A. 數學基礎知識有哪些
什麼是數學基礎知識
眾所周知,概念是思維的基本形式之一,是對一切事物進行判斷和推理的基礎.數學概念是構成數學知識的基礎,是基礎知識和基本技能教學的核心,正確地理解數學概念是掌握數學知識的前提.因此數學概念的教學是數學教學的一個重要方面,但數學概念的抽象性使得數學概念的教學相對棘手. 概念的產生都有其必然性,我們要抓住概念產生的背景,讓學生了解數學概念的產生、發展、演變的原因以及在這些原因中所隱藏著數學概念間的內在聯系,將數學概念在數學思想的整體連貫性中的作用體現出來. 因此,教師在講授新的概念時,可以分析概念產生的背景.找出合適學生理解的、有趣而生動的切入點,讓學生更容易理解新概念,更容易對新知識找到共鳴,才能讓學生有更多的機會參與發現需要建立新概念的時機並加入到這一創造活動中去,從中感受和諧、連貫、嚴密、有用的數學之美.下面淺談一下在概念教學中用到的幾種方法. 一、從概念的產生背景著手,層層深入 對數這一概念就是學生在數學學習中遇到的一個非常抽象的概念,直接講授的方式會使學生難於理解.其實我們分析一下對數產生的背景,可以發現這是數學運算發展到一定的階段後,必然產生的一種新運算.加法發展到一定程度必然要引入減法,乘方發展到一定階段必然要出現開方一樣,對數也是為了生產生活中的計算需要而必然產生的.如果把這些概念的背景、運算方式列成表格,在對比過程中自然而然形成新的概念,使學生輕松地接受並理解它. 教師可以設置了一個這樣的教學引入過程: 首先提出兩個問題1、1個細胞一次分裂成兩個細胞,請問1個細胞需要分裂多少次以後才能分裂成128個?2、某人原來年薪為a萬元,假設他的工資以每年10%的速度增長,請問經過多少年以後他的年薪增長為原來的2倍? 這兩個例題中,運用的運算都是解指數方程:1、,2、.但第一題答案是特殊值,不需要引入新運算;第二題答案則不是特殊值了,在現有的運算中,答案算不出來.如何讓解決這一問題? 緊接著,教師再提出了幾種具有互逆關系的運算進行對比,如:3+x=10 x=10-3、5=8 x=、 . 在接下來的教學中,我們就可以自然的將指數式化成對數式x=,引入新的運算概念.並且指出:指數式與對數式的關系(1)是等價的(2)它們只是寫法不一樣,讀法不一樣,a、b、N的名稱不一樣,所在位置不一樣,但代表的數一樣,含義一樣,數的范圍也是一樣,只要牢牢記住指數式和對數式中的字母a、b、N交換的方式、交換的位置,就可以自由的將指數式和對數式進行互化.在這個過程中,指數對數與加減、乘除、乘方開方之間關系是相類似的,這些概念之間的對比要貫穿教學始終,以便於學生的理解. 二、從概念的生活背景出發,創設學習情境 很多數學概念是人們在長期的現實生活中對事物進行高度抽象概括的產物,有具體的素材為基礎,有生動的現實原型,教師要善於結合生活實際,通過多種方式創造良好的學習情境激發學生的學習興趣,使學生覺得這些抽象的數學概念彷彿就在自己的身邊,伸手可摸. 等比數列這樣的概念就是直接源於生活的概念,在講授的過程中,現實生活中的實例隨手可得,如常見的細胞分裂問題,商店打折問題,放射性物質的重量問題,銀行利率,為自己家選擇合適的還貸方式等等實例可以信手拈來穿插在概念的講解、鞏固的過程中. 為了讓學生積極性充分發揮出來,我還設計了一個有趣的問題情境引入等比數列這一概念: 阿基里斯(希臘神話中的善跑英雄)和烏龜賽跑,烏龜在前方1里處,阿基里斯的速度是烏龜的10倍,當......>>
小學數學的基礎知識有哪些
小學數學學習概述
數學學習主要是對學生數學思維能力的培養.這要以數學基礎知識和基本技能為基礎,以數學問題為誘因,以數學思想方法為核心,以數學活動為主線,遵循數學的內在規律和學生的思維規律開展教學.
學習類型分析
1.方式性分類
(1)接受學習與發現學習
定義:將學習的內容以定論的形式呈現給學習者的學習方式.
模式:呈現材料—講解分析—理解領會—反饋鞏固
(2)發現學習
定義:向學習者提供一定的背景材料,由學習者獨立操作而習得知識的學習方式.
模式:呈現材料—假設嘗試—認知整合—反饋鞏固.
2.知識性分類一
(1)知識學習 定義:以理解、掌握數學基礎知識為主的學習活動.過程:選擇—領會—習得——鞏固
(2)技能學習
定義:將一連串(內部或外部的)動作經練習而形成熟練的、自動化的反應過程.
過程:演示—模仿—練習—熟練—自動化
(3)問題解決學習
以關心問題解決過程為主、反思問題解決思考過程的一種數學學習活動.
提出問題—分析問題—解決問題—反思過程
3.知識性分類二
(1)概念性(陳述性)知識的學習
把數學中的概念、定義、公式、法則、原理、定律、規則等都稱為概念性知識.
概念學習:同化與形成.
利用已有概念來學習相關新概念的方式,稱概念同化;依靠直接經驗,從大量的具體例子出發,概括出新概念的本質屬性的方式,稱為概念形成.概念形成是小學生獲得數學概念的主要形式.
(2)技能性(程序性)知識的學習
小學數學技能主要是運算技能. 運算技能的形成分為三個階段:
①認知階段:「引導式」的嘗試錯誤.從老師演算例題或自學法則中初步了解運演算法則,在頭腦中形成運算方法的表徵.②聯結階段:法則階段,即按法則一步步地運算,保證算對(使用法則解決問題,陳述性知識提供了基本的操作線索)—程序化階段(將相關的小法則整合為整體的法則系統,此時概念性知識已退出),能算得比較快速正確.③自動化階段:更清楚更熟練地應用第二階段中的程序,通過較多的練習,不再思考程序,達到一定程序的自動化,獲得了運算的速度和較高的正確率.
(3)問題解決(策略性知識)的學習
通過重組所掌握的數學知識,找出解決當前問題的適用策略和方法,從而獲得解決問題的策略的學習.
小學生解決問題的主要方式,一是嘗試錯誤式(又稱試誤法),即通過進行無定向的嘗試,糾正暫時性
嘗試錯誤,直至解決問題;二是頓悟式(也稱啟發式),好像答案或方法是突然出現的,而實際上是有一
定的「心向」作基礎的,這就是問題解決所依據的規則、原理的評價和識別.
4.任務性分類
(1)記憶操作類學習
如口算、尺規作(畫)圖和掌握基本的運演算法則並能進行准確計算等.
(2)理解性的學習
如認識並掌握概念的內涵、懂得數學原理並能用於解釋或說明、理解一個數學命題並能用於推得新命題.
(3)探索性的學習
如需要讓學生經過自己探索,發現並提出問題或學習任務,讓學生通過自己的探究能總結出一個數學規律或規則,讓學生通過自己的探究過程而逐步形成新的策略性知識等.
小學生數學認知學習
一、小學生數學認知學習的基本特徵
1.生活常識是小學生數學認知的起點
要在兒童的生活常識和數學知識之間構建一座橋梁,讓兒童從生活常識和經驗出發,不斷通過嘗試、探索和反思,從而達到「普通常識」的「數學化」.
2.小學生數學認知是一個主體的數學活動過程
數學認知過程要成為一個「做數學」的過程,讓兒童從生活常識出發,在「做數學」的過程中,去發現、了解、體驗和掌握數學,去認識數學的價值、了解數學的特性、總結數學的規律,去學會用數學、提高數學修養、發展數學能力......>>
小學數學基礎知識包括哪幾個方面?
數學與計算、量與計量、百分數、比和比例、應用題、代數初步知識、幾何初步知識、統計初步知識八大部分
初中數學基礎知識點有哪些
初中數學基礎知識大全:直角座標系與點的位置
1. 直角座標系中,點A(3,0)在y軸上。
2. 直角座標系中,x軸上的任意點的橫座標為0。
3. 直角座標系中,點A(1,1)在第一象限。
4. 直角座標系中,點A(-1,1)在第二象限。
5. 直角座標系中,點A(-1,-1)在第三象限。
6. 直角座標系中,點A(1,-1)在第四象限。
初中數學基礎知識大全:特殊三角函數值
1.cos30°=√3/2
2.sin2 60°+ cos2 60°= 1
3.2sin30°+ tan45°= 2
4.tan45°= 1
5.cos60°+ sin30°= 1
初中數學基礎知識大全:圓的基本性質
1.半圓或直徑所對的圓周角是直角。
2.任意一個三角形一定有一個外接圓.
3.在同一平面內,到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓。
4.在同圓或等圓中,相等的圓心角所對的弧相等。
5.同弧所對的圓周角等於圓心角的一半。
6.同圓或等圓的半徑相等。
7.過三個點一定可以作一個圓。
8.長度相等的兩條弧是等弧。
9.在同圓或等圓中,相等的圓心角所對的弧相等。
10.經過圓心平分弦的直徑垂直於弦。
數學的基礎理論有哪些
「數與代數」領域中主要是最基本的數、式、方程(及不等式)和函數的內容.
⑴在顧及知識的縱向邏輯結構的前提下,突出重點,適當精簡整合.
⑵螺旋上升地呈現重要的概念和思想,不斷深化對它們的認識,例如:使方程和函數交替出現,即按一次方程「組」,一次函數,二次方程,二次函數的順序螺旋上升.
⑶聯系實際,體現知識的形成和應用過程,突出建立數學模型的思想.
初三數學基礎知識有哪些?
方程,平面幾何,概率
B. 程序員必備的一些數學基礎知識
作為一個標準的程序員,應該有一些基本的數學素養,尤其現在很多人在學習人工智慧相關知識,想抓住一波人工智慧的機會。很多程序員可能連這樣一些基礎的數學問題都回答不上來。
作為一個傲嬌的程序員,應該要掌握這些數學基礎知識,才更有可能碼出一個偉大的產品。
向量 向量(vector)是由一組實數組成的有序數組,同時具有大小和方向。一個n維向量a是由n個有序實數組成,表示為 a = [a1, a2, · · · , an]
矩陣
線性映射 矩陣通常表示一個n維線性空間v到m維線性空間w的一個映射f: v -> w
註:為了書寫方便, X.T ,表示向量X的轉置。 這里: X(x1,x2,...,xn).T,y(y1,y2,...ym).T ,都是列向量。分別表示v,w兩個線性空間中的兩個向量。A(m,n)是一個 m*n 的矩陣,描述了從v到w的一個線性映射。
轉置 將矩陣行列互換。
加法 如果A和B 都為m × n的矩陣,則A和B 的加也是m × n的矩陣,其每個元素是A和B相應元素相加。 [A + B]ij = aij + bij .
乘法 如A是k × m矩陣和B 是m × n矩陣,則乘積AB 是一個k × n的矩陣。
對角矩陣 對角矩陣是一個主對角線之外的元素皆為0的矩陣。對角線上的元素可以為0或其他值。一個n × n的對角矩陣A滿足: [A]ij = 0 if i ̸= j ∀i, j ∈ {1, · · · , n}
特徵值與特徵矢量 如果一個標量λ和一個非零向量v滿足 Av = λv, 則λ和v分別稱為矩陣A的特徵值和特徵向量。
矩陣分解 一個矩陣通常可以用一些比較「簡單」的矩陣來表示,稱為矩陣分解。
奇異值分解 一個m×n的矩陣A的奇異值分解
其中U 和V 分別為m × m和n×n 的正交矩陣,Σ為m × n的對角矩陣,其對角 線上的元素稱為奇異值(singular value)。
特徵分解 一個n × n的方塊矩陣A的特徵分解(Eigendecomposition)定義為
其中Q為n × n的方塊矩陣,其每一列都為A的特徵向量,^為對角陣,其每一 個對角元素為A的特徵值。 如果A為對稱矩陣,則A可以被分解為
其中Q為正交陣。
導數 對於定義域和值域都是實數域的函數 f : R → R ,若f(x)在點x0 的某個鄰域∆x內,極限
存在,則稱函數f(x)在點x0 處可導, f'(x0) 稱為其導數,或導函數。 若函數f(x)在其定義域包含的某區間內每一個點都可導,那麼也可以說函數f(x)在這個區間內可導。連續函數不一定可導,可導函數一定連續。例如函數|x|為連續函數,但在點x = 0處不可導。
加法法則
y = f(x),z = g(x) 則
乘法法則
鏈式法則 求復合函數導數的一個法則,是在微積分中計算導數的一種常用方法。若 x ∈ R,y = g(x) ∈ R,z = f(y) ∈ R ,則
Logistic函數是一種常用的S形函數,是比利時數學家 Pierre François Verhulst在 1844-1845 年研究種群數量的增長模型時提出命名的,最初作為一種生 態學模型。 Logistic函數定義為:
當參數為 (k = 1, x0 = 0, L = 1) 時,logistic函數稱為標准logistic函數,記 為 σ(x) 。
標准logistic函數在機器學習中使用得非常廣泛,經常用來將一個實數空間的數映射到(0, 1)區間。標准 logistic 函數的導數為:
softmax函數是將多個標量映射為一個概率分布。對於 K 個標量 x1, · · · , xK , softmax 函數定義為
這樣,我們可以將 K 個變數 x1, · · · , xK 轉換為一個分布: z1, · · · , zK ,滿足
當softmax 函數的輸入為K 維向量x時,
其中,1K = [1, · · · , 1]K×1 是K 維的全1向量。其導數為
離散優化和連續優化 :根據輸入變數x的值域是否為實數域,數學優化問題可以分為離散優化問題和連續優化問題。
無約束優化和約束優化 :在連續優化問題中,根據是否有變數的約束條件,可以將優化問題分為無約束優化問題和約束優化問題。 ### 優化演算法
全局最優和局部最優
海賽矩陣
《運籌學裡面有講》,前面一篇文章計算梯度步長的時候也用到了: 梯度下降演算法
梯度的本意是一個向量(矢量),表示某一函數在該點處的方向導數沿著該方向取得最大值,即函數在該點處沿著該方向(此梯度的方向)變化最快,變化率最大(為該梯度的模)。
梯度下降法
梯度下降法(Gradient Descent Method),也叫最速下降法(Steepest Descend Method),經常用來求解無約束優化的極小值問題。
梯度下降法的過程如圖所示。曲線是等高線(水平集),即函數f為不同常數的集合構成的曲線。紅色的箭頭指向該點梯度的反方向(梯度方向與通過該點的等高線垂直)。沿著梯度下降方向,將最終到達函數f 值的局部最優解。
梯度上升法
如果我們要求解一個最大值問題,就需要向梯度正方向迭代進行搜索,逐漸接近函數的局部極大值點,這個過程則被稱為梯度上升法。
概率論主要研究大量隨機現象中的數量規律,其應用十分廣泛,幾乎遍及各個領域。
離散隨機變數
如果隨機變數X 所可能取的值為有限可列舉的,有n個有限取值 {x1, · · · , xn}, 則稱X 為離散隨機變數。要了解X 的統計規律,就必須知道它取每種可能值xi 的概率,即
稱為離散型隨機變數X 的概率分布或分布,並且滿足
常見的離散隨機概率分布有:
伯努利分布
二項分布
連續隨機變數
與離散隨機變數不同,一些隨機變數X 的取值是不可列舉的,由全部實數 或者由一部分區間組成,比如
則稱X 為連續隨機變數。
概率密度函數
連續隨機變數X 的概率分布一般用概率密度函數 p(x) 來描述。 p(x) 為可積函數,並滿足:
均勻分布 若a, b為有限數,[a, b]上的均勻分布的概率密度函數定義為
正態分布 又名高斯分布,是自然界最常見的一種分布,並且具有很多良好的性質,在很多領域都有非常重要的影響力,其概率密度函數為
其中, σ > 0,µ 和 σ 均為常數。若隨機變數X 服從一個參數為 µ 和 σ 的概率分布,簡記為
累積分布函數
對於一個隨機變數X,其累積分布函數是隨機變數X 的取值小於等於x的概率。
以連續隨機變數X 為例,累積分布函數定義為:
其中p(x)為概率密度函數,標准正態分布的累計分布函數:
隨機向量
隨機向量是指一組隨機變數構成的向量。如果 X1, X2, · · · , Xn 為n個隨機變數, 那麼稱 [X1, X2, · · · , Xn] 為一個 n 維隨機向量。一維隨機向量稱為隨機變數。隨機向量也分為離散隨機向量和連續隨機向量。 條件概率分布 對於離散隨機向量 (X, Y) ,已知X = x的條件下,隨機變數 Y = y 的條件概率為:
對於二維連續隨機向量(X, Y ),已知X = x的條件下,隨機變數Y = y 的條件概率密度函數為
期望 對於離散變數X,其概率分布為 p(x1), · · · , p(xn) ,X 的期望(expectation)或均值定義為
對於連續隨機變數X,概率密度函數為p(x),其期望定義為
方差 隨機變數X 的方差(variance)用來定義它的概率分布的離散程度,定義為
標准差 隨機變數 X 的方差也稱為它的二階矩。X 的根方差或標准差。
協方差 兩個連續隨機變數X 和Y 的協方差(covariance)用來衡量兩個隨機變數的分布之間的總體變化性,定義為
協方差經常也用來衡量兩個隨機變數之間的線性相關性。如果兩個隨機變數的協方差為0,那麼稱這兩個隨機變數是線性不相關。兩個隨機變數之間沒有線性相關性,並非表示它們之間獨立的,可能存在某種非線性的函數關系。反之,如果X 與Y 是統計獨立的,那麼它們之間的協方差一定為0。
隨機過程(stochastic process)是一組隨機變數Xt 的集合,其中t屬於一個索引(index)集合T 。索引集合T 可以定義在時間域或者空間域,但一般為時間域,以實數或正數表示。當t為實數時,隨機過程為連續隨機過程;當t為整數時,為離散隨機過程。日常生活中的很多例子包括股票的波動、語音信號、身高的變化等都可以看作是隨機過程。常見的和時間相關的隨機過程模型包括貝努力過程、隨機遊走、馬爾可夫過程等。
馬爾可夫過程 指一個隨機過程在給定現在狀態及所有過去狀態情況下,其未來狀態的條件概率分布僅依賴於當前狀態。
其中X0:t 表示變數集合X0, X1, · · · , Xt,x0:t 為在狀態空間中的狀態序列。
馬爾可夫鏈 離散時間的馬爾可夫過程也稱為馬爾可夫鏈(Markov chain)。如果一個馬爾可夫鏈的條件概率
馬爾可夫的使用可以看前面一篇寫的有意思的文章: 女朋友的心思你能猜得到嗎?——馬爾可夫鏈告訴你 隨機過程還有高斯過程,比較復雜,這里就不詳細說明了。
資訊理論(information theory)是數學、物理、統計、計算機科學等多個學科的交叉領域。資訊理論是由 Claude Shannon最早提出的,主要研究信息的量化、存儲和通信等方法。在機器學習相關領域,資訊理論也有著大量的應用。比如特徵抽取、統計推斷、自然語言處理等。
在資訊理論中,熵用來衡量一個隨機事件的不確定性。假設對一個隨機變數X(取值集合為C概率分布為 p(x), x ∈ C )進行編碼,自信息I(x)是變數X = x時的信息量或編碼長度,定義為 I(x) = − log(p(x)), 那麼隨機變數X 的平均編碼長度,即熵定義為
其中當p(x) = 0時,我們定義0log0 = 0 熵是一個隨機變數的平均編碼長度,即自信息的數學期望。熵越高,則隨機變數的信息越多;熵越低,則信息越少。如果變數X 當且僅當在x時 p(x) = 1 ,則熵為0。也就是說,對於一個確定的信息,其熵為0,信息量也為0。如果其概率分布為一個均勻分布,則熵最大。假設一個隨機變數X 有三種可能值x1, x2, x3,不同概率分布對應的熵如下:
聯合熵和條件熵 對於兩個離散隨機變數X 和Y ,假設X 取值集合為X;Y 取值集合為Y,其聯合概率分布滿足為 p(x, y) ,則X 和Y 的聯合熵(Joint Entropy)為
X 和Y 的條件熵為
互信息 互信息(mutual information)是衡量已知一個變數時,另一個變數不確定性的減少程度。兩個離散隨機變數X 和Y 的互信息定義為
交叉熵和散度 交叉熵 對應分布為p(x)的隨機變數,熵H(p)表示其最優編碼長度。交叉熵是按照概率分布q 的最優編碼對真實分布為p的信息進行編碼的長度,定義為
在給定p的情況下,如果q 和p越接近,交叉熵越小;如果q 和p越遠,交叉熵就越大。
C. 數學基礎知識
七年級到九年級數學必記重要知識點
1、過兩點有且只有一條直線
2、兩點之間線段最短
3、同角或等角的補角相等
4、同角或等角的餘角相等
5、過一點有且只有一條直線和已知直線垂直
6、直線外一點與直線上各點連接的所有線段中,垂線段最短
7、平行公理 經過直線外一點,有且只有一條直線與這條直線平行
8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9、同位角相等,兩直線平行
10、內錯角相等,兩直線平行
11、同旁內角互補,兩直線平行
12、兩直線平行,同位角相等
13、兩直線平行,內錯角相等
14、兩直線平行,同旁內角互補
15、定理 三角形兩邊的和大於第三邊
16、推論 三角形兩邊的差小於第三邊
17、三角形內角和定理 三角形三個內角的和等於180°
18、推論1 直角三角形的兩個銳角互余
19、推論2 三角形的一個外角等於和它不相鄰的兩個內角的和
20、推論3 三角形的一個外角大於任何一個和它不相鄰的內角
21、全等三角形的對應邊、對應角相等
22、邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等
23、角邊角公理( ASA)有兩角和它們的夾邊對應相等的 兩個三角形全等
24、推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等
25、邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等
26、斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等
27、定理1 在角的平分線上的點到這個角的兩邊的距離相等
28、定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上
29、角的平分線是到角的兩邊距離相等的所有點的集合
30、等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角)
31、推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊
32、等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33、推論3 等邊三角形的各角都相等,並且每一個角都等於60°
34、等腰三角形的判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)
35、推論1 三個角都相等的三角形是等邊三角形
36、推論 2 有一個角等於60°的等腰三角形是等邊三角形
37、在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半
38、直角三角形斜邊上的中線等於斜邊上的一半
39、定理 線段垂直平分線上的點和這條線段兩個端點的距離相等
40、逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42、定理1 關於某條直線對稱的兩個圖形是全等形
43、定理 2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線
44、定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上
45、逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱
46、勾股定理 直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a2+b2=c2
47、勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a2+b2=c2,那麼這個三角形是直角三角形
48、定理 四邊形的內角和等於360°
49、四邊形的外角和等於360°
50、多邊形內角和定理 n邊形的內角的和等於(n-2)×180°
51、推論 任意多邊的外角和等於360°
52、平行四邊形性質定理1 平行四邊形的對角相等
53、平行四邊形性質定理2 平行四邊形的對邊相等
54、推論 夾在兩條平行線間的平行線段相等
55、平行四邊形性質定理3 平行四邊形的對角線互相平分
56、平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形
57、平行四邊形判定定理2 兩組對邊分別相等的四邊 形是平行四邊形
58、平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形
59、平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形
60、矩形性質定理1 矩形的四個角都是直角
61、矩形性質定理2 矩形的對角線相等
62、矩形判定定理1 有三個角是直角的四邊形是矩形
63、矩形判定定理2 對角線相等的平行四邊形是矩形
64、菱形性質定理1 菱形的四條邊都相等
65、菱形性質定理2 菱形的對角線互相垂直,並且每一條對角線平分一組對角
66、菱形面積=對角線乘積的一半,即S=(a×b)÷2
67、菱形判定定理1 四邊都相等的四邊形是菱形
68、菱形判定定理2 對角線互相垂直的平行四邊形是菱形
69、正方形性質定理1 正方形的四個角都是直角,四條邊都相等
70、正方形性質定理2正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角
71、定理1 關於中心對稱的兩個圖形是全等的
72、定理2 關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分
73、逆定理 如果兩個圖形的對應點連線都經過某一點,並且被這一點平分,那麼這兩個圖形關於這一點對稱
74、等腰梯形性質定理 等腰梯形在同一底上的兩個角相等
75、等腰梯形的兩條對角線相等
76、等腰梯形判定定理 在同一底上的兩個角相等的梯 形是等腰梯形
77、對角線相等的梯形是等腰梯形
78、平行線等分線段定理 如果一組平行線在一條直線上截得的線段相等,那麼在其他直線上截得的線段也相等
79、推論1 經過梯形一腰的中點與底平行的直線,必平分另一腰
80、推論2 經過三角形一邊的中點與另一邊平行的直線,必平分第三邊
81、三角形中位線定理 三角形的中位線平行於第三邊,並且等於它的一半
82、梯形中位線定理 梯形的中位線平行於兩底,並且等於兩底和的一半 L=(a+b)÷2 S=L×h
83、(1)比例的基本性質:
如果a:b=c:d,那麼ad=bc
如果 ad=bc ,那麼a:b=c:d
84、(2)合比性質:
如果a/b=c/d,那麼(a±b)/b=(c±d)/d
85、(3)等比性質:
如果a/b=c/d=…=m/n(b+d+…+n≠0),
那麼(a+c+…+m)/(b+d+…+n)=a/b
86、平行線分線段成比例定理 三條平行線截兩條直線,所得的對應線段成比例
87、推論 平行於三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例
88、定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那麼這條直線平行於三角形的第三邊
89、平行於三角形的一邊,並且和其他兩邊相交的直線, 所截得的三角形的三邊與原三角形三邊對應成比例
90、定理 平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似
91、相似三角形判定定理1 兩角對應相等,兩三角形相似(ASA)
92、直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
93、判定定理2 兩邊對應成比例且夾角相等,兩三角形相似(SAS)
94、判定定理3 三邊對應成比例,兩三角形相似(SSS)
95、定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那麼這兩個直角三角形相似
96、性質定理1 相似三角形對應高的比,對應中線的比與對應角平分線的比都等於相似比
97、性質定理2 相似三角形周長的比等於相似比
98、性質定理3 相似三角形面積的比等於相似比的平方
99、任意銳角的正弦值等於它的餘角的餘弦值,任意銳角的餘弦值等於它的餘角的正弦值
100、任意銳角的正切值等於它的餘角的餘切值,任意銳角的餘切值等於它的餘角的正切值
101、圓是定點的距離等於定長的點的集合
102、圓的內部可以看作是圓心的距離小於半徑的點的集合
103、圓的外部可以看作是圓心的距離大於半徑的點的集合
104、同圓或等圓的半徑相等
105、到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓
106、和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線
107、到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
108、到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線
109、定理 不在同一直線上的三點確定一個圓。
110、垂徑定理 垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧
111、推論1
①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧
②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧
112、推論2 圓的兩條平行弦所夾的弧相等
113、圓是以圓心為對稱中心的中心對稱圖形
114、定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
115、推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那麼它們所對應的其餘各組量都相等
116、定理 一條弧所對的圓周角等於它所對的圓心角的一半
117、推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
118、推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑
119、推論3 如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形
120、定理 圓的內接四邊形的對角互補,並且任何一個外角都等於它的內對角
121、①直線L和⊙O相交 d<r
②直線L和⊙O相切 d=r
③直線L和⊙O相離 d>r
122、切線的判定定理 經過半徑的外端並且垂直於這條半徑的直線是圓的切線
123、切線的性質定理 圓的切線垂直於經過切點的半徑
124、推論1 經過圓心且垂直於切線的直線必經過切點
125、推論2 經過切點且垂直於切線的直線必經過圓心
126、切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等圓心和這一點的連線平分兩條切線的夾角
127、圓的外切四邊形的兩組對邊的和相等
128、弦切角定理 弦切角等於它所夾的弧對的圓周角
129、推論 如果兩個弦切角所夾的弧相等,那麼這兩個弦切角也相等
130、相交弦定理 圓內的兩條相交弦,被交點分成的兩條線段長的積相等
131、推論 如果弦與直徑垂直相交,那麼弦的一半是它分直徑所成的兩條線段的比例中項
132、切割線定理 從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項
133、推論 從圓外一點引圓的兩條割線,這一點到每條 割線與圓的交點的兩條線段長的積相等
134、如果兩個圓相切,那麼切點一定在連心線上
135、①兩圓外離 d>R+r
②兩圓外切 d=R+r
③兩圓相交 R-r<d<R+r(R>r)
④兩圓內切 d=R-r(R>r)
⑤兩圓內含 d<R-r(R>r)
136、定理 相交兩圓的連心線垂直平分兩圓的公共弦
137、定理 把圓分成n(n≥3):
⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形
⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
138、定理 任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓
139、正n邊形的每個內角都等於(n-2)×180°/n
140、定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
141、正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長
142、正三角形面積√3a/4 a表示邊長
143、如果在一個頂點周圍有k個正n邊形的角,由於這些角的和應為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
144、弧長計算公式:L=n兀R/180
145、扇形面積公式:S扇形=n兀R^2/360=LR/2
146、內公切線長= d-(R-r) 外公切線長= d-(R+r)
正弦定理 a/sinA=b/sinB=c/sinC=2R
註:其中 R 表示三角形的外接圓半徑
餘弦定理 b2=a2+c2-2accosB
註:角B是邊a和邊c的夾角
D. 怎樣才能學好數學
初中數學寶典,你知道學習數學最重要的是什麼嗎?
在初中學習數學這們課程的時候很多的學生都是比較煩惱的,因為這們課程是非常難的,並且難點非常多,很多的學生在剛開始學習的時候還可以更得上,但是過一段時間之後就會變得非常的吃力,那麼你知道初中數學寶典是什麼嗎?我們來了解一下吧!
復習知識點
以上就是初中數學寶典的內容,當學習吃力的時候可以先復習一下之前的內容,當然這個時候之前記得筆記就可以用來復習了,這樣可以更好的幫助我們學習後期的內容,並且可以改善學習吃力的問題.
E. 數學基礎知識
數學是一門應用性極強的工具學科,所以在初、高中階段,數學一直都被視為三大主要學科之一。下面我給你分享數學基礎知識,歡迎閱讀。
數學基礎知識平面圖形的認識和計算
■三角形
1、三角形是由三條線段圍成的圖形.它具有穩定性.從三角形的一個頂點到它的對邊作一條垂線,頂點和垂足之間的線段叫做三角形的高.一個三角形有三條高.
2、三角形的內角和是180度
3、三角形按角分,可以分為:銳角三角形、直角三角形、鈍角三角形
4、三角形按邊分,可以分為:等腰三角形、等邊三角形、不等邊三角形
■四邊形
1、四邊形是由四條線段圍成的圖形.
2、任意四邊形的內角和是360度.
3、只有一組對邊平行的四邊形叫梯形.
4、兩組對邊分別平行的四邊形叫平行四邊形,它容易變形.長方形、正方形是特殊的平行四邊形;正方形是特殊的長方形.
■圓
圓是平面上的一種曲線圖形.同圓或等圓的直徑都相等,直徑等於半徑的2倍.圓有無數條對稱軸.圓心確定圓的位置,半徑確定圓的大小.
■扇形
由圓心角的兩條半徑和它所對的弧圍成的圖形.扇形是軸對稱圖形.
■軸對稱圖形
1、如果一個圖形沿著一條直線對折,兩邊的圖形能夠完全重合,這個圖形叫做軸對稱圖形;這條窒息那叫做對稱軸.
2、線段、角、等腰三角形、長方形、正方形等都是軸對稱圖形,他們的對稱軸條數不等.
■周長和面積
1、平面圖形一周的長度叫做周長.
2、平面圖形或物體表面的大小叫做面積.
3、常見圖形的周長和面積計算公式
數學基礎知識之比和比例
■比和比例應用題
在工業生產和日常生活中,常常要把一個數量按照一定的比例來進行分配,這種分配方法通常叫“按比例分配”.
■解題策略
按比例分配的有關習題,在解答時,要善於找准分配的總量和分配的比,然後把分配的比轉化成分數或份數來進行解答
■正、反比例應用題的解題策略
1、審題,找出題中相關聯的兩個量
2、分析,判斷題中相關聯的兩個量是成正比例關系還是成反比例關系.
3、設未知數,列比例式
4、解比例式
5、檢驗,寫答語
數學基礎知識之簡易方程
■用字母表示數
用字母表示數是代數的基本特點.既簡單明了,又能表達數量關系的一般規律.
■用字母表示數的注意事項
1、數字與字母、字母和字母相乘時,乘號可以簡寫成“•“或省略不寫.數與數相乘,乘號不能省略.
2、當1和任何字母相乘時,“ 1” 省略不寫.
3、數字和字母相乘時,將數字寫在字母前面.
■含有字母的式子及求值
求含有字母的式子的值或利用公式求值,應注意書寫格式。
■等式與方程
表示相等關系的式子叫等式.
含有未知數的等式叫方程.
判斷一個式子是不是方程應具備兩個條件:一是含有未知數;二是等式.所以,方程一定是等式,但等式不一定是方程.
■方程的解和解方程
使方程左右兩邊相等的未知數的值,叫方程的解.
求方程的解的過程叫解方程.
■在列方程解文字題時,
如果題中要求的未知數已經用字母表示,解答時就不需要寫設,否則首先演將所求的未知數設為x.
■解方程的方法
1、直接運用四則運算中各部分之間的關系去解.如x-8=12
加數+加數=和,一個加數=和-另一個加數。
被減數-減數=差,減數=被減數-差,被減數=差+減數。
被乘數×乘數=積,一個因數=積÷另一個因數。
被除數÷除數=商,除數=被除數÷商,被除數=除數×商。
2、先把含有未知數x的項看作一個數,然後再解.如3x+20=41。先把3x看作一個數,然後再解.
3、按四則運算順序先計算,使方程變形,然後再解.如2.5×4-x=4.2,要先求出2.5×4的積,使方程變形為10-x=4.2,然後再解.
4、利用運算定律或性質,使方程變形,然後再解.如:2.2x+7.8x=20。先利用運算定律或性質使方程變形為(2.2+7.8)x=20,然後計算括弧裡面使方程變形為10x=20,最後再解.
F. 初中數學之基礎知識點總結
有關初中數學之基礎知識點總結
在日常生活或是工作學習中,大家一定都或多或少地接觸過一些化學知識,下面是我為大家收集的有關初中數學之基礎知識點總結相關內容,僅供參考,希望能夠幫助到大家。
一、數與代數
數與式:
1、有理數:①整數→正整數/0/負整數②分數→正分數/負分數
數軸:①畫一條水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規定直線上向右的方向為正方向,就得到數軸。②任何一個有理數都可以用數軸上的一個點來表示。③如果兩個數只有符號不同,那麼我們稱其中一個數為另外一個數的相反數,也稱這兩個數互為相反數。在數軸上,表示互為相反數的兩個點,位於原點的兩側,並且與原點距離相等。④數軸上兩個點表示的數,右邊的總比左邊的大。正數大於0,負數小於0,正數大於負數。
絕對值:①在數軸上,一個數所對應的點與原點的距離叫做該數的絕對值。②正數的絕對值是他的本身、負數的絕對值是他的相反數、0的絕對值是0。兩個負數比較大小,絕對值大的反而小。
有理數的運算:加法:①同號相加,取相同的符號,把絕對值相加。②異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數的符號,並用較大的絕對值減去較小的絕對值。③一個數與0相加不變。
減法:減去一個數,等於加上這個數的相反數。
乘法:①兩數相乘,同號得正,異號得負,絕對值相乘。②任何數與0相乘得0。③乘積為1的兩個有理數互為倒數。
除法:①除以一個數等於乘以一個數的倒數。②0不能作除數。
乘方:求N個相同因數A的積的運算叫做乘方,乘方的結果叫冪,A叫底數,N叫次數。
混合順序:先算乘法,再算乘除,最後算加減,有括弧要先算括弧里的。
2、實數 無理數:無限不循環小數叫無理數
平方根:①如果一個正數X的平方等於A,那麼這個正數X就叫做A的算術平方根。②如果一個數X的平方等於A,那麼這個數X就叫做A的平方根。③一個正數有2個平方根/0的平方根為0/負數沒有平方根。④求一個數A的平方根運算,叫做開平方,其中A叫做被開方數。
立方根:①如果一個數X的立方等於A,那麼這個數X就叫做A的立方根。②正數的立方根是正數、0的立方根是0、負數的立方根是負數。③求一個數A的立方根的運算叫開立方,其中A叫做被開方數。
實數:①實數分有理數和無理數。②在實數范圍內,相反數,倒數,絕對值的意義和有理數范圍內的相反數,倒數,絕對值的意義完全一樣。③每一個實數都可以在數軸上的一個點來表示。
3、代數式
代數式:單獨一個數或者一個字母也是代數式。
合並同類項:①所含字母相同,並且相同字母的指數也相同的項,叫做同類項。②把同類項合並成一項就叫做合並同類項。③在合並同類項時,我們把同類項的系數相加,字母和字母的指數不變。
4、整式與分式
整式:①數與字母的乘積的代數式叫單項式,幾個單項式的和叫多項式,單項式和多項式統稱整式。②一個單項式中,所有字母的指數和叫做這個單項式的次數。③一個多項式中,次數最高的項的次數叫做這個多項式的次數。
整式運算:加減運算時,如果遇到括弧先去括弧,再合並同類項。
冪的運算:AM+AN=A(M+N)
(AM)N=AMN
(A/B)N=AN/BN 除法一樣。
整式的.乘法:①單項式與單項式相乘,把他們的系數,相同字母的冪分別相乘,其餘字母連同他的指數不變,作為積的因式。②單項式與多項式相乘,就是根據分配律用單項式去乘多項式的每一項,再把所得的積相加。③多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。
公式兩條:平方差公式/完全平方公式
整式的除法:
①單項式相除,把系數,同底數冪分別相除後,作為商的因式;對於只在被除式里含有的字母,則連同他的指數一起作為商的一個因式。
②多項式除以單項式,先把這個多項式的每一項分別除以單項式,再把所得的商相加。
分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式。
方法:提公因式法、運用公式法、分組分解法、十字相乘法。
分式:
①整式A除以整式B,如果除式B中含有分母,那麼這個就是分式,對於任何一個分式,分母不為0。
②分式的分子與分母同乘以或除以同一個不等於0的整式,分式的值不變。
直線的位置與常數的關系
①k>0則直線的傾斜角為銳角
②k<0則直線的傾斜角為鈍角
③圖像越陡,|k|越大
④b>0直線與y軸的交點在x軸的上方
⑤b<0直線與y軸的交點在x軸的下方
;