❶ 高中數學知識點大全
有的學生認為高中數學難做難做。其實高中數學整體上很簡單,很簡單,很多知識只要讀兩遍就可以了。下面是我整理的高中數學知識點大全,希望對你們有所幫助!
高中數學知識點
1、基本初等函數
指數、對數、冪函數三大函數的運算性質及圖像
函數的幾大要素和相關考點基本都在函數圖像上有所體現,單調性、增減性、極值、零點等等。關於這三大函數的運算公式,多記多用,多做一點練習,基本就沒問題。
函數圖像是這一章的重難點,而且圖像問題是不能靠記憶的,必須要理解,要會熟練的畫出函數圖像,定義域、值域、零點等等。對於冪函數還要搞清楚當指數冪大於一和小於一時圖像的不同及函數值的大小關系,這也是常考點。另外指數函數和對數函數的對立關系及其相互之間要怎樣轉化等問題,需要著重回看課本例題。
2、函數的應用
這一章主要考是函數與方程的結合,其實就是函數的零點,也就是函數圖像與X軸的交點。這三者之間的轉化關系是這一章的重點,要學會在這三者之間靈活轉化,以求能最簡單的解決問題。關於證明零點的 方法 ,直接計算加得必有零點,連續函數在x軸上方下方有定義則有零點等等,這些難點對應的證明方法都要記住,多練習。二次函數的零點的Δ判別法,這個需要你看懂定義,多畫多做題。
3、空間幾何
三視圖和直觀圖的繪制不算難,但是從三視圖復原出實物從而計算就需要比較強的空間感,要能從三張平面圖中慢慢在腦海中畫出實物,這就要求學生特別是空間感弱的學生多看書上的例圖,把實物圖和平面圖結合起來看,先熟練地正推,再慢慢的逆推(建議用紙做一個立方體來找感覺)。
在做題時結合草圖是有必要的,不能單憑想像。後面的錐體、柱體、台體的表面積和體積,把公式記牢問題就不大。
4、點、直線、平面之間的位置關系
這一章除了面與面的相交外,對空間概念的要求不強,大部分都可以直接畫圖,這就要求學生多看圖。自己畫草圖的時候要嚴格注意好實線虛線,這是個規范性問題。
關於這一章的內容,牢記直線與直線、面與面、直線與 面相 交、垂直、平行的幾大定理及幾大性質,同時能用圖形語言、文字語言、數學表達式表示出來。只要這些全部過關這一章就解決了一大半。這一章的難點在於二面角這個概念,大多同學即使知道有這個概念,也無法理解怎麼在二面裡面做出這個角。對這種情況只有從定義入手,先要把定義記牢,再多做多看,這個沒有什麼捷徑可走。
5、圓與方程
能熟練地把一般式方程轉化為標准方程,通常的考試形式是等式的一邊含根號,另一邊不含,這時就要注意開方後定義域或值域的限制。通過點到點的距離、點到直線的距離、圓半徑的大小關系來判斷點與圓、直線與圓、圓與圓的位置關系。另外注意圓的對稱性引起的相切、相交等的多種情況,自己把幾種對稱的形式羅列出來,多思考就不難理解了。
6、三角函數
考試必在這一塊出題,且題量不小!誘導公式和基本三角函數圖像的一些性質,沒有太大難度,只要會畫圖就行。難度都在三角函數形函數的振幅、頻率、周期、相位、初相上,及根據最值計算A、B的值和周期,及恆等變化時的圖像及性質變化,這部分的知識點內容較多,需要多花時間,不要再定義上死扣,要從圖像和例題入手。
7、平面向量
向量的運算性質及三角形法則、平行四邊形法則的難度都不大,只要在計算的時候記住要「同起點的向量」這一條就OK了。向量共線和垂直的數學表達,是計算當中經常用到的公式。向量的共線定理、基本定理、數量積公式。分點坐標公式是重點內容,也是難點內容,要花心思記憶。
8、三角恆等變換
這一章公式特別多,像差倍半形公式這類內容常會出現,所以必須要記牢。由於量比較大,記憶難度大,所以建議用紙寫好後貼在桌子上,天天都要看。要提一點,就是三角恆等變換是有一定規律的,記憶的時候可以集合三角函數去記。
9、解三角形
掌握正弦、餘弦公式及其變式、推論、三角面積公式即可。
10、數列
等差、等比數列的通項公式、前n項及一些性質常出現於填空、解答題中,這部分內容學起來比較簡單,但考驗對其推導、計算、活用的層面較深,因此要仔細。考試題中,通項公式、前n項和的內容出現頻次較多,這類題看到後要帶有目的的去推導就沒問題了。
11、不等式
這一章一般用線性規劃的形式來考察學生,這種題通常是和實際問題聯系的,所以要會讀題,從題中找不等式,畫出線性規劃圖,然後再根據實際問題的限制要求來求最值。
高中數學公式大全
乘法與因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根與系數的關系 X1+X2=-b/a X1_X2=c/a 註:韋達定理
判別式
b2-4ac=0 註:方程有兩個相等的實根
b2-4ac>0 註:方程有兩個不等的實根
b2-4ac<0 註:方程沒有實根,有共軛復數根
三角函數公式
兩角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半形公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化積
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
某些數列前n項和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1_2+2_3+3_4+4_5+5_6+6_7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 註: 其中 R 表示三角形的外接圓半徑
餘弦定理 b2=a2+c2-2accosB 註:角B是邊a和邊c的夾角
圓的標准方程 (x-a)2+(y-b)2=r2 註:(a,b)是圓心坐標
圓的一般方程 x2+y2+Dx+Ey+F=0 註:D2+E2-4F>0
拋物線標准方程 y2=2px y2=-2px x2=2py x2=-2py
直稜柱側面積 S=c_h 斜稜柱側面積 S=c'_h
正棱錐側面積 S=1/2c_h' 正稜台側面積 S=1/2(c+c')h'
圓台側面積 S=1/2(c+c')l=pi(R+r)l 球的表面積 S=4pi_r2
圓柱側面積 S=c_h=2pi_h 圓錐側面積 S=1/2_c_l=pi_r_l
弧長公式 l=a_r a是圓心角的弧度數r >0 扇形面積公式 s=1/2_l_r
錐體體積公式 V=1/3_S_H 圓錐體體積公式 V=1/3_pi_r2h
斜稜柱體積 V=S'L 註:其中,S'是直截面面積, L是側棱長
柱體體積公式 V=s_h 圓柱體 V=pi_r2h
高考前數學知識點 總結
選擇填空題
1、易錯點歸納:
九大模塊易混淆難記憶考點分析,如概率和頻率概念混淆、數列求和公式記憶錯誤等,強化基礎知識點記憶,避開因為知識點失誤造成的客觀性解題錯誤。
針對審題、解題思路不嚴謹如集合題型未考慮空集情況、函數問題未考慮定義域等主觀性因素造成的失誤進行專項訓練。
2、答題方法:
選擇題十大速解方法:
排除法、增加條件法、以小見大法、極限法、關鍵點法、對稱法、小結論法、歸納法、感覺法、分析選項法;
填空題四大速解方法:直接法、特殊化法、數形結合法、等價轉化法。
解答題
專題一、三角變換與三角函數的性質問題
1、解題路線圖
①不同角化同角
②降冪擴角
③化f(x)=Asin(ωx+φ)+h
④結合性質求解。
2、構建答題模板
①化簡:三角函數式的化簡,一般化成y=Asin(ωx+φ)+h的形式,即化為「一角、一次、一函數」的形式。
②整體代換:將ωx+φ看作一個整體,利用y=sin x,y=cos x的性質確定條件。
③求解:利用ωx+φ的范圍求條件解得函數y=Asin(ωx+φ)+h的性質,寫出結果。
④ 反思 :反思回顧,查看關鍵點,易錯點,對結果進行估算,檢查規范性。
專題二、解三角形問題
1、解題路線圖
(1) ①化簡變形;②用餘弦定理轉化為邊的關系;③變形證明。
(2) ①用餘弦定理表示角;②用基本不等式求范圍;③確定角的取值范圍。
2、構建答題模板
①定條件:即確定三角形中的已知和所求,在圖形中標注出來,然後確定轉化的方向。
②定工具:即根據條件和所求,合理選擇轉化的工具,實施邊角之間的互化。
③求結果。
④再反思:在實施邊角互化的時候應注意轉化的方向,一般有兩種思路:一是全部轉化為邊之間的關系;二是全部轉化為角之間的關系,然後進行恆等變形。
專題三、數列的通項、求和問題
1、解題路線圖
①先求某一項,或者找到數列的關系式。
②求通項公式。
③求數列和通式。
2、構建答題模板
①找遞推:根據已知條件確定數列相鄰兩項之間的關系,即找數列的遞推公式。
②求通項:根據數列遞推公式轉化為等差或等比數列求通項公式,或利用累加法或累乘法求通項公式。
③定方法:根據數列表達式的結構特徵確定求和方法(如公式法、裂項相消法、錯位相減法、分組法等)。
④寫步驟:規范寫出求和步驟。
⑤再反思:反思回顧,查看關鍵點、易錯點及解題規范。
專題四、利用空間向量求角問題
1、解題路線圖
①建立坐標系,並用坐標來表示向量。
②空間向量的坐標運算。
③用向量工具求空間的角和距離。
2、構建答題模板
①找垂直:找出(或作出)具有公共交點的三條兩兩垂直的直線。
②寫坐標:建立空間直角坐標系,寫出特徵點坐標。
③求向量:求直線的方向向量或平面的'法向量。
④求夾角:計算向量的夾角。
⑤得結論:得到所求兩個平面所成的角或直線和平面所成的角。
專題五、圓錐曲線中的范圍問題
1、解題路線圖
①設方程。
②解系數。
③得結論。
2、構建答題模板
①提關系:從題設條件中提取不等關系式。
②找函數:用一個變數表示目標變數,代入不等關系式。
③得范圍:通過求解含目標變數的不等式,得所求參數的范圍。
④再回顧:注意目標變數的范圍所受題中其他因素的制約。
專題六、解析幾何中的探索性問題
1、解題路線圖
①一般先假設這種情況成立(點存在、直線存在、位置關系存在等)
②將上面的假設代入已知條件求解。
③得出結論。
2、構建答題模板
①先假定:假設結論成立。
②再推理:以假設結論成立為條件,進行推理求解。
③下結論:若推出合理結果, 經驗 證成立則肯。 定假設;若推出矛盾則否定假設。
④再回顧:查看關鍵點,易錯點(特殊情況、隱含條件等),審視解題規范性。
專題七、離散型隨機變數的均值與方差
1、解題路線圖
(1)①標記事件;②對事件分解;③計算概率。
(2)①確定ξ取值;②計算概率;③得分布列;④求數學期望。
2、構建答題模板
①定元:根據已知條件確定離散型隨機變數的取值。
②定性:明確每個隨機變數取值所對應的事件。
③定型:確定事件的概率模型和計算公式。
④計算:計算隨機變數取每一個值的概率。
⑤列表:列出分布列。
⑥求解:根據均值、方差公式求解其值。
專題八、函數的單調性、極值、最值問題
1、解題路線圖
(1)①先對函數求導;②計算出某一點的斜率;③得出切線方程。
(2)①先對函數求導;②談論導數的正負性;③列表觀察原函數值;④得到原函數的單調區間和極值。
2、構建答題模板
①求導數:求f(x)的導數f′(x)。(注意f(x)的定義域)
②解方程:解f′(x)=0,得方程的根
③列表格:利用f′(x)=0的根將f(x)定義域分成若干個小開區間,並列出表格。
④得結論:從表格觀察f(x)的單調性、極值、最值等。
⑤再回顧:對需討論根的大小問題要特殊注意,另外觀察f(x)的間斷點及步驟規范性。
以上模板僅供參考,希望大家能針對自己的情況整理出來最適合的「套路」。
高中數學 學習心得
數學是一們基礎學科,我們從小就開始接觸到它。現在我們已經步入高中,由於高中數學對知識的難度、深度、廣度要求更高,有一部分同學由於不適應這種變化,數學成績總是不如人意。甚至產生這樣的困惑:「我在初中時數學成績很好,可現在怎麼了?」其實,學習是一個不斷接收新知識的過程。正是由於你在進入高中後 學習方法 或 學習態度 的影響,才會造成學得累死而成績不好的後果。那麼,究竟該如何學好高中數學呢?以下我談談我的高中數學學習心得。
一、 認清學習的能力狀態。
1、 心理素質。我們在高中學習環境下取決於我們是否具有面對挫折、冷靜分析問題的辦法。當我們面對困難時不應產生畏懼感,面對失敗時不應灰心喪氣,而要勇於正視自己,及時作出總結教訓,改變學習方法。
2、 學習方式、習慣的反思與認識。(1) 學習的主動性。我們在進入高中以後,不能還像初中時那樣有很強的依賴心理,不訂 學習計劃 ,坐等上課,課前不預習,上課忙於記筆記而忽略了真正的聽課,顧此失彼,被動學習。(2) 學習的條理性。我們在每學習一課內容時,要學會將知識有條理地分為若干類,剖析概念的內涵外延,重點難點要突出。不要忙於記筆記,而對要點沒有聽清楚或聽不全。筆記記了一大摞,問題也有一大堆。如果還不能及時鞏固、總結,而忙於套著題型趕作業,對概念、定理、公式不能理解而死記硬背,則會事倍功半,收效甚微。(3) 忽視基礎。在我身邊,常有些「自我感覺良好」的同學,忽視基礎知識、基本技能和基本方法,不能牢牢地抓住課本,而是偏重於對難題的攻解,好高騖遠,重「量」而輕「質」,陷入題海,往往在考試中不是演算錯誤就是中途「卡殼」。(4) 不良習慣。主要有對答案,卷面書寫不工整,格式不規范,不相信自己的結論,缺乏對問題解決的信心和決心,遇到問題不能獨立思考,養成一種依賴於老師解說的心理,做作業不講究效率,學習效率不高。
二、 努力提高自己的學習能力。
1、 抓要點提高學習效率。(1) 抓教材處理。正所謂「萬變不離其中」。要知道,教材始終是我們學習的根本依據。教學是活的,思維也是活的,學習能力是隨著知識的積累而同時形成的。我們要通過老師教學,理解所學內容在教材中的地位,並將前後知識聯系起來,把握教材,才能掌握學習的主動性。(2) 抓問題暴露。對於那些典型的問題,必須及時解決,而不能把問題遺留下來,而要對遺留的問題及時、有效的解決。(3) 抓 思維訓練 。數學的特點是具有高度的抽象性、邏輯性和廣泛的適用性,對能力要求較高。我們在平時的訓練中,要注重一個思維的過程,學習能力是在不斷運用中才能培養出來的。(5) 抓45分鍾課堂效率。我們學習的大部分時間都在學校,如果不能很好地抓住課堂時間,而寄希望於課外去補,則會使學習效率大打折扣。
高中數學知識點大全相關 文章 :
★ 高二數學知識點總結
★ 高一數學必修一知識點匯總
★ 高中數學學習方法:知識點總結最全版
★ 高中數學知識點總結
★ 高一數學知識點總結歸納
★ 高三數學知識點考點總結大全
★ 高中數學基礎知識大全
★ 高三數學知識點梳理匯總
★ 高中數學必考知識點歸納整理
★ 高一數學知識點總結期末必備
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();❷ 高中數學必修五知識點歸納是什麼
高中數學必修五知識點歸納是如下:
一、向量的基本概念
1、向量:既有大小又有方向的量叫做向量。物理學中又叫做矢量。如力、速度、加速度、位移就是向量。
2、平行向量:方向相同或相反的非零向量,叫做平行向量。平行向量也叫做共線向量。
3、相等向量:長度相等且方向相同的向量叫做相等向量。
二、對於向量概念需注意
1、向量是區別於數量的一種量,既有大小,又有方向,任意兩個向量不能比較大小,只可以判斷它們是否相等,但向量的模可以比較大小。
2、向量共線與表示它們的有向線段共線不同。向量共線時,表示向量的有向線段可以是平行的,不一定在同一條直線上;而有向線段共線則是指線段必須在同一條直線上。
3、由向量相等的定義可知,對於一個向量,只要不改變它的大小和方向,它是可以任意平行移動的,因此用有向線段表示向量時,可以任意選取有向線段的起點,由此也可得到:任意一組平行向量都可以平移到同一條直線上。
三、求函數的單調性:
利用導數求函數單調性的基本方法:設函數yf(x)在區間(a,b)內可導,(1)如果恆f(x)0,則函數yf(x)在區間(a,b)上為增函數;(2)如果恆f(x)0,則函數yf(x)在區間(a,b)上為減函數;(3)如果恆f(x)0,則函數yf(x)在區間(a,b)上為常數函數。
四、求函數的極值:
設函數yf(x)在x0及其附近有定義,如果對x0附近的所有的點都有f(x)f(x0)(或f(x)f(x0)),則稱f(x0)是函數f(x)的極小值(或極大值)。
五、求函數的值與最小值:
如果函數f(x)在定義域I內存在x0,使得對任意的xI,總有f(x)f(x0),則稱f(x0)為函數在定義域上的值。函數在定義域內的極值不一定,但在定義域內的最值是一定的。
❸ 高一數學平面向量知識點分析
平面向量是高一的知識點,想要學習好需要學生把握好概念和運算,下面是我給大家帶來的有關於高中數學平面向量知識點的具體介紹,希望能夠幫助到大家。
高一數學平面向量知識點
向量:既有大小,又有方向的量.
數量:只有大小,沒有方向的量.
有向線段的三要素:起點、方向、長度.
零向量:長度為的向量.
單位向量:長度等於個單位的向量.
相等向量:長度相等且方向相同的向量
&向量的運算
加法運算
AB+BC=AC,這種計演算法則叫做向量加法的三角形法則。
已知兩個從同一點O出發的兩個向量OA、OB,以OA、OB為鄰邊作平行四邊形OACB,則以O為起點的對角線OC就是向量OA、OB的和,這種計演算法則叫做向量加法的平行四邊形法則。
對於零向量和任意向量a,有:0+a=a+0=a。
|a+b|≤|a|+|b|。
向量的加法滿足所有的加法運算定律。
減法運算
與a長度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。
(1)a+(-a)=(-a)+a=0(2)a-b=a+(-b)。
數乘運算
實數λ與向量a的積是一個向量,這種運算叫做向量的數乘,記作λa,|λa|=|λ||a|,當λ > 0時,λa的方向和a的方向相同,當λ< 0時,λa的方向和a的方向相反,當λ = 0時,λa = 0。
設λ、μ是實數,那麼:(1)(λμ)a = λ(μa)(2)(λμ)a = λa μa(3)λ(a ± b) = λa ±λb(4)(-λ)a =-(λa) = λ(-a)。
向量的加法運算、減法運算、數乘運算統稱線性運算。
向量的數量積
已知兩個非零向量a、b,那麼|a||b|cos θ叫做a與b的數量積或內積,記作a?b,θ是a與b的夾角,|a|cos θ(|b|cos θ)叫做向量a在b方向上(b在a方向上)的投影。零向量與任意向量的數量積為0。
a.b的幾何意義:數量積a.b等於a的長度|a|與b在a的方向上的投影|b|cosθ的乘積。
兩個向量的數量積等於它們對應坐標的乘積的和。
高一必修二數學平面的基本性質知識點
平面的基本性質
教學目標
1、知識與能力:
(1)鞏固平面的基本性質即四條公理和三條推論.
(2)能使用公理和推論進行解題.
2、過程與方法:
(1)體驗在空間確定一個平面的過程與方法;
(2)掌握利用平面的基本性質證明三點共線、三線共點、多線共面的方法。
3、情感態度與價值觀:
培養學生認真觀察的態度,慎密思考的習慣,提高學生的審美能力和空間想像的能力。
教學重點
平面的三條基本性質即三條推論.
教學難點
准確運用三條公理和推論解題.
教學過程
一、問題情境
問題1:空間共點的三條直線能確定幾個平面?空間互相平行的三條直線呢?
問題2:如何判斷桌子的四條腿的底端是否在一個平面內?
二、溫故知新
公理1
如果一條直線上的兩點在一個平面內,那麼這條直線上所有的點都在這個平面內.
公理2
如果兩個平面有一個公共點,那麼它們還有其它公共點,這些公共點的集合是經過這個公共點的一條直線.
公理3
經過不在同一條直線上的三點,有且只有一個平面.
推論1
經過一條直線和這條直線外的一點,有且只有一個平面.
推論2
經過兩條相交直線,有且只有一個平面.
推論3
經過兩條平行直線,有且只有一個平面.
公理 4(平行公理) 平行於同一條直線的兩條直線互相平行.
把以上各公理及推論進行對比:
三、數學運用
基礎訓練:(1)已知: ;求證:直線AD、BD、CD共面.
證明: ——公理3推論1
——公理1
同理可證, , 直線AD、BD、CD共面
【解題反思1】1。邏輯要嚴謹
2.書寫要規范
3.證明共面的步驟:
(1)確定平面——公理3及其3個推論
(2)證線“歸” 面(線在面內如: )——公理1
(3)作出結論。
變式1、如果直線兩兩相交,那麼這三條直線是否共面?(口答)
變式2、已知空間不共面的四點,過其中任意三點可以確定一個平面,由這四個點能確定幾個平面?
變式3、四條線段順次首尾連接,所得的圖形一定是平面圖形嗎?(口答)
(2)已知直線 滿足: ;求證:直線
證明: ——公理3推論3
——公理1
直線 共面
提高訓練:已知 ,求證: 四條直線在同一平面內.
思路分析:考慮由直線a,b確定一個平面,再證明直線c,l在此平面上,但十分困難。因而可以開放思路,考慮確定兩個平面,再證明兩個平面重合,問題迎刃而解。
證明:
——公理3推論3
——公理3推論3
——公理1
因此,平面 同時經過兩條相交直線 所以平面 重合。——公理3推論2
直線 共面
上面方法稱為同一法
拓展訓練:如圖,三棱錐A-BCD中,E、G分別是BC、AB的中點,F在CD上,H在AD上,且有DF:FC=DH:HA=2:3;求證:EF、GH、BD交於一點.[滲透空間問題平面化思想]
思路分析:思路1:開放思路,考慮三個平面,首先證明兩條直線在一個面內,並且相交,然後證明交點在兩個平面上,據公理2知它在兩面唯一的交線——第三條直線上,因此證得三線共點。
證法1:連接 ,
因 E、G分別是BC、AB的中點,故 因DF:FC=DH:HA=2:3,故 ——公理4
共面,由上知, 相交,設交點為O,則 平面 , 平面 ,
所以 直線 所以EF、GH、BD交於一點。
思路2:首先證明直線 GH、BD交於一點P,直線EF 、BD交於一點Q,然後證明兩點P、Q重合,進而得出EF、GH、BD交於一點。
證法法2:提示:過點H作HO,使得 ,交點為O,連接OF,證明 ,
延長GH,EF,使它們與直線BD分別交於點P、Q,由三角形相似可以得出OP=OQ.所以點P、Q重合。
鏈接生活:在正方體木頭中,試畫出過其中三條棱的中點P、Q、R的平面截得木頭的截面形狀.
【解題反思2】1。邏輯要嚴謹
2.書寫要規范
3.方法要掌握
(1)證明共面的步驟:
1)確定平面——公理3及其3個推論——公理3及3個推論
2)證線“歸” 面(線在面內如: )——公理1
3)作出結論。
(2)證明共線的步驟:
①證所有點在第一個面內(如平面 )——公理1
②證所有點在第二個面內(如平面 ) ——公理1
③結論1:所有點在兩個平面的交線上
④結論2:所有點共線——公理2
(3)證明共點的步驟:
1)證交於一個點——公理3及3個推論
2)證此點在二個面內(如平面 ) ——公理1
3)結論1:此點在兩個平面的交線上——————公理2
4)結論2:三條線共點
四、回顧小結
本節主要復習了平面三個公理和三個推論,學會了如何使用公理及其推論解題.
五、課外作業(見所發的前置作業)
反饋練習
[ 1.2.1 平面的基本性質(2)]
1、經過同一直線上的3個點的平面( )
A、有且只有1個 B、有且只有3個 C、有無數個 D、有0個
2、若空間三個平面兩兩相交,則它們的交線條數是( )
A、1或2 B、2或3 C、1或3 D、1或2或3
3、與空間四點距離相等的平面共有( )
A、3個或7個 B、4個或10個 C、4個或無數個 D、7個或無數個
4、四條平行直線最多可以確定( )
A、三個平面 B、四個平面 C、五個平面 D、六個平面
5、四條線段首尾順次相連,它們最多可確定的平面個數有 個.
6、給出以下四個命題:
①若空間四點不共面,則其中無三點共線;
②若直線l上有一點在平面 外,則l在 外;
③若直線 、 、 中, 與 共面且 與 共面,則 與 共面;
④兩兩相交的三條直線共面.
其中所有正確的命題的序號是 .
7.點P在直線l上,而直線l在平面 內,用符號表示為( )
A. B. C. D. 8.下列推理,錯誤的是( )
A. B. C. D. 9.下面是四個命題的敘述語(其中A、B表示點, 表示直線, 表示平面)
① ② ③ ④ 其中敘述方法和推理過程都正確的命題的序號是_______________.
10、已知A、B、C不在同一條直線上,求證:直線AB、BC、CA共面.
11、求證:如果一條直線與兩條平行線都相交,那麼這三條直線在同一個平面內.
已知:直線 、 、 且 , , ;
求證:直線 、 、 共面.
12、在正方體ABCD-A1B1C1D1中,
①AA1與CC1能否確定一個平面?為什麼?
②點B、C1、D能否確定一個平面?為什麼?
③畫出平面ACC1A1與平面BC1D的交線,平面ACD1與平面BDC1的交線.
❹ 高中數學知識點詳細總結
高中數學重點有什麼?該怎樣攻克?
高中數學重點內容還有很多.這些重點都是保持多年來的經驗,他們分析過高考數學的題型,高中數學重點分為以下幾個部分.
向量講解
其實高中數學重點就是在必修的裡面.必修是每個高中生都必須學習的,不管是分不分文理科,他們都是會學習的.很多重點都是在必修裡面,然而在選秀當中就是講一些統計之類的問題,這都是我們在生活當中就會學到的,所以這些都不是重點,重中之重就是在必修的課本當中.
❺ 高中數學向量知識點
雖然醋有許多好處,但長期喝醋會腐蝕牙齒,使之脫鈣,應用水稀釋後,用吸管吸食,喝後立刻用水漱口。胃酸過多的人,不宜喝醋。醋是酸性物質,不宜長期食用,食用過量會影響人體的酸鹼平衡,對患有慢性腎臟疾病者,甚至會引起酸中毒。專家們提醒,對萎縮性胃炎、胃癌等胃酸缺乏者,喝醋有一定益處,但必須把酸度降低,少量、間隔食用。因此,喝醋這種時髦未必一定適合你。
所以,長期喝醋可能適得其反。
❻ 高一數學平面向量知識點總結
平面向量是高中數學中基本內容,也是聯系代數與幾何的一種工具,為高考的重點內容。下面我給大家帶來 高一數學 平面向量知識點,希望對你有幫助。
目錄
高一數學平面向量知識點
高一數學知識點
高一數學學習方法
向量:既有大小,又有方向的量.
數量:只有大小,沒有方向的量.
有向線段的三要素:起點、方向、長度.
零向量:長度為的向量.
單位向量:長度等於個單位的向量.
相等向量:長度相等且方向相同的向量
&向量的運算
加法運算
AB+BC=AC,這種計演算法則叫做向量加法的三角形法則。
已知兩個從同一點O出發的兩個向量OA、OB,以OA、OB為鄰邊作平行四邊形OACB,則以O為起點的對角線OC就是向量OA、OB的和,這種計演算法則叫做向量加法的平行四邊形法則。
對於零向量和任意向量a,有:0+a=a+0=a。
|a+b|≤|a|+|b|。
向量的加法滿足所有的加法運算定律。
減法運算
與a長度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。
(1)a+(-a)=(-a)+a=0(2)a-b=a+(-b)。
數乘運算
實數λ與向量a的積是一個向量,這種運算叫做向量的數乘,記作λa,|λa|=|λ||a|,當λ > 0時,λa的方向和a的方向相同,當λ< 0時,λa的方向和a的方向相反,當λ = 0時,λa = 0。
設λ、μ是實數,那麼:(1)(λμ)a = λ(μa)(2)(λμ)a = λa μa(3)λ(a ± b) = λa ±λb(4)(-λ)a =-(λa) = λ(-a)。
向量的加法運算、減法運算、數乘運算統稱線性運算。
向量的數量積
已知兩個非零向量a、b,那麼|a||b|cos θ叫做a與b的數量積或內積,記作a?b,θ是a與b的夾角,|a|cos θ(|b|cos θ)叫做向量a在b方向上(b在a方向上)的投影。零向量與任意向量的數量積為0。
a.b的幾何意義:數量積a.b等於a的長度|a|與b在a的方向上的投影|b|cosθ的乘積。
兩個向量的數量積等於它們對應坐標的乘積的和。
<<<
1、柱、錐、台、球的結構特徵
(1)稜柱:
定義:有兩個面互相平行,其餘各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。
分類:以底面多邊形的邊數作為分類的標准分為三稜柱、四稜柱、五稜柱等。
表示:用各頂點字母,如五稜柱或用對角線的端點字母,如五稜柱。
幾何特徵:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行於底面的截面是與底面全等的多邊形。
(2)棱錐
定義:有一個面是多邊形,其餘各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體。
分類:以底面多邊形的邊數作為分類的標准分為三棱錐、四棱錐、五棱錐等
表示:用各頂點字母,如五棱錐
幾何特徵:側面、對角面都是三角形;平行於底面的截面與底 面相 似,其相似比等於頂點到截面距離與高的比的平方。
(3)稜台:
定義:用一個平行於棱錐底面的平面去截棱錐,截面和底面之間的部分。
分類:以底面多邊形的邊數作為分類的標准分為三棱態、四稜台、五稜台等
表示:用各頂點字母,如五稜台
幾何特徵:①上下底面是相似的平行多邊形②側面是梯形③側棱交於原棱錐的頂點
(4)圓柱:
定義:以矩形的一邊所在的直線為軸旋轉,其餘三邊旋轉所成的曲面所圍成的幾何體。
幾何特徵:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側面展開圖是一個矩形。
(5)圓錐:
定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成的曲面所圍成的幾何體。
幾何特徵:①底面是一個圓;②母線交於圓錐的頂點;③側面展開圖是一個扇形。
(6)圓台:
定義:用一個平行於圓錐底面的平面去截圓錐,截面和底面之間的部分
幾何特徵:①上下底面是兩個圓;②側面母線交於原圓錐的頂點;③側面展開圖是一個弓形。
(7)球體:
定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體
幾何特徵:①球的截面是圓;②球面上任意一點到球心的距離等於半徑。
2、空間幾何體的三視圖
定義三視圖:正視圖(光線從幾何體的前面向後面正投影);側視圖(從左向右)、俯視圖(從上向下)
註:正視圖反映了物體上下、左右的位置關系,即反映了物體的高度和長度;
俯視圖反映了物體左右、前後的位置關系,即反映了物體的長度和寬度;
側視圖反映了物體上下、前後的位置關系,即反映了物體的高度和寬度。
3、空間幾何體的直觀圖——斜二測畫法
斜二測畫法特點:
①原來與x軸平行的線段仍然與x平行且長度不變;
②原來與y軸平行的線段仍然與y平行,長度為原來的一半。
<<<
認真聽課做筆記
在課堂教學中培養好的聽課習慣是很重要的。當然聽是主要的,聽能使注意力集中,要把老師講的關鍵性部分聽懂、聽會。聽的時候注意思考、分析問題,但是光聽不記,或光記不聽必然顧此失彼,課堂效益低下,因此應適當地有目的性的記好筆記,領會課上老師的主要精神與意圖。科學的記筆記可以提高45分鍾課堂效益。
把握教材去理解
要提高數學能力,當然是通過課堂來提高,要充分利用好課堂這塊陣地,學習高一數學的過程是活的,老師教學的對象也是活的,都在隨著教學過程的發展而變化,尤其是當老師注重能力教學的時候,教材是反映不出來的。數學能力是隨著知識的發生而同時形成的,無論是形成一個概念,掌握一條法則,會做一個習題,都應該從不同的能力角度來培養和提高。課堂上通過老師的教學,理解所學內容在教材中的地位,弄清與前後知識的聯系等,只有把握住教材,才能掌握學習的主動。
提高思維敏捷力
如果數學課沒有一定的速度,那是一種無效學習。慢騰騰的學習是訓練不出思維速度,訓練不出思維的敏捷性,是培養不出數學能力的,這就要求在數學學習中一定要有節奏,這樣久而久之,思維的敏捷性和數學能力會逐步提高。
避免遺留問題
在數學課堂中,老師一般少不了提問與板演,有時還伴隨著問題討論,因此可以聽到許多的信息,這些問題是很有價值的。對於那些典型問題,帶有普遍性的問題都必須及時解決,不能把問題的結症遺留下來,甚至沉澱下來,有價值的問題要及時抓住,遺留問題要有針對性地補,注重實效。
<<<
高一數學平面向量知識點 總結 相關 文章 :
★ 高一數學平面向量知識點總結
★ 高一數學平面向量知識點
★ 高中數學必修4平面向量知識點總結
★ 數學必修4向量公式歸納
★ 高一數學平面向量知識點分析
★ 高中高一數學知識點總結
★ 數學必修4平面向量公式總結
★ 高中數學必修4平面向量知識點
★ 高一數學知識點總結歸納
★ 高中數學平面解析幾何知識點歸納
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();❼ 高中數學關於向量的知識點詳解
高中數學關於向量的知識點
1.向量的基本概念
(1)向量
既有大小又有方向的量叫做向量.物理學中又叫做矢量.如力、速度、加速度、位移就是向量.
向量可以用一條有向線段(帶有方向的線段)來表示,用有向線段的長度表示向量的大小,用箭頭所指的方向表示向量的方向.向量也可以用一個小寫字母a,b,c表示,或用兩個大寫字母加表示(其中前面的字母為起點,後面的字母為終點)
(5)平行向量
方向相同或相反的非零向量,叫做平行向量.平行向量也叫做共線向量.
若向量a、b平行,記作a∥b.
規定:0與任一向量平行.
(6)相等向量
長度相等且方向相同的向量叫做相等向量.
①向量相等有兩個要素:一是長度相等,二是方向相同,二者缺一不可.
②向量a,b相等記作a=b.
③零向量都相等.
④任何兩個相等的非零向量,都可用同一有向線段表示,但特別要注意向量相等與有向線段的起點無關.
2.對於向量概念需注意
(1)向量是區別於數量的一種量,既有大小,又有方向,任意兩個向量不能比較大小,只可以判斷它們是否相等,但向量的模可以比較大小.
(2)向量共線與表示它們的有向線段共線不同.向量共線時,表示向量的有向線段可以是平行的,不一定在同一條直線上;而有向線段共線則是指線段必須在同一條直線上.
(3)由向量相等的定義可知,對於一個向量,只要不改變它的大小和方向,它是可以任意平行移動的,因此用有向線段表示向量時,可以任意選取有向線段的起點,由此也可得到:任意一組平行向量都可以平移到同一條直線上.
3.向量的運算律
(1)交換律:α+β=β+α
(2)結合律:(α+β)+γ=α+(β+γ)
(3)數量加法的分配律:(λ+μ)α=λα+μα
(4)向量加法的分配律:γ(α+β)=γα+γβ
高中數學學習的竅門
1不亂買輔導書。
關於數學,我一本輔導書都沒買(高三),從高三發的第一張卷子起到最後一張我高考結束後全部留著,厚厚的三打。這些卷子留好後你從第一張看的時候和輔導書是一樣一樣的 因為高三復習的時候都是按章節來的,所以條目很清晰。
1每一張卷子不留題。
不留錯題和不明白的題,把每一個題目都弄明白,不會的就去問別人問老師。我一開始也不好意思去問老師,因為我基礎太差了,可能我不會的題其實只是一個公式題,所以我都是問周圍的同學,所幸我周圍一圈學霸,每一個都被我問煩了要 在這里要感謝一下他們~
1整理錯題。
這個其實真的挺重要,但我前面也說過,我是一個超懶的人,所以我沒有做 但是我在後期快三模的時候意識到了這個的重要性,所以把所有卷子集中起來把錯題回顧了一遍,不一定動筆(太懶)去做,在腦子里想一遍,一般只用不到一分鍾一道,這個時間什麼時候都抽得出來的。
1整理筆記。
關於數學的筆記我有兩本,一個是我們老師總結的一些方法和技巧,一些公式的記憶以及法則概念之類的(這個要好好記!做題的時候經常用到!沒有公式做題簡直是… )另一本是關於一些好題難題錯題典型題,把這些題從紙上剪下來貼到本子上再做一遍,到高考前我把這個錯題本又全部重新做了一遍(當然,這個由於太懶,有的題有點三天打漁兩天曬網 )
1關於卷子。
由於筆記要剪下來(這年頭誰還自己抄題快去給我站牆角!)貼到筆記上,所以我都是要兩張卷子(老師都是直接問誰要兩張自己留下就行),兩張卷子一張自己做,另一張用來剪題(有的時候正反面都有就很討厭啦 所以我有的時候拿三張 )
ps:自己做的那張卷子呢做完聽題的時候要做好標記,答主有一套晨光的彩色筆,還蠻好用,把不會的題在題號標一種顏色,會但是典型的一種顏色。
一定要把做題過程在卷子上寫清楚!一定要把做題過程在卷子上寫清楚!一定要把做題過程在卷子上寫清楚!重要的事說三遍!否則你看卷子時說忘就忘哭都沒地方哭
1關於老師。
答主老師長的帥啊 大於一切優點啊 要努力尋找老師的閃光點,畢竟老師對於學習興趣還是影響很大的。
1補充。
我們老師當時特別喜歡給我們做模擬題,都是他做了的題然後剪貼出來的卷子,所以每道題都很好也是我說過不留題的原因。因為做套題的時候就算你很多都不懂,但是選擇題中的集合那些題總都會做,不至於像做導數數列那些單元的卷子一樣欲哭無淚=_=(數學不好的人都懂我!)所以可以多做套題來增強自己的信心。
1信心。
❽ 高中數學向量知識點
在數學中,向量指具有大小(magnitude)和方向的量。下面是我為你整理的高中數學向量知識點,一起來看看吧。
高中數學向量知識點:基礎知識
高中數學向量知識點:坐標表示
高中數學向量知識點:公式
向量共線的重要條件
若b≠0,則a//b的重要條件是存在唯一實數λ,使a=λb。
a//b的重要條件是 xy'-x'y=0。
零向量0平行於任何向量。
[編輯本段]向量垂直的充要條件
a⊥b的充要條件是 a•b=0。
a⊥b的充要條件是 xx'+yy'=0。
零向量0垂直於任何向量.
設a=(x,y),b=(x',y')。
1、向量的加法
向量的加法滿足平行四邊形法則和三角形法則。
AB+BC=AC。
a+b=(x+x',y+y')。
a+0=0+a=a。
向量加法的運算律:
交換律:a+b=b+a;
結合律:(a+b)+c=a+(b+c)。
2、向量的減法
如果a、b是互為相反的向量,那麼a=-b,b=-a,a+b=0. 0的反向量為0
AB-AC=CB. 即“共同起點,指向被減”
a=(x,y) b=(x',y') 則 a-b=(x-x',y-y').
4、數乘向量
實數λ和向量a的乘積是一個向量,記作λa,且∣λa∣=∣λ∣•∣a∣。
當λ>0時,λa與a同方向;
當λ<0時,λa與a反方向;
當λ=0時,λa=0,方向任意。
當a=0時,對於任意實數λ,都有λa=0。
註:按定義知,如果λa=0,那麼λ=0或a=0。
實數λ叫做向量a的系數,乘數向量λa的幾何意義就是將表示向量a的有向線段伸長或壓縮。
當∣λ∣>1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上伸長為原來的∣λ∣倍;
當∣λ∣<1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上縮短為原來的∣λ∣倍。
數與向量的乘法滿足下面的運算律
結合律:(λa)•b=λ(a•b)=(a•λb)。
向量對於數的分配律(第一分配律):(λ+μ)a=λa+μa.
數對於向量的分配律(第二分配律):λ(a+b)=λa+λb.
數乘向量的消去律:① 如果實數λ≠0且λa=λb,那麼a=b。② 如果a≠0且λa=μa,那麼λ=μ。
3、向量的的數量積
定義:已知兩個非零向量a,b。作OA=a,OB=b,則角AOB稱作向量a和向量b的夾角,記作〈a,b〉並規定0≤〈a,b〉≤π
定義:兩個向量的數量積(內積、點積)是一個數量,記作a•b。若a、b不共線,則a•b=|a|•|b|•cos〈a,b〉;若a、b共線,則a•b=+-∣a∣∣b∣。
向量的數量積的坐標表示:a•b=x•x'+y•y'。
向量的數量積的運算律
a•b=b•a(交換律);
(λa)•b=λ(a•b)(關於數乘法的結合律);
(a+b)•c=a•c+b•c(分配律);
向量的數量積的性質
a•a=|a|的平方。
a⊥b 〈=〉a•b=0。
|a•b|≤|a|•|b|。
向量的數量積與實數運算的主要不同點
1、向量的數量積不滿足結合律,即:(a•b)•c≠a•(b•c);例如:(a•b)^2≠a^2•b^2。
2、向量的數量積不滿足消去律,即:由 a•b=a•c (a≠0),推不出 b=c。
3、|a•b|≠|a|•|b|
4、由 |a|=|b| ,推不出 a=b或a=-b。
4、向量的向量積
定義:兩個向量a和b的向量積(外積、叉積)是一個向量,記作a×b。若a、b不共線,則a×b的模是:∣a×b∣=|a|•|b|•sin〈a,b〉;a×b的方向是:垂直於a和b,且a、b和a×b按這個次序構成右手系。若a、b共線,則a×b=0。
向量的向量積性質:
∣a×b∣是以a和b為邊的平行四邊形面積。
a×a=0。
a‖b〈=〉a×b=0。
向量的向量積運算律
a×b=-b×a;
(λa)×b=λ(a×b)=a×(λb);
(a+b)×c=a×c+b×c.
❾ 高中數學平面向量知識點總結概括
《高中數學》是由人民教育出版社出版的圖書,該書由人民教育出版社、課程教材研究所、數學課程教材研究開發中心共同編制,內容包括《集合與函數》《三角函數》《不等式》《數列》《復數》《排列、組合、二項式定理》《立體幾何》《平面解析幾何》等部分。下面是我精心收集的高中數學有關平面向量知識點總結概括,希望能對你有所幫助。
一、定比分點
定比分點公式(向量P1P=λ向量PP2)
設P1、P2是直線上的兩點,P是l上不同於P1、P2的任意一點。則存在一個實數λ,使向量P1P=λ向量PP2,λ叫做點P分有向線段P1P2所成的比。
若P1(x1,y1),P2(x2,y2),P(x,y),則有
OP=(OP1+λOP2)(1+λ);(定比分點向量公式)
x=(x1+λx2)/(1+λ),
y=(y1+λy2)/(1+λ)。(定比分點坐標公式)
我們把上面的式子叫做有向線段P1P2的定比分點公式。
二、三點共線定理
若OC=λOA+μOB,且λ+μ=1,則A、B、C三點共線。
三、三角形重心判斷式
在△ABC中,若GA+GB+GC=O,則G為△ABC的重心。
四、向量共線的重要條件
若b≠0,則a//b的重要條件是存在唯一實數λ,使a=λb。
a//b的重要條件是xy—xy=0。
零向量0平行於任何向量。
五、向量垂直的充要條件
a⊥b的充要條件是ab=0。
a⊥b的充要條件是xx+yy=0。
零向量0垂直於任何向量。
設a=(x,y),b=(x,y)。
六、向量的運算
1、向量的加法
向量的加法滿足平行四邊形法則和三角形法則。
AB+BC=AC。
a+b=(x+x,y+y)。
a+0=0+a=a。
向量加法的運算律:
交換律:a+b=b+a;
結合律:(a+b)+c=a+(b+c)。
2、向量的減法
如果a、b是互為相反的向量,那麼a=—b,b=—a,a+b=0。0的反向量為0
AB—AC=CB。即「共同起點,指向被減」
a=(x,y) b=(x,y) 則a—b=(x—x,y—y)。
4、數乘向量
實數λ和向量a的乘積是一個向量,記作λa,且∣λa∣=∣λ∣∣a∣。
當λ>0時,λa與a同方向;
當λ<0時,λa與a反方向;
當λ=0時,λa=0,方向任意。
當a=0時,對於任意實數λ,都有λa=0。
註:按定義知,如果λa=0,那麼λ=0或a=0。
實數λ叫做向量a的系數,乘數向量λa的幾何意義就是將表示向量a的有向線段伸長或壓縮。
當∣λ∣>1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上伸長為原來的∣λ∣倍;
當∣λ∣<1時,表示向量a的'有向線段在原方向(λ>0)或反方向(λ<0)上縮短為原來的∣λ∣倍。
5、數與向量的乘法滿足下面的運算律
結合律:(λa)b=λ(ab)=(aλb)。
向量對於數的分配律(第一分配律):(λ+μ)a=λa+μa。
數對於向量的分配律(第二分配律):λ(a+b)=λa+λb。
數乘向量的消去律:
①如果實數λ≠0且λa=λb,那麼a=b。
②如果a≠0且λa=μa,那麼λ=μ。
6、向量的的數量積
定義:已知兩個非零向量a,b。作OA=a,OB=b,則角AOB稱作向量a和向量b的夾角,記作〈a,b〉並規定0≤〈a,b〉≤π
定義:兩個向量的數量積(內積、點積)是一個數量,記作ab。若a、b不共線,則ab=|a||b|cos〈a,b〉;若a、b共線,則ab=+—∣a∣∣b∣。
向量的數量積的坐標表示:ab=xx+yy。
7、向量的數量積的運算律
ab=ba(交換律);
(λa)b=λ(ab)(關於數乘法的結合律);
(a+b)c=ac+bc(分配律);
向量的數量積的性質
aa=|a|的平方。
a⊥b〈=〉ab=0。
|ab|≤|a||b|。
8、向量的數量積與實數運算的主要不同點
8.1向量的數量積不滿足結合律,即:(ab)c≠a(bc);例如:(ab)^2≠a^2b^2。
8.2向量的數量積不滿足消去律,即:由ab=ac(a≠0),推不出b=c。
8.3|ab|≠|a||b|
8.4由a|=|b|,推不出a=b或a=—b。
七、向量的向量積
1、定義:兩個向量a和b的向量積(外積、叉積)是一個向量,記作a×b。若a、b不共線,則a×b的模是:∣a×b∣=|a||b|sin〈a,b〉;a×b的方向是:垂直於a和b,且a、b和a×b按這個次序構成右手系。若a、b共線,則a×b=0。
2、向量的向量積性質:
∣a×b∣是以a和b為邊的平行四邊形面積。
a×a=0。
a‖b〈=〉a×b=0。
3、向量的向量積運算律
a×b=—b×a;
(λa)×b=λ(a×b)=a×(λb);
(a+b)×c=a×c+b×c。
註:向量沒有除法,「向量AB/向量CD」是沒有意義的。
4、向量的三角形不等式
1、∣∣a∣—∣b∣∣≤∣a+b∣≤∣a∣+∣b∣;
①當且僅當a、b反向時,左邊取等號;
②當且僅當a、b同向時,右邊取等號。
2、∣∣a∣—∣b∣∣≤∣a—b∣≤∣a∣+∣b∣。
①當且僅當a、b同向時,左邊取等號;
②當且僅當a、b反向時,右邊取等號。