角換元.

(3)反函數法:利用函數f(x)與其反函數f-1(x)的定義域和值域間的關系,通過求反函數的定義域而得到原函數的值域,形如(a≠0)的函數值域可採用此法求得.

(4)配方法:對於二次函數或二次函數有關的函數的值域問題可考慮用配方法.

(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函數的值域,不過應注意條件「一正二定三相等」有時需用到平方等技巧.

(6)判別式法:把y=f(x)變形為關於x的一元二次方程,利用「△≥0」求值域.其題型特徵是解析式中含有根式或分式.

(7)利用函數的單調性求值域:當能確定函數在其定義域上(或某個定義域的子集上)的單調性,可採用單調性法求出函數的值域.

(8)數形結合法求函數的值域:利用函數所表示的幾何意義,藉助於幾何方法或圖象,求出函數的值域,即以數形結合求函數的值域.

2、求函數的最值與值域的區別和聯系

求函數最值的常用方法和求函數值域的方法基本上是相同的,事實上,如果在函數的值域中存在一個最小(大)數,這個數就是函數的最小(大)值.因此求函數的最值與值域,其實質是相同的,只是提問的角度不同,因而答題的方式就有所相異.

如函數的值域是(0,16],最大值是16,無最小值.再如函數的值域是(-∞,-2]∪[2,+∞),但此函數無最大值和最小值,只有在改變函數定義域後,如x>0時,函數的最小值為2.可見定義域對函數的值域或最值的影響.

3、函數的最值在實際問題中的應用

函數的最值的應用主要體現在用函數知識求解實際問題上,從文字表述上常常表現為「工程造價最低」,「利潤最大」或「面積(體積)最大(最小)」等諸多現實問題上,求解時要特別關注實際意義對自變數的制約,以便能正確求得最值.

(四)、函數的奇偶性

1、函數的奇偶性的定義:對於函數f(x),如果對於函數定義域內的任意一個x,都有f(-x)=-f(x)(或f(-x)=f(x)),那麼函數f(x)就叫做奇函數(或偶函數).

正確理解奇函數和偶函數的定義,要注意兩點:(1)定義域在數軸上關於原點對稱是函數f(x)為奇函數或偶函數的必要不充分條件;(2)f(x)=-f(x)或f(-x)=f(x)是定義域上的恆等式.(奇偶性是函數定義域上的整體性質).

2、奇偶函數的定義是判斷函數奇偶性的主要依據。為了便於判斷函數的奇偶性,有時需要將函數化簡或應用定義的等價形式:

注意如下結論的運用:

(1)不論f(x)是奇函數還是偶函數,f(|x|)總是偶函數;

(2)f(x)、g(x)分別是定義域D1、D2上的奇函數,那麼在D1∩D2上,f(x)+g(x)是奇函數,f(x)·g(x)是偶函數,類似地有「奇±奇=奇」「奇×奇=偶」,「偶±偶=偶」「偶×偶=偶」「奇×偶=奇」;

(3)奇偶函數的復合函數的奇偶性通常是偶函數;

(4)奇函數的導函數是偶函數,偶函數的導函數是奇函數。

3、有關奇偶性的幾個性質及結論

(1)一個函數為奇函數的充要條件是它的圖象關於原點對稱;一個函數為偶函數的充要條件是它的圖象關於y軸對稱.

(2)如要函數的定義域關於原點對稱且函數值恆為零,那麼它既是奇函數又是偶函數.

(3)若奇函數f(x)在x=0處有意義,則f(0)=0成立.

(4)若f(x)是具有奇偶性的區間單調函數,則奇(偶)函數在正負對稱區間上的單調性是相同(反)的。

(5)若f(x)的定義域關於原點對稱,則F(x)=f(x)+f(-x)是偶函數,G(x)=f(x)-f(-x)是奇函數.

(6)奇偶性的推廣

函數y=f(x)對定義域內的任一x都有f(a+x)=f(a-x),則y=f(x)的圖象關於直線x=a對稱,即y=f(a+x)為偶函數.函數y=f(x)對定義域內的任-x都有f(a+x)=-f(a-x),則y=f(x)的圖象關於點(a,0)成中心對稱圖形,即y=f(a+x)為奇函數.

(五)、函數的單調性

1、單調函數

對於函數f(x)定義在某區間[a,b]上任意兩點x1,x2,當x1>x2時,都有不等式f(x1)>(或<)f(x2)成立,稱f(x)在[a,b]上單調遞增(或遞減);增函數或減函數統稱為單調函數.

對於函數單調性的定義的理解,要注意以下三點:

(1)單調性是與「區間」緊密相關的概念.一個函數在不同的區間上可以有不同的單調性.

(2)單調性是函數在某一區間上的「整體」性質,因此定義中的x1,x2具有任意性,不能用特殊值代替.

(3)單調區間是定義域的子集,討論單調性必須在定義域范圍內.

(4)注意定義的兩種等價形式:

設x1、x2∈[a,b],那麼:

①在[a、b]上是增函數;

在[a、b]上是減函數.

②在[a、b]上是增函數.

在[a、b]上是減函數.

需要指出的是:①的幾何意義是:增(減)函數圖象上任意兩點(x1,f(x1))、(x2,f(x2))連線的斜率都大於(或小於)零.

(5)由於定義都是充要性命題,因此由f(x)是增(減)函數,且(或x1>x2),這說明單調性使得自變數間的不等關系和函數值之間的不等關系可以「正逆互推」.

5、復合函數y=f[g(x)]的單調性

若u=g(x)在區間[a,b]上的單調性,與y=f(u)在[g(a),g(b)](或g(b),g(a))上的單調性相同,則復合函數y=f[g(x)]在[a,b]上單調遞增;否則,單調遞減.簡稱「同增、異減」.

在研究函數的單調性時,常需要先將函數化簡,轉化為討論一些熟知函數的單調性。因此,掌握並熟記一次函數、二次函數、指數函數、對數函數的單調性,將大大縮短我們的判斷過程.

6、證明函數的單調性的方法

(1)依定義進行證明.其步驟為:①任取x1、x2∈M且x1<x2;②討論f(x1)>(或<)f(x2);③根據定義,得出結論.

(2)設函數y=f(x)在某區間內可導.

如果f′(x)>0,則f(x)為增函數;如果f′(x)<0,則f(x)為減函數.

(六)、函數的圖象

函數的圖象是函數的直觀體現,應加強對作圖、識圖、用圖能力的培養,培養用數形結合的思想方法解決問題的意識.

求作圖象的函數表達式

與f(x)的關系
由f(x)的圖象需經過的變換

y=f(x)±b(b>0)
沿y軸向平移b個單位

y=f(x±a)(a>0)
沿x軸向平移a個單位

y=-f(x)
作關於x軸的對稱圖形

y=f(|x|)
右不動、左右關於y軸對稱

y=|f(x)|
上不動、下沿x軸翻折

y=f-1(x)
作關於直線y=x的對稱圖形

y=f(ax)(a>0)
橫坐標縮短到原來的,縱坐標不變

y=af(x)
縱坐標伸長到原來的|a|倍,橫坐標不變

y=f(-x)
作關於y軸對稱的圖形

【例】定義在實數集上的函數f(x),對任意x,y∈R,有f(x+y)+f(x-y)=2f(x)·f(y),且f(0)≠0.

①求證:f(0)=1;

②求證:y=f(x)是偶函數;

③若存在常數c,使求證對任意x∈R,有f(x+c)=-f(x)成立;試問函數f(x)是不是周期函數,如果是,找出它的一個周期;如果不是,請說明理由.
思路分析:我們把沒有給出解析式的函數稱之為抽象函數,解決這類問題一般採用賦值法.

解答:①令x=y=0,則有2f(0)=2f2(0),因為f(0)≠0,所以f(0)=1.

②令x=0,則有f(x)+f(-y)=2f(0)·f(y)=2f(y),所以f(-y)=f(y),這說明f(x)為偶函數.

③分別用(c>0)替換x、y,有f(x+c)+f(x)=

所以,所以f(x+c)=-f(x).

兩邊應用中的結論,得f(x+2c)=-f(x+c)=-[-f(x)]=f(x),

所以f(x)是周期函數,2c就是它的一個周期.

點評:聯想公式cos(x+y)+cos(x-y)=2cosxcosy和特殊函數y=cosx是有益的.特值代入法在解選擇題時有奇效,有時對某些解答題的處理也很獨特,1996年全國高考理科數學壓軸題就是範例.

參考資料:http://caixinhua1010.blog.163.com/blog/static/10540100920098189309849/

❸ 高一數學必修一函數知識點總結歸納

考試是檢測學生學習效果的重要手段和 方法 ,考前需要做好各方面的知識儲備,對於數學更加要進行復習歸納。下面就讓我給大家分享一些 高一數學 必修一函數知識點 總結 吧,希望能對你有幫助!

>>>更多高 一學 習 方法 知識,歡迎大家點擊(↓↓↓↓↓) ✔✔✔高 中語 文 知識 歸納 ✔✔✔高 中化 學基礎知識 歸納 ✔✔✔高 一歷 史必修一知識點 總結 ✔✔✔高 一政 治下冊公民的政 治生 活復 習要 點 高一數學必修一函數知識點總結篇一

1. 函數的奇偶性

(1)若f(x)是偶函數,那麼f(x)=f(-x) ;

(2)若f(x)是奇函數,0在其定義域內,則 f(0)=0(可用於求參數);

(3)判斷函數奇偶性可用定義的等價形式:f(x)±f(-x)=0或 (f(x)≠0);

(4)若所給函數的解析式較為復雜,應先化簡,再判斷其奇偶性;

(5)奇函數在對稱的單調區間內有相同的單調性;偶函數在對稱的單調區間內有相反的單調性;

2. 復合函數的有關問題

(1)復合函數定義域求法:若已知 的定義域為[a,b],其復合函數f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求 f(x)的定義域,相當於x∈[a,b]時,求g(x)的值域(即 f(x)的定義域);研究函數的問題一定要注意定義域優先的原則。

(2)復合函數的單調性由“同增異減”判定;

3.函數圖像(或方程曲線的對稱性)

(1)證明函數圖像的對稱性,即證明圖像上任意點關於對稱中心(對稱軸)的對稱點仍在圖像上;

(2)證明圖像C1與C2的對稱性,即證明C1上任意點關於對稱中心(對稱軸)的對稱點仍在C2上,反之亦然;

(3)曲線C1:f(x,y)=0,關於y=x+a(y=-x+a)的對稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

(4)曲線C1:f(x,y)=0關於點(a,b)的對稱曲線C2方程為:f(2a-x,2b-y)=0;

(5)若函數y=f(x)對x∈R時,f(a+x)=f(a-x)恆成立,則y=f(x)圖像關於直線x=a對稱;

(6)函數y=f(x-a)與y=f(b-x)的圖像關於直線x= 對稱;

4.函數的周期性

(1)y=f(x)對x∈R時,f(x +a)=f(x-a) 或f(x-2a )=f(x) (a>0)恆成立,則y=f(x)是周期為2a的周期函數;

(2)若y=f(x)是偶函數,其圖像又關於直線x=a對稱,則f(x)是周期為2︱a︱的周期函數;

(3)若y=f(x)奇函數,其圖像又關於直線x=a對稱,則f(x)是周期為4︱a︱的周期函數;

(4)若y=f(x)關於點(a,0),(b,0)對稱,則f(x)是周期為2 的周期函數;

(5)y=f(x)的圖象關於直線x=a,x=b(a≠b)對稱,則函數y=f(x)是周期為2 的周期函數;

(6)y=f(x)對x∈R時,f(x+a)=-f(x)(或f(x+a)= ,則y=f(x)是周期為2 的周期函數;

5.方程k=f(x)有解 k∈D(D為f(x)的值域);

6.a≥f(x) 恆成立 a≥[f(x)]max,; a≤f(x) 恆成立 a≤[f(x)]min;

7.(1) (a>0,a≠1,b>0,n∈R+); (2) l og a N= ( a>0,a≠1,b>0,b≠1);

(3) l og a b的符號由口訣“同正異負”記憶; (4) a log a N= N ( a>0,a≠1,N>0 );

8. 判斷對應是否為映射時,抓住兩點:(1)A中元素必須都有象且唯一;(2)B中元素不一定都有原象,並且A中不同元素在B中可以有相同的象;

9. 能熟練地用定義證明函數的單調性,求反函數,判斷函數的奇偶性。

10.對於反函數,應掌握以下一些結論:(1)定義域上的單調函數必有反函數;(2)奇函數的反函數也是奇函數;(3)定義域為非單元素集的偶函數不存在反函數;(4)周期函數不存在反函數;(5)互為反函數的兩個函數具有相同的單調性;(5) y=f(x)與y=f-1(x)互為反函數,設f(x)的定義域為A,值域為B,則有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A).

11.處理二次函數的問題勿忘數形結合;二次函數在閉區間上必有最值,求最值問題用“兩看法”:一看開口方向;二看對稱軸與所給區間的相對位置關系;

12. 依據單調性,利用一次函數在區間上的保號性可解決求一類參數的范圍問題

13. 恆成立問題的處理方法:(1)分離參數法;(2)轉化為一元二次方程的根的分布列不等式(組)求解;

高一數學必修一函數知識點總結篇二

一:集合的含義與表示

1、集合的含義:集合為一些確定的、不同的東西的全體,人們能意識到這些東西,並且能判斷一個給定的東西是否屬於這個整體。

把研究對象統稱為元素,把一些元素組成的總體叫集合,簡稱為集。

2、集合的中元素的三個特性:

(1)元素的確定性:集合確定,則一元素是否屬於這個集合是確定的:屬於或不屬於。

(2)元素的互異性:一個給定集合中的元素是唯一的,不可重復的。

(3)元素的無序性:集合中元素的位置是可以改變的,並且改變位置不影響集合

3、集合的表示:{…}

(1)用大寫字母表示集合:A={我校的 籃球 隊員},B={1,2,3,4,5}

(2)集合的表示方法:列舉法與描述法。

a、列舉法:將集合中的元素一一列舉出來{a,b,c……}

b、描述法:

①區間法:將集合中元素的公共屬性描述出來,寫在大括弧內表示集合。

{xR|x-3>2},{x|x-3>2}

②語言描述法:例:{不是直角三角形的三角形}

③Venn圖:畫出一條封閉的曲線,曲線裡面表示集合。

4、集合的分類:

(1)有限集:含有有限個元素的集合

(2)無限集:含有無限個元素的集合

(3)空集:不含任何元素的集合

5、元素與集合的關系:

(1)元素在集合里,則元素屬於集合,即:aA

(2)元素不在集合里,則元素不屬於集合,即:a¢A

注意:常用數集及其記法:

非負整數集(即自然數集)記作:N

正整數集N*或N+

整數集Z

有理數集Q

實數集R

6、集合間的基本關系

(1).“包含”關系(1)—子集

定義:如果集合A的任何一個元素都是集合B的元素,我們說這兩個集合有包含關系,稱集合A是集合B的子集。

高一數學必修一函數知識點總結篇三

一、一次函數定義與定義式:

自變數x和因變數y有如下關系:

y=kx+b

則此時稱y是x的一次函數。

特別地,當b=0時,y是x的正比例函數。

即:y=kx(k為常數,k≠0)

二、一次函數的性質:

1.y的變化值與對應的x的變化值成正比例,比值為k

即:y=kx+b(k為任意不為零的實數b取任何實數)

2.當x=0時,b為函數在y軸上的截距。

三、一次函數的圖像及性質:

1.作法與圖形:通過如下3個步驟

(1)列表;

(2)描點;

(3)連線,可以作出一次函數的圖像——一條直線。因此,作一次函數的圖像只需知道2點,並連成直線即可。(通常找函數圖像與x軸和y軸的交點)

2.性質:(1)在一次函數上的任意一點P(x,y),都滿足等式:y=kx+b。(2)一次函數與y軸交點的坐標總是(0,b),與x軸總是交於(-b/k,0)正比例函數的圖像總是過原點。

3.k,b與函數圖像所在象限:

當k>0時,直線必通過一、三象限,y隨x的增大而增大;

當k<0時,直線必通過二、四象限,y隨x的增大而減小。

當b>0時,直線必通過一、二象限;

當b=0時,直線通過原點

當b<0時,直線必通過三、四象限。

特別地,當b=O時,直線通過原點O(0,0)表示的是正比例函數的圖像。

這時,當k>0時,直線只通過一、三象限;當k<0時,直線只通過二、四象限。

四、確定一次函數的表達式:

已知點A(x1,y1);B(x2,y2),請確定過點A、B的一次函數的表達式。

(1)設一次函數的表達式(也叫解析式)為y=kx+b。

(2)因為在一次函數上的任意一點P(x,y),都滿足等式y=kx+b。所以可以列出2個方程:y1=kx1+b……①和y2=kx2+b……②

(3)解這個二元一次方程,得到k,b的值。

(4)最後得到一次函數的表達式。

五、一次函數在生活中的應用:

1.當時間t一定,距離s是速度v的一次函數。s=vt。

2.當水池抽水速度f一定,水池中水量g是抽水時間t的一次函數。設水池中原有水量S。g=S-ft。

六、常用公式:

1.求函數圖像的k值:(y1-y2)/(x1-x2)

2.求與x軸平行線段的中點:|x1-x2|/2

3.求與y軸平行線段的中點:|y1-y2|/2

4.求任意線段的長:√(x1-x2)’2+(y1-y2)’2(註:根號下(x1-x2)與(y1-y2)的平方和)

二次函數

I.定義與定義表達式

一般地,自變數x和因變數y之間存在如下關系:

y=ax’2+bx+c

(a,b,c為常數,a≠0,且a決定函數的開口方向,a>0時,開口方向向上,a<0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大.)

則稱y為x的二次函數。

二次函數表達式的右邊通常為二次三項式。

II.二次函數的三種表達式

一般式:y=ax’2+bx+c(a,b,c為常數,a≠0)

頂點式:y=a(x-h)’2+k[拋物線的頂點P(h,k)]

交點式:y=a(x-x₁)(x-x₂)[僅限於與x軸有交點A(x₁,0)和B(x₂,0)的拋物線]

註:在3種形式的互相轉化中,有如下關系:

h=-b/2ak=(4ac-b’2)/4ax₁,x₂=(-b±√b’2-4ac)/2a

III.二次函數的圖像

在平面直角坐標系中作出二次函數y=x’2的圖像,

可以看出,二次函數的圖像是一條拋物線。

IV.拋物線的性質

1.拋物線是軸對稱圖形。對稱軸為直線

x=-b/2a。

對稱軸與拋物線唯一的交點為拋物線的頂點P。

特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)

2.拋物線有一個頂點P,坐標為

P(-b/2a,(4ac-b’2)/4a)

當-b/2a=0時,P在y軸上;當Δ=b’2-4ac=0時,P在x軸上。

3.二次項系數a決定拋物線的開口方向和大小。

當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。

|a|越大,則拋物線的開口越小。

4.一次項系數b和二次項系數a共同決定對稱軸的位置。

當a與b同號時(即ab>0),對稱軸在y軸左;

當a與b異號時(即ab<0),對稱軸在y軸右。

5.常數項c決定拋物線與y軸交點。

拋物線與y軸交於(0,c)

6.拋物線與x軸交點個數

Δ=b’2-4ac>0時,拋物線與x軸有2個交點。

Δ=b’2-4ac=0時,拋物線與x軸有1個交點。

Δ=b’2-4ac<0時,拋物線與x軸沒有交點。X的取值是虛數(x=-b±√b’2-4ac的值的相反數,乘上虛數i,整個式子除以2a)

V.二次函數與一元二次方程

特別地,二次函數(以下稱函數)y=ax’2+bx+c,

當y=0時,二次函數為關於x的一元二次方程(以下稱方程),

即ax’2+bx+c=0

此時,函數圖像與x軸有無交點即方程有無實數根。

函數與x軸交點的橫坐標即為方程的根。

>>>下一頁更多精彩“高一數學必修一函數知識點總結”

❹ 高一上冊數學知識點

數學是考試的重點考察科目,數學知識的積累和解題 方法 的掌握,需要科學有效的 復習方法 ,同時需要持之以恆的堅持。下面是我給大家整理的一些 高一數學 的知識點,希望對大家有所幫助。

高一數學必修一第一章知識點

一、集合有關概念

1.集合的含義

2.集合的中元素的三個特性:

(1)元素的確定性如:世界上的山

(2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}

(3)元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個集合

3.集合的表示:{…}如:{我校的 籃球 隊員},{太平洋,大西洋,印度洋,北冰洋}

(1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

(2)集合的表示方法:列舉法與描述法。

注意:常用數集及其記法:

非負整數集(即自然數集)記作:N

正整數集:N或N+

整數集:Z

有理數集:Q

實數集:R

1)列舉法:{a,b,c……}

2)描述法:將集合中的元素的公共屬性描述出來,寫在大括弧內表示集合{x?R|x-3>2},{x|x-3>2}

3)語言描述法:例:{不是直角三角形的三角形}

4)Venn圖:

4、集合的分類:

(1)有限集含有有限個元素的集合

(2)無限集含有無限個元素的集合

(3)空集不含任何元素的集合例:{x|x2=-5}

高一數學必修二知識點梳理

1.函數的奇偶性。

(1)若f(x)是偶函數,那麼f(x)=f(-x)。

(2)若f(x)是奇函數,0在其定義域內,則f(0)=0(可用於求參數)。

(3)判斷函數奇偶性可用定義的等價形式:f(x)±f(-x)=0或(f(x)≠0)。

(4)若所給函數的解析式較為復雜,應先化簡,再判斷其奇偶性。

(5)奇函數在對稱的單調區間內有相同的單調性;偶函數在對稱的單調區間內有相反的單調性。

2.復合函數的有關問題。

(1)復合函數定義域求法:若已知的定義域為[a,b],其復合函數f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求f(x)的定義域,相當於x∈[a,b]時,求g(x)的值域(即f(x)的定義域);研究函數的問題一定要注意定義域優先的原則。

(2)復合函數的單調性由「同增異減」判定。

3.函數圖像(或方程曲線的對稱性)。

(1)證明函數圖像的對稱性,即證明圖像上任意點關於對稱中心(對稱軸)的對稱點仍在圖像上。

(2)證明圖像C1與C2的對稱性,即證明C1上任意點關於對稱中心(對稱軸)的對稱點仍在C2上,反之亦然。

(3)曲線C1:f(x,y)=0,關於y=x+a(y=-x+a)的對稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0)。

(4)曲線C1:f(x,y)=0關於點(a,b)的對稱曲線C2方程為:f(2a-x,2b-y)=0。

(5)若函數y=f(x)對x∈R時,f(a+x)=f(a-x)恆成立,則y=f(x)圖像關於直線x=a對稱。

4.函數的周期性。

(1)y=f(x)對x∈R時,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恆成立,則y=f(x)是周期為2a的周期函數。

(2)若y=f(x)是偶函數,其圖像又關於直線x=a對稱,則f(x)是周期為2︱a︱的周期函數。

(3)若y=f(x)奇函數,其圖像又關於直線x=a對稱,則f(x)是周期為4︱a︱的周期函數。

(4)若y=f(x)關於點(a,0),(b,0)對稱,則f(x)是周期為2的周期函數。

5.判斷對應是否為映射時,抓住兩點。

(1)A中元素必須都有象且。

(2)B中元素不一定都有原象,並且A中不同元素在B中可以有相同的象。

6.能熟練地用定義證明函數的單調性,求反函數,判斷函數的奇偶性。

7.對於反函數,應掌握以下一些結論。

(1)定義域上的單調函數必有反函數。

(2)奇函數的反函數也是奇函數。

(3)定義域為非單元素集的偶函數不存在反函數。

(4)周期函數不存在反函數。

(5)互為反函數的兩個函數具有相同的單調性。

(6)y=f(x)與y=f-1(x)互為反函數,設f(x)的定義域為A,值域為B,則有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A)。

8.處理二次函數的問題勿忘數形結合。

二次函數在閉區間上必有最值,求最值問題用「兩看法」:一看開口方向;二看對稱軸與所給區間的相對位置關系。

9.依據單調性,利用一次函數在區間上的保號性可解決求一類參數的范圍問題。

10.恆成立問題的處理方法。

(1)分離參數法。

(2)轉化為一元二次方程的根的分布列不等式(組)求解。

高一下冊數學必修一知識點梳理

立體幾何初步

柱、錐、台、球的結構特徵

稜柱

定義:有兩個面互相平行,其餘各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。

分類:以底面多邊形的邊數作為分類的標准分為三稜柱、四稜柱、五稜柱等。

表示:用各頂點字母,如五稜柱或用對角線的端點字母,如五稜柱。

幾何特徵:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行於底面的截面是與底面全等的多邊形。

棱錐

定義:有一個面是多邊形,其餘各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體。

分類:以底面多邊形的邊數作為分類的標准分為三棱錐、四棱錐、五棱錐等

表示:用各頂點字母,如五棱錐

幾何特徵:側面、對角面都是三角形;平行於底面的截面與底 面相 似,其相似比等於頂點到截面距離與高的比的平方。

稜台

定義:用一個平行於棱錐底面的平面去截棱錐,截面和底面之間的部分。

分類:以底面多邊形的邊數作為分類的標准分為三棱態、四稜台、五稜台等

表示:用各頂點字母,如五稜台

幾何特徵:①上下底面是相似的平行多邊形②側面是梯形③側棱交於原棱錐的頂點

圓柱

定義:以矩形的一邊所在的直線為軸旋轉,其餘三邊旋轉所成的曲面所圍成的幾何體。

幾何特徵:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側面展開圖是一個矩形。

圓錐

定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成的曲面所圍成的幾何體。

幾何特徵:①底面是一個圓;②母線交於圓錐的頂點;③側面展開圖是一個扇形。

圓台

定義:用一個平行於圓錐底面的平面去截圓錐,截面和底面之間的部分

幾何特徵:①上下底面是兩個圓;②側面母線交於原圓錐的頂點;③側面展開圖是一個弓形。

球體

定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體

幾何特徵:①球的截面是圓;②球面上任意一點到球心的距離等於半徑。

NO.2空間幾何體的三視圖

定義三視圖

定義三視圖:正視圖(光線從幾何體的前面向後面正投影);側視圖(從左向右)、俯視圖(從上向下)

註:正視圖反映了物體上下、左右的位置關系,即反映了物體的高度和長度;

俯視圖反映了物體左右、前後的位置關系,即反映了物體的長度和寬度;

側視圖反映了物體上下、前後的位置關系,即反映了物體的高度和寬度。


高一上冊數學知識點相關 文章 :

★ 高一數學知識點總結上冊

★ 高一數學知識點匯總大全

★ 高一數學知識點新總結

★ 高一上數學知識點總結

★ 高一數學知識點(考前必看)

★ 高一數學知識點總結(人教版)

★ 高一數學上冊知識點歸納

★ 高一數學知識點總結歸納

★ 高一數學上學期重點必用的知識點

★ 高一數學知識點全面總結

❺ 高一數學上學期的所有知識點

偶爾會抱怨為什麼自己沒天賦,又或者因為別人能輕易做到自己做不到的事而不平衡。從某種角度上來講,這完全沒辦法。現在的我倒覺得這樣也好,世上或許有人能一步登天,但那人不是我。自己一點一點抓住的東西,比什麼都來得真實。用時間換天份,用堅持換機遇,我走得很慢,但我絕不回頭。我高一頻道為大家整理了《 高一數學 上學期知識點復習》供大家參考!

高一數學上學期的所有知識點

1.函數的奇偶性

(1)若f(x)是偶函數,那麼f(x)=f(-x);

(2)若f(x)是奇函數,0在其定義域內,則f(0)=0(可用於求參數);

(3)判斷函數奇偶性可用定義的等價形式:f(x)±f(-x)=0或(f(x)≠0);

(4)若所給函數的解析式較為復雜,應先化簡,再判斷其奇偶性;

(5)奇函數在對稱的單調區間內有相同的單調性;偶函數在對稱的單調區間內有相反的單調性;

2.復合函數的有關問題

(1)復合函數定義域求法:若已知的定義域為[a,b],其復合函數f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求f(x)的定義域,相當於x∈[a,b]時,求g(x)的值域(即f(x)的定義域);研究函數的問題一定要注意定義域優先的原則。

(2)復合函數的單調性由「同增異減」判定;

3.函數圖像(或方程曲線的對稱性)

(1)證明函數圖像的對稱性,即證明圖像上任意點關於對稱中心(對稱軸)的對稱點仍在圖像上;

(2)證明圖像C1與C2的對稱性,即證明C1上任意點關於對稱中心(對稱軸)的對稱點仍在C2上,反之亦然;

(3)曲線C1:f(x,y)=0,關於y=x+a(y=-x+a)的對稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

(4)曲線C1:f(x,y)=0關於點(a,b)的對稱曲線C2方程為:f(2a-x,2b-y)=0;

(5)若函數y=f(x)對x∈R時,f(a+x)=f(a-x)恆成立,則y=f(x)圖像關於直線x=a對稱;

(6)函數y=f(x-a)與y=f(b-x)的圖像關於直線x=對稱;

4.函數的周期性

(1)y=f(x)對x∈R時,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恆成立,則y=f(x)是周期為2a的周期函數;

(2)若y=f(x)是偶函數,其圖像又關於直線x=a對稱,則f(x)是周期為2︱a︱的周期函數;

(3)若y=f(x)奇函數,其圖像又關於直線x=a對稱,則f(x)是周期為4︱a︱的周期函數;

(4)若y=f(x)關於點(a,0),(b,0)對稱,則f(x)是周期為2的周期函數;

(5)y=f(x)的圖象關於直線x=a,x=b(a≠b)對稱,則函數y=f(x)是周期為2的周期函數;

(6)y=f(x)對x∈R時,f(x+a)=-f(x)(或f(x+a)=,則y=f(x)是周期為2的周期函數;

5.方程k=f(x)有解k∈D(D為f(x)的值域);

a≥f(x)恆成立a≥[f(x)]max,;a≤f(x)恆成立a≤[f(x)]min;

(1)(a>0,a≠1,b>0,n∈R+);

(2)logaN=(a>0,a≠1,b>0,b≠1);

(3)logab的符號由口訣「同正異負」記憶;

(4)alogaN=N(a>0,a≠1,N>0);

6.判斷對應是否為映射時,抓住兩點:

(1)A中元素必須都有象且;

(2)B中元素不一定都有原象,並且A中不同元素在B中可以有相同的象;

7.能熟練地用定義證明函數的單調性,求反函數,判斷函數的奇偶性。

8.對於反函數,應掌握以下一些結論:

(1)定義域上的單調函數必有反函數;

(2)奇函數的反函數也是奇函數;

(3)定義域為非單元素集的偶函數不存在反函數;

(4)周期函數不存在反函數;

(5)互為反函數的兩個函數具有相同的單調性;

(6)y=f(x)與y=f-1(x)互為反函數,設f(x)的定義域為A,值域為B,則有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A);

9.處理二次函數的問題勿忘數形結合

二次函數在閉區間上必有最值,求最值問題用「兩看法」:一看開口方向;二看對稱軸與所給區間的相對位置關系;

10依據單調性

利用一次函數在區間上的保號性可解決求一類參數的范圍問題;

11恆成立問題的處理 方法 :

(1)分離參數法;

(2)轉化為一元二次方程的根的分布列不等式(組)求解;

練習題:

1.(-3,4)關於x軸對稱的點的坐標為_________,關於y軸對稱的點的坐標為__________,

關於原點對稱的坐標為__________.

2.點B(-5,-2)到x軸的距離是____,到y軸的距離是____,到原點的距離是____

3.以點(3,0)為圓心,半徑為5的圓與x軸交點坐標為_________________,

與y軸交點坐標為________________

4.點P(a-3,5-a)在第一象限內,則a的取值范圍是____________

5.小華用500元去購買單價為3元的一種商品,剩餘的錢y(元)與購買這種商品的件數x(件)

之間的函數關系是______________,x的取值范圍是__________

6.函數y=的自變數x的取值范圍是________

7.當a=____時,函數y=x是正比例函數

8.函數y=-2x+4的圖象經過___________象限,它與兩坐標軸圍成的三角形面積為_________,

周長為_______

9.一次函數y=kx+b的圖象經過點(1,5),交y軸於3,則k=____,b=____

10.若點(m,m+3)在函數y=-x+2的圖象上,則m=____

11.y與3x成正比例,當x=8時,y=-12,則y與x的函數解析式為___________

12.函數y=-x的圖象是一條過原點及(2,___)的直線,這條直線經過第_____象限,

當x增大時,y隨之________

13.函數y=2x-4,當x_______,y0,b0,b>0;C、k

高一數學上學期的所有知識點

1.數列的定義

按一定次序排列的一列數叫做數列,數列中的每一個數都叫做數列的項.

(1)從數列定義可以看出,數列的數是按一定次序排列的,如果組成數列的數相同而排列次序不同,那麼它們就不是同一數列,例如數列1,2,3,4,5與數列5,4,3,2,1是不同的數列.

(2)在數列的定義中並沒有規定數列中的數必須不同,因此,在同一數列中可以出現多個相同的數字,如:-1的1次冪,2次冪,3次冪,4次冪,…構成數列:-1,1,-1,1,….

(4)數列的項與它的項數是不同的,數列的項是指這個數列中的某一個確定的數,是一個函數值,也就是相當於f(n),而項數是指這個數在數列中的位置序號,它是自變數的值,相當於f(n)中的n.

(5)次序對於數列來講是十分重要的,有幾個相同的數,由於它們的排列次序不同,構成的數列就不是一個相同的數列,顯然數列與數集有本質的區別.如:2,3,4,5,6這5個數按不同的次序排列時,就會得到不同的數列,而{2,3,4,5,6}中元素不論按怎樣的次序排列都是同一個集合.

2.數列的分類

(1)根據數列的項數多少可以對數列進行分類,分為有窮數列和無窮數列.在寫數列時,對於有窮數列,要把末項寫出,例如數列1,3,5,7,9,…,2n-1表示有窮數列,如果把數列寫成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示無窮數列.

(2)按照項與項之間的大小關系或數列的增減性可以分為以下幾類:遞增數列、遞減數列、擺動數列、常數列.

3.數列的通項公式

數列是按一定次序排列的一列數,其內涵的本質屬性是確定這一列數的規律,這個規律通常是用式子f(n)來表示的,

這兩個通項公式形式上雖然不同,但表示同一個數列,正像每個函數關系不都能用解析式表達出來一樣,也不是每個數列都能寫出它的通項公式;有的數列雖然有通項公式,但在形式上,又不一定是的,僅僅知道一個數列前面的有限項,無其他說明,數列是不能確定的,通項公式更非.如:數列1,2,3,4,…,

由公式寫出的後續項就不一樣了,因此,通項公式的歸納不僅要看它的前幾項,更要依據數列的構成規律,多觀察分析,真正找到數列的內在規律,由數列前幾項寫出其通項公式,沒有通用的方法可循.

再強調對於數列通項公式的理解注意以下幾點:

(1)數列的通項公式實際上是一個以正整數集N或它的有限子集{1,2,…,n}為定義域的函數的表達式.

(2)如果知道了數列的通項公式,那麼依次用1,2,3,…去替代公式中的n就可以求出這個數列的各項;同時,用數列的通項公式也可判斷某數是否是某數列中的一項,如果是的話,是第幾項.

(3)如所有的函數關系不一定都有解析式一樣,並不是所有的數列都有通項公式.

如2的不足近似值,精確到1,0.1,0.01,0.001,0.0001,…所構成的數列1,1.4,1.41,1.414,1.4142,…就沒有通項公式.

(4)有的數列的通項公式,形式上不一定是的,正如舉例中的:

(5)有些數列,只給出它的前幾項,並沒有給出它的構成規律,那麼僅由前面幾項歸納出的數列通項公式並不.

4.數列的圖象

對於數列4,5,6,7,8,9,10每一項的序號與這一項有下面的對應關系:

序號:1234567

項:45678910

這就是說,上面可以看成是一個序號集合到另一個數的集合的映射.因此,從映射、函數的觀點看,數列可以看作是一個定義域為正整集N(或它的有限子集{1,2,3,…,n})的函數,當自變數從小到大依次取值時,對應的一列函數值.這里的函數是一種特殊的函數,它的自變數只能取正整數.

由於數列的項是函數值,序號是自變數,數列的通項公式也就是相應函數和解析式.

數列是一種特殊的函數,數列是可以用圖象直觀地表示的.

數列用圖象來表示,可以以序號為橫坐標,相應的項為縱坐標,描點畫圖來表示一個數列,在畫圖時,為方便起見,在平面直角坐標系兩條坐標軸上取的單位長度可以不同,從數列的圖象表示可以直觀地看出數列的變化情況,但不精確.

把數列與函數比較,數列是特殊的函數,特殊在定義域是正整數集或由以1為首的有限連續正整數組成的集合,其圖象是無限個或有限個孤立的點.

5.遞推數列

一堆鋼管,共堆放了七層,自上而下各層的鋼管數構成一個數列:4,5,6,7,8,9,10.①

數列①還可以用如下方法給出:自上而下第一層的鋼管數是4,以下每一層的鋼管數都比上層的鋼管數多1

練習題:

1.若等差數列{an}的前n項和為Sn,且滿足S33-S22=1,則數列{an}的公差是()

A.12B.1C.2D.3

解析:由Sn=na1+n(n-1)2d,得S3=3a1+3d,S2=2a1+d,代入S33-S22=1,得d=2,故選C.

答案:C

2.已知數列a1=1,a2=5,an+2=an+1-an(n∈N),則a2011等於()

A.1B.-4C.4D.5

解析:由已知,得a1=1,a2=5,a3=4,a4=-1,a5=-5,a6=-4,a7=1,a8=5,…

故{an}是以6為周期的數列,

∴a2011=a6×335+1=a1=1.

答案:A

3.設{an}是等差數列,Sn是其前n項和,且S5S8,則下列結論錯誤的是()

A.d<0B.a7=0

C.S9>S5D.S6與S7均為Sn的值

解析:∵S50.S6=S7,∴a7=0.

又S7>S8,∴a8<0.

假設S9>S5,則a6+a7+a8+a9>0,即2(a7+a8)>0.

∵a7=0,a8<0,∴a7+a8<0.假設不成立,故S9<s5.∴c錯誤.< p="">

答案:C

高一數學上學期的所有知識點

一:集合的含義與表示

1、集合的含義:集合為一些確定的、不同的東西的全體,人們能意識到這些東西,並且能判斷一個給定的東西是否屬於這個整體。

把研究對象統稱為元素,把一些元素組成的總體叫集合,簡稱為集。

2、集合的中元素的三個特性:

(1)元素的確定性:集合確定,則一元素是否屬於這個集合是確定的:屬於或不屬於。

(2)元素的互異性:一個給定集合中的元素是的,不可重復的。

(3)元素的無序性:集合中元素的位置是可以改變的,並且改變位置不影響集合

3、集合的表示:{…}

(1)用大寫字母表示集合:A={我校的 籃球 隊員},B={1,2,3,4,5}

(2)集合的表示方法:列舉法與描述法。

a、列舉法:將集合中的元素一一列舉出來{a,b,c……}

b、描述法:

①區間法:將集合中元素的公共屬性描述出來,寫在大括弧內表示集合。

{x?R|x-3>2},{x|x-3>2}

②語言描述法:例:{不是直角三角形的三角形}

③Venn圖:畫出一條封閉的曲線,曲線裡面表示集合。

4、集合的分類:

(1)有限集:含有有限個元素的集合

(2)無限集:含有無限個元素的集合

(3)空集:不含任何元素的集合

5、元素與集合的關系:

(1)元素在集合里,則元素屬於集合,即:a?A

(2)元素不在集合里,則元素不屬於集合,即:a¢A

注意:常用數集及其記法:

非負整數集(即自然數集)記作:N

正整數集N或N+

整數集Z

有理數集Q

實數集R

高一數學上學期的所有知識點相關 文章 :

★ 高一數學上學期知識點

★ 高一數學上學期重點必用的知識點

★ 高一數學知識點匯總大全

★ 高一學期數學基本知識點歸納

★ 高一數學知識點總結上冊

★ 高一數學上冊知識點歸納

★ 高一數學知識點總結(考前必看)

★ 高一數學知識點全面總結

★ 高一數學知識點總結(人教版)

★ 高一數學集合知識點匯總

❻ 高中數學函數知識點歸納

知識的確是天空中偉大的太陽,它那萬道光芒投下了生命,投下了力量。下面我給大家分享一些高中數學函數知識點,希望能夠幫助大家,歡迎閱讀!

目錄

一次函數定義與定義式

一次函數的性質

一次函數的圖像及性質

高中數學函數的奇偶性

高中數學函數知識點

高中數學函數知識點大全

一次函數定義與定義式

自變數x和因變數y有如下關系:

y=kx+b

則此時稱y是x的一次函數。

特別地,當b=0時,y是x的正比例函數。

即:y=kx(k為常數,k≠0)


一次函數的性質

1.y的變化值與對應的x的變化值成正比例,比值為k

即:y=kx+b(k為任意不為零的實數b取任何實數)

2.當x=0時,b為函數在y軸上的截距。


一次函數的圖像及性質

1.作法與圖形:通過如下3個步驟

(1)列表;

(2)描點;

(3)連線,可以作出一次函數的圖像——一條直線。因此,作一次函數的圖像只需知道2點,並連成直線即可。(通常找函數圖像與x軸和y軸的交點)

2.性質:(1)在一次函數上的任意一點P(x,y),都滿足等式:y=kx+b。(2)一次函數與y軸交點的坐標總是(0,b),與x軸總是交於(-b/k,0)正比例函數的圖像總是過原點。

3.k,b與函數圖像所在象限:

當k>0時,直線必通過一、三象限,y隨x的增大而增大;

當k<0時,直線必通過二、四象限,y隨x的增大而減小。

當b>0時,直線必通過一、二象限;

當b=0時,直線通過原點

當b<0時,直線必通過三、四象限。

特別地,當b=O時,直線通過原點O(0,0)表示的是正比例函數的圖像。

這時,當k>0時,直線只通過一、三象限;當k<0時,直線只通過二、四象限。


高中數學函數 的奇偶性

1.函數的奇偶性

(1)若f(x)是偶函數,那麼f(x)=f(-x);

(2)若f(x)是奇函數,0在其定義域內,則f(0)=0(可用於求參數);

(3)判斷函數奇偶性可用定義的等價形式:f(x)±f(-x)=0或(f(x)≠0);

(4)若所給函數的解析式較為復雜,應先化簡,再判斷其奇偶性;

(5)奇函數在對稱的單調區間內有相同的單調性;偶函數在對稱的單調區間內有相反的單調性;

2.復合函數

(1)復合函數定義域求法:若已知的定義域為[a,b],其復合函數f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求f(x)的定義域,相當於x∈[a,b]時,求g(x)的值域(即f(x)的定義域);研究函數的問題一定要注意定義域優先的原則。

(2)復合函數的單調性由「同增異減」判定;

3.函數圖像(或方程曲線的對稱性)

(1)證明函數圖像的對稱性,即證明圖像上任意點關於對稱中心(對稱軸)的對稱點仍在圖像上;

(2)證明圖像C1與C2的對稱性,即證明C1上任意點關於對稱中心(對稱軸)的對稱點仍在C2上,反之亦然;

(3)曲線C1:f(x,y)=0,關於y=x+a(y=-x+a)的對稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

(4)曲線C1:f(x,y)=0關於點(a,b)的對稱曲線C2方程為:f(2a-x,2b-y)=0;

(5)若函數y=f(x)對x∈R時,f(a+x)=f(a-x)恆成立,則y=f(x)圖像關於直線x=a對稱;

(6)函數y=f(x-a)與y=f(b-x)的圖像關於直線x=對稱;

點擊查看:高中數學知識點 總結

4.函數的周期性

(1)y=f(x)對x∈R時,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恆成立,則y=f(x)是周期為2a的周期函數;

(2)若y=f(x)是偶函數,其圖像又關於直線x=a對稱,則f(x)是周期為2︱a︱的周期函數;

(3)若y=f(x)奇函數,其圖像又關於直線x=a對稱,則f(x)是周期為4︱a︱的周期函數;

(4)若y=f(x)關於點(a,0),(b,0)對稱,則f(x)是周期為2的周期函數;

(5)y=f(x)的圖象關於直線x=a,x=b(a≠b)對稱,則函數y=f(x)是周期為2的周期函數;

(6)y=f(x)對x∈R時,f(x+a)=-f(x)(或f(x+a)=,則y=f(x)是周期為2的周期函數;

5.方程k=f(x)有解k∈D(D為f(x)的值域);

6.a≥f(x)恆成立a≥[f(x)]max,;a≤f(x)恆成立a≤[f(x)]min;

7.(1)(a>0,a≠1,b>0,n∈R+);

(2)logaN=(a>0,a≠1,b>0,b≠1);

(3)logab的符號由口訣「同正異負」記憶;

(4)alogaN=N(a>0,a≠1,N>0);

8.判斷對應是否為映射時,抓住兩點:

(1)A中元素必須都有象且唯一;

(2)B中元素不一定都有原象,並且A中不同元素在B中可以有相同的象;

9.能熟練地用定義證明函數的單調性,求反函數,判斷函數的奇偶性。

10.對於反函數,應掌握以下一些結論:

(1)定義域上的單調函數必有反函數;

(2)奇函數的反函數也是奇函數;

(3)定義域為非單元素集的偶函數不存在反函數;

(4)周期函數不存在反函數;

(5)互為反函數的兩個函數具有相同的單調性;

(6)y=f(x)與y=f-1(x)互為反函數,設f(x)的定義域為A,值域為B,則有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A);

11.處理二次函數的問題勿忘數形結合;二次函數在閉區間上必有最值,求最值問題用「兩看法」:一看開口方向;二看對稱軸與所給區間的相對位置關系;

12.依據單調性,利用一次函數在區間上的保號性可解決求一類參數的范圍問題;

13.恆成立問題的處理 方法 :(1)分離參數法;(2)轉化為一元二次方程的根的分布列不等式(組)求解。


高中數學函數知識點

奇偶性

注圖:(1)為奇函數(2)為偶函數

1.定義

一般地,對於函數f(x)

(1)如果對於函數定義域內的任意一個x,都有f(-x)=-f(x),那麼函數f(x)就叫做奇函數。

(2)如果對於函數定義域內的任意一個x,都有f(-x)=f(x),那麼函數f(x)就叫做偶函數。

(3)如果對於函數定義域內的任意一個x,f(-x)=-f(x)與f(-x)=f(x)同時成立,那麼函數f(x)既是奇函數又是偶函數,稱為既奇又偶函數。

(4)如果對於函數定義域內的任意一個x,f(-x)=-f(x)與f(-x)=f(x)都不能成立,那麼函數f(x)既不是奇函數又不是偶函數,稱為非奇非偶函數。

說明:①奇、偶性是函數的整體性質,對整個定義域而言

②奇、偶函數的定義域一定關於原點對稱,如果一個函數的定義域不關於原點對稱,則這個函數一定不是奇(或偶)函數。

(分析:判斷函數的奇偶性,首先是檢驗其定義域是否關於原點對稱,然後再嚴格按照奇、偶性的定義經過化簡、整理、再與f(x)比較得出結論)

③判斷或證明函數是否具有奇偶性的根據是定義

2.奇偶函數圖像的特徵:

定理 奇函數的圖像關於原點成中心對稱圖表,偶函數的圖象關於y軸或軸對稱圖形。

f(x)為奇函數《==》f(x)的圖像關於原點對稱

點(x,y)→(-x,-y)

奇函數在某一區間上單調遞增,則在它的對稱區間上也是單調遞增。

偶函數 在某一區間上單調遞增,則在它的對稱區間上單調遞減。

3. 奇偶函數運算

(1) . 兩個偶函數相加所得的和為偶函數.

(2) . 兩個奇函數相加所得的和為奇函數.

(3) . 一個偶函數與一個奇函數相加所得的和為非奇函數與非偶函數.

(4) . 兩個偶函數相乘所得的積為偶函數.

(5) . 兩個奇函數相乘所得的積為偶函數.

(6) . 一個偶函數與一個奇函數相乘所得的積為奇函數.

定義域

(高中函數定義)設A,B是兩個非空的數集,如果按某個確定的對應關系f,使對於集合A中的任意一個數x,在集合B中都有唯一確定的數f(x)和它對應,那麼就稱f:A--B為集合A到集合B的一個函數,記作y=f(x),x屬於集合A。其中,x叫作自變數,x的取值范圍A叫作函數的定義域;

值域

名稱定義

函數中,應變數的取值范圍叫做這個函數的值域函數的值域,在數學中是函數在定義域中應變數所有值的集合

常用的求值域的方法

(1)化歸法;(2)圖象法(數形結合),

(3)函數單調性法,

(4)配方法,(5)換元法,(6)反函數法(逆求法),(7)判別式法,(8)復合函數法,(9)三角代換法,(10)基本不等式法等


高中數學函數知識點大全

對數函數

對數函數的一般形式為 ,它實際上就是指數函數 的反函數。因此指數函數里對於a的規定,同樣適用於對數函數。

右圖給出對於不同大小a所表示的函數圖形:

可以看到對數函數的圖形只不過的指數函數的圖形的關於直線y=x的對稱圖形,因為它們互為反函數。

(1)對數函數的定義域為大於0的實數集合。

(2)對數函數的值域為全部實數集合。

(3)函數總是通過(1,0)這點。

(4)a大於1時,為單調遞增函數,並且上凸;a小於1大於0時,函數為單調遞減函數,並且下凹。

(5)顯然對數函數無界。

指數函數

指數函數的一般形式為 ,從上面我們對於冪函數的討論就可以知道,要想使得x能夠取整個實數集合為定義域,則只有使得

如圖所示為a的不同大小影響函數圖形的情況。

可以看到:

(1) 指數函數的定義域為所有實數的集合,這里的前提是a大於0,對於a不大於0的情況,則必然使得函數的定義域不存在連續的區間,因此我們不予考慮。

(2) 指數函數的值域為大於0的實數集合。

(3) 函數圖形都是下凹的。

(4) a大於1,則指數函數單調遞增;a小於1大於0,則為單調遞減的。

(5) 可以看到一個顯然的規律,就是當a從0趨向於無窮大的過程中(當然不能等於0),函數的曲線從分別接近於Y軸與X軸的正半軸的單調遞減函數的位置,趨向分別接近於Y軸的正半軸與X軸的負半軸的單調遞增函數的位置。其中水平直線y=1是從遞減到遞增的一個過渡位置。

(6) 函數總是在某一個方向上無限趨向於X軸,永不相交。

(7) 函數總是通過(0,1)這點。

(8) 顯然指數函數無界。


高中數學函數知識點歸納相關 文章 :

★ 高中數學函數知識歸納總結

★ 高三數學函數知識點歸納

★ 高一函數知識點總結歸納

★ 高中數學函數知識點

★ 高中數學必考知識點歸納整理

★ 高一數學一次函數知識點總結

★ 高一數學知識點總結歸納

★ 高中數學知識點最新歸納

★ 高中數學知識點大全

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

❼ 高一數學必修一基本初等函數知識點總結

基本初等函數是高一數學必修一課本內的重點內容,有哪些知識點要了解?下面是我給大家帶來的高一數學必修一基本初等函數知識點,希望對你有幫助。

高一數學必修一基本初等函數知識點

從其中一個頂點向一個邊引一條線,交另一邊上某一點,則這個圖形變成有一條公共邊且另一組邊在同一直線上的兩個三角形。有六個內角,其中公共邊與另一組在同一直線上的邊相交形成的兩個角中,每一個角都是一個三角形的一個內角,且是另一個三角形的一個外角……

另外還有大於平角小於周角的角。

正弦函數 sinθ=y/r

餘弦函數 cosθ=x/r

正切函數 tanθ=y/x

餘切函數 cotθ=x/y

正割函數 secθ=r/x

餘割函數 cscθ=r/y

同角三角函數間的基本關系式:

·平方關系:

sin^2(α)+cos^2(α)=1

tan^2(α)+1=sec^2(α)

cot^2(α)+1=csc^2(α)

·積的關系:

sinα=tanα*cosα

cosα=cotα*sinα

tanα=sinα*secα

cotα=cosα*cscα

secα=tanα*cscα

cscα=secα*cotα

·倒數關系:

tanα·cotα=1

sinα·cscα=1

cosα·secα=1

一個園,弧長和半徑相等時所對應的角度是1弧度.弧度和角度的換算關系: 弧度*180/(2*π)=角度

★ 誘導公式★

常用的誘導公式有以下幾組:

公式一:

設α為任意角,終邊相同的角的同一三角函數的值相等:

sin(2kπ+α)=sinα

cos(2kπ+α)=cosα

tan(2kπ+α)=tanα

cot(2kπ+α)=cotα

公式二:

設α為任意角,π+α的三角函數值與α的三角函數值之間的關系: sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

公式三:

任意角α與 -α的三角函數值之間的關系:

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

公式四:

利用公式二和公式三可以得到π-α與α的三角函數值之間的關系: sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

公式五:

利用公式一和公式三可以得到2π-α與α的三角函數值之間的關系: sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

公式六:

π/2±α及3π/2±α與α的三角函數值之間的關系:

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

tan(π/2+α)=-cotα

cot(π/2+α)=-tanα

sin(π/2-α)=cosα

cos(π/2-α)=sinα

tan(π/2-α)=cotα

cot(π/2-α)=tanα

sin(3π/2+α)=-cosα

cos(3π/2+α)=sinα

tan(3π/2+α)=-cotα

cot(3π/2+α)=-tanα

sin(3π/2-α)=-cosα

cos(3π/2-α)=-sinα

tan(3π/2-α)=cotα

cot(3π/2-α)=tanα

(以上k∈Z)

函數類型 第一象限 第二象限 第三象限 第四象限 正弦 + + — — 餘弦 + — — + 正切 + — + — 餘切

正弦函數的性質:

解析式:y=sinx

圖像

波形圖像(由單位圓投影到坐標系得出)

定義域

R(實數)

值域:

[-1,1] 最值: ①最大值:當x=(π/2)+2kπ時,y(max)=1 ②最小值:當x=-(π/2)+2kπ時,y(min)=-1 值點: (kπ,0)

對稱性:

1)對稱軸:關於直線x=(π/2)+kπ對稱 2)中心對稱:關於點(kπ,0)對稱 周期:2π

奇偶性:

奇函數

單調性:

在[-(π/2)+2kπ,(π/2)+2kπ]上是增函數,在[(π/2)+2kπ,(3π/2)+2kπ]上是減函數

餘弦函數的性質:

餘弦函數

圖像:

波形圖像

定義域:R

值域: [-1,1]

最值:

1)當x=2kπ時,y(max)=1

2)當x=2kπ+π時,y(min)=-1

零值點:(π/2+kπ,0)

對稱性:

1)對稱軸:關於直線x=kπ對稱

2)中心對稱:關於點(π/2+kπ,0)對稱

周期: 2π

奇偶性:偶函數

單調性:

在[2kπ-π,2kπ]上是增函數

在[2kπ,2kπ+π]上是減函數

定義域:{x|x≠(π/2)+kπ,k∈Z}

值域:R

最值:無最大值與最小值

零值點:(kπ,0)

對稱性:

軸對稱:無對稱軸

中心對稱:關於點(kπ,0)對稱

周期:π

奇偶性:奇函數

單調性:在(-π/2+kπ,π/2+kπ)上都是增函數

高一數學學習方法

一、 強化自主預習。

預習要做到:細讀、精讀、粗讀。所謂的細讀就是仔細閱讀教材,邊讀書邊用筆記錄一些自認為重點內容或是即時的靈感或想法。細讀包括標點符號及邊框內容讀一讀,想一想等,不放過任何一個字。最好把每一個段落的意義寫出來,當然也包括課後練習及習題要獨立完成,遇到不會的題目可以做好標記;精讀就是通過細讀後把書本標記出的重點內容,再認真看一看,想一想;粗讀就是在細讀與精讀的基礎上,快速瀏覽自學過的內容,並思考學習到什麼知識,應當注意什麼。

二、 跟上聽課節奏。

自主預習是聽好課的基礎,只要預習好,那麼聽好課並不難。高中老師講課的共同特點是節奏快。老師都會要求我們盡量要去復習及預習。因為老師在上課時,對書上很多知識都要再加工。這樣一來上課就成了最關鍵的環節,走一會神都可能使你產生一堆認識上的盲點!所以聽課要認真聽,腦袋要跟著老師的思路走,主動多動腦,主動思考,當然還需要記好筆記,筆記不是照搬黑板的東西,而應該是關鍵點,加上你自己的理解或者困惑,及時加上註解,方便回頭再復習,整理掌握。

三、 作業獨立思考。

❽ 高一數學知識點歸納梳理

總結 就是把一個時間段取得的成績、存在的問題及得到的 經驗 和教訓進行一次全面系統的總結的書面材料,它可以明確下一步的工作方向,少走彎路,少犯錯誤,提高工作效益,下面是我給大家帶來的 高一數學 知識點歸納梳理,以供大家參考!

高一數學知識點歸納梳理

並集:以屬於A或屬於B的元素為元素的集合稱為A與B的並(集),記作A∪B(或B∪A),讀作「A並B」(或「B並A」),即A∪B={x|x∈A,或x∈B}交集:以屬於A且屬於B的元差集表示

素為元素的集合稱為A與B的交(集),記作A∩B(或B∩A),讀作「A交B」(或「B交A」),即A∩B={x|x∈A,且x∈B}例如,全集U={1,2,3,4,5}A={1,3,5}B={1,2,5}。那麼因為A和B中都有1,5,所以A∩B={1,5}。再來看看,他們兩個中含有1,2,3,5這些個元素,不管多少,反正不是你有,就是我有。那麼說A∪B={1,2,3,5}。圖中的陰影部分就是A∩B。有趣的是;例如在1到105中不是3,5,7的整倍數的數有多少個。結果是3,5,7每項減集合

1再相乘。48個。對稱差集:設A,B為集合,A與B的對稱差集A?B定義為:A?B=(A-B)∪(B-A)例如:A={a,b,c},B={b,d},則A?B={a,c,d}對稱差運算的另一種定義是:A?B=(A∪B)-(A∩B)無限集:定義:集合里含有無限個元素的集合叫做無限集有限集:令N_是正整數的全體,且N_n={1,2,3,……,n},如果存在一個正整數n,使得集合A與N_n一一對應,那麼A叫做有限集合。差:以屬於A而不屬於B的元素為元素的集合稱為A與B的差(集)。記作:AB={x│x∈A,x不屬於B}。註:空集包含於任何集合,但不能說「空集屬於任何集合」.補集:是從差集中引出的概念,指屬於全集U不屬於集合A的元素組成的集合稱為集合A的補集,記作CuA,即CuA={x|x∈U,且x不屬於A}空集也被認為是有限集合。例如,全集U={1,2,3,4,5}而A={1,2,5}那麼全集有而A中沒有的3,4就是CuA,是A的補集。CuA={3,4}。在信息技術當中,常常把CuA寫成~A。

高一數學知識點小結大全

知識點總結

本節知識包括函數的單調性、函數的奇偶性、函數的周期性、函數的最值、函數的對稱性和函數的圖象等知識點。函數的單調性、函數的奇偶性、函數的周期性、函數的最值、函數的對稱性是學習函數的圖象的基礎,函數的圖象是它們的綜合。所以理解了前面的幾個知識點,函數的圖象就迎刃而解了。

一、函數的單調性

1、函數單調性的定義

2、函數單調性的判斷和證明:(1)定義法 (2)復合函數分析法 (3)導數證明法 (4)圖象法

二、函數的奇偶性和周期性

1、函數的奇偶性和周期性的定義

2、函數的奇偶性的判定和證明 方法

3、函數的周期性的判定方法

三、函數的圖象

1、函數圖象的作法 (1)描點法 (2)圖象變換法

2、圖象變換包括圖象:平移變換、伸縮變換、對稱變換、翻折變換。

常見考法

本節是段考和高考必不可少的考查內容,是段考和高考考查的重點和難點。選擇題、填空題和解答題都有,並且題目難度較大。在解答題中,它可以和高中數學的每一章聯合考查,多屬於拔高題。多考查函數的單調性、最值和圖象等。

誤區提醒

1、求函數的單調區間,必須先求函數的定義域,即遵循「函數問題定義域優先的原則」。

2、單調區間必須用區間來表示,不能用集合或不等式,單調區間一般寫成開區間,不必考慮端點問題。

3、在多個單調區間之間不能用「或」和「 」連接,只能用逗號隔開。

4、判斷函數的奇偶性,首先必須考慮函數的定義域,如果函數的定義域不關於原點對稱,則函數一定是非奇非偶函數。

5、作函數的圖象,一般是首先化簡解析式,然後確定用描點法或圖象變換法作函數的圖象。

高一數學知識點摘要

集合間的基本關系

1.「包含」關系—子集

注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。 反之: 集合A不包含於集合B,或集合B不包含集合A,記作A B或B A

2.「相等」關系(5≥5,且5≤5,則5=5)

實例:設 A={x|x2-1=0} B={-1,1} 「元素相同」

結論:對於兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時,集合B的任何一個元素都是集合A的元素,我們就說集合A等於集合B,即:A=B

A?① 任何一個集合是它本身的子集。A

B那就說集合A是集合B的真子集,記作A B(或B A)?B,且A?②真子集:如果A

C?C ,那麼 A?B, B?③如果 A

A 那麼A=B?B 同時 B?④ 如果A

3. 不含任何元素的集合叫做空集,記為Φ

規定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

集合的運算

1.交集的定義:一般地,由所有屬於A且屬於B的元素所組成的集合,叫做A,B的交集.

記作A∩B(讀作」A交B」),即A∩B={x|x∈A,且x∈B}.

2、並集的定義:一般地,由所有屬於集合A或屬於集合B的元素所組成的集合,叫做A,B的並集。記作:A∪B(讀作」A並B」),即A∪B={x|x∈A,或x∈B}.

3、交集與並集的性質:A∩A = A, A∩φ= φ, A∩B = B∩A,A∪A = A, A∪φ= A ,A∪B = B∪A.

4、全集與補集

(1)補集:設S是一個集合,A是S的一個子集(即 ),由S中所有不屬於A的元素組成的集合,叫做S中子集A的補集(或余集)

A}?S且 x? x?記作: CSA 即 CSA ={x

(2)全集:如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集。通常用U來表示。

(3)性質:⑴CU(C UA)=A ⑵(C UA)∩A=Φ ⑶(CUA)∪A=U

高一數學知識點歸納梳理相關 文章 :

★ 高一數學第一冊必掌握的知識點歸納

★ 高一數學必會必備知識點總結歸納

★ 高一數學基礎知識點

★ 高一學年數學總知識點復習歸納

★ 高一數學必修知識點梳理

★ 高一數學知識點大全

★ 高一數學必修一知識點梳理

★ 高一數學考點知識點總結

★ 高中數學必修一三角函數知識點總結

★ 高中數學演算法初步知識點整理

❾ 高一數學必修4函數知識點總結

§1.2.1、函數的概念
1、 設A、B是非空的數集,如果按照某種確定的對應關系,使對於集合A中的任意一個數,在集合B中都有惟一確定的數和它對應,那麼就稱為集合A到集合B的一個函數,記作:.
2、 一個函數的構成要素為:定義域、對應關系、值域.如果兩個函數的定義域相同,並且對應關系完全一致,則稱這兩個函數相等.

§1.2.2、函數的表示法
1、 函數的三種表示方法:解析法、圖象法、列表法.
§1.3.1、單調性與最大(小)值
1、 注意函數單調性證明的一般格式:
§1.3.2、奇偶性
1、 一般地,如果對於函數的定義域內任意一個,都有,那麼就稱函數為偶函數.偶函數圖象關於軸對稱.
2、 一般地,如果對於函數的定義域內任意一個,都有,那麼就稱函數為奇函數.奇函數圖象關於原點對稱.
第二章、基本初等函數(Ⅰ)
§2.1.1、指數與指數冪的運算
1、 一般地,如果,那麼叫做 的次方根。其中.
若需要可以發郵箱