Ⅰ 什麼是數學學科
數學是研究數量、結構、變化以及空間模型等概念的一門學科。通過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察中產生。數學家們拓展這些概念,為了公式化新的猜想以及從合適選定的公理及定義中建立起嚴謹推導出的真理。
http://ke..com/view/1284.htm
Ⅱ 數學是什麼學科
數學是研究現實世界空間形式和數量關系的一門科學。分為初等數學和高等數學。在科學發展和現代生活生產中的應用非常廣泛,是學習和研究現代科學技術必不可少的基本工具。
數學是人類對事物的抽象結構與模式進行嚴格描述的一種通用手段,可以應用於現實世界的任何問題,所有的數學對象本質上都是人為定義的。不同的數學家和哲學家對數學的確切范圍和定義有一系列的看法。
Ⅲ 「數學」是一門什麼樣的學科
數學是研究數量、結構、變化、空間以及信息等概念的一門學科,從某種角度看屬於形式科學的一種。數學家和哲學家對數學的確切范圍和定義有一系列的看法。在人類歷史發展和社會生活中,數學也發揮著不可替代的作用,也是學習和研究現代科學技術必不可少的基本工具。
數學(漢語拼音:shù xué;希臘語:μαθηματικ;英語:Mathematics或Maths),源自於古希臘語的μθημα(máthēma),其有學習、學問、科學之意。
古希臘學者視其為哲學之起點,「學問的基礎」。另外,還有個較狹隘且技術性的意義——「數學研究」。即使在其語源內,其形容詞意義凡與學習有關的,亦會被用來指數學的。
(3)什麼是數學學科內容知識擴展閱讀
數學的分支:
一、運籌學
包括:線性規劃、非線性規劃、動態規劃、組合最優化、參數規劃、整數規劃、隨機規劃、排隊論、對策論 亦稱博弈論、庫存論、決策論、搜索論、圖論、統籌論、最優化、運籌學其他學科。
二、泛函分析
包括:線性運算元理論、變分法 、拓撲線性空間、希爾伯特空間、函數空間、巴拿赫空間、運算元代數 、測度與積分、廣義函數論、非線性泛函分析、泛函分析其他學科。
三、計算數學
包括:插值法與逼近論、常微分方程數值解、偏微分方程數值解、積分方程數值解、數值代數、連續問題離散化方法、隨機數值實驗、誤差分析、計算數學其他學科
四、泛函分析
包括:線性運算元理論、變分法、拓撲線性空間、希爾伯特空間、函數空間、巴拿赫空間、運算元代數 、測度與積分、廣義函數論、非線性泛函分析、泛函分析其他學科。
五、偏微分方程
包括:橢圓型偏微分方程、雙曲型偏微分方程 、拋物型偏微分方程、非線性偏微分方程、偏微分方程其他學科
參考資料來源:網路-數學
Ⅳ 大學數學主要學的是些什麼內容
大學的數學學習內容屬於高等數學,主要的內容有:
1、極限
極限思想是微積分的基本思想,是數學分析中的一系列重要概念,如函數的連續性、導數(為0得到極大值)以及定積分等等都是藉助於極限來定義的。極限是解決高等數學問題的基礎。
2、微積分
微積分是高等數學中研究函數的微分、積分以及有關概念和應用的數學分支。它是數學的一個基礎學科,在許多領域都有重要的應用。
3、空間解析幾何
藉助矢量的概念可使幾何更便於應用到某些自然科學與技術領域中去,因此,空間解析幾何介紹空間坐標系後,緊接著介紹矢量的概念及其代數運算。
(4)什麼是數學學科內容知識擴展閱讀
歷史發展
一般認為,16世紀以前發展起來的各個數學學科總的是屬於初等數學的范疇,因而,17世紀以後建立的數學學科基本上都是高等數學的內容。由此可見,高等數學的范疇無法用簡單的幾句話或列舉其所含分支學科來說明。
19世紀以前確立的幾何、代數、分析三大數學分支中,前兩個都原是初等數學的分支,其後又發展了屬於高等數學的部分,而只有分析從一開始就屬於高等數學。
分析的基礎——微積分被認為是「變數的數學」的開始,因此,研究變數是高等數學的特徵之一。原始的變數概念是物質世界變化的諸量的直接抽象,現代數學中變數的概念包含了更高層次的抽象。
Ⅳ 數學學科專業知識是指什麼具體內容
你好,數學是個總稱,數學里包含的知識可以說是太多太多了,我大學數學系,13們數學課程,相比高中那些數學,那些只能算是算數了。數學分外很多種,比如說:微積分,復變,實變,泛函分析,解析幾何,離散數學,初等數論,常微分方程,數理方程等等,太多了。
Ⅵ 數學知識是什麼
數學,其英文是mathematics,這是一個復數名詞,「數學曾經是四門學科:算術、幾何、天文學和音樂,處於一種比語法、修辭和辯證法這三門學科更高的地位。」
自古以來,多數人把數學看成是一種知識體系,是經過嚴密的邏輯推理而形成的系統化的理論知識總和,它既反映了人們對「現實世界的空間形式和數量關系(恩格斯)」的認識(恩格斯),又反映了人們對「可能的量的關系和形式」的認識。數學既可以來自現實世界的直接抽象,也可以來自人類思維的勞動創造。
從人類社會的發展史看,人們對數學本質特徵的認識在不斷變化和深化。「數學的根源在於普通的常識,最顯著的例子是非負整數。"歐幾里德的算術來源於普通常識中的非負整數,而且直到19世紀中葉,對於數的科學探索還停留在普通的常識,」另一個例子是幾何中的相似性,「在個體發展中幾何學甚至先於算術」,其「最早的徵兆之一是相似性的知識,」相似性知識被發現得如此之早,「就象是大生的。」因此,19世紀以前,人們普遍認為數學是一門自然科學、經驗科學,因為那時的數學與現實之間的聯系非常密切,隨著數學研究的不斷深入,從19世紀中葉以後,數學是一門演繹科學的觀點逐漸占據主導地位,這種觀點在布爾巴基學派的研究中得到發展,他們認為數學是研究結構的科學,一切數學都建立在代數結構、序結構和拓撲結構這三種母結構之上。與這種觀點相對應,從古希臘的柏拉圖開始,許多人認為數學是研究模式的學問,數學家懷特海(A. N. Whiiehead,186----1947)在《數學與善》中說,「數學的本質特徵就是:在從模式化的個體作抽象的過程中對模式進行研究,」數學對於理解模式和分析模式之間的關系,是最強有力的技術。」1931年,歌德爾(K,G0de1,1978)不完全性定理的證明,宣告了公理化邏輯演繹系統中存在的缺憾,這樣,人們又想到了數學是經驗科學的觀點,著名數學家馮·諾伊曼就認為,數學兼有演繹科學和經驗科學兩種特性。
對於上述關於數學本質特徵的看法,我們應當以歷史的眼光來分析,實際上,對數本質特徵的認識是隨數學的發展而發展的。由於數學源於分配物品、計算時間、丈量土地和容積等實踐,因而這時的數學對象(作為抽象思維的產物)與客觀實在是非常接近的,人們能夠很容易地找到數學概念的現實原型,這樣,人們自然地認為數學是一種經驗科學;隨著數學研究的深入,非歐幾何、抽象代數和集合論等的產生,特別是現代數學向抽象、多元、高維發展,人們的注意力集中在這些抽象對象上,數學與現實之間的距離越來越遠,而且數學證明(作為一種演繹推理)在數學研究中占據了重要地位,因此,出現了認為數學是人類思維的自由創造物,是研究量的關系的科學,是研究抽象結構的理論,是關於模式的學問,等等觀點。這些認識,既反映了人們對數學理解的深化,也是人們從不同側面對數學進行認識的結果。正如有人所說的,「恩格斯的關於數學是研究現實世界的數量關系和空間形式的提法與布爾巴基的結構觀點是不矛盾的,前者反映了數學的來源,後者反映了現代數學的水平,現代數學是一座由一系列抽象結構建成的大廈。」而關於數學是研究模式的學問的說法,則是從數學的抽象過程和抽象水平的角度對數學本質特徵的闡釋,另外,從思想根源上來看,人們之所以把數學看成是演繹科學、研究結構的科學,是基於人類對數學推理的必然性、准確性的那種與生俱來的信念,是對人類自身理性的能力、根源和力量的信心的集中體現,因此人們認為,發展數學理論的這套方法,即從不證自明的公理出發進行演繹推理,是絕對可靠的,也即如果公理是真的,那麼由它演繹出來的結論也一定是真的,通過應用這些看起來清晰、正確、完美的邏輯,數學家們得出的結論顯然是毋庸置疑的、無可辯駁的。
Ⅶ 關於數學的知識有哪些
如下:
1、數學是研究數量、結構、變化、空間以及信息等概念的一門學科,從某種角度看屬於形式科學的一種。
2、數學在人類歷史發展和社會生活中發揮著不可替代的作用,也是學習和研究現代科學技術必不可少的基本工具。
3、數學起源於人類早期的生產活動,古巴比倫人從遠古時代開始已經積累了一定的數學知識,並能應用實際問題。從數學本身看,他們的數學知識也只是觀察和經驗所得,沒有綜合結論和證明,但也要充分肯定他們對數學所做出的貢獻。
4、數學被應用在很多不同的領域上,包括科學、工程、醫學和經濟學等。數學在這些領域的應用一般被稱為應用數學,有時亦會激起新的數學發現,並促成全新數學學科的發展.數學家也研究純數學,也就是數學本身,而不以任何實際應用為目標。雖然有許多工作以研究純數學為開端,但之後也許會發現合適的應用。
Ⅷ 什麼是數學知識
數學是一門學科,
研究數與形及其衍生問題。
凡是在這個范圍內的知識,
都是數學知識。
數學知識以公理體系為基礎,
通過邏輯逐步導出各個定理,
把數學知識編織成網路結構。
數學是所有科學技術的基礎。
Ⅸ 到底什麼是數學它的范圍有哪些
數學是研究數量、結構、變化以及空間模型等概念的一門學科.透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察中產生.數學家們拓展這些概念,為了公式化新的猜想以及從合適選定的公理及定義中建立起嚴謹推導出的真理.研究現實世界中數量關系和空間形式的科學.簡單地說,是研究數和形的科學.由於生活和勞動上的需求,即使是最原始的民族,也知道簡單的計數,並由用手指或實物計數發展到用數字計數.基礎數學的知識與運用總是個人與團體生活中不可或缺的一塊.其基本概念的精煉早在古埃及、美索不達米亞及古印度內的古代數學文本內便可觀見.從那時開始,其發展便持續不斷地有小幅的進展,直至16世紀的文藝復興時期,因著和新科學發現相作用而生成的數學革新導致了知識的加速,直至今日.今日,數學被使用在世界上不同的領域上,包括科學、工程、醫學和經濟學等.數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展.數學家亦研究沒有任何實際應用價值的純數學,即使其應用常會在之後被發現.創立於二十世紀三十年代的法國的布爾巴基學派認為:數學,至少純粹數學,是研究抽象結構的理論.結構,就是以初始概念和公理出發的演繹系統.布學派認為,有三種基本的抽象結構:代數結構(群,環,域……),序結構(偏序,全序……),拓撲結構(鄰域,極限,連通性,維數……).數學還分幾何,計算,還有面積.
Ⅹ 數學一共包括哪些內容數學分為哪幾個部分呢
數學包括哪幾個部分
數學源自於古希臘語,是研究數量、結構、變化以及空間模型等概念的一門科學。透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察中產生。數學的基本要素是:邏輯和直觀、分析和推理、共性和個性。
數學部分大體包括哪些部分
包括數與形兩部分
數學一共包括哪些內容?
主要包括代數 平面幾何 立體幾何 三角函數 其中代數又包括直線 拋物線 圓 橢圓 平面幾何有兩直線的平面關系 立體幾何是指線與線 線與面 面與面的空間關系 三角函數包括正弦 餘弦 正切 餘切 正割 餘割 到了高三這些內容都會學到
高等數學包括哪幾大部分?
有。還包括高等代數
不知提問者到底是什麼程度的?如果大學的電專業,必須學習復變的。如果工科,還要學習場論基礎和數學變換(拉氏變換)。
如果是高中生,只要關心簡單的極限求法和一階導數的求法及主要應用。
高等代數可以包括行列式、線代、向量空間、二次型、概率和群環理論。
解析幾何、立體幾何已下放至中學數初等數學范圍。當然學了微積分以後,眼界會高點。
數學分為哪幾類
數學可以分為:數論、代數學、代數幾何學、幾何學、拓撲學、數學分析、非標准分析、函數論、常微分方程、偏微分方程、動力系統、積分方程、泛函分析、計算數學、概率論數理統計學、應用統計數學、應用統計數學其他學科、運籌學、組合數學 、模糊數學、量子數學、應用數學等等。
基礎數學的知識與運用是個人與團體生活中不可或缺的一部分。其基本概念的精煉早在古埃及、美索不達米亞及古印度內的古代數學文本內便可觀見。從那時開始,其發展便持續不斷地有小幅度的進展,但當時的代數學和幾何學長久以來仍處於獨立的狀態。
代數學可以說是最為人們廣泛接受的「數學」,可以說每一個人從小時候開始學數數起,最先接觸到的數學就是代數學。而數學作為一個研究「數」的學科,代數學也是數學最重要的組成部分之一。幾何學則是最早開始被人們研究的數學分支。
(10)什麼是數學學科內容知識擴展閱讀
相關定理
1、李善蘭恆等式:數學家李善蘭在級數求和方面的研究成果,在國際上被命名為「李善蘭恆等式」(或李氏恆等式)。
2、華氏定理:數學家華羅庚關於完整三角和的研究成果被國際數學界稱為「華氏定理」;另外他與數學家王元提出多重積分近似計算的方法被國際上譽為「華—王方法」。
3、蘇氏錐面:數學家蘇步青在仿射微分幾何學方面的研究成果在國際上被命名為「蘇氏錐面」。
4、熊氏無窮級:數學家熊慶來關於整函數與無窮級的亞純函數的研究成果被國際數學界譽為「熊氏無窮級」。
5、陳示性類:數學家陳省身關於示性類的研究成果被國際上稱為「陳示性類」。
6、周氏坐標:數學家周煒良在代數幾何學方面的研究成果被國際數學界稱為「周氏坐標;另外還有以他命名的「周氏定理」和「周氏環」。
參考資料來源:搜狗網路——數學