① 六年級上冊數學第三單元知識點之間有什麼聯系
第三單元 分數除法
\x100\x100(一)、分數除法的意義:
\x100\x100分數除法的意義:分數除法的意義與整數除法的意義相同,都是已知兩個因數的積與其中一個因數,求另一個因數的運算.
\x100\x100例如:
\x100\x100\x100\x100
\x100\x100(二)、分數除法的計算:
\x100\x100分數除法的計演算法則:甲數除以乙數(0除外),等於甲數乘乙數的倒數.
\x100\x100(三)比和比的應用:
\x100\x1001.比的意義:兩個數相除又叫做兩個數的比.比的後項不能為0.
\x100\x1002.比值的意義:比的前項除以後項所得的商,叫做比值.
\x100\x1003.比值的表示方式:通常用分數、小數和整數表示.
\x100\x1004.比同除法的關系:比的前項相當於被除數,後項相當於除數,比值相當於商.
\x100\x1005.比同分數的關系:比的前項相當於分子,比的後項相當於分母,比值相當於分數的值.
\x100\x1006.比的基本性質:比的前項和後項同時乘上或者同時除以相同的數(0除外),比值不變.
\x100\x1007.化簡比的方法:根據比的基本性質,把兩個數的比化成最簡單的整數比,叫做化簡比,比的前項和後項必須是互質的整數.
這些都是課本中的句子,從中結合、刪減,就是你要的答案了.
② 六年級 上 數學 知識點梳理
第一單元位置
(1)用數據表示位置的方法:
先橫著數,看在第幾行,這個數就是數據中的第一個數;再豎著數,看在第幾列,這個數就是數據中的第二個數。 (第幾行,第幾列)
第二單元分數乘法
(1)分數乘以整數:
整數與分子的乘積作分子,分母不變。(能約分的可以先約分,再計算)
(2)分數乘以分數:
用分子乘以分子的積作分子,分母乘以分母的積做分子。(能約分的可以先約分,再計算)
(3)分數乘加、乘減混合運算順序:
Ⅰ、在沒有括弧的算式里,如果只有加、減法或者只有乘、除法,都要從左往右按順序計算。
Ⅱ、在沒有括弧的算式里,有乘、除法和加、減法,要先算乘、除法後算加、減法。
Ⅲ、在有括弧的算式里,要先算括弧裡面的,再算括弧外面的。
(4)分數乘法運算定律
⒈ 交換兩個因數的位置,積不變,這叫做乘法交換律。
a×b=b×a
⒉ 先乘前兩個數,再乘第三個數;或者先乘後兩個數,再乘第一個數,這叫做乘法結合律。
(a×b)×c=a×( b×c)
⒊ 兩個數的和與一個數相乘,可以先把它們與這個數分別相乘,再相加,這叫做乘法分配律。 (a+b)×c=a×c+b×c
⒋ 兩個數的差與一個數相乘,可以先把它們與這個數分別相乘,再相減,這叫做乘法分配律。 (a-b)×c=a×c-b×c
5.. 25×4=100 125×8=1000 25×8=200 125×4=500
(5) 規律(比較大小要用到):
1、一個數(0除外)乘以大於1的數,積大於這個數;
2、一個數(0除外)乘以小於1的數(0除外),積小於這個數;
3、一個數(0除外)乘以1,積等於這個數。 第一個數
(6)誰是誰的幾分之幾,就用第一個數除以第二個數,用分數表示就是 第二個數 。
(7)求一個數的幾倍,一個數×幾倍;
求一個數的幾分之幾是多少,一個數×幾分之幾。
(8)倒數
概念:乘積是1的兩個數互為倒數。
強調:①乘積必須是1。
②只能是兩個數。
③倒數是表示兩個數的關系,他不是一個數。
第三單元分數除法
(1)乘法:因數×因數=積
除法:積÷一個因數=另一個因數
(2)分數除法的意義:
分數除法與整數除法一樣,表示已知兩個因數的積和其中一個因數,求另一個因數的運算。
(3)分數除法的方法:
甲數除以乙數(0除外),等於甲數乘以乙數的倒數。
(4)規律(比較大小要用到):
1、當除數大於1,商小於被除數;
2、當除數小於1(不等於0),商大於被除數;
3、當除數等於1,商等於被除數。
(5)「【 】」叫做中括弧。一個算式里,如果既有小括弧,又有中括弧,要先算小括弧裡面的。
(6)解決"已知一個數的幾分之幾是多少,求這個數"的問題:
1》列方程的方法
用方程解應用題格式:
1、解。(寫「解」字,打冒號。)
1、設。(設未知數,根據題目設未知數,問什麼設什麼。)
2、找。(找等量關系)
3、列。(根據等量關系列方程,並解方程)
4、答。
2》列除法算式
①分析數量關系。
一個數 × 幾/幾 = 具體量
單位」1「的量 × 幾/幾 = 具體量
單位」1「的量 = 具體量 ÷ 幾/幾
②列式計算。
(7)比的概念:兩個數相除又叫做兩個數的比。
(8)在兩個數的比中,比號前面的數叫做比的前項,比號後面的數叫做比的後項。比的前項除以後項所得的商,叫做比值。
例如 15 : 10 = 15÷10= 3/2 (比值通常用分數表示,也可以用小數或整數表示)
∶ ∶ ∶
前項 比號 後項 比值
注意:1、根據比與除法、分數的關系,可以理解比的後項不能為0;
2、在體育比賽中出現兩隊的分是2:0.,1:0等,這只是一種記分的形式,不表示兩個數相除的關系。
(9)比的基本性質:比的前項和後項同事乘以或除以相同的數(0除外),比值不變。
(10) 根據比的性質可以把比值化成最簡整數比。當一個比的前後項不是整數時,把比的前後項擴大成整數在化成最簡整數比。
(11)比的應用:前項+後項=總共的份數
總共的具體量 × 前項/總共的份數 = 前項的物體數
總共的具體量 × 後項/總共的份數 = 後項的物體數
前項的物體數 ÷ 前項/總共的份數 = 總共的具體量
後項的物體數 ÷ 後項/總共的物體量 = 總共的具體量
第四單元圓
(1)把一個圓重合對折幾次就會出現一些摺痕,這些摺痕相交於圓中心的一點,這點叫做圓心(固定的點)。一般用字母O表示。連接圓心和圓上任意一點的線段叫做半徑,一般用字母r表示。通過圓心並且兩端都在圓上的線段叫做直徑,一般用字母d表示。
(2)在同一個圓里,所有的半徑的長度都相等,所有的直徑的長度都相等。
(3)在同一個圓里,直徑的長度是半徑的2倍,半徑長度是直徑的一半。d=2r r=1/2d
(4)圓是軸對稱圖形。直徑所在的直線是圓的對稱軸,圓的對稱軸有無數條。
(5)任意一個圓的周長與它的直徑的比值是一個固定的數,我們把它叫做圓周率,用字母
(pai)表示。它是一個無限不循環小數, =3.1415926535------但在實際應用中一般只取它的近似值,即 =3.14 。
如果用C表示圓的周長,就有 C= d 或 C=2 r
(6)圓的面積公式:圓的面積 = r×r
= r2
強調:①r2 表示r×r 。
②長度單位與面積單位的統一 。
③計算時,可以不寫面積公式。
(7)環形面積:大圓面積 — 小圓面積( 或 外圓面積 — 內圓面積)
(8)圓心角:頂點在圓心的角叫做圓心角。圓周角360°。
第五單元百分數
(1)概念:像上面這樣的數,如18%、50%、64.2%-----叫做百分數。
百分數表示一個數是另一個數的百分之幾。百分數也叫做百分率後百分比。
百分數通常不寫成分數形式,而在原來的分子後面加上百分號「%」來表示。如:
百分之九十 寫作:90%
(2)百分數的讀法:讀百分數時,先讀百分之,再讀百分號前面的數,讀數時按照整數的讀法來讀。
(3)百分數的寫法:百分數通常不寫成分數形式,而在原來的分子後面加上百分號「%」來表示。
(4)百分數和分數的區別:百分數只能表示兩個數的比的關系,而分數不僅可以表示數的關系,還可以表示成一個具體的量,可以帶上單位名稱。
(5)百分數和小數及分數的互化
小數化成百分數:把小數點向右移動兩位再在數的後面加上百分號。
百分數化成小數:把百分號去掉,同時把小數點向左移動兩位。
百分數化成分數:化成分母是100的分數,能約分的要約分。如果百分數分子是小數,要先根據分數的基本性質,把百分數改寫成分數是整數的分數,再約分。
分數化成百分數有兩種方法:一種是根據分數的基本性質,把分數的分母化成為100的分數, 另一種是先把分數化成小數,在利用小數化百分數的方法。(利用第二種時,除不盡,通常保留三位小數)
(6)用百分數解決問題:
什麼的百分率 = 什麼的數量 / 總共的數量 × 100%
(7)解答百分數應用題時,要注意弄清楚誰和誰比,比的標准不同,單位「1」也不同,解題時要注意找准把誰看單位「1」。
(8)由於比的標准不同,甲比乙多百分之幾,已並不比甲少相同的百分數。
(9)在實際生活中,人們常用「增加百分之幾」、「減少百分之幾」、「節約百分之幾」----來表示增加、減少的幅度。(占誰的把誰看成單位「1」)
增加百分之幾表示增加的占原來的百分之幾。
減少的百分之幾表示減少的占計劃的百分之幾。
節約百分之幾表示節約的占原來的百分之幾。
(9)稅收主要分為消費稅、增值稅、營業稅和個人所得稅等幾類。繳納的稅款叫做應納稅額,應納稅額與各種收入(銷售額、營業額----)的比率叫做稅率。
(10)在銀行存款的方式有多種,如活期、整存整取、零存整取等。存入銀行的錢叫做本金;取款時銀行多付的錢叫做利息,利息與本金的比值叫做利率。
(11)國家規定,存款所得的利息要按20%的稅率納稅,這個稅叫『利息稅」。我們從銀行取款時得到的利息都是稅後利息。國債的利息不納稅。
(12)利息=本金×利率×時間
(13)利率由銀行決定,在我國我由中國人民銀行統一規定,利率的高低反映一個時期經濟發展狀況和消費狀況。根據國家的經濟發展的變化,銀行存款的利率有時也會有所調整。
第六單元統計
(1)條形統計圖的的特點:條形統計圖可以清楚地看出數量的多少。
折線統計圖的特點:折線統計圖不僅可以看出數量的多少而且可以看出數量的增減變化情況。
(2)用整個圓的面積表示總數,用圓內各個扇形的大小表示各部分數量占總數的百分數,這樣的統計圖我們稱為扇形統計圖。特點:通過扇形統計圖我們可以很清楚地表示出各部分數量同總數之間的關系。
第七單元數學廣角
這里解決問題可以用方程的方法來解。(設的那個未知數盡量是少的)
用方程解應用題格式:
1、解。(寫「解」字,打冒號。)
5、設。(設未知數,根據題目設未知數,問什麼設什麼。)
6、找。(找等量關系)
7、列。(根據等量關系列方程,並解方程)
8、答。
③ 六年級數學上冊知識點整理歸納:第三單元
數學是人類對事物的抽象結構與模式進行嚴格描述的一種通用手段,可以應用於現實世界的任何問題,所有的數學對象本質上都是人為定義的。下面為大家帶來了人教版六年級數學上冊知識點整理歸納:第三單元,歡迎大家參考!
一、分數除法的意義和分數除以整數
知識點一:分數除法的意義
整數除法的意義:已知兩個因數的積與其中一個因數,求另一個因數的運算。
知識點二:分數除以整數的計算方法
把一個數平均分成整數份,求其中的幾份就是求這個數的幾分之幾是多少。
分數除以整數(0除外)的計算方法:
(1)用分子和整數相除的商做分子,分母不變。
(2)分數除以整數,等於分數乘這個整數的倒數。
二、一個數除以分數
知識點一:一個數除以分數的計算方法
一個數除以分數,等於這個數乘分數的倒數。
知識點二:分數除法的統一計演算法則
甲數除以乙數(0除外),等於甲數乘乙數的倒數。
知識點三:商與被除數的大小關系
一個數(0除外)除以小於1的數,商大於被除數,除以1,商等於被除數,除以大於1的數,商小於被除數。0除以任何數商都為0。
三、分數除法的混合運算
知識點一:分數除加、除減的運算順序
除加、除減混合運算,如果沒有括弧,先算除法,後算加減。
知識點二:連除的計算方法
分數連除,可以分步轉化為乘法計算,也可以一次都轉化為乘法再計算,能約分的要約分。
知識點三:不含括弧的分數混合運算的運算順序
在一個分數混合運算的算式里,如果只含有同一級運算,按照從左到右的順序計算;如果含有兩級運算,先算第二級運算,再算第一級運算。
知識點四:含有括弧的分數混和運算的運算順序
在一個分數混合運算的算式里,如果既有小括弧又有中括弧,要先算小括弧裡面的,再算中括弧裡面的。
知識點五:整數的.運算定律在分數混和運算中的運用
分數除法的意義與整數除法的意義相同,都是已知兩個因數的積與其中一個因數求另一個因數。被除數分子乘除數分母,被除數分母乘除數分子。
小學數學小數除法知識點
1、小數除法的意義:已知兩個因數的積與其中的一個因數,求另一個因數的運算。如:2.6÷1.3表示已知兩個因數的積2.6與其中的一個因數1.3,求另一個因數的運算。
小數除法的計算方法:
計算除數是整數的小數除法,按整數除法的計算方法去除,商的小數點要和被除數的小數點對齊,整數部分不夠除,商0,點上小數點,繼續除;如果有餘數,要添0再除。
計算除數是小數的除法,先把除數轉化成整數,除數的小數點向右移動幾位,被除數的小數點也要向右移動幾位,位數不夠時,在被除數的末尾用0補足,然後按照除數是整數的小數除法進行計算。
2、取近似數的方法:
取近似數的方法有三種,①四捨五入法;②進一法;③去尾法。
一般情況下,按要求取近似數時用四捨五入法,進一法、去尾法在解決實際問題的時候選擇應用。
取商的近似數時,保留到哪一位,一定要除到那一位的下一位,然後用四捨五入的方法取近似數。沒有要求時,除不盡的一般保留兩位小數。
3、循環小數:一個數的小數部分,從某一位起,一個數字或者幾個數字依次不斷重復出現,這樣的小數叫做循環小數。依次不斷重復出現的數字,叫做這個循環小數的的循環節。
4、循環小數的表示方法:
一種是用省略號表示,要寫出兩個完整的循環節,後面標上省略號。如:0.3636……1.587587……
另一種是簡寫的方法:即只寫出一組循環節,然後在循環節的第一個數字和最後一個數上面點上圓點。如:12。
5、有限小數:小數部分的位數是有限的小數,叫做有限小數。
6、無限小數:小數部分的位數是無限的小數,叫做無限小數。
小學數學單位間進率知識點
1公里=1千米1千米=1000米
1米=10分米1分米=10厘米1厘米=10毫米
1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米
1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米
1噸=1000千克1千克=1000克=1公斤=1市斤
1公頃=10000平方米1畝=666.666平方米
1升=1立方分米=1000毫升1毫升=1立方厘米
④ 六年級數學上冊第三單元知識點整理
第三單元 分數除法
一、分數除法的意義:分數除法是分數乘法的逆運算,已知兩個數的積與其中一個因數,求另一個因數的運算。
二、分數除法計演算法則:除以一個數(0除外),等於乘上這個數的倒數。
1、被除數÷除數=被除數×除數的倒數。例 ÷3= × = 3÷ =3× =5
2、除法轉化成乘法時,被除數一定不能變,「÷」變成「×」,除數變成它的倒數。
3、分數除法算式中出現小數、帶分數時要先化成分數、假分數再計算。
4、被除數與商的變化規律:
①除以大於1的數,商小於被除數:a÷b=c 當b>1時,c (a≠0)
②除以小於1的數,商大於被除數:a÷b=c 當b<1時,c>a (a≠0 b≠0)
③除以等於1的數,商等於被除數:a÷b=c 當b=1時,c=a
三、分數除法混合運算
運算順序:
①連除:屬同級運算,按照從左往右的順序進行計算;或者先把所有除法轉化成乘法再計算;或者依據「除以幾個數,等於乘上這幾個數的積」的簡便方法計算。加、減法為一級運算,乘、除法為二級運算。
②混合運算:沒有括弧的先乘、除後加、減,有括弧的先算括弧裡面,再算括弧外面。
四、比:兩個數相除也叫兩個數的比
1、比式中,比號(∶)前面的數叫前項,比號後面的項叫做後項,比號相當於除號,比的前項除以後項的商叫做比值。
註:連比如:3:4:5讀作:3比4比5
2、比表示的是兩個數的關系,可以用分數表示,寫成分數的形式,讀作幾比幾。
例:12∶20= =12÷20= =0.6 12∶20讀作:12比20
註:區分比和比值:比值是一個數,通常用分數表示,也可以是整數、小數。
比是一個式子,表示兩個數的關系,可以寫成比,也可以寫成分數的形式。
3、比的基本性質:比的前項和後項同時乘以或除以相同的數(0除外),比值不變。
4、化簡比:化簡之後結果還是一個比,不是一個數。
(1)、 用比的前項和後項同時除以它們的`最大公約數。
(2)、 兩個分數的比,用前項後項同時乘分母的最小公倍數,再按化簡整數比的方法來化簡。也可以求出比值再寫成比的形式。
(3)、 兩個小數的比,向右移動小數點的位置,也是先化成整數比。
5、求比值:把比號寫成除號再計算,結果是一個數(或分數),相當於商,不是比。
6、比和除法、分數的區別:
除法:被除數 除號(÷) 除數(不能為0)商不變性質 除法是一種運算
分數:分子 分數線(——)分母(不能為0)分數的基本性質分數是一個數
比: 前項 比號(∶) 後項(不能為0)比的基本性質 比表示兩個數的關系
附:商不變性質:被除數和除數同時乘或除以相同的數(0除外),商不變。
分數的基本性質:分子和分母同時乘或除以相同的數(0除外),分數的大小不變。
7、按比例分配:把一個量按一定的比分配的方法叫做按比例分配。
8、畫線段圖:
(1)找出單位「1」的量,先畫出單位「1」,標出已知和未知。
(2)分析數量關系。
(3)找等量關系。
(4)列方程。
註:兩個量的關系畫兩條線段圖,部分和整體的關系畫一條線段圖。
⑤ 小學六年級上冊人教版數學重要知識點
六年級上冊數學知識點
第一單元 位置
1、什麼是數對?
——數對:由兩個數組成,中間用逗號隔開,用括弧括起來。括弧裡面的數由左至右為列數和行數,即「先列後行」。
作用:確定一個點的位置。經度和緯度就是這個原理。
例:在方格圖(平面直角坐標系)中用數對(3,5)表示(第三列,第五行)。
註:(1)在平面直角坐標系中X軸上的坐標表示列,y軸上的坐標表示行。如:數對(3,2)表示第三列,第二行。
(2)數對(X,5)的行號不變,表示一條橫線,(5,Y)的列號不變,表示一條豎線。(有一個數不確定,不能確定一個點)
( 列 , 行 )
↓ ↓
豎排叫列 橫排叫行
(從左往右看)(從下往上看)
(從前往後看)
2、圖形左右平移行數不變;圖形上下平移列數不變。
3、兩點間的距離與基準點(0,0)的選擇無關,基準點不同導致數對不同,兩點間但距離不變。
第二單元 分數乘法
(一)分數乘法意義:
1、分數乘整數的意義與整數乘法的意義相同,就是求幾個相同加數的和的簡便運算。
註:「分數乘整數」指的是第二個因數必須是整數,不能是分數。
例如: ×7表示: 求7個 的和是多少? 或表示: 的7倍是多少?
2、一個數乘分數的意義就是求一個數的幾分之幾是多少。
註:「一個數乘分數」指的是第二個因數必須是分數,不能是整數。(第一個因數是什麼都可以)
例如: × 表示: 求 的 是多少?
9 × 表示: 求9的 是多少?
A × 表示: 求a的 是多少?
(二)分數乘法計演算法則:
1、分數乘整數的運演算法則是:分子與整數相乘,分母不變。
註:(1)為了計算簡便能約分的可先約分再計算。(整數和分母約分)
(2)約分是用整數和下面的分母約掉最大公因數。(整數千萬不能與分母相乘,計算結果必須是最簡分數)
2、分數乘分數的運演算法則是:用分子相乘的積做分子,分母相乘的積做分母。(分子乘分子,分母乘分母)
註:(1)如果分數乘法算式中含有帶分數,要先把帶分數化成假分數再計算。
(2)分數化簡的方法是:分子、分母同時除以它們的最大公因數。
(3)在乘的過程中約分,是把分子、分母中,兩個可以約分的數先劃去,再分別在它們的上、下方寫出約分後的數。(約分後分子和分母必須不再含有公因數,這樣計算後的結果才是最簡單分數)
(4)分數的基本性質:分子、分母同時乘或者除以一個相同的數(0除外),分數的大小不變。
(三)積與因數的關系:
一個數(0除外)乘大於1的數,積大於這個數。a×b=c,當b >1時,c>a.
一個數(0除外)乘小於1的數,積小於這個數。a×b=c,當b <1時,c<a (b≠0).
一個數(0除外)乘等於1的數,積等於這個數。a×b=c,當b =1時,c=a .
註:在進行因數與積的大小比較時,要注意因數為0時的特殊情況。
附:形如 的分數可折成( )×
(四)分數乘法混合運算
1、分數乘法混合運算順序與整數相同,先乘、除後加、減,有括弧的先算括弧裡面的,再算括弧外面的。
2、整數乘法運算定律對分數乘法同樣適用;運算定律可以使一些計算簡便。
乘法交換律:a×b=b×a
乘法結合律:(a×b)×c=a×(b×c)
乘法分配律:a×(b±c)=a×b±a×c
(五)倒數的意義:乘積為1的兩個數互為倒數。
1、倒數是兩個數的關系,它們互相依存,不能單獨存在。單獨一個數不能稱為倒數。(必須說清誰是誰的倒數)
2、判斷兩個數是否互為倒數的唯一標準是:兩數相乘的積是否為「1」。
例如:a×b=1則a、b互為倒數。
3、求倒數的方法:
①求分數的倒數:交換分子、分母的位置。
②求整數的倒數:整數分之1。
③求帶分數的倒數:先化成假分數,再求倒數。
④求小數的倒數:先化成分數再求倒數。
4、1的倒數是它本身,因為1×1=1
0沒有倒數,因為任何數乘0積都是0,且0不能作分母。
5、任意數a(a≠0),它的倒數為 ;非零整數a的倒數為 ;分數 的倒數是 。
6、真分數的倒數是假分數,真分數的倒數大於1,也大於它本身。
假分數的倒數小於或等於1。
帶分數的倒數小於1。
(六)分數乘法應用題 ——用分數乘法解決問題
1、求一個數的幾分之幾是多少?(用乘法)
「1」× =
例如:求25的 是多少? 列式:25× =15
甲數的 等於乙數,已知甲數是25,求乙數是多少? 列式:25× =15
註:已知單位「1」的量,求單位「1」的量的幾分之幾是多少,用單位「1」的量與分數相乘。
2、( 什麼)是(什麼 )的 。
( )= ( 「1」 ) ×
例1: 已知甲數是乙數的 ,乙數是25,求甲數是多少?
甲數=乙數× 即25× =15
注:(1)「是」「的」字中間的量「乙數」是 的單位「1」的量,即 是把乙數看作單位「1」,把乙數平均分成5份,甲數是其中的3份。
(2)「是」「占」「比」這三個字都相當於「=」號,「的」字相當於「×」。
(3)單位「1」的量×分率=分率對應的量
例2:甲數比乙數多(少) ,乙數是25,求甲數是多少?
甲數=乙數±乙數× 即25±25× =25×(1± )=40(或10)
3、巧找單位「1」的量:在含有分數(分率)的語句中,分率前面的量就是單位「1」對應的量,或者「占」「是」「比」字後面的量是單位「1」。
4、什麼是速度?
——速度是單位時間內行駛的路程。速度=路程÷時間 時間=路程÷速度 路程=速度×時間
——單位時間指的是1小時1分鍾1秒等這樣的大小為1的時間單位,每分鍾、每小時、每秒鍾等。
5、求甲比乙多(少)幾分之幾?
多:(甲-乙)÷乙
少:(乙-甲)÷乙
第三單元 分數除法
一、分數除法的意義:分數除法是分數乘法的逆運算,已知兩個數的積與其中一個因數,求另一個因數的運算。
二、分數除法計演算法則:除以一個數(0除外),等於乘上這個數的倒數。
1、被除數÷除數=被除數×除數的倒數。例 ÷3= × = 3÷ =3× =5
2、除法轉化成乘法時,被除數一定不能變,「÷」變成「×」,除數變成它的倒數。
3、分數除法算式中出現小數、帶分數時要先化成分數、假分數再計算。
4、被除數與商的變化規律:
①除以大於1的數,商小於被除數:a÷b=c 當b>1時,c<a (a≠0)
②除以小於1的數,商大於被除數:a÷b=c 當b<1時,c>a (a≠0 b≠0)
③除以等於1的數,商等於被除數:a÷b=c 當b=1時,c=a
三、分數除法混合運算
1、混合運算用梯等式計算,等號寫在第一個數字的左下角。
2、運算順序:
①連除:屬同級運算,按照從左往右的順序進行計算;或者先把所有除法轉化成乘法再計算;或者依據「除以幾個數,等於乘上這幾個數的積」的簡便方法計算。加、減法為一級運算,乘、除法為二級運算。
②混合運算:沒有括弧的先乘、除後加、減,有括弧的先算括弧裡面,再算括弧外面。
註:(a±b)÷c=a÷c±b÷c
四、比:兩個數相除也叫兩個數的比
1、比式中,比號(∶)前面的數叫前項,比號後面的項叫做後項,比號相當於除號,比的前項除以後項的商叫做比值。
註:連比如:3:4:5讀作:3比4比5
2、比表示的是兩個數的關系,可以用分數表示,寫成分數的形式,讀作幾比幾。
例:12∶20= =12÷20= =0.6 12∶20讀作:12比20
註:區分比和比值:比值是一個數,通常用分數表示,也可以是整數、小數。
比是一個式子,表示兩個數的關系,可以寫成比,也可以寫成分數的形式。
3、比的基本性質:比的前項和後項同時乘以或除以相同的數(0除外),比值不變。
3、化簡比:化簡之後結果還是一個比,不是一個數。
(1)、 用比的前項和後項同時除以它們的最大公約數。
(2)、 兩個分數的比,用前項後項同時乘分母的最小公倍數,再按化簡整數比的方法來化簡。也可以求出比值再寫成比的形式。
(3)、 兩個小數的比,向右移動小數點的位置,也是先化成整數比。
4、求比值:把比號寫成除號再計算,結果是一個數(或分數),相當於商,不是比。
5、比和除法、分數的區別:
除法 被除數 除號(÷) 除數(不能為0) 商不變性質 除法是一種運算
分數 分子 分數線(——) 分母(不能為0) 分數的基本性質 分數是一個數
比 前項 比號(∶) 後項(不能為0) 比的基本性質 比表示兩個數的關系
附:商不變性質:被除數和除數同時乘或除以相同的數(0除外),商不變。
分數的基本性質:分子和分母同時乘或除以相同的數(0除外),分數的大小不變。
五、分數除法和比的應用
1、已知單位「1」的量用乘法。例:甲是乙的 ,乙是25,求甲是多少?即:甲=乙× (15× =9)
2、未知單位「1」的量用除法。例: 甲是乙的 ,甲是15,求乙是多少?即:甲=乙× (15÷ =25)(建議列方程答)
3、分數應用題基本數量關系(把分數看成比)
(1)甲是乙的幾分之幾?
甲=乙×幾分之幾 (例:甲是15的 ,求甲是多少?15× =9)
乙=甲÷幾分之幾 (例:9是乙的 ,求乙是多少?9÷ =15)
幾分之幾=甲÷乙 (例:9是15的幾分之幾?9÷15= )(「是」字相當「÷」號,乙是單位「1」)
(2)甲比乙多(少)幾分之幾?
A 差÷乙= (「比」字後面的量是單位「1」的量)(例:9比15少幾分之幾?(15-9)÷15= = = )
B 多幾分之幾是: –1 (例: 15比9少幾分之幾?15÷9= -1= –1= )
C 少幾分之幾是:1– (例:9比15少幾分之幾?1-9÷15=1– =1– = )
D 甲=乙±差=乙±乙× =乙±乙× =乙(1± ) (例:甲比15少 ,求甲是多少?15–15× =15×(1– )=9(多是「+」少是「–」)
E 乙=甲÷(1± )(例:9比乙少 ,求乙是多少?9÷(1- )=9 ÷ =15)(多是「+」少是「–」)
(例:15比乙多 ,求乙是多少?15÷(1+ )=15 ÷ =9)(多是「+」少是「–」)
4、按比例分配:把一個量按一定的比分配的方法叫做按比例分配。
例如:已知甲乙的和是56,甲、乙的比3∶5,求甲、乙分別是多少?
方法一:56÷(3+5)=7 甲:3×7=21 乙:5×7=35
方法二:甲:56× =21 乙:56× =35
例如:已知甲是21,甲、乙的比3∶5,求乙是多少?
方法一:21÷3=7 乙:5×7=35
方法二:甲乙的和21÷ =56 乙:56× =35
方法二:甲÷乙= 乙=甲÷ =21÷ =35
5、畫線段圖:
(1)找出單位「1」的量,先畫出單位「1」,標出已知和未知。
(2)分析數量關系。
(3)找等量關系。
(4)列方程。
註:兩個量的關系畫兩條線段圖,部分和整體的關系畫一條線段圖。
第四單元 圓
一、.圓的特徵
1、圓是平面內封閉曲線圍成的平面圖形,.
2、圓的特徵:外形美觀,易滾動。
3、圓心o:圓中心的點叫做圓心.圓心一般用字母O表示.圓多次對折之後,摺痕的相交於圓的中心即圓心。圓心確定圓的位置。
半徑r:連接圓心到圓上任意一點的線段叫做半徑。在同一個圓里,有無數條半徑,且所有的半徑都相等。半徑確定圓的大小。
直徑d: 通過圓心且兩端都在圓上的線段叫做直徑。在同一個圓里,有無數條直徑,且所有的直徑都相等。直徑是圓內最長的線段。
同圓或等圓內直徑是半徑的2倍:d=2r 或 r=d÷2= d=
4、等圓:半徑相等的圓叫做同心圓,等圓通過平移可以完全重合。
同心圓:圓心重合、半徑不等的兩個圓叫做同心圓。
5、圓是軸對稱圖形:如果一個圖形沿著一條直線對折,兩側的圖形能夠完全重合,這個圖形是軸對稱圖形。摺痕所在的直線叫做對稱軸。
有一條對稱軸的圖形:半圓、扇形、等腰梯形、等腰三角形、角
有二條對稱軸的圖形:長方形
有三條對稱軸的圖形:等邊三角形
有四條對稱軸的圖形:正方形
有無條對稱軸的圖形:圓,圓環
6、畫圓
(1)圓規兩腳間的距離是圓的半徑。
(2)畫圓步驟:定半徑、定圓心、旋轉一周。
二、圓的周長:圍成圓的曲線的長度叫做圓的周長,周長用字母C表示。
1、圓的周長總是直徑的三倍多一些。
2、圓周率:圓的周長與直徑的比值是一個固定值,叫做圓周率,用字母π表示。
即:圓周率π= =周長÷直徑≈3.14
所以,圓的周長(c)=直徑(d)×圓周率(π) ——周長公式: c=πd, c=2πr
註:圓周率π是一個無限不循環小數,3.14是近似值。
3、周長的變化的規律:半徑擴大多少倍直徑也擴大多少倍,周長擴大的倍數與半徑、直徑擴大的倍數相同。
如果r1∶r2∶r3=d1∶d2∶d3=c1∶c2∶c3
4、半圓周長=圓周長一半+直徑= ×2πr=πr+d
三、圓的面積s
1、圓面積公式的推導
如圖把一個圓沿直徑等分成若干份,剪開拼成長方形,份數越多拼成的圖像越接近長方形。
圓的半徑 = 長方形的寬
圓的周長的一半 = 長方形的長
長方形面積 = 長 ×寬
所以:圓的面積 = 長方形的面積 = 長 ×寬 = 圓的周長的一半(πr)×圓的半徑(r)
S圓 = πr × r
S圓 = πr×r = πr2
2、幾種圖形,在面積相等的情況下,圓的周長最短,而長方形的周長最長;反之,在周長相等的情況下,圓的面積則最大,而長方形的面積則最小。
周長相同時,圓面積最大,利用這一特點,籃子、盤子做成圓形。
3、圓面積的變化的規律:半徑擴大多少倍直徑、周長也同時擴大多少倍,圓面積擴大的倍數是半徑、直徑擴大的倍數的平方倍。
如果: r1∶r2∶r3=d1∶d2∶d3=c1∶c2∶c3=2∶3∶4
則:S1∶S2∶S3=4∶9∶16
4、環形面積 = 大圓 – 小圓=πr大2 - πr小2=π(r大2 - r小2)
扇形面積 = πr2× (n表示扇形圓心角的度數)
5、跑道:每條跑道的周長等於兩半圓跑道合成的圓的周長加上兩條直跑道的和。因為兩條直跑道長度相等,所以,起跑線不同,相鄰兩條跑道起跑線也不同,間隔的距離是:2×π×跑道寬度。
註:一個圓的半徑增加a厘米,周長就增加2πa厘米
一個圓的直徑增加b厘米,周長就增加πb 厘米
6、任意一個正方形的內切圓即最大圓的直徑是正方形的邊長,它們的面積比是4∶π
7、常用數據
π=3.14 2π=6.28 3π=9.42 4π=12.56 5π=15.7
第五單元、百分數
一、百分數的意義:表示一個數是另一個數的百分之幾。
註:百分數是專門用來表示一種特殊的倍比關系的,表示兩個數的比,所以,百分數又叫百分比或百分率,百分數不能帶單位。
1、百分數和分數的區別和聯系:
(1)聯系:都可以用來表示兩個量的倍比關系。
(2)區別:意義不同:百分數只表示倍比關系,不表示具體數量,所以不能帶單位。分數不僅表示倍比關系,還能帶單位表示具體數量。
百分數的分子可以是小數,分數的分子只以是整數。
註:百分數在生活中應用廣泛,所涉及問題基本和分數問題相同,分母是100的分數並不是百分數,必須把分母寫成「%」才是百分數,所以「分母是100的分數就是百分數」這句話是錯誤的。「%」的兩個0要小寫,不要與百分數前面的數混淆。一般來講,出勤率、成活率、合格率、正確率能達到100%,出米率、出油率達不到100%,完成率、增長了百分之幾等可以超過100%。一般出粉率在70、80%,出油率在30、40%。
2、小數、分數、百分數之間的互化
(1)百分數化小數:小數點向左移動兩位,去掉「%」。
(2)小數化百分數:小數點向右移動兩位,添上「%」。
(3)百分數化分數:先把百分數寫成分母是100的分數,然後再化簡成最簡分數。
(4)分數化百分數:分子除以分母得到小數,(除不盡的保留三位小數)然後化成百分數。
(5)小數 化 分數:把小數成分母是10、100、1000等的分數再化簡。
(6)分數 化 小數:分子除以分母。
二、百分數應用題
1、 求常見的百分率 如:達標率、及格率、成活率、發芽率、出勤率等求百分率就是求一個數是另一個數的百分之幾
2、 求一個數比另一個數多(或少)百分之幾,實際生活中,人們常用增加了百分之幾、減少了百分之幾、節約了百分之幾等來表示增加、或減少的幅度。
求甲比乙多百分之幾 (甲-乙)÷乙
求乙比甲少百分之幾 (甲-乙)÷甲
3、 求一個數的百分之幾是多少 一個數(單位「1」) ×百分率
4、 已知一個數的百分之幾是多少,求這個數 部分量÷百分率=一個數(單位「1」)
5、 折扣 折扣、打折的意義:幾折就是十分之幾也就是百分之幾十
折扣 成數 幾分之幾 百分之幾 小數 通用
八折 八成 十分之八 百分之八十 0.8
八五折 八成五 十分之八點五 百分之八十五 0.85
五折 五成 十分之五 百分之五十 0.5 半價
6、 納稅 繳納的稅款叫做應納稅額。
(應納稅額)÷(總收入)=(稅率)
(應納稅額)=(總收入)×(稅率)
7、 利率
(1)存入銀行的錢叫做本金。
(2)取款時銀行多支付的錢叫做利息。
(3)利息與本金的比值叫做利率。
利息=本金×利率×時間
稅後利息=利息-利息的應納稅額=利息-利息×5%
註:國債和教育儲蓄的利息不納稅
8、百分數應用題型分類
(1)求甲是乙的百分之幾——(甲÷乙)×100% = ×100% = 百分之幾
(2)求甲比乙多(少)百分之幾—— ×100% = ×100%
例
① 甲是50,乙是40,甲是乙的百分之幾?(50是40的百分之幾?)50÷40=125%
② 甲是50,乙是40,乙是甲的百分之幾?(40是50的百分之幾?)40÷50=80%
③ 乙是40,甲是乙的125%,甲數是多少?(40的125%是多少?)40×125%=50
④ 甲是50,乙是甲的80%,乙數是多少?(50的80%是多少?)50×80%=40
⑤ 乙是40,乙是甲的80%,甲數是多少?(一個數的80%是40,這個數是多少?)40÷80%=50
⑥ 甲是50,甲是乙的125%,乙數是多少?(一個數的125%是50,這個數是多少?)50÷125%=40
⑦ 甲是50,乙是40,甲比乙多百分之幾?(50比40多百分之幾?)(50-40)÷40×100%=25%
⑧ 甲是50,乙是40,乙比甲少百分之幾?(40比50少百分之幾?)(50-40)÷50×100%=20%
⑨ 甲比乙多25%,多10,乙是多少?10÷25%=40
⑩ 甲比乙多25%,多10,甲是多少?10÷25%+10=50
⑪ 乙比甲少20%,少10,甲是多少?10÷20%=50
⑫ 乙比甲少20%,少10,乙是多少?10÷20%-10=40
⑬ 乙是40,甲比乙多25%,甲數是多少?(什麼數比40多25%?)40×(1+25%)=50
⑭ 甲是50,乙比甲少20%,乙數是多少?(什麼數比50多25%?)50×(1-20%)=40
⑮ 乙是40,比甲少20%,甲數是多少?(40比什麼數少20%?)40÷(1-20%)=50
⑯ 甲是50,比乙多25%,乙數是多少?(50比什麼數多25%?)40÷(1+25%)=40
第六單元、統計
1、 扇形統計圖的意義:用整個圓的面積表示總數,用圓內各個扇形面積表示各部分數量同總數之間關系,也就是各部分數量占總數的百分比,因此也叫百分比圖。
2、 常用統計圖的優點:
(1)、條形統計圖直觀顯示每個數量的多少。
(2)、折線統計圖不僅直觀顯示數量的增減變化,還可清晰看出各個數量的多少。
(3)、扇形統計圖直觀顯示部分和總量的關系。
第七單元、數學廣角
一、研究中國古代的雞兔同籠問題。
1、 用表格方式解決有局限性,數目必須小,例:
頭數 雞(只)兔(只) 腿數
35 1 34
35 2 33
35 3 32
……
(逐一列表法、腿數少,小幅度跳躍;腿數多,大幅度跳躍。跳躍逐一相結合、取中列表)
2、 用假設法解決
(1) 假如都是兔
(2) 假如都是雞
(3) 假如它們各抬起一條腿
(4) 假如兔子抬起兩條前腿
3、 用代數方法解(一般規律)
注釋:這個問題,是我國古代著名趣題之一。大約在1500年前,《孫子算經》中就記載了這個有趣的問題。書中是這樣敘述的:「今有雞兔同籠,上有三十五頭,下有九十四足,問雞兔各幾何?這四句話的意思是:有若干只雞兔同在一個籠子里,從上面數,有35個頭;從下面數,有94隻腳。求籠中各有幾只雞和兔?
二、和尚分饅頭
100個和尚吃100個饅頭,大和尚一人吃3個,小和尚三人吃一個。大小和尚各多少人?
國明代珠算家程大位的名著《直指演算法統宗》里有一道著名算題:
一百饅頭一百僧,
大僧三個更無爭,
小僧三人分一個,
大小和尚各幾丁?"
如果譯成白話文,其意思是:有100個和尚分100隻饅頭,正好分完。如果大和尚一人分3隻,小和尚3人分一隻,試問大、小和尚各有幾人?
方法一,用方程解:
解:設大和尚有x人,則小和尚有(100-x)人,根據題意列得方程:
3x + (100-x)=100
x=25
100-25=75人
方法二,雞兔同籠法:
(1)假設100人全是大和尚,應吃饅頭多少個?
3×100=300(個).
(2)這樣多吃了幾個呢?
300-100=200(個).
(3)為什麼多吃了200個呢?這是因為把小和尚當成大和尚。那麼把小和尚當成大和尚時,每個小和尚多算了幾個饅頭?
3- = (個)
(4)每個小和尚多算了8/3個饅頭,一共多算了200個,所以小和尚有:
小和尚:200÷ =75(人)
大和尚:100-75=25(人)
方法三,分組法:
由於大和尚一人分3隻饅頭,小和尚3人分一隻饅頭。我們可以把3個小和尚與1個大和尚編為一組,這樣每組4個和尚剛好分4個饅頭,那麼100個和尚總共分為100÷(3+1)=25組,因為每組有1個大和尚,所以有25個大和尚;又因為每組有3個小和尚,所以有25×3=75個小和尚。
這是《直指演算法統宗》里的解法,原話是:"置僧一百為實,以三一並得四為法除之,得大僧二十五個。"所謂"實"便是"被除數","法"便是"除數"。列式就是:
100÷(3+1)=25(組)
大和尚:25×1=25(人)
小和尚:100-25=75(人)或25×3=75(人)
我國古代勞動人民的智慧由此可見一斑。
三、整數、分數、百分數應用題結構類型
(一)求甲是乙的幾倍(或幾分之幾或百分之幾)的應用題。
解法:甲數除以乙數
例:校園里有楊樹40棵,柳樹有50棵,楊樹的棵樹占柳樹的百分之幾?(或幾分之幾?)
(二)求甲數的幾倍(或幾分之幾或百分之幾)是多少的應用題。
解答分數應用題,首先要確定單位「1」,在單位「1」確定以後,一個具體數量總與一個具體分數(分率)相對應,這種關系叫「量率對應」,這是解答分數應用題的關鍵。
求一個數的幾倍(幾分之幾或百分之幾)是多少用乘法,單位「1」×分率=對應數量
例:六年級有學生180人,五年級的學生人數是六年級人數的56 。五年級有學生多少人?
180×56 =150
(三)已知甲數的幾倍(或幾分之幾或百分之幾)是多少,求甲數(即求標准量或單位「1」)的應用題。
解法:對應數量÷對應分率=單位「1」
例:育紅小學六年級男生有120人,占參加興趣活動小組人數的35 . 六年級參加興趣活動小組人數共有學生多少人?
120÷35 =200(人)
請採納,謝謝
⑥ 六年級數學上第三單元知識點歸納
一、認識圓
1、圓的定義:圓是由曲線圍成的一種平面圖形。
2、圓心:將一張圓形紙片對折兩次,摺痕相交於圓中心的一點,這一點叫做圓心。
一般用字母O表示。它到圓上任意一點的距離都相等.
3、半徑:連接圓心到圓上任意一點的線段叫做半徑。一般用字母r表示。
把圓規兩腳分開,兩腳之間的距離就是圓的半徑。
4、直徑:通過圓心並且兩端都在圓上的線段叫做直徑。一般用字母d表示。
直徑是一個圓內最長的線段。
5、圓心確定圓的位置,半徑確定圓的大小。
6、在同圓或等圓內,有無數條半徑,有無數條直徑。所有的半徑都相等,所有的直徑都相等。
7.在同圓或等圓內,直徑的長度是半徑的2倍,半徑的長度是直徑的。
用字母表示為:d=2r或r=
8、軸對稱圖形:
如果一個圖形沿著一條直線對折,兩側的圖形能夠完全重合,這個圖形是軸對稱圖形。
摺痕所在的這條直線叫做對稱軸。(經過圓心的任意一條直線或直徑所在的直線)
9、長方形、正方形和圓都是對稱圖形,都有對稱軸。這些圖形都是軸對稱圖形。
10、只有1一條對稱軸的圖形有:角、等腰三角形、等腰梯形、扇形、半圓。
只有2條對稱軸的圖形是:長方形
只有3條對稱軸的圖形是:等邊三角形
只有4條對稱軸的圖形是:正方形;
有無數條對稱軸的圖形是:圓、圓環。
二、圓的周長
1、圓的周長:圍成圓的曲線的長度叫做圓的周長。用字母C表示。
2、圓周率實驗:
在圓形紙片上做個記號,與直尺0刻度對齊,在直尺上滾動一周,求出圓的周長。
發現一般規律,就是圓周長與它直徑的比值是一個固定數(π)。
3.圓周率:任意一個圓的周長與它的直徑的比值是一個固定的數,我們把它叫做圓周率。
用字母π(pai)表示。
(1)、一個圓的周長總是它直徑的3倍多一些,這個比值是一個固定的數。
圓周率π是一個無限不循環小數。在計算時,一般取π≈3.14。
(2)、在判斷時,圓周長與它直徑的比值是π倍,而不是3.14倍。
(3)、世界上第一個把圓周率算出來的人是我國的數學家祖沖之。
4、圓的周長公式:C=πdd=C÷π
或C=2πrr=C÷2π
5、在一個正方形里畫一個最大的圓,圓的直徑等於正方形的邊長。
在一個長方形里畫一個最大的圓,圓的直徑等於長方形的寬。
6、區分周長的一半和半圓的周長:
(1)周長的一半:等於圓的周長÷2計算方法:2πr÷2即πr
(2)半圓的周長:等於圓的周長的一半加直徑。計算方法:πr+2r
三、比和比的應用
(一)、比的意義
1、比的意義:兩個數相除又叫做兩個數的比。
2、在兩個數的比中,比號前面的數叫做比的前項,比號後面的數叫做比的後項。比的前項除以後項所得的商,叫做比值。
例如15:10=15÷10=(比值通常用分數表示,也可以用小數或整數表示)
∶∶∶∶
前項比號後項比值
3、比可以表示兩個相同量的關系,即倍數關系。也可以表示兩個不同量的比,得到一個新量。例:路程÷速度=時間。
4、區分比和比值
比:表示兩個數的關系,可以寫成比的形式,也可以用分數表示。
比值:相當於商,是一個數,可以是整數,分數,也可以是小數。
5、根據分數與除法的關系,兩個數的比也可以寫成分數形式。
6、 比和除法、分數的聯系:
比前項比號「:」後項比值
除法被除數除號「÷」除數商
分數分子分數線「—」分母分數值
7、比和除法、分數的區別:除法是一種運算,分數是一個數,比表示兩個數的關系。
8、根據比與除法、分數的關系,可以理解比的後項不能為0。
體育比賽中出現兩隊的`分是2:0等,這只是一種記分的形式,不表示兩個數相除的關系。
(二)、比的基本性質
1、根據比、除法、分數的關系:
商不變的性質:被除數和除數同時乘或除以相同的數(0除外),商不變。
分數的基本性質:分數的分子和分母同時乘或除以相同的數時(0除外),分數值不變。
比的基本性質:比的前項和後項同時乘或除以相同的數(0除外),比值不變。
2、最簡整數比:比的前項和後項都是整數,並且是互質數,這樣的比就是最簡整數比。
3、根據比的基本性質,可以把比化成最簡單的整數比。
4.化簡比:
①用比的前項和後項同時除以它們的最大公因數。
(1)②兩個分數的比:用前項後項同時乘分母的最小公倍數,再按化簡整數比的方法來化簡。
③兩個小數的比:向右移動小數點的位置,先化成整數比再化簡。
(2)用求比值的方法。注意:最後結果要寫成比的形式。
如:15∶10=15÷10==3∶2
5.按比例分配:把一個數量按照一定的比來進行分配。這種方法通常叫做按比例分配。
如:已知兩個量之比為,則設這兩個量分別為。
6、路程一定,速度比和時間比成反比。(如:路程相同,速度比是4:5,時間比則為5:4)
工作總量一定,工作效率和工作時間成反比。
(如:工作總量相同,工作時間比是3:2,工作效率比則是2:3)
⑦ 人教版六年級上冊數學第三單元整理和復習,怎麼整理
六年級上冊數學知識點第一單元 位置 1、什麼是數對? ——數對:由兩個數組成,中間用逗號隔開,用括弧括起來.括弧裡面的數由左至右為列數和行數,即「先列後行」. 作用:確定一個點的位置.經度和緯度就是這個原理. 例:在方格圖(平面直角坐標系)中用數對(3,5)表示(第三列,第五行). 註:(1)在平面直角坐標系中X軸上的坐標表示列,y軸上的坐標表示行.如:數對(3,2)表示第三列,第二行. (2)數對(X,5)的行號不變,表示一條橫線,(5,Y)的列號不變,表示一條豎線.(有一個數不確定,不能確定一個點)( 列 ,行 ) ↓ ↓ 豎排叫列 橫排叫行(從左往右看)(從下往上看)(從前往後看) 2、圖形左右平移行數不變;圖形上下平移列數不變. 3、兩點間的距離與基準點(0,0)的選擇無關,基準點不同導致數對不同,兩點間但距離不變. 第二單元 分數乘法(一)分數乘法意義: 1、分數乘整數的意義與整數乘法的意義相同,就是求幾個相同加數的和的簡便運算. 註:「分數乘整數」指的是第二個因數必須是整數,不能是分數. 例如:×7表示:求7個 的和是多少?或表示:的7倍是多少? 2、一個數乘分數的意義就是求一個數的幾分之幾是多少. 註:「一個數乘分數」指的是第二個因數必須是分數,不能是整數.(第一個因數是什麼都可以)例如:× 表示:求 的 是多少? 9 × 表示:求9的 是多少? A × 表示:求a的 是多少? (二)分數乘法計演算法則: 1、分數乘整數的運演算法則是:分子與整數相乘,分母不變. 註:(1)為了計算簡便能約分的可先約分再計算.(整數和分母約分)(2)約分是用整數和下面的分母約掉最大公因數.(整數千萬不能與分母相乘,計算結果必須是最簡分數) 2、分數乘分數的運演算法則是:用分子相乘的積做分子,分母相乘的積做分母.(分子乘分子,分母乘分母)註:(1)如果分數乘法算式中含有帶分數,要先把帶分數化成假分數再計算. (2)分數化簡的方法是:分子、分母同時除以它們的最大公因數. (3)在乘的過程中約分,是把分子、分母中,兩個可以約分的數先劃去,再分別在它們的上、下方寫出約分後的數.(約分後分子和分母必須不再含有公因數,這樣計算後的結果才是最簡單分數)(4)分數的基本性質:分子、分母同時乘或者除以一個相同的數(0除外),分數的大小不變. (三)積與因數的關系:一個數(0除外)乘大於1的數,積大於這個數.a×b=c,當b >1時,c>a. 一個數(0除外)乘小於1的數,積小於這個數.a×b=c,當b