當前位置:首頁 » 基礎知識 » 初一上冊數學總知識
擴展閱讀
老師如何治同學抑鬱症 2024-11-19 17:04:09
想去動漫公司注意什麼 2024-11-19 17:01:42

初一上冊數學總知識

發布時間: 2022-12-27 16:16:57

『壹』 初一上冊數學知識點總結歸納

初一數學是初中數學的基礎,這篇文章我給大家總結歸納了初一上冊數學課本的重要知識點,供同學們參考。

有理數

(1)定義:由整數和分數組成的數。包括:正整數、0、負整數,正分數、負分數。可以寫成兩個整之比的形式。

(2)數軸:在數學中,可以用一條直線上的點表示數,這條直線叫做數軸。

(3)相反數:相反數是一個數學術語,指絕對值相等,正負號相反的兩個數互為相反數。

(4)絕對值:絕對值是指一個數在數軸上所對應點到原點的距離。正數的絕對值是它本身,負數的絕對值是它的相反數;0的絕對值是0,兩個負數,絕對值大的反而小。

(5)有理數的加減法

同號相加,到相同符號,並把絕對值相加。異號相加,取絕對值大的加數的符號,並用較大的絕對值減去較小的絕對值。

(6)有理數的乘法

兩數相乘,同號得正,異號得負,並把絕對值相乘。

任何數與0相乘,積為0.例:0×1=0

(7)有理數的除法

除以一個不為0的數,等於乘這個數的倒數。

兩數相除,同號得正,異號得負,並把絕對值相除。0除

以任何一個不為0的數,都得0。

(8)有理數的乘方

求n個相同因數乘積的運算,叫做乘方,乘方的結果叫做冪。其中,a叫做底數,n叫做指數。當aⁿ看作a的n次乘方的結果時,也可讀作「a的n次冪」或「a的n次方」。

一元一次方程

(1)方程:先設字母表示未知數,然後根據相等關系,寫出含有未知數的等式叫做方程。

(2)一元一次方程

一元一次方程指只含有一個未知數、未知數的最高次數為1且兩邊都為整式的等式,叫做一元一次方程。求出方程中未知數的值叫做方程式的解。

(3)等式的性質

①等式兩邊同時加上(或減去)同一個整式,等式仍然成立。

若a=b

那麼a+c=b+c

②等式兩邊同時乘或除以同一個不為0的整式,等式仍然成立。

若a=b

那麼有a·c=b·c或a÷c=b÷c(c≠0)

③等式具有傳遞性。

若a1=a2,a2=a3,a3=a4,……an=an,那麼a1=a2=a3=a4=……=an

(3)解方程式的步驟

解一元一次方程的步驟:去分母、去括弧、移項、合並同類項、未知數系數化為1。

①去分母:把系數化成整數。

②去括弧

③移項:把等式一邊的某項變號後移到另一邊。

④合並同類項

⑤系數化為1。

角的知識點

1.角:角是由兩條有公共端點的射線組成的幾何對象。

2.角的度量單位:度、分、秒

3.頂點:角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點

4.角的比較:

(1)角可以看成是由一條射線繞著他的端點旋轉而成的。

(2)平角和周角:一條射線繞著他的端點旋轉,當始邊和終邊成一條直線時,所成的角叫平角。當它又和始邊重合的時候,所成的角角周角。平角等於108度,周角等於360度,直角等於90度。

(3)平分線:從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。

5.餘角和補角:

(1)餘角:如果兩個角的和是90度,那麼稱這兩個角「互為餘角」,簡稱「互余」。

性質:等角的餘角相等。

(2)補角:如果兩個角的和是180度,那麼稱這兩個角「互為補角」,簡稱「互補」。

性質:等角的補角相等。

『貳』 初一數學上冊知識點歸納

七年級初一上冊的數學知識點是奠定中學數學學習的基礎,所以新初一的學生最好趁這個暑期將這部分內容學習好。我在這里整理了相關資料,希望能幫助到您。

目錄

第一章 有理數

第二章 整式的加減

第三章 一元一次方程

第四章 幾何圖形初步

第一章 有理數

1.1 正數與負數

①正數:大於0的數叫正數。(根據需要,有時在正數前面也加上「+」)

②負數:在以前學過的0以外的數前面加上負號「—」的數叫負數。與正數具有相反意義。

③0既不是正數也不是負數。0是正數和負數的分界,是唯一的中性數。

注意:搞清相反意義的量:南北;東西;上下;左右;上升下降;高低;增長減少等

1.2 有理數

1、有理數(1)整數:正整數、0、負整數統稱整數;(2)分數;正分數和負分數統稱分數;

(3)有理數:整數和分數統稱有理數。

2、數軸(1)定義 :通常用一條直線上的點表示數,這條直線叫數軸;

(2)數軸三要素:原點、正方向、單位長度;

(3)原點:在直線上任取一個點表示數0,這個點叫做原點;

(4)數軸上的點和有理數的關系:所有的有理數都可以用數軸上的點表示出來,但數軸上的點,不都是表示有理數。

3、相反數:只有符號不同的兩個數叫做互為相反數。(例:2的相反數是-2;0的相反數是0)

4、絕對值:(1)數軸上表示數a的點與原點的距離叫做數a的絕對值,記作|a|。從幾何意義上講,數的絕對值是兩點間的距離。

(2) 一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;0的絕對值是0。兩個負數,絕對值大的反而小。

1.3 有理數的加減法

①有理數加法法則:

1、同號兩數相加,取相同的符號,並把絕對值相加。

2、絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0。

3、一個數同0相加,仍得這個數。

加法的交換律和結合律

②有理數減法法則:減去一個數,等於加這個數的相反數。

1.4 有理數的乘除法

①有理數乘法法則:兩數相乘,同號得正,異號得負,並把絕對值相乘;

任何數同0相乘,都得0;

乘積是1的兩個數互為倒數。

乘法交換律/結合律/分配律

②有理數除法法則:除以一個不等於0的數,等於乘這個數的倒數;

兩數相除,同號得正,異號得負,並把絕對值相除;

0除以任何一個不等於0的數,都得0。

1.5 有理數的乘方

1、求n個相同因數的積的運算,叫乘方,乘方的結果叫冪。在a的n次方中,a叫做底數,n叫做指數。負數的奇次冪是負數,負數的偶次冪是正數。正數的任何次冪都是正數,0的任何次冪都是0。

2、有理數的混合運演算法則:先乘方,再乘除,最後加減;同級運算,從左到右進行;如有括弧,先做括弧內的運算,按小括弧、中括弧、大括弧依次進行。

3、把一個大於10的數表示成a×10的n次方的形式,使用的就是科學計數法,注意a的范圍為1≤a <10。


第二章 整式的加減

2.1 整式

1、單項式:由數字和字母乘積組成的式子。系數,單項式的次數. 單項式指的是數或字母的積的代數式.單獨一個數或一個字母也是單項式.因此,判斷代數式是否是單項式,關鍵要看代數式中數與字母是否是乘積關系,即分母中不含有字母,若式子中含有加、減運算關系,其也不是單項式.

2、單項式的系數:是指單項式中的數字因數;

3、單項數的次數:是指單項式中所有字母的指數的和.

4、多項式:幾個單項式的和。判斷代數式是否是多項式,關鍵要看代數式中的每一項是否是單項式.每個單項式稱項,常數項,多項式的次數就是多項式中次數最高的次數。多項式的次數是指多項式里次數最高項的次數,這里是次數最高項,其次數是6;多項式的項是指在多項式中,每一個單項式.特別注意多項式的項包括它前面的性質符號.

5、它們都是用字母表示數或列式表示數量關系。注意單項式和多項式的每一項都包括它前面的符號。

6、單項式和多項式統稱為整式。

2.2整式的加減

1、同類項:所含字母相同,並且相同字母的指數也相同的項。與字母前面的系數(≠0)無關。

2、同類項必須同時滿足兩個條件:(1)所含字母相同;(2)相同字母的次數相同,二者缺一不可.同類項與系數大小、字母的排列順序無關

3、合並同類項:把多項式中的同類項合並成一項。可以運用交換律,結合律和分配律。

4、合並同類項法則:合並同類項後,所得項的系數是合並前各同類項的系數的和,且字母部分不變;

5、去括弧法則:去括弧,看符號:是正號,不變號;是負號,全變號。

6、整式加減的一般步驟:

一去、二找、三合

(1)如果遇到括弧按去括弧法則先去括弧. (2)結合同類項. (3)合並同類項


第三章 一元一次方程

3.1 一元一次方程

1、方程是含有未知數的等式。

2、方程都只含有一個未知數(元)x,未知數x的指數都是1(次),這樣的方程叫做一元一次方程。

注意:判斷一個方程是否是一元一次方程要抓住三點:

1)未知數所在的式子是整式(方程是整式方程);

2)化簡後方程中只含有一個未知數;

3)經整理後方程中未知數的次數是1.

3、解方程就是求出使方程中等號左右兩邊相等的未知數的值,這個值就是方程的解。

4、等式的性質: 1)等式兩邊同時加(或減)同一個數(或式子),結果仍相等;

2)等式兩邊同時乘同一個數,或除以同一個不為0的數,結果仍相等。

注意:運用性質時,一定要注意等號兩邊都要同時變;運用性質2時,一定要注意0這個數.

3.2 、3.3解一元一次方程

在實際解方程的過程中,以下步驟不一定完全用上,有些步驟還需重復使用. 因此在解方程時還要注意以下幾點:

①去分母:在方程兩邊都乘以各分母的最小公倍數,不要漏乘不含分母的項;分子是一個整體,去分母後應加上括弧;去分母與分母化整是兩個概念,不能混淆;

②去括弧:遵從先去小括弧,再去中括弧,最後去大括弧;不要漏乘括弧的項;不要弄錯符號;

③移項:把含有未知數的項移到方程的一邊,其他項都移到方程的另一邊(移項要變符號) 移項要變號;

④合並同類項:不要丟項,解方程是同解變形,每一步都是一個方程,不能像計算或化簡題那樣寫能連等的形式;

⑤系數化為1::字母及其指數不變系數化成1,在方程兩邊都除以未知數的系數a,得到方程的解。不要分子、分母搞顛倒。

3.4 實際問題與一元一次方程

一.概念梳理

⑴列一元一次方程解決實際問題的一般步驟是:①審題,特別注意關鍵的字和詞的意義,弄清相關數量關系;②設出未知數(注意單位);③根據相等關系列出方程;④解這個方程;⑤檢驗並寫出答案(包括單位名稱)。

⑵一些固定模型中的等量關系及典型例題參照一元一次方程應用題專練學案。

二、思想 方法 (本單元常用到的數學思想方法小結)

⑴建模思想:通過對實際問題中的數量關系的分析,抽象成數學模型,建立一元一次方程的思想.

⑵方程思想:用方程解決實際問題的思想就是方程思想.

⑶化歸思想:解一元一次方程的過程,實質上就是利用去分母、去括弧、移項、合並同類項、未知數的系數化為1等各種同解變形,不斷地用新的更簡單的方程來代替原來的方程,最後逐步把方程轉化為x=a的形式. 體現了化「未知」為「已知」的化歸思想.

⑷數形結合思想:在列方程解決問題時,藉助於線段示意圖和圖表等來分析數量關系,使問題中的數量關系很直觀地展示出來,體現了數形結合的優越性.

⑸分類思想:在解含字母系數的方程和含絕對值符號的方程過程中往往需要分類討論,在解有關方案設計的實際問題的過程中往往也要注意分類思想在過程中的運用.

三、數學思想方法的學習

1. 解一元一次方程時,要明確每一步過程都作什麼變形,應該注意什麼問題.

2. 尋找實際問題的數量關系時,要善於藉助直觀分析法,如表格法,直線分析法和圖示分析法等.

3. 列方程解應用題的檢驗包括兩個方面:⑴檢驗求得的結果是不是方程的解;

⑵是要判斷方程的解是否符合題目中的實際意義.

四、應用(常見等量關系)

行程問題:s=v×t

工程問題:工作總量=工作效率×時間

盈虧問題:利潤=售價-成本

利率=利潤÷成本×100%

售價=標價×折扣數×10%

儲蓄利潤問題:利息=本金×利率×時間

本息和=本金+利息


第四章 幾何圖形初步

4.1 幾何圖形

1、幾何圖形:從形形色色的物體外形中得到的圖形叫做幾何圖形。

2、立體圖形:這些幾何圖形的各部分不都在同一個平面內。

3、平面圖形:這些幾何圖形的各部分都在同一個平面內。

4、雖然立體圖形與平面圖形是兩類不同的幾何圖形,但它們是互相聯系的。

立體圖形中某些部分是平面圖形。

5、三視圖:從左面看,從正面看,從上面看

6、展開圖:有些立體圖形是由一些平面圖形圍成的,將它們的表面適當剪開,可以展開成平面圖形。這樣的平面圖形稱為相應立體圖形的展開圖。

7、⑴幾何體簡稱體;包圍著體的是面;面 面相 交形成線;線線相交形成點;

⑵點無大小,線、面有曲直;

⑶幾何圖形都是由點、線、面、體組成的;

⑷點動成線,線動成面,面動成體;

⑸點:是組成幾何圖形的基本元素。

4.2 直線、射線、線段

1、直線公理:經過兩點有一條直線,並且只有一條直線。即:兩點確定一條直線。

2、當兩條不同的直線有一個公共點時,我們就稱這兩條直線相交,這個公共點叫做它們的交點。

3、把一條線段分成相等的兩條線段的點,叫做這條線段的中點。

4、線段公理:兩點的所有連線中,線段做短(兩點之間,線段最短)。

5、連接兩點間的線段的長度,叫做這兩點的距離。

6、直線的表示方法:如圖的直線可記作直線AB或記作直線m.

(1)用幾何語言描述右面的圖形,我們可以說:

點P在直線AB外,點A、B都在直線AB上.

(2)如圖,點O既在直線m上,又在直線n上,我們稱直線

m、n 相交,交點為O.

7、在直線上取點O,把直線分成兩個部分,去掉一邊的一個部分,保留點0和另一部分就得到一條射線,如圖就是一條射線,記作射線OM或記作射線a.葫蘆島英霸 教育 聯盟http://www.yingbajiaoyu.com/ 18342389605

注意:射線有一個端點,向一方無限延伸.

8、在直線上取兩個點A、B,把直線分成三個部分,去掉兩邊的部分,保留點A、B和中間的一部分就得到一條線段.如圖就是一條線段,記作線段AB或記作線段a.

注意:線段有兩個端點.

4.3 角

1. 角的定義:有公共端點的兩條射線組成的圖形叫角。這個公共端點是角的頂點,兩條射線為角的兩邊。如圖,角的頂點是O,兩邊分別是射線OA、OB.

2、角有以下的表示方法:

① 用三個大寫字母及符號「∠」表示.三個大寫字母分別是頂點和兩邊上的任意點,頂點的字母必須寫在中間.如上圖的角,可以記作∠AOB或∠BOA.

② 用一個大寫字母表示.這個字母就是頂點.如上圖的角可記作∠O.當有兩個或兩個以上的角是同一個頂點時,不能用一個大寫字母表示.

③ 用一個數字或一個希臘字母表示.在角的內部靠近角的頂點

處畫一弧線,寫上希臘字母或數字.如圖的兩個角,分別記作∠、∠1

2、以度、分、秒為單位的角的度量制,叫做角度制。角的度、分、秒是60進制的。

1度=60分 1分=60秒 1周角=360度 1平角=180度

3、角的平分線:一般地,從一個角的頂點出發,把這個角分成兩個相等的角的射線,叫做這個角的平分線。

4、如果兩個角的和等於90度(直角),就說這兩個叫互為餘角,即其中每一個角是另一個角的餘角;

如果兩個角的和等於180度(平角),就說這兩個叫互為補角,即其中每一個角是另一個角的補角。

5、同角(等角)的補角相等;同角(等角)的餘角相等。

6、方位角:一般以正南正北為基準,描述物體運動的方向。


初一數學上冊知識點歸納相關 文章 :

1. 初一數學上冊人教版知識點歸納

2. 初一數學知識點總結

3. 初一年級上冊數學的21個熱門知識點

4. 初一上冊數學知識點手抄報

5. 初一上冊數學第一單元知識點

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

『叄』 初一數學知識點總結上冊

初一數學上冊的知識點包括有理數、相反數、絕對值、角的相關知識點等等,接下來分享有關初一數學上冊的重要知識點,供參考。

有理數

1.定義:由整數和分數組成的數。包括:正整數、0、負整數,正分數、負分數。可以寫成兩個整之比的形式。

2.數軸:在數學中,可以用一條直線上的點表示數,這條直線叫做數軸。

3.相反數:相反數是一個數學術語,指絕對值相等,正負號相反的兩個數互為相反數。

4.絕對值:絕對值是指一個數在數軸上所對應點到原點的距離。正數的絕對值是它本身,負數的絕對值是它的相反數;0的絕對值是0,兩個負數,絕對值大的反而小。

5.有理數的加減法

同號相加,到相同符號,並把絕對值相加。異號相加,取絕對值大的加數的符號,並用較大的絕對值減去較小的絕對值。

6.有理數的乘法

兩數相乘,同號得正,異號得負,並把絕對值相乘。

任何數與0相乘,積為0.例:0×1=0

7.有理數的除法

除以一個不為0的數,等於乘這個數的倒數。

兩數相除,同號得正,異號得負,並把絕對值相除。0除

以任何一個不為0的數,都得0。

8.有理數的乘方

求n個相同因數乘積的運算,叫做乘方,乘方的結果叫做冪。其中,a叫做底數,n叫做指數。當aⁿ看作a的n次乘方的結果時,也可讀作「a的n次冪」或「a的n次方」。

相反數和絕對值

1.相反數:只有符號不同的兩個數互為相反數,0的相反數是0。在數軸上位於原點兩側且離原點距離相等。

2.絕對值的幾何意義:一個數所對應的點離原點的距離叫做該數的絕對值。

3.絕對值的代數定義:(1)一個正數的絕對值是它本身;(2)一個負數數的絕對值是它的相反數;(3)0的絕對值是0;(4)|a|大於或者等於0。

4.比較兩個數的大小關系

在數軸上表示有理數,它們從左到右的順序,就是從大到小的順序,即左邊的數小於右邊的數。由此可知:(1)正數大於0,0大於負數,正數大於負數;(2)兩個負數,絕對值大的反而小。

角的相關知識點

1.角:角是由兩條有公共端點的射線組成的幾何對象。

2.角的度量單位:度、分、秒

3.頂點:角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點

4.角的比較:

(1)角可以看成是由一條射線繞著他的端點旋轉而成的。

(2)平角和周角:一條射線繞著他的端點旋轉,當始邊和終邊成一條直線時,所成的角叫平角。當它又和始邊重合的時候,所成的角角周角。平角等於108度,周角等於360度,直角等於90度。

(3)平分線:從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。

5.餘角和補角:

(1)餘角:如果兩個角的和是90度,那麼稱這兩個角「互為餘角」,簡稱「互余」。

性質:等角的餘角相等。

(2)補角:如果兩個角的和是180度,那麼稱這兩個角「互為補角」,簡稱「互補」。

性質:等角的補角相等。

『肆』 七年級上冊數學知識點總結

有理數
1、有理數
(1)整數:正整數、0、負整數統稱整數;
(2)分數:正分數和負分數統稱分數;
(3)有理數:整數和分數統稱有理數。
2、數軸
(1)定義:通常用一條直線上的點表示數,這條直線叫數軸;
(2)數軸三要素:原點、正方向、單位長度;
(3)原點:在直線上任取一個點表示數0,這個點叫做原點;

(4)初一上冊數學總知識擴展閱讀

(4)數軸上的點和有理數的關系:所有的有理數都可以用數軸上的點表示出來,但數軸上的點,不都是表示有理數。

3、相反數:只有符號不同的兩個數叫做互為相反數。

4、絕對值:

(1)數軸上表示數a的點與原點的距離叫做數a的絕對值,記作|a|。從幾何意義上講,數的絕對值是兩點間的距離。

(2)一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;0的絕對值是0。兩個負數,絕對值大的反而小。

整式

1、單項式:由數字和字母乘積組成的式子。系數,單項式的次數。單項式指的是數或字母的積的代數式.單獨一個數或一個字母也是單項式.因此,判斷代數式是否是單項式,關鍵要看代數式中數與字母是否是乘積關系,即分母中不含有字母,若式子中含有加、減運算關系,其也不是單項式。

2、單項式的系數:是指單項式中的數字因數;

3、單項數的次數:是指單項式中所有字母的指數的和。

4、多項式:幾個單項式的和。判斷代數式是否是多項式,關鍵要看代數式中的每一項是否是單項式.每個單項式稱項,常數項。

多項式的次數就是多項式中次數最高的次數。多項式的次數是指多項式里次數最高項的次數,這里是次數最高項,其次數是6;多項式的項是指在多項式中,每一個單項式.特別注意多項式的`項包括它前面的性質符號。

5、它們都是用字母表示數或列式表示數量關系。注意單項式和多項式的每一項都包括它前面的符號。

6、單項式和多項式統稱為整式。

圖形認識初步

1、多姿多彩的圖形

幾何體也簡稱體。包圍著體的是面。

2、直線、射線、線段

線段公理:兩點的所有連線中,線段做短(兩點之間,線段最短)。

連接兩點間的線段的長度,叫做這兩點的距離。

3、角的度量

1度=60分

1分=60秒

1周角=360度

1平角=180度

4、角的比較與運算

如果兩個角的和等於90度,就說這兩個叫互為餘角,即其中每一個角是另一個角的餘角。

如果兩個角的和等於180度,就說這兩個叫互為補角,即其中每一個角是另一個角的補角。

以上是我整理的七年級上冊數學知識點,希望能幫到你。

『伍』 七年級上冊數學重要知識點總結

學好數學最重要的就是整理好知識點,下面我就大家整理一下七年級上冊數學重要知識點總結,僅供參考。

負有理數 分數

2、相反數:只有符號不同的兩個數叫做互為相反數,零的相反數是零

3、數軸:規定了原點、正方向和單位長度的直線叫做數軸(畫數軸時,三要素缺一不可)。任何一個有理數都可以用數軸上的一個點來表示。

4、倒數:如果a與b互為倒數,則有ab=1,反之亦成立。倒數等於本身的數是1和-1。零沒有倒數。

5、絕對值:在數軸上,一個數所對應的點與原點的距離,叫做該數的絕對值,(|a|≥0)。若|a|=a,則a≥0;若|a|=-a,則a≤0。

正數的絕對值是它本身;負數的絕對值是它的相反數;0的絕對值是0。互為相反數的兩個數的絕對值相等。

6、有理數比較大小:正數大於0,負數小於0,正數大於負數;數軸上的兩個點所表示的數,右邊的總比左邊的大;兩個負數,絕對值大的反而小。

7、有理數的運算:

(1)五種運算:加、減、乘、除、乘方

多個數相乘,積的符號由負因數的個數決定,當負因數有奇數個時,積的符號為負;當負因數有偶數個時,積的符號為正。只要有一個數為零,積就為零。

有理數加法法則:

同號兩數相加,取相同的符號,並把絕對值相加。

異號兩數相加,絕對值值相等時和為0;絕對值不相等時,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值。

一個數同0相加,仍得這個數。

互為相反數的兩個數相加和為0。

有理數減法法則:減去一個數,等於加上這個數的相反數!

有理數乘法法則:

兩數相乘,同號得正,異號得負,並把絕對值相乘。

任何數與0相乘,積仍為0。

整式及其加減

1、代數式

用運算符號(加、減、乘、除、乘方、開方等)把數或表示數的字母連接而成的式子叫做代數式。單獨的一個數或一個字母也是代數式。

注意:①代數式中除了含有數、字母和運算符號外,還可以有括弧;

②代數式中不含有「=、>、<、≠」等符號。等式和不等式都不是代數式,但等號和不等號兩邊的式子一般都是代數式;

③代數式中的字母所表示的數必須要使這個代數式有意義,是實際問題的要符合實際問題的意義。

※代數式的書寫格式:

①代數式中出現乘號,通常省略不寫,如vt;

②數字與字母相乘時,數字應寫在字母前面,如4a;

③帶分數與字母相乘時,應先把帶分數化成假分數,如應寫作;

④數字與數字相乘,一般仍用「×」號,即「×」號不省略;

⑤在代數式中出現除法運算時,一般寫成分數的形式,如4÷(a-4)應寫作;注意:分數線具有「÷」號和括弧的雙重作用。

⑥在表示和(或)差的代數式後有單位名稱的,則必須把代數式括起來,再將單位名稱寫在式子的後面,如平方米。

2、整式:單項式和多項式統稱為整式。

①單項式:都是數字和字母乘積的形式的代數式叫做單項式。單項式中,所有字母的指數之和叫做這個單項式的次數;數字因數叫做這個單項式的系數。

注意:1.單獨的一個數或一個字母也是單項式;2.單獨一個非零數的次數是0;3.當單項式的系數為1或-1時,這個「1」應省略不寫,如-ab的系數是-1,a3b的系數是1。

②多項式:幾個單項式的和叫做多項式。多項式中,每個單項式叫做多項式的項;次數最高的項的次數叫做多項式的次數。

3、同類項:所含字母相同,並且相同字母的指數也相同的項叫做同類項。

注意:①同類項有兩個條件:a.所含字母相同;b.相同字母的指數也相同。

②同類項與系數無關,與字母的排列順序無關;

③幾個常數項也是同類項。

以上就是我為大家整理的七年級上冊數學重要知識點總結 。

『陸』 初一數學上冊知識點總結

= 總結 所學內容,進行學法的理性 反思 ,強化並進行遷移運用,在訓練中掌握學法。下面給大家帶來一些關於初一數學上冊知識點總結,希望對大家有所幫助。

初一數學上冊知識點1

正負數

1.正數:大於0的數。

2.負數:小於0的數。

3.0即不是正數也不是負數。

4.正數大於0,負數小於0,正數大於負數。

(二)有理數

1.有理數:由整數和分數組成的數。包括:正整數、0、負整數,正分數、負分數。可以寫成兩個整之比的形式。(無理數是不能寫成兩個整數之比的形式,它寫成小數形式,小數點後的數字是無限不循環的。如:π)

2.整數:正整數、0、負整數,統稱整數。

3.分數:正分數、負分數。

(三)數軸

1.數軸:用直線上的點表示數,這條直線叫做數軸。(畫一條直線,在直線上任取一點表示數0,這個零點叫做原點,規定直線上從原點向右或向上為正方向;選取適當的長度為單位長度,以便在數軸上取點。)

2.數軸的三要素:原點、正方向、單位長度。

3.相反數:只有符號不同的兩個數叫做互為相反數。0的相反數還是0。

4.絕對值:正數的絕對值是它本身,負數的絕對值是它的相反數;0的絕對值是0,兩個負數,絕對值大的反而小。

(四)有理數的加減法

1.先定符號,再算絕對值。

2.加法運演算法則:同號相加,到相同符號,並把絕對值相加。異號相加,取絕對值大的加數的符號,並用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0。一個數同0相加減,仍得這個數。

3.加法交換律:a+b=b+a兩個數相加,交換加數的位置,和不變。

4.加法結合律:(a+b)+c=a+(b+c)三個數相加,先把前兩個數相加,或者先把後兩個數相加,和不變。5.a?b=a+(?b)減去一個數,等於加這個數的相反數。

(五)有理數乘法(先定積的符號,再定積的大小)

1.同號得正,異號得負,並把絕對值相乘。任何數同0相乘,都得0。

2.乘積是1的兩個數互為倒數。

3.乘法交換律:ab=ba

4.乘法結合律:(ab)c=a(bc)

5.乘法分配律:a(b+c)=ab+ac

(六)有理數除法

1.先將除法化成乘法,然後定符號,最後求結果。

2.除以一個不等於0的數,等於乘這個數的倒數。

3.兩數相除,同號得正,異號得負,並把絕對值相除,0除以任何一個不等於0的數,都得0。(七)乘方1.求n個相同因數的積的運算,叫做乘方。寫作an。(乘方的結果叫冪,a叫底數,n叫指數)2.負數的奇數次冪是負數,負數的偶次冪是正數;0的任何正整數次冪都是0。3.同底數冪相乘,底不變,指數相加。

4.同底數冪相除,底不變,指數相減。

(八)有理數的加減乘除混合運演算法則

1.先乘方,再乘除,最後加減。

2.同級運算,從左到右進行。

3.如有括弧,先做括弧內的運算,按小括弧、中括弧、大括弧依次進行。

(九)科學記數法、近似數、有效數字。

初一數學上冊知識點2

1.有理數:

(1)凡能寫成 形式的數,都是有理數,整數和分數統稱有理數.

注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;?不是有理數;

(2)有理數的分類: ① ②

(3)注意:有理數中,1、0、-1是三個特殊的數,它們有自己的特性;這三個數把數軸上的數分成四個區域,這四個區域的數也有自己的特性;

(4)自然數? 0和正整數; a>0 ? a是正數; a<0 ? a是負數;

a≥0 ? a是正數或0 ? a是非負數; a≤ 0 ? a是負數或0 ? a是非正數.

2.數軸:數軸是規定了原點、正方向、單位長度的一條直線.

3.相反數:(1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0; (2)注意: a-b+c的相反數是-a+b-c;a-b的相反數是b-a;a+b的相反數是-a-b;

(3)相反數的和為0 ? a+b=0 ? a、b互為相反數.

(4)相反數的商為-1.

(5)相反數的絕對值相等

4.絕對值:

(1)正數的絕對值等於它本身,0的絕對值是0,負數的絕對值等於它的相反數;

注意:絕對值的意義是數軸上表示某數的點離開原點的距離;

(2) 絕對值可表示為: 或 ;

(3) ; ;

(4) |a|是重要的非負數,即|a|≥0;

5.有理數比大小:

(1)正數永遠比0大,負數永遠比0小;

(2)正數大於一切負數;

(3)兩個負數比較,絕對值大的反而小;

(4)數軸上的兩個數,右邊的數總比左邊的數大;

(5)-1,-2,+1,+4,-0.5,以上數據表示與標准質量的差, 絕對值越小,越接近標准。

6.倒數:乘積為1的兩個數互為倒數;

注意:0沒有倒數; 若ab=1? a、b互為倒數; 若ab=-1? a、b互為負倒數.

等於本身的數匯總:

相反數等於本身的數:0

倒數等於本身的數:1,-1

絕對值等於本身的數:正數和0

平方等於本身的數:0,1

立方等於本身的數:0,1,-1.

7. 有理數加法法則:

(1)同號兩數相加,取相同的符號,並把絕對值相加;

(2)異號兩數相加,取絕對值較大加數的符號,並用較大的絕對值減去較小的絕對值;

(3)一個數與0相加,仍得這個數.

8.有理數加法的運算律:

(1)加法的交換律:a+b=b+a ;(2)加法的結合律:(a+b)+c=a+(b+c).

9.有理數減法法則:減去一個數,等於加上這個數的相反數;即a-b=a+(-b).

10 有理數乘法法則:(1)兩數相乘,同號得正,異號得負,並把絕對值相乘;

(2)任何數同零相乘都得零;

(3)幾個因式都不為零,積的符號由負因式的個數決定.奇數個負數為負,偶數個負數為正。

11 有理數乘法的運算律:

(1)乘法的交換律:ab=ba;(2)乘法的結合律:(ab)c=a(bc);

(3)乘法的分配律:a(b+c)=ab+ac .(簡便運算)

12.有理數除法法則:除以一個數等於乘以這個數的倒數;注意:零不能做除數, .

13.有理數乘方的法則:(1)正數的任何次冪都是正數;

(2)負數的奇次冪是負數;負數的偶次冪是正數;

14.乘方的定義:(1)求相同因式積的運算,叫做乘方;

(2)乘方中,相同的因式叫做底數,相同因式的個數叫做指數,乘方的結果叫做冪;

(3)a2是重要的非負數,即a2≥0;若a2+|b|=0 ? a=0,b=0;

(4)據規律 底數的小數點移動一位,平方數的小數點移動二位.

15.科學記數法:把一個大於10的數記成a×10n的形式,其中a是整數數位只有一位的數,這種記數法叫科學記數法.

16.近似數的精確位:一個近似數,四捨五入到那一位,就說這個近似數的精確到那一位.

17.混合運演算法則:先乘方,後乘除,最後加減; 注意:不省過程,不跳步驟。

18.特殊值法:是用符合題目要求的數代入,並驗證題設成立而進行猜想的一種 方法 ,但不能用於證明.常用於填空,選擇。

初一數學上冊知識點3

實數:

—有理數與無理數統稱為實數。

有理數:

整數和分數統稱為有理數。

無理數:

無理數是指無限不循環小數。

自然數:

表示物體的個數0、1、2、3、4~(0包括在內)都稱為自然數。

數軸:

規定了圓點、正方向和單位長度的直線叫做數軸。

相反數:

符號不同的兩個數互為相反數。

倒數:

乘積是1的兩個數互為倒數。

絕對值:

數軸上表示數a的點與圓點的距離稱為a的絕對值。一個正數的絕對值是本身,一個負數的絕對值是它的相反數,0的絕對值是0。

數學定理公式

有理數的運演算法則

⑴加法法則:同號兩數相加,取相同的符號,並把絕對值相加;異號兩數相加,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值,互為相反數的兩個數相加得0。

⑵減法法則:減去一個數,等於加上這個數的相反數。

⑶乘法法則:兩數相乘,同號得正,異號得負,並把絕對值相乘;任何數與0相乘都得0。

⑷除法法則:除以一個數等於乘上這個數的倒數;兩數相除,同號得正,異號得負,並把絕對值相除;0除以任何一個不等於0的數,都得0。

角的平分線:從角的一個頂點引出一條射線,能把這個角平均分成兩份,這條射線叫做這個角的角平分線。

數學第一章相交線

一、鄰補角:兩條直線相交所成的四個角中,有公共頂點,並且有一條公共邊,這樣的角叫做鄰補角。鄰補角是一種特殊位置關系和數量關系的角,即鄰補角一定是補角,但補角不一定是鄰補角。

二、對頂角:是兩條直線相交形成的。兩個角的兩邊互為反向延長線,因此對頂角也可以說成「把一個角的兩邊反向延長而形成的兩個角叫做對頂角」。

初一數學上冊知識點4

多項式除以單項式

一、單項式

1、都是數字與字母的乘積的代數式叫做單項式。

2、單項式的數字因數叫做單項式的系數。

3、單項式中所有字母的指數和叫做單項式的次數。

4、單獨一個數或一個字母也是單項式。

5、只含有字母因式的單項式的系數是1或―1。

6、單獨的一個數字是單項式,它的系數是它本身。

7、單獨的一個非零常數的次數是0。

8、單項式中只能含有乘法或乘方運算,而不能含有加、減等其他運算。

9、單項式的系數包括它前面的符號。

10、單項式的系數是帶分數時,應化成假分數。

11、單項式的系數是1或―1時,通常省略數字「1」。

12、單項式的次數僅與字母有關,與單項式的系數無關。

二、多項式

1、幾個單項式的和叫做多項式。

2、多項式中的每一個單項式叫做多項式的項。

3、多項式中不含字母的項叫做常數項。

4、一個多項式有幾項,就叫做幾項式。

5、多項式的每一項都包括項前面的符號。

6、多項式沒有系數的概念,但有次數的概念。

7、多項式中次數的項的次數,叫做這個多項式的次數。

三、整式

1、單項式和多項式統稱為整式。

2、單項式或多項式都是整式。

3、整式不一定是單項式。

4、整式不一定是多項式。

5、分母中含有字母的代數式不是整式;而是今後將要學習的分式。

四、整式的加減

1、整式加減的理論根據是:去括弧法則,合並同類項法則,以及乘法分配率。

2、幾個整式相加減,關鍵是正確地運用去括弧法則,然後准確合並同類項。

3、幾個整式相加減的一般步驟:

(1)列出代數式:用括弧把每個整式括起來,再用加減號連接。

(2)按去括弧法則去括弧。

(3)合並同類項。

4、代數式求值的一般步驟:

(1)代數式化簡。

(2)代入計算

(3)對於某些特殊的代數式,可採用「整體代入」進行計算。

五、同底數冪的乘法

1、n個相同因式(或因數)a相乘,記作an,讀作a的n次方(冪),其中a為底數,n為指數,an的結果叫做冪。

2、底數相同的冪叫做同底數冪。

3、同底數冪乘法的運演算法則:同底數冪相乘,底數不變,指數相加。即:am﹒an=am+n。

4、此法則也可以逆用,即:am+n=am﹒an。

5、開始底數不相同的冪的乘法,如果可以化成底數相同的冪的乘法,先化成同底數冪再運用法則。

六、冪的乘方

1、冪的乘方是指幾個相同的冪相乘。(am)n表示n個am相乘。

2、冪的乘方運演算法則:冪的乘方,底數不變,指數相乘。(am)n=amn。

3、此法則也可以逆用,即:amn=(am)n=(an)m。

七、積的乘方

1、積的乘方是指底數是乘積形式的乘方。

2、積的乘方運演算法則:積的乘方,等於把積中的每個因式分別乘方,然後把所得的冪相乘。即(ab)n=anbn。

3、此法則也可以逆用,即:anbn=(ab)n。

八、三種「冪的運演算法則」異同點

1、共同點:

(1)法則中的底數不變,只對指數做運算。

(2)法則中的底數(不為零)和指數具有普遍性,即可以是數,也可以是式(單項式或多項式)。

(3)對於含有3個或3個以上的運算,法則仍然成立。

2、不同點:

(1)同底數冪相乘是指數相加。

(2)冪的乘方是指數相乘。

(3)積的乘方是每個因式分別乘方,再將結果相乘。

九、同底數冪的除法

1、同底數冪的除法法則:同底數冪相除,底數不變,指數相減,即:am÷an=am-n(a≠0)。

2、此法則也可以逆用,即:am-n=am÷an(a≠0)。

十、零指數冪

1、零指數冪的意義:任何不等於0的數的0次冪都等於1,即:a0=1(a≠0)。

十一、負指數冪

1、任何不等於零的數的―p次冪,等於這個數的p次冪的倒數,即:

註:在同底數冪的除法、零指數冪、負指數冪中底數不為0。

十二、整式的乘法

(一)單項式與單項式相乘

1、單項式乘法法則:單項式與單項式相乘,把它們的系數、相同字母的冪分別相乘,其餘字母連同它的指數不變,作為積的因式。

2、系數相乘時,注意符號。

3、相同字母的冪相乘時,底數不變,指數相加。

4、對於只在一個單項式中含有的字母,連同它的指數一起寫在積里,作為積的因式。

5、單項式乘以單項式的結果仍是單項式。

6、單項式的乘法法則對於三個或三個以上的單項式相乘同樣適用。

(二)單項式與多項式相乘

1、單項式與多項式乘法法則:單項式與多項式相乘,就是根據分配率用單項式去乘多項式中的每一項,再把所得的積相加。即:m(a+b+c)=ma+mb+mc。

2、運算時注意積的符號,多項式的每一項都包括它前面的符號。

3、積是一個多項式,其項數與多項式的項數相同。

4、混合運算中,注意運算順序,結果有同類項時要合並同類項,從而得到最簡結果。

(三)多項式與多項式相乘

1、多項式與多項式乘法法則:多項式與多項式相乘,先用一個多項式的每一項乘另一個多項式的每一項,再把所得的積相加。即:(m+n)(a+b)=ma+mb+na+nb。

2、多項式與多項式相乘,必須做到不重不漏。相乘時,要按一定的順序進行,即一個多項式的每一項乘以另一個多項式的每一項。在未合並同類項之前,積的項數等於兩個多項式項數的積。

3、多項式的每一項都包含它前面的符號,確定積中每一項的符號時應用「同號得正,異號得負」。

4、運算結果中有同類項的要合並同類項。

5、對於含有同一個字母的一次項系數是1的兩個一次二項式相乘時,可以運用下面的公式簡化運算:(x+a)(x+b)=x2+(a+b)x+ab。

十三、平方差公式

1、(a+b)(a-b)=a2-b2,即:兩數和與這兩數差的積,等於它們的平方之差。

2、平方差公式中的a、b可以是單項式,也可以是多項式。

3、平方差公式可以逆用,即:a2-b2=(a+b)(a-b)。

4、平方差公式還能簡化兩數之積的運算,解這類題,首先看兩個數能否轉化成

(a+b)?(a-b)的形式,然後看a2與b2是否容易計算。


初一數學上冊知識點總結相關 文章 :

★ 初一數學上冊知識點歸納

★ 初一上冊數學知識點歸納整理

★ 初一數學上冊重點知識整理

★ 七年級上冊數學知識點總結三篇

★ 七年級上冊數學月考知識點整理

★ 七年級英語上冊各單元知識點匯總

★ 初一年級上冊數學的21個熱門知識點

★ 初一上冊數學知識點手抄報

★ 初一上冊數學合並同類項教案

★ 初中七年級上冊數學《整式》教案優質範文五篇

『柒』 七年級數學上冊知識點總結

七年級數學上冊知識點總結(通用8篇)
總結在一個時期、一個年度、一個階段對學習和工作生活等情況加以回顧和分析的一種書面材料,它可以促使我們思考,為此要我們寫一份總結。那麼如何把總結寫出新花樣呢?下面是小編為大家整理的七年級數學上冊知識點總結(通用8篇),歡迎大家分享。

七年級數學上冊知識點總結 篇1
數軸
1、數軸的概念
規定了原點,正方向,單位長度的直線叫做數軸。
注意:(1)數軸是一條向兩端無限延伸的直線;(2)原點、正方向、單位長度是數軸的三要素,三者缺一不
可;(3)同一數軸上的單位長度要統一;(4)數軸的三要素都是根據實際需要規定的。
2、數軸上的點與有理數的關系
(1)所有的有理數都可以用數軸上的點來表示,正有理數可用原點右邊的點表示,負有理數可用原點左邊的點表示,0用原點表示。
(2)所有的有理數都可以用數軸上的點表示出來,但數軸上的點不都表示有理數,也就是說,有理數與數軸上的點不是一一對應關系。(如,數軸上的點π不是有理數)
3、利用數軸表示兩數大小
(1)在數軸上數的大小比較,右邊的數總比左邊的數大;
(2)正數都大於0,負數都小於0,正數大於負數;
(3)兩個負數比較,距離原點遠的數比距離原點近的數小。
4、數軸上特殊的(小)數
(1)最小的自然數是0,無的自然數;
(2)最小的正整數是1,無的正整數;
(3)的負整數是-1,無最小的負整數
5、a可以表示什麼數
(1)a>0表示a是正數;反之,a是正數,則a>0;
(2)a
(3)a=0表示a是0;反之,a是0,,則a=0
七年級數學上冊知識點總結 篇2
第一章 有理數
(一)正負數
1、正數:大於0的數。
2、負數:小於0的數。
3、0即不是正數也不是負數。
4、正數大於0,負數小於0,正數大於負數。
(二)有理數
1、有理數:由整數和分數組成的數。包括:正整數、0、負整數,正分數、負分數。可以寫成兩個整數之比的形式。(無理數是不能寫成兩個整數之比的形式,它寫成小數形式,小數點後的數字是無限不循環的。如:π)
2、整數:正整數、0、負整數,統稱整數。
3、分數:正分數、負分數。
(三)數軸
1、數軸:用直線上的點表示數,這條直線叫做數軸。(畫一條直線,在直線上任取一點表示數0,這個零點叫做原點,規定直線上從原點向右或向上為正方向;選取適當的長度為單位長度,以便在數軸上取點。)
2、數軸的三要素:原點、正方向、單位長度。
3、相反數:只有符號不同的兩個數叫做互為相反數。0的相反數還是0。
4、絕對值:正數的絕對值是它本身,負數的絕對值是它的相反數;0的絕對值是0,兩個負數比較大小,絕對值大的反而小。
(四)有理數的加減法
1、先定符號,再算絕對值。
2、加法運演算法則:同號相加,取相同符號,並把絕對值相加。異號相加,取絕對值大的加數的符號,並用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0。一個數同0相加減,仍得這個數。
3、加法交換律:a+b= b+ a 兩個數相加,交換加數的位置,和不變。
4、加法結合律:(a+b)+ c = a +(b+ c )三個數相加,先把前兩個數相加,或者先把後兩個數相加,和不變。
5、 ab = a +(b) 減去一個數,等於加這個數的相反數。
(五)有理數乘法(先定積的符號,再定積的大小)
1、同號得正,異號得負,並把絕對值相乘。任何數同0相乘,都得0。
2、乘積是1的兩個數互為倒數。
3、乘法交換律:ab= ba
4、乘法結合律:(ab)c = a (b c)
5、乘法分配律:a(b +c)= a b+ ac
(六)有理數除法
1、先將除法化成乘法,然後定符號,最後求結果。
2、除以一個不等於0的數,等於乘這個數的倒數。
3、兩數相除,同號得正,異號得負,並把絕對值相除,0除以任何一個不等於0的數,都得0。
(七)乘方
1、求n個相同因數的積的運算,叫做乘方。寫作an。(乘方的結果叫冪,a叫底數,n叫指數)
2、負數的奇數次冪是負數,負數的偶次冪是正數;0的任何正整數次冪都是0。
(八)有理數的加減乘除混合運演算法則
1、先乘方,再乘除,最後加減。
2、同級運算,從左到右進行。
3、如有括弧,先做括弧內的運算,按小括弧、中括弧、大括弧依次進行。
(九)科學記數法、近似數、有效數字。
第二章 整式
(一)整式
1、整式:單項式和多項式的統稱叫整式。
2、單項式:數與字母的乘積組成的式子叫單項式。單獨的一個數或一個字母也是單項式。
3、系數:一個單項式中,數字因數叫做這個單項式的系數。
4、次數:一個單項式中,所有字母的指數和叫做這個單項式的次數。
5、多項式:幾個單項式的和叫做多項式。
6、項:組成多項式的每個單項式叫做多項式的項。
7、常數項:不含字母的項叫做常數項。
8、多項式的次數:多項式中,次數最高的項的次數叫做這個多項式的次數。
9、同類項:多項式中,所含字母相同,並且相同字母的指數也相同的項叫做同類項。
10、合並同類項:把多項式中的同類項合並成一項,叫做合並同類項。
(二)整式加減
整式加減運算時,如果遇到括弧先去括弧,再合並同類項。
1、去括弧:一般地,幾個整式相加減,如果有括弧就先去括弧,然後再合並同類項。
如果括弧外的因數是正數,去括弧後原括弧內各項的符號與原來的符號相同。如果括弧外的因數是負數,去括弧後原括弧內各項的符號與原來的符號相反。
2、合並同類項:把多項式中的同類項合並成一項,叫做合並同類項。
合並同類項後,所得項的系數是合並前各同類項的系數的和,且字母部分不變
第三章 一元一次方程
分析實際問題中的數量關系,利用其中的相等關系列出方程,是用數學解決實際問題的一種方法。
(一)方程:先設字母表示未知數,然後根據相等關系,寫出含有未知數的等式叫方程。
(二)一元一次方程:
1、一元一次方程:方程里只含有一個未知數(元),未知數的次數都是1,這樣的方程叫做一元一次方程。
2、解:求出的方程中未知數的值叫做方程的解。
(二)等式的性質
1、等式兩邊加(或減)同一個數(或式子),結果仍相等。
如果a= b,那麼a± c= b± c
2、等式兩邊乘同一個數,或除以同一個不為0的數,結果仍相等。
如果a= b,那麼a c= b c;
如果a= b,(c0),那麼a ?Mc = b ?M c。
(三)解方程的步驟
解一元一次方程的步驟:去分母、去括弧、移項、合並同類項,未知數系數化為1。
1、去分母:把系數化成整數。
2、去括弧
3、移項:把等式一邊的某項變號後移到另一邊。
4、合並同類項
5、系數化為1
第四章 圖形認識初步
一、圖形認識初步
1、幾何圖形:把從實物中抽象出來的各種圖形的統稱。
2、平面圖形:有些幾何圖形的各部分都在同一平面內,這樣的圖形是平面圖形。
3、立體圖形:有些幾何圖形的各部分不都在同一平面內,這樣的圖形是立體圖形。
4、展開圖:有些立體圖形是由一些平面圖形圍成的,將它們的表面適當剪開,可以展開成平面圖形,這樣的平面圖形稱為相應立體圖形的展開圖。
5、點,線,面,體
1圖形是由點,線,面構成的。
2線與線相交得點,面與面相交得線。
3點動成線,線動成面,面動成體。
二、直線、線段、射線
1、線段:線段有兩個端點。
2、射線:將線段向一個方向無限延長就形成了射線。射線只有一個端點。
3、直線:將線段的兩端無限延長就形成了直線。直線沒有端點。
4、兩點確定一條直線:經過兩點有一條直線,並且只有一條直線。
5、相交:兩條直線有一個公共點時,稱這兩條直線相交。
6、兩條直線相交有一個公共點,這個公共點叫交點。
7、中點:M點把線段AB分成相等的兩條線段AM與MB,點M叫做線段AB的中點。
8、線段的性質:兩點的所有連線中,線段最短。(兩點之間,線段最短)
9、距離:連接兩點間的線段的長度,叫做這兩點的距離。
三、角
1、角:有公共端點的兩條射線組成的圖形叫做角。
2、角的度量單位:度、分、秒。
3、角的度量與表示:
1角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點。
2一度的1/60是一分,一分的1/60是一秒。角的度、分、秒是60進制。
4、角的比較:
1角也可以看成是由一條射線繞著他的端點旋轉而成的。
2平角和周角:一條射線繞著他的端點旋轉,當終邊和始邊成一條直線時,所成的角叫做平角。始邊繼續旋轉,當他又和始邊重合時,所成的角叫做周角。平角等於180度。周角等於360度。直角等於90度。
3平分線:從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。
4工具:量角器、三角尺、經緯儀。
5、餘角和補角
1餘角:兩個角的和等於90度,這兩個角互為餘角。即其中每一個是另一個角的餘角。
2補角:兩個角的和等於180度,這兩個角互為補角。即其中一個是另一個角的補角。
3補角的性質:等角的補角相等。
4餘角的性質:等角的餘角相等。
七年級數學上冊知識點總結 篇3
1、用加、減、乘(乘方)、除等運算符號把數或表示數的字母連接而成的式子,叫做代數式。(注:單獨一個數字或字母也是代數式)
2、代數式的寫法:數學與字母相乘時,「×」號省略,數字寫在字母前;字母與字母相乘時,相同字母寫成冪的形式;數字與數字相乘時,「×」號不能省略;式中出現除法時,一般寫成分數形式。式中出現帶分數時,一般寫成假分數形式。
3、分段問題書寫代數式時要分段考慮,有單位時要考慮是否要();如:電費、水費、計程車、商店優惠。
4、單項式:由數字和字母乘積組成的式子。單獨一個數或一個字母也是單項式、因此,判斷代數式是否是單項式,關鍵要看代數式中數與字母是否是乘積關系,若1分母中不含有字母,2式子中含有加、減運算關系,也不是單項式、
單項式的系數:是指單項式中的數字因數;(不要漏負號和分母)
單項數的次數:是指單項式中所有字母的指數的和、(注意指數1)
5、多項式:幾個單項式的和。判斷代數式是否是多項式,關鍵要看代數式中的每一項是否是單項式、每個單項式稱項,(其中不含字母的項叫常數項)多項式的次數是指多項式里次數最高項的次數(選代表);多項式的項是指在多項式中每一個單項式、特別注意多項式的項包括它前面的性質符號、它們都是用字母表示數或列式表示數量關系。注意單項式和多項式的每一項都包括它前面的符號。

『捌』 七年級上冊數學知識點歸納總結

下面是我整理的七年級上冊數學知識點,便於同學們預習時可以更准確的知道知識點的重點是什麼,供大家參考。

第一章:有理數的運算

本章節主要介紹概念性知識,通過圖形或符號來區分數之間的關系。定義如下:

1、有理數的概念:正整數、0、負整數、正分數、負分數統稱為有理數;數軸與原點:用一條直線上的點表示數,這條直線就叫做數軸,在這條直線上任取一個點表示0,這個點叫做原點,在原點的左邊或原點下邊的點到原點的距離用負數表示,在原點的右邊或上邊的數到原點的距離用正數表示,在數軸上與原點距離相反相等的兩個點代表的兩個數為相反數,在數軸上表示的點a到原點的距離叫這個數的絕對值。

2、有理數的加減法:同號的兩個數相加,符號不變,絕對值相加;絕對值不相等的異號兩數相加,和取絕對值較大的加數的符號,並用較大的數的絕對值減較小的數的絕對值,互為相反數的兩個數相加得0;一個有理數減去另一個有理數,相當於加這個數的相反數;

3、有理數的乘除法:同號兩個數相乘,同號得正,異號得負,乘法的積為他們的絕對值相乘,除法為被除數乘以除數的倒數,除數不能為0;乘積是1的兩個數互為倒數,0沒有倒數;整數的乘法交換率和結合率同樣適用於有理數;求n個相同因數的積的運算叫乘方,乘方的結果叫做冪,在a的n次方中a叫做底數,n叫做指數,寫作a∧n;

4、有理數的混合運算:先乘方,再乘除,最後加減;同級運算,從左到右進行;如有括弧,先做括弧內的運算,按小括弧、中括弧、大括弧依次進行;

5、科學記數法:把一個大於10的數表示成a×10∧n的形式叫做科學計數法,其中a大於或等於1且小於10,n為正整數。

第二章:整式的加減

整式的加減即是合並同類項的計算;在一個式子中,所含字母相同,並且相同字母的指數也相同的項叫做同類項,幾個常數項也是同類項;把多項式中的同類項合並成一項叫做合並同類項,合並同類項後,所得項的系數是合並前各同類項的系數和,且字母連同他的指數不變;一般幾個整數相加,如果有括弧先去括弧,然後在合並同類項,如果括弧外的因數是正數,去括弧後原括弧內各項的符號與原來的符號相同,如果括弧外的因數是負數,去括弧後原括弧內各項的符號與原來的符號相反。

第三章:一元一次方程

一個方程中,只含有一個未知數,且未知數的次數都是1,等號兩邊都是整數,這樣的方程叫做一元一次方程;方程的兩邊同時加上或減去同一個數或式子結果仍相等,方程兩邊同時乘同一個數,或除以同一個不為0的數,結果仍相等。

第四章:立體圖形及幾何圖形

本章主要介紹立體圖形及幾何圖形的認識;點、線、面、體的關系的認識;直線、射線、線段的認識;不同角的概念及大小的比較。

1、平面圖形和立體圖形:各部分都在同一個平面內的幾何圖形叫做平面圖形;有些幾何圖形的各部分不在同一個平面上,它們被稱為立體圖形,如長方體、圓柱、圓錐等;有些立體圖形是由一些平面圖形圍成的,將它們展開成平面圖形,展開的平面圖形就叫做這個立體圖形的展開圖;

2、點、線、面、體的認識:幾何體叫做體,包圍著體的叫做面,面和面相交的地方叫作線,線和線相交的地方叫做點,線由無數個點構成;

3、直線、射線、線段的認識:經過兩個點由且只有一條直線,兩點確定一條直線,兩個點之間的連線,最短的叫做線段,線段的長度叫做這兩點的距離,由線段向一端無限延長,叫射線;

4、角:如果兩個角的和等於90°,那麼這兩個角互為餘角;如果兩個角的和等於180°,那麼這兩個角互為補角;從一個角的頂點出發。把這個角分成兩個相等的角的射線叫做這個角的平分線,把這3個相等角的兩條射線叫這個角的三分線。

第五章:整式

(一)整式

1.整式:單項式和多項式的統稱叫整式。

2.單項式:數與字母的乘積組成的式子叫單項式。單獨的一個數或一個字母也是單項式。

3.系數;一個單項式中,數字因數叫做這個單項式的系數。

4.次數:一個單項式中,所有字母的指數和叫做這個單項式的次數。

5.多項式:幾個單項式的和叫做多項式。

6.項:組成多項式的每個單項式叫做多項式的項。

7.常數項:不含字母的項叫做常數項。

8.多項式的次數:多項式中,次數最高的項的次數叫做這個多項式的次數。

9.同類項:多項式中,所含字母相同,並且相同字母的指數也相同的項叫做同類項。

10.合並同類項:把多項式中的同類項合並成一項,叫做合並同類項。

(二)整式加減整式加減運算時,如果遇到括弧先去括弧,再合並同類項。

1.去括弧:一般地,幾個整式相加減,如果有括弧就先去括弧,然後再合並同類項。如果括弧外的因數是正數,去括弧後原括弧內各項的符號與原來的符號相同。如果括弧外的因數是負數,去括弧後原括弧內各項的符號與原來的符號相反。

2.合並同類項:把多項式中的同類項合並成一項,叫做合並同類項。合並同類項後,所得項的系數是合並前各同類項的系數的和,且字母部分不變。

『玖』 初一上冊數學重點知識點歸納

數學學習數學不光有做一些習題,還要注重知識點的總結與歸納。下面,我為大家整理一下初一上冊數學重點知識點歸納僅供大家參考。

初一上冊數學重點知識點:有理數

(一)正負數

1.正數:大於0的數。

2.負數:小於0的數。

3.0即不是正數也不是負數。

4.正數大於0,負數小於0,正數大於負數。

( 二)有理數

1.有理數:由整數和分數組成的數。包括:正整數、0、負整數,正分數、負分數。可以寫成兩個整之比的形式。(無理數是不能寫成兩個整數之比的形式,它寫成小數形式,小數點後的數字是無限不循環的。如:π)

2.整數:正整數、0、負整數,統稱整數。

3.分數:正分數、負分數。

(三)數軸

1.數軸:用直線上的點表示數,這條直線叫做數軸。(畫一條直線,在直線上任取一點表示數0,這個零點叫做原點,規定直線上從原點向右或向上為正方向;選取適當的長度為單位長度,以便在數軸上取點。)

2.數軸的三要素:原點、正方向、單位長度。

3.相反數:只有符號不同的兩個數叫做互為相反數。0的相反數還是0。

4.絕對值:正數的絕對值是它本身,負數的絕對值是它的相反數;0的絕對值是0,兩個負數,絕對值大的反而小。

(四)有理數的加減法

1.先定符號,再算絕對值。

2.加法運演算法則:同號相加,到相同符號,並把絕對值相加。異號相加,取絕對值大的加數的符號,並用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0。一個數同0相加減,仍得這個數。

3.加法交換律:a+b=b+a兩個數相加,交換加數的位置,和不變。

4.加法結合律:(a+b)+c=a+(b+c)三個數相加,先把前兩個數相加,或者先把後兩個數相加,和不變。

5.a-b=a+(-b)減去一個數,等於加這個數的相反數。

絕對值

(1)絕對值的定義:一個數a的絕對值就是數軸上表示數a的點與原點的距離。數a的絕對值記作|a|。(2)正數的絕對值是它本身;負數的絕對值是它的數;0的絕對值是0。?a(a?0)?|a|?0(a?0)??a(a?0)?越來越大或?a(a?0)|a|???a(a?0)-3-2-10123(3)絕對值的性質:①除0外,絕對值為正數的數有兩個,它們互為相反數;②互為相反數的兩數(除0外)的絕對值相等;即:|a|=|b|,則a+b=0③任何數的絕對值總是非負數,即|a|≥0④對任何有理數a,都有|a|=|-a|5.比較兩個負數的大小,絕對值大的反而小。比較兩個負數的大小的步驟如下:①先求出兩個數負數的絕對值;②比較兩個絕對值的大小;③根據「兩個負數,絕對值大的反而小」做出正確的判斷。

以上就是我為大家整理的初一上冊數學重點知識點歸納,希望能幫助到大家,更多中考信息請繼續關注本站!

『拾』 初一數學上冊知識點總結

初一數學上冊知識點總結1

代數初步知識

1. 代數式:用運算符號+ - 連接數及表示數的字母的式子稱為代數式.注意:用字母表示數有一定的限制,首先字母所取得數應保證它所在的式子有意義,其次字母所取得數還應使實際生活或生產有意義;單獨一個數或一個字母也是代數式.

2.列代數式的幾個注意事項:

(1)數與字母相乘,或字母與字母相乘通常使用 乘,或省略不寫;

(2)數與數相乘,仍應使用乘,不用 乘,也不能省略乘號;

(3)數與字母相乘時,一般在結果中把數寫在字母前面,如a5應寫成5a;

(4)帶分數與字母相乘時,要把帶分數改成假分數形式,如a 應寫成 a;

(5)在代數式中出現除法運算時,一般用分數線將被除式和除式聯系,如3a寫成 的形式;

(6)a與b的差寫作a-b,要注意字母順序;若只說兩數的差,當分別設兩數為a、b時,則應分類,寫做a-b和b-a .

3.幾個重要的代數式:(m、n表示整數)

(1)a與b的平方差是: a2-b2 ; a與b差的平方是:(a-b)2 ;

(2)若a、b、c是正整數,則兩位整數是: 10a+b ,則三位整數是:100a+10b+c;

(3)若m、n是整數,則被5除商m余n的數是: 5m+n ;偶數是:2n ,奇數是:2n+1;三個連續整數是: n-1、n、n+1 ;

(4)若b0,則正數是:a2+b ,負數是: -a2-b ,非負數是: a2 ,非正數是:-a2 .

初一數學上冊知識點總結2

一、方程的有關概念

1.方程:含有未知數的等式就叫做方程.

2. 一元一次方程:只含有一個未知數(元)x,未知數x的指數都是1(次),這樣的方程叫做一元一次方程.例如: 1700+50x=1800, 2(x+1.5x)=5等都是一元一次方程.

3.方程的解:使方程中等號左右兩邊相等的未知數的值,叫做方程的解.

註:⑴ 方程的解和解方程是不同的概念,方程的解實質上是求得的結果,它是一個數值(或幾個數值),而解方程的含義是指求出方程的解或判斷方程無解的過程. ⑵ 方程的解的檢驗方法,首先把未知數的值分別代入方程的左、右兩邊計算它們的值,其次比較兩邊的值是否相等從而得出結論.

二、等式的性質

等式的性質(1):等式兩邊都加上(或減去)同個數(或式子),結果仍相等.

等式的性質(1)用式子形式表示為:如果a=b,那麼a±c=b±c

等式的性質(2):等式兩邊乘同一個數,或除以同一個不為0的數,結果仍相等,等式的性質(2)用式子形式表示為:如果a=b,那麼ac=bc;如果a=b(c≠0),那麼ca=cb

三、移項法則: 把等式一邊的某項變號後移到另一邊,叫做移項.

四、去括弧法則

1. 括弧外的因數是正數,去括弧後各項的符號與原括弧內相應各項的符號相同.

2. 括弧外的因數是負數,去括弧後各項的符號與原括弧內相應各項的符號改變.

五、解方程的一般步驟

1. 去分母(方程兩邊同乘各分母的最小公倍數)

2. 去括弧(按去括弧法則和分配律)

3. 移項(把含有未知數的項移到方程一邊,其他項都移到方程的另一邊,移項要變號)

4. 合並(把方程化成ax = b (a≠0)形式)

5. 系數化為1(在方程兩邊都除以未知數的系數a,得到方程的解x=a(b).

六、用方程思想解決實際問題的一般步驟

1. 審:審題,分析題中已知什麼,求什麼,明確各數量之間的關系.

2. 設:設未知數(可分直接設法,間接設法)

3. 列:根據題意列方程.

4. 解:解出所列方程.

5. 檢:檢驗所求的解是否符合題意.

6. 答:寫出答案(有單位要註明答案)

初一數學上冊知識點總結3

(1)凡能寫成 形式的數,都是有理數.正整數、0、負整數統稱整數;正分數、負分數統稱分數;整數和分數統稱有理數.注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;p不是有理數;

(2)有理數的分類: ① 整數 ②分數

(3)注意:有理數中,1、0、-1是三個特殊的數,它們有自己的特性;這三個數把數軸上的數分成四個區域,這四個區域的數也有自己的特性;

(4)自然數 0和正整數;a0 a是正數;a0 a是負數;

a≥0 a是正數或0 a是非負數;a≤ 0 ? a是負數或0 a是非正數.

有理數比大小:

(1)正數的絕對值越大,這個數越大;

(2)正數永遠比0大,負數永遠比0小;

(3)正數大於一切負數;

(4)兩個負數比大小,絕對值大的反而小;

(5)數軸上的兩個數,右邊的數總比左邊的數大;

(6)大數-小數 0,小數-大數 0.

初一數學上冊知識點總結4

第一章:豐富的圖形世界

1、幾何圖形

從實物中抽象出來的各種圖形,包括立體圖形和平面圖形。

2、點、線、面、體

①幾何圖形的組成

點:線和線相交的地方是點,它是幾何圖形中最基本的圖形。

線:面和面相交的地方是線,分為直線和曲線。

面:包圍著體的是面,分為平面和曲面。

體:幾何體也簡稱體。

②點動成線,線動成面,面動成體。

3、生活中的立體圖形

生活中的立體圖形(按名稱分)

柱:

①圓柱

②稜柱:三稜柱、四稜柱(長方體、正方體)、五稜柱、……

錐:

①圓錐

②棱錐

4、稜柱及其有關概念:

棱:在稜柱中,任何相鄰兩個面的交線,都叫做棱。

側棱:相鄰兩個側面的交線叫做側棱。

n稜柱有兩個底面,n個側面,共(n+2)個面;3n條棱,n條側棱;2n個頂點。

5、正方體的平面展開圖:

11種(經常考:考試形式:展開的圖形能否圍成正方體;正方體對面圖案)

6、截一個正方體:

用一個平面去截一個正方體,截出的面可能是三角形,四邊形,五邊形,六邊形。

7、三視圖:

物體的三視圖指主視圖、俯視圖、左視圖。

主視圖:從正面看到的圖,叫做主視圖。

左視圖:從左面看到的圖,叫做左視圖。

俯視圖:從上面看到的圖,叫做俯視圖。

第二章:有理數及其運算

1、有理數的分類

①正有理數

有理數{ ②零

③負有理數

有理數{ ①整數

②分數

2、相反數:

只有符號不同的兩個數叫做互為相反數,零的`相反數是零

3、數軸:

規定了原點、正方向和單位長度的直線叫做數軸(畫數軸時,三要素缺一不可)。任何一個有理數都可以用數軸上的一個點來表示。

4、倒數:

如果a與b互為倒數,則有ab=1,反之亦成立。倒數等於本身的數是1和—1。零沒有倒數。

5、絕對值:

在數軸上,一個數所對應的點與原點的距離,叫做該數的絕對值,(|a|≥0)。

若|a|=a,則a≥0;

若|a|=-a,則a≤0。

正數的絕對值是它本身;

負數的絕對值是它的相反數;

0的絕對值是0。

互為相反數的兩個數的絕對值相等。

6、有理數比較大小:

正數大於0,負數小於0,正數大於負數;

數軸上的兩個點所表示的數,右邊的總比左邊的大;

兩個負數,絕對值大的反而小。

7、有理數的運算:

①五種運算:加、減、乘、除、乘方

多個數相乘,積的符號由負因數的個數決定,當負因數有奇數個時,積的符號為負;當負因數有偶數個時,積的符號為正。只要有一個數為零,積就為零。

有理數加法法則:

同號兩數相加,取相同的符號,並把絕對值相加。

異號兩數相加,絕對值值相等時和為0;

絕對值不相等時,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值。

一個數同0相加,仍得這個數。

互為相反數的兩個數相加和為0。

有理數減法法則:

減去一個數,等於加上這個數的相反數!

有理數乘法法則:

兩數相乘,同號得正,異號得負,並把絕對值相乘。

任何數與0相乘,積仍為0。

有理數除法法則:

兩個有理數相除,同號得正,異號得負,並把絕對值相除。

0除以任何非0的數都得0。

注意:0不能作除數。

有理數的乘方:求n個相同因數a的積的運算叫做乘方。

正數的任何次冪都是正數,負數的偶次冪是正數,負數的奇次冪是負數。

②有理數的運算順序

先算乘方,再算乘除,最後算加減,如果有括弧,先算括弧裡面的。

③運算律(5種)

加法交換律

加法結合律

乘法交換律

乘法結合律

乘法對加法的分配律

8、科學記數法

一般地,一個大於10的數可以表示成a×

10n的形式,其中1≦n<10,n是正整數,這種記數方法叫做科學記數法。(n=整數位數—1)

第三章:整式及其加減

1、代數式

用運算符號(加、減、乘、除、乘方、開方等)把數或表示數的字母連接而成的式子叫做代數式。單獨的一個數或一個字母也是代數式。

注意:

①代數式中除了含有數、字母和運算符號外,還可以有括弧;

②代數式中不含有「=、>、<、≠」等符號。等式和不等式都不是代數式,但等號和不等號兩邊的式子一般都是代數式;

③代數式中的字母所表示的數必須要使這個代數式有意義,是實際問題的要符合實際問題的意義。

代數式的書寫格式:

①代數式中出現乘號,通常省略不寫,如vt;

②數字與字母相乘時,數字應寫在字母前面,如4a;

③帶分數與字母相乘時,應先把帶分數化成假分數。

④數字與數字相乘,一般仍用「×」號,即「×」號不省略;

⑤在代數式中出現除法運算時,一般寫成分數的形式;注意:分數線具有「÷」號和括弧的雙重作用。

⑥在表示和(或)差的代數式後有單位名稱的,則必須把代數式括起來,再將單位名稱寫在式子的後面。

2、整式:單項式和多項式統稱為整式。

①單項式:

都是數字和字母乘積的形式的代數式叫做單項式。單項式中,所有字母的指數之和叫做這個單項式的次數;數字因數叫做這個單項式的系數。

注意:

單獨的一個數或一個字母也是單項式;

單獨一個非零數的次數是0;

當單項式的系數為1或—1時,這個「1」應省略不寫,如—ab的系數是—1,a3b的系數是1。

②多項式:

幾個單項式的和叫做多項式。多項式中,每個單項式叫做多項式的項;次數最高的項的次數叫做多項式的次數。

③同類項:

所含字母相同,並且相同字母的指數也相同的項叫做同類項。

注意:

①同類項有兩個條件:a。所含字母相同;b。相同字母的指數也相同。

②同類項與系數無關,與字母的排列順序無關;

③幾個常數項也是同類項。

4、合並同類項法則:

把同類項的系數相加,字母和字母的指數不變。

5、去括弧法則

①根據去括弧法則去括弧:

括弧前面是「+」號,把括弧和它前面的「+」號去掉,括弧里各項都不改變符號;括弧前面是「—」號,把括弧和它前面的「—」號去掉,括弧里各項都改變符號。

②根據分配律去括弧:

括弧前面是「+」號看成+1,括弧前面是「—」號看成—1,根據乘法的分配律用+1或—1去乘括弧里的每一項以達到去括弧的目的。

6、添括弧法則

添「+」號和括弧,添到括弧里的各項符號都不改變;添「—」號和括弧,添到括弧里的各項符號都要改變。

7、整式的運算:

整式的加減法:(1)去括弧;(2)合並同類項。

第四章基本平面圖形

1、線段、射線、直線

名稱

表示方法

端點

長度

直線

直線AB(或BA)

直線l

無端點

無法度量

射線

射線OM

1個

無法度量

線段

線段AB(或BA)

線段l

2個

可度量長度

2、直線的性質

①直線公理:經過兩個點有且只有一條直線。(兩點確定一條直線。)

②過一點的直線有無數條。

③直線是是向兩方面無限延伸的,無端點,不可度量,不能比較大小。

3、線段的性質

①線段公理:兩點之間的所有連線中,線段最短。(兩點之間線段最短。)

②兩點之間的距離:兩點之間線段的長度,叫做這兩點之間的距離。

③線段的大小關系和它們的長度的大小關系是一致的。

4、線段的中點:

點M把線段AB分成相等的兩條相等的線段AM與BM,點M叫做線段AB的中點。AM = BM =1/2AB (或AB=2AM=2BM)。

5、角:

有公共端點的兩條射線組成的圖形叫做角,兩條射線的公共端點叫做這個角的頂點,這兩條射線叫做這個角的邊。或:角也可以看成是一條射線繞著它的端點旋轉而成的。

6、角的表示

角的表示方法有以下四種:

①用數字表示單獨的角,如∠1,∠2,∠3等。

②用小寫的希臘字母表示單獨的一個角,如∠α,∠β,∠γ,∠θ等。

③用一個大寫英文字母表示一個獨立(在一個頂點處只有一個角)的角,如∠B,∠C等。

④用三個大寫英文字母表示任一個角,如∠BAD,∠BAE,∠CAE等。

注意:用三個大寫字母表示角時,一定要把頂點字母寫在中間,邊上的字母寫在兩側。

7、角的度量

角的度量有如下規定:把一個平角180等分,每一份就是1度的角,單位是度,用「°」表示,1度記作「1°」,n度記作「n°」。

把1°的角60等分,每一份叫做1分的角,1分記作「1』」。

把1』的角60等分,每一份叫做1秒的角,1秒記作「1」」。

1°=60』,1』=60」

8、角的平分線

從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。

9、角的性質

①角的大小與邊的長短無關,只與構成角的兩條射線的幅度大小有關。

②角的大小可以度量,可以比較,角可以參與運算。

10、平角和周角:

一條射線繞著它的端點旋轉,當終邊和始邊成一條直線時,所形成的角叫做平角。

終邊繼續旋轉,當它又和始邊重合時,所形成的角叫做周角。

11、多邊形:

由若干條不在同一條直線上的線段首尾順次相連組成的封閉平面圖形叫做多邊形。

連接不相鄰兩個頂點的線段叫做多邊形的對角線。

從一個n邊形的同一個頂點出發,分別連接這個頂點與其餘各頂點,可以畫(n—3)條對角線,把這個n邊形分割成(n—2)個三角形。

12、圓:

平面上,一條線段繞著一個端點旋轉一周,另一個端點形成的圖形叫做圓。

固定的端點O稱為圓心,線段OA的長稱為半徑的長(通常簡稱為半徑)。

圓上任意兩點A、B間的部分叫做圓弧,簡稱弧,讀作「圓弧AB」或「弧AB」;

由一條弧AB和經過這條弧的端點的兩條半徑OA、OB所組成的圖形叫做扇形。

頂點在圓心的角叫做圓心角。

第五章一元一次方程

1、方程

含有未知數的等式叫做方程。

2、方程的解

能使方程左右兩邊相等的未知數的值叫做方程的解。

3、等式的性質

①等式的兩邊同時加上(或減去)同一個代數式,所得結果仍是等式。

②等式的兩邊同時乘以同一個數((或除以同一個不為0的數),所得結果仍是等式。

4、一元一次方程

只含有一個未知數,並且未知數的最高次數是1的整式方程叫做一元一次方程。

5、移項:

把方程中的某一項,改變符號後,從方程的一邊移到另一邊,這種變形叫做移項。

6、解一元一次方程的一般步驟:

①去分母

②去括弧

③移項(把方程中的某一項改變符號後,從方程的一邊移到另一邊,這種變形叫移項。)

④合並同類項

⑤將未知數的系數化為1

第六章數據的收集與整理

1、普查與抽樣調查

為了特定目的對全部考察對象進行的全面調查,叫做普查。

其中被考察對象的全體叫做總體,組成總體的每一個被考察對象稱為個體。

從總體中抽取部分個體進行調查,這種調查稱為抽樣調查,其中從總體抽取的一部分個體叫做總體的一個樣本。

2、扇形統計圖

扇形統計圖:利用圓與扇形來表示總體與部分的關系,扇形的大小反映部分佔總體的百分比的大小,這樣的統計圖叫做扇形統計圖。(各個扇形所佔的百分比之和為1)

圓心角度數=360°×該項所佔的百分比。(各個部分的圓心角度數之和為360°)

3、頻數直方圖

頻數直方圖是一種特殊的條形統計圖,它將統計對象的數據進行了分組畫在橫軸上,縱軸表示各組數據的頻數。

4、各種統計圖的特點

條形統計圖:能清楚地表示出每個項目的具體數目。

折線統計圖:能清楚地反映事物的變化情況。

扇形統計圖:能清楚地表示出各部分在總體中所佔的百分比。

初一數學上冊知識點總結5

1、 我們把實物中抽象的各種圖形統稱為幾何圖形(geometric figure).

2、有些幾何圖形(如長方體、正方體、圓柱、圓錐、球等)的各部分不都在同一平面內,它們是立體圖形(solidfigure).

3、有些幾何圖形(如線段、角、三角形、長方形、圓等)的各部分都在同一平面內,它們是平面圖形(planefigure).

4、將由平面圖形圍成的立體圖形表面適當剪開,可以展開成平面圖形,這樣的平面圖形稱為相應立體圖形的展開圖(net).

5、幾何體簡稱為體(solid).

6、包圍著體的是面(surface),面有平的面和曲的面兩種.

7、面與面相交的地方形成線(line),線和線相交的地方是點(point).

8、點動成面,面動成線,線動成體.

9、經過探究可以得到一個基本事實:經過兩點有一條直線,並且只有一條直線.簡述為:兩點確定一條直線(公理).

10、當兩條不同的直線有一個公共點時,我們就稱這兩條直線相交(intersection),這個公共點叫做它們的交點(pointof intersection).

11、點M把線段AB分成相等的兩條線段AM和MB,點M叫做線段AB的中點(center).

12、經過比較,我們可以得到一個關於線段的基本事實:兩點的所有連線中,線段最短.簡單說成:兩點之間,線段最短.(公理)

13、連接兩點間的線段的長度,叫做這兩點的距離(distance).

14、角∠(angle)也是一種基本的幾何圖形.

15、把一個周角360等分,每一份就是1度(degree)的角,記作1°;把一度的角60等分,每一份叫做1分的角,記作1′;把1分的角60等分,每一份叫做1秒的角,記作1″.

16、從一個角的頂點出發,把這個角分成相等的兩個角的射線,叫做這個角的平分線(angular bisector).

17、如果兩個角的和等於90°(直角),就是說這兩個叫互為餘角(complementaryangle),即其中的每一個角是另一個角的餘角.

18、如果兩個角的和等於180°(平角),就說這兩個角互為補角(supplementaryangle),即其中一個角是另一個角的補角

19、等角的補角相等,等角的餘角相等.