1. 小學數學知識點總結(全部)
對於那些成績較差的小學生來說,學習小學數學都有很大的難度,其實小學數學屬於基礎類的知識比較多,只要掌握一定的技巧還是比較容易掌握的.在小學,是一個需要養成良好習慣的時期,注重培養孩子的習慣和學習能力是重要的一方面,那小學數學有哪些技巧?
由此可見小學數學的技巧就是多做練習題,掌握基本知識.另外就是心態,不能見考試就膽怯,調整心態很重要.所以大家可以遵循這些技巧,來提高自己的能力,使自己進入到數學的海洋中去.
2. 小學數學知識整理
小學數學知識整理
一、小學生數學法則知識歸類
(一)筆算兩位數加法,要記三條
1、相同數位對齊;
2、從個位加起;
3、個位滿10向十位進1。
(二)筆算兩位數減法,要記三條
1、相同數位對齊;
2、從個位減起;
3、個位不夠減從十位退1,在個位加10再減。
(三)混合運算計演算法則
1、在沒有括弧的算式里,只有加減法或只有乘除法的,都要從左往右按順序運算;
2、在沒有括弧的算式里,有乘除法和加減法的,要先算乘除再算加減;
3、算式里有括弧的要先算括弧裡面的。
(四)四位數的讀法
1、從高位起按順序讀,千位上是幾讀幾千,百位上是幾讀幾百,依次類推;
2、中間有一個0或兩個0隻讀一個「零」;
3、末位不管有幾個0都不讀。
(五)四位數寫法
1、從高位起,按照順序寫;
2、幾千就在千位上寫幾,幾百就在百位上寫幾,依次類推,中間或末尾哪一位上一個也沒有,就在哪一位上寫「0」。
(六)四位數減法也要注意三條
1、相同數位對齊;
2、從個位減起;
3、哪一位數不夠減,從前位退1,在本位加10再減。
(七)一位數乘多位數乘法法則
1、從個位起,用一位數依次乘多位數中的每一位數;
2、哪一位上乘得的積滿幾十就向前進幾。
(八)除數是一位數的除法法則
1、從被除數高位除起,每次用除數先試除被除數的前一位數,如果它比除數小再試除前兩位數;
2、除數除到哪一位,就把商寫在那一位上面;
3、每求出一位商,餘下的數必須比除數小。
(九)一個因數是兩位數的乘法法則
1、先用兩位數個位上的數去乘另一個因數,得數的末位和兩位數個位對齊;
2、再用兩位數的十位上的數去乘另一個因數,得數的末位和兩位數十位對齊;
3、然後把兩次乘得的數加起來。
(十)除數是兩位數的除法法則
1、從被除數高位起,先用除數試除被除數前兩位,如果它比除數小,
2、除到被除數的哪一位就在哪一位上面寫商;
3、每求出一位商,餘下的數必須比除數小。
(十一)萬級數的讀法法則
1、先讀萬級,再讀個級;
2、萬級的數要按個級的讀法來讀,再在後面加上一個「萬」字;
3、每級末位不管有幾個0都不讀,其它數位有一個0或連續幾個零都只讀一個「零」。
(十二)多位數的讀法法則
1、從高位起,一級一級往下讀;
2、讀億級或萬級時,要按照個級數的讀法來讀,再往後面加上「億」或「萬」字;
3、每級末尾的0都不讀,其它數位有一個0或連續幾個0都只讀一個零。
(十三)小數大小的比較
比較兩個小數的大小,先看它們整數部分,整數部分大的那個數就大,整數部分相同的,十分位上的數大的那個數就大,十分位數也相同的,百分位上的數大的那個數就大,依次類推。
(十四)小數加減法計演算法則
計算小數加減法,先把小數點對齊(也就是把相同的數位上的數對齊),再按照整數加減法則進行計算,最後在得數里對齊橫線上的小數點位置,點上小數點。
(十五)小數乘法的計演算法則
計算小數乘法,先按照乘法的法則算出積,再看因數中一共幾位小數,就從積的右邊起數出幾位,點上小數點。
(十六)除數是整數除法的法則
除數是整數的小數除法,按照整數除法的法則去除,商的小數點要和被除數小數點對齊,如果除到被除數的末尾仍有餘數,就在余數後面添0再繼續除。
(十七)除數是小數的除法運演算法則
除數是小數的除法,先移動除數小數點,使它變成整數;除數的小數點向右移幾位,被除數小數點也向右移幾位(位數不夠在被除數末尾用0補足)然後按照除數是整數的小數除法進行計算。
(十八)解答應用題步驟
1、弄清題意,並找出已知條件和所求問題,分析題里的數量關系,確定先算什麼,再算什麼,最後算什麼;
2、確定每一步該怎樣算,列出算式,算出得數;
3、進行檢驗,寫出答案。
(十九)列方程解應用題的一般步驟
1、弄清題意,找出未知數,並用X表示;
2、找出應用題中數量之間的相等關系,列方程;
3、解方程;
4、檢驗、寫出答案。
(二十)同分母分數加減的法則
同分母分數相加減,分母不變,只把分子相加減。
(二十一)同分母帶分數加減的法則
帶分數相加減,先把整數部分和分數部分分別相加減,再把所得的數合並起來。
(二十二)異分母分數加減的法則
異分母分數相加減,先通分,然後按照同分母分數加減的法則進行計算。
(二十三)分數乘以整數的計演算法則
分數乘以整數,用分數的分子和整數相乘的積作分子,分母不變。
(二十四)分數乘以分數的計演算法則
分數乘以分數,用分子相乘的積作分子,分母相乘的積作分母。
(二十五)一個數除以分數的計演算法則
一個數除以分數,等於這個數乘以除數的倒數。
(二十六)把小數化成百分數和把百分數化成小數的方法
把小數化成百分數,只要把小數點向右移動兩位,同時在後面添上百分號;
把百分數化成小數,把百分號去掉,同時小數點向左移動兩位。
(二十七)把分數化成百分數和把百分數化成分數的方法
把分數化成百分數,通常先把分數化成小數(除不盡通常保留三位小數),再把小數化成百分數;
把百分數化成小數,先把百分數改寫成分母是100的分數,能約分的要約成最簡分數。
二、小學數學口決定義歸類
1、什麼是圖形的周長?
圍成一個圖形所有邊長的總和就是這個圖形的周長。
2、什麼是面積?
物體的表面或圍成的平面圖形的大小叫做他們的面積。
3、加法各部分的關系:
一個加數=和-另一個加數
4、減法各部分的關系:
減數=被減數-差 被減數=減數+差
5、乘法各部分之間的關系:
一個因數=積÷另一個因數
6、除法各部分之間的關系:
除數=被除數÷商 被除數=商×除數
7、角
(1)什麼是角?
從一點引出兩條射線所組成的圖形叫做角。
(2)什麼是角的頂點?
圍成角的端點叫頂點。
(3)什麼是角的邊?
圍成角的射線叫角的邊。
(4)什麼是直角?
度數為90°的角是直角。
(5)什麼是平角?
角的兩條邊成一條直線,這樣的角叫平角。
(6)什麼是銳角?
小於90°的角是銳角。
(7)什麼是鈍角?
大於90°而小於180°的角是鈍角。
(8)什麼是周角?
一條射線繞它的端點旋轉一周所成的角叫周角,一個周角等於360°.
8、(1)什麼是互相垂直?什麼是垂線?什麼是垂足?
兩條直線相交成直角時,這兩條線互相垂直,其中一條直線叫做另一條直線的垂線,這兩條直線的交點叫做垂足。
(2)什麼是點到直線的距離?
從直線外一點向一條直線引垂線,點和垂足之間的距離叫做這點到直線的距離。
9、三角形
(1)什麼是三角形?
有三條線段圍成的圖形叫三角形。
(2)什麼是三角形的邊?
圍成三角形的每條線段叫三角形的邊。
(3)什麼是三角形的頂點?
每兩條線段的交點叫三角形的頂點。
(4)什麼是銳角三角形?
三個角都是銳角的三角形叫銳角三角形。
(5)什麼是直角三角形?
有一個角是直角的三角形叫直角三角形。
(6)什麼是鈍角三角形?
有一個角是鈍角的三角形叫鈍角三角形。
(7)什麼是等腰三角形?
兩條邊相等的三角形叫等腰三角形。
(8)什麼是等腰三角形的腰?
有等腰三角形里,相等的兩個邊叫做等腰三角形的腰。
(9)什麼是等腰三角形的頂點?
兩腰的交點叫做等腰三角形的頂點。
(10)什麼是等腰三角形的底?
在等腰三角形中,與其它兩邊不相等的邊叫做等腰三角形的底。
(11)什麼是等腰三角形的底角?
底邊上兩個相等的角叫等腰三角形的底角。
(12)什麼是等邊三角形?
三條邊都相等的三角形叫等邊三角形,也叫正三角形。
(13)什麼是三角形的高?什麼叫三角形的底?
從三角形的一個頂點向它的對邊引一條垂線,頂點和垂足之間的線段叫做三角形的高,這個頂點的對邊叫三角形的底。
(14)三角形的內角和是多少度?
三角形內角和是180°.
10、四邊形
(1)什麼是四邊形?
有四條線段圍成的圖形叫四邊形。
(2)什麼是平等四邊形?
兩組對邊分別平行的四邊形叫做平行四邊形。
(3)什麼是平行四邊形的高?
從平行四邊形一條邊上的一點到對邊引一條垂線,這個點和垂足之間的線段叫做四邊形的高。
(4)什麼是梯形?
只有一組對邊平行的四邊形叫做梯形。
(5)什麼是梯形的底?
在梯形里互相平等的一組邊叫梯形的底(通常較短的底叫上底,較長的底叫下底)。
(6)什麼是梯形的腰?
在梯形里,不平等的一組對邊叫梯形的腰。
(7)什麼是梯形的高?
從上底的一點往下底引一條垂線,這個點和垂足之間的線段叫做梯形的高。
(8)什麼是等腰梯形?
兩腰相等的梯形叫做等腰梯形。
11、什麼是自然數?
用來表示物體個數的0、1、2、3、4、5、6、7、8、9、10……是自然數(自然數都是整數)。
12、什麼是四捨五入法?
求一個數的近似數時,看被省略的尾數最高位上的數是幾,如果是4或者比4小,就把尾數捨去,如果是5或者比5大,去掉尾數後,要在它的前一位加1。這種求近似數的方法,叫做四捨五入法。
13、加法意義和運算定律
(1)什麼是加法?
把兩個數合並成一個數的運算叫加法。
(2)什麼是加數?
相加的兩個數叫加數。
(3)什麼是和?
加數相加的結果叫和。
(4)什麼是加法交換律?
兩個數相加,交換加數的位置後,它的和不變,這叫做加法交換律。
14、什麼是減法?
已知兩個數的和與其中的一個加數,求另一個加數的運算叫做減法。
15、什麼是被減數?什麼是減數?什麼叫差?
在減法中已知的和叫被減數,減去的已知數叫減數,所求的未知數叫差。
16、加法各部分間的關系:
和=加數+加數 加數=和-另一加數
17、減法各部分間的關系:
差=被減數-減數 減數=被減數-差 被減數=減數+差
18、乘法
(1)什麼是乘法?
求幾個相同加數的和的簡便運算叫乘法。
(2)什麼是因數?
相乘的兩個數叫因數。
(3)什麼是積?
因數相乘所得的數叫積。
(4)什麼是乘法交換律?
兩個因數相乘,交換因數的位置,它們的積不變,這叫乘法交換律。
(5)什麼是乘法結合律?
三個數相乘,先把前兩個數相乘,再同第三個數相乘,或者先把後兩個數相乘,再同第一個數相乘,它們的積不變,這叫乘法結合律。
19、除法
(1)什麼是除法?
已知兩個因數的積與其中的一個因數,求另一個因數的運算叫除法。
(2)什麼是被除數?
在除法中,已知的積叫被除數。
(3)什麼是除數?
在除法中,已知的一個因數叫除數。
(4)什麼是商?
在除法中,求出的未知因數叫商。
20、乘法各部分的關系:
積=因數×因數 一個因數=積÷另一個因數
21、(1)除法各部分間的關系:
商=被除數÷除數 除數=被除數÷商
(2)有餘數的除法各部分間的關系:
被除數=商×除數+余數
22、什麼是名數?
通常量得的數和單位名稱合起來的數叫名數。
23、什麼是單名數?
只帶有一個單位名稱的數叫單名數。
24、什麼是復名數?
有兩個或兩個以上單位名稱的數叫復名數。
25、什麼是小數?
仿照整數的寫法,寫在整數個位的右面,用圓點隔開,用來表示十分之幾、百分之幾、千分之幾……的數叫小數。
26、什麼是小數的基本性質?
小數的末尾添上零或者去掉零,小數大小不變,這叫小數的基本性質。
27、什麼是有限小數?
小數部分的位數是有限的小數叫有限小數。
28、什麼是無限小數?
小數部分的位數是無限的小數叫無限小數。
29、什麼是循環節?
一個循環小數的部分依次不斷重復出現的數叫做這個數的循環節。
30、什麼是純循環小數?
循環節從小數第一位開始的叫純循環小數。
31、什麼是混循環小數?
循環節不是從小數部分第一位開始的叫做混循環小數。
32、什麼是四則運算?
我們把學過的加、減、乘、除四種運算統稱四則運算。
33、什麼是方程?
含有未知數的等式叫方程。
34、什麼是解方程?
求方程解的過程叫解方程。
35、什麼是倍數?什麼叫約數?
如果a能被b整除,a就是b的倍數,b就叫a的約數(或a的因數)。
36、什麼樣的數能被2整除?
個位上是0、2、4、6、8的數都能被2整除。
37、什麼是偶數?
能被2整除的數叫偶數。
38、什麼是奇數?
不能被2整除的數叫奇數。
39、什麼樣的數能被5整除?
個位上是0或5的數能被5整除。
40、什麼樣的數能被3整除?
一個數的各位上的和能被3整除,這個數就能被3整除。
41、什麼是質數(或素數)?
一個數如果只有1和它本身兩個約數,這樣的數叫質數。
42、什麼是合數?
一個數除了1和它本身還有別的約數,這樣的數叫合數。
43、什麼是質因數?
每個合數都可以寫成幾個質數相乘的形式。其中每個質數都是這個合數的因數,叫做這個合數的質因數。
44、什麼是分解質因數?
把一個合數用質因數相乘的形式表示出來叫做分解質因數。
45、什麼是公約數?什麼叫最大公約數?
幾個數公有的約數叫公約數。其中最大的一個叫最大公約數。
46、什麼是互質數?
公約數只有1的兩個數叫互質數。
47、什麼是公倍數?什麼是最小公倍數?
幾個數公有的倍數叫這幾個數的公倍數。其中最小的一個叫這幾個數的最小公倍數。
48、分數
(1)什麼是分數?
把單位1平均分成若干份,表示這樣的一份或者幾份的數叫分數。
(2)什麼是分數線?
在分數里中間的橫線叫分數線。
(3)什麼是分母?
分數線下面的部分叫分母。
(4)什麼是分子?
分數線上面的部分叫分子。
(5)什麼是分數單位?
把單位「1」平均分成若干份,表示其中的一份叫分數單位。
49、怎麼比較分數大小?
(1)分母相同的兩個分數,分子大的分數比較大。
(2)分子相同的兩個分數,分母小的分子比較大。
(3)什麼是真分數?
分子比分母小的分數叫真分數。
(4)什麼是假分數?
分子比分母大或者分子和分母相等的分數叫假分數。
(5)什麼是帶分數?
由整分數和真分數合成的數通常叫帶分數。
(6)什麼是分數的基本性質?
分數的分子和分母同時乘或除以相同的數(0除外),分數大小不變,這就是分數的基本性質。
(7)什麼是約分?
把一個分數化成同它相等,但分子、分母都比較小的數叫做約分。
(8)什麼是最簡分數?
分子、分母是互質數的分數叫最簡分數。
50、比
(1)什麼是比?
兩個數相除又叫兩個數的比。
(2)什麼是比的前項?
比號前面的數叫比的前項。
(3)什麼是比的後項?
比號後面的數叫比的後項。
(4)什麼是比值?
比的前項除以後項所得的商叫比值。
(5)什麼是比的基本性質?
比的前項和後項同時乘以或者同時除以相同的數(0除外)比值不變,這叫比的基本性質。
51、長方體和正方體
(1)什麼是棱?
兩個面相交的邊叫棱。
(2)什麼是頂點?
三條棱相交的點叫頂點。
(3)什麼是長方體的長、寬、高?
相交於一個頂點的三條棱的長度分別叫長方體的長、寬、高。
(4)什麼是正方體(立方體)?
長寬高都相等的長方體叫正方體(或立方體)。
(5)什麼是長方體的表面積?
長方體六個面的總面積叫長方體的表面積。
(6)什麼是物體體積?
物體所佔空間的大小叫做物體的體積。
52、圓
(1)什麼是圓心?
圓中心的點叫圓心。
(2)什麼是半徑?
連接圓心和圓上任意一點的線段叫半徑。
(3)什麼是直徑?
通過圓心、並且兩端都在圓上的線段叫直徑。
(4)什麼是圓的周長?
圍成圓的曲線叫圓的周長。
(5)什麼是圓周率?
我們把圓的周長和直徑的比值叫圓周率。
(6)什麼是圓的面積?
圓所圍平面的大小叫圓的面積。
(7)什麼是扇形?
一條弧和經過這條弧兩端的兩條半徑所圍成的圖形叫扇形。
(8)什麼是弧?
在圓上兩點之間的部分叫弧。
(9)什麼是圓心角?
頂點在圓心上的角叫圓心角。
(10)什麼是對稱圖形?
如果一個圖形沿著一條直線對折,兩側圖形能夠完全重合,這樣的圖形就是對稱圖形。
53、什麼是百分數?
表示一個數是另一個數百分之幾的數叫百分數,百分數也叫百分率或百分比。
54、比例
(1)什麼是比例?
表示兩個比相等的式子叫比例。
(2)什麼是比例的項?
組成比例的四個數叫比例的項。
(3)什麼是比例外項?
兩端的兩項叫比例外項。
(4)什麼是比例內項?
中間的兩項叫比例內項。
(5)什麼是比例的基本性質?
在比例中兩個外項的積等於兩個內項的積。
(6)什麼是解比例?
求比例中的未知項叫解比例。
(7)什麼是正比例關系?
兩種相關的量,一種變化,另一種量也變化,如果這兩種量中相對應的兩個數的比值(也就是商)一定,這兩種量叫正比例的量,它們的關系叫正比例關系。
(8)什麼是反比例關系?
兩種相關的量,一種變化,另一種也隨著變化,如果這兩種量中相對應的積一定,這兩種量叫反比例的量,它們的關系成反比例關系。
55、圓柱
(1)什麼是圓柱底面?
圓柱的上下兩個面叫圓柱的底面。
(2)什麼是圓柱的側面?
圓柱的曲面叫圓柱的側面。
(3)什麼是圓柱的高?
圓柱兩個底面的距離叫圓柱的高。
三、小學數學量的計算單位及進率歸類
1、長度計量單位及進率:千米(公里)、米、分米、厘米、毫米
1千米=1公里 1千米=1000米
1米=10分米 1分米=10厘米 1厘米=10毫米
2、面積計量單位及進率:平方千米、公頃、平方米、平方分米、平方厘米
1平方千米=100公頃 1平方千米=1000000平方米
1公頃=10000平方米 1平方米=100平方分米 1平方分米=100平方厘米
3、體積容積計量單位及進率:立方米、立方分米、立方厘米、升、毫升
1立方米=1000立方分米 1立方分米=1000立方厘米
1立方分米=1升 1立方厘米=1毫升
4、質量單位及進率:噸、千克、公斤、克
1噸=1000千克 1千克=1公斤 1千克=1000克
5、時間單位及進率:世紀、年、月、日、小時、分、秒
1世紀=100年 1年=12月 1天=24小時 1小時=60分 1分=60秒
(31天的月份有1、3、5、7、8、10、12月份,
30天的月份有4、6、9、11月份,
平年2月28天,閏年2月29天)
四、常用計算公式表
1、長方形面積=長×寬,計算公式S=ab
2、正方形面積=邊長×邊長,計算公式S=a×a=a2
3、長方形周長=(長+寬)×2,計算公式C=(a+b)×2
4、正方形周長=邊長×4,計算公式C=4a
5、平行四邊形面積=底×高,計算公式S=ah
6、三角形面積=底×高÷2,計算公式S=a×h÷2
7、梯形面積=(上底+下底)×高÷2,計算公式S=(a+b)×h÷2
8、長方體體積=長×寬×高,計算公式V=abh
9、圓的面積=圓周率×半徑平方,計算公式V=πr2
10、正方體體積=棱長×棱長×棱長,計算公式V=a3
11、長方體和正方體的體積都可以寫成底面積×高,計算公式V=sh
12、圓柱的體積=底面積×高,計算公式V=sh
3. 小學數學知識點整理,1~6年級匯總,收藏起來隨時用!(上)
小學是打好數學基礎的階段,小學時期的數學也比較簡單,學生相對容易學習。知識卻是基礎中的基礎,只有深刻理解才能運用到試題中並且舉一反三,但也很容易忘,這次為大家整理了1~6年級小學數學知識點,可以給孩子收藏起來隨時查閱。
正整數:
用來表示物體個數的 1、2、3、4、5……叫做正整數。相鄰的兩個正數整數之間相差 1。
0: 0 是一個數,是一個自然數,也是一個整數,但不是正整數或負整數。
0 既可以表示「沒有」,也可以作為某些數量的界限,如 0℃等。
0 是一個偶數。0 不能作除數,不能作分母,也不能作比的後項。
負整數: 像-l、-2、-3、-4、-5……這樣的數就叫做負整數。相鄰的兩個負整數之間也是相差 1。
整數: 像…,-3,-2,-1,0,1,2,3,…這樣的數統稱整數。
整數包括負整數、0 和正整數。
整數的個數是無限的。自然數是整數的一部分。
自然數: 用來表示物體個數的 0、l、2、3、4、5、6、7……叫做自然數。自然數包括 0 和正整數。
正數: 正數包括正整數、正分數、正小數、正百分數等。
負數: 負數包括負整數、負分數、負小數、負百分數等。負數可以表示相反意義的量。
數對: 用數對表示位置時,第一個數表示列,第二個數表示行。
數的讀法和寫法:
讀、寫者都要從高位到低位,每一級末尾的 0 都不讀出來,其他數位連續有幾個 0 都只讀一個0。不管讀和寫都要進行分級。如 534007000602 讀作:五千三百四十億零七百萬零六百零二。
分數: 表示把「單位 1」平均分成若干份,表示這樣的一份或幾份的數,叫做分數。表示其中一份的數叫做分數單位。例如: 7/12 的分數單位是 1/12 ,它有7個這樣的分數單位。
真分數: 分子比分母小的分數叫真分數。真分數小於 1。
假分數: 分子大於或等於分母的分數叫做假分數。假分數大於或等於 1。
帶分數: 一個整數(零除外)和一個真分數組合在一起的數,叫做帶分數。帶分數也是假分數的另一種表示形式,相互之間可以互化。
分數的基本性質:
一個分數的分子、分母同時乘上或除以相同的數(零除外),分數的大小不變,這叫做分數的基本性質。
小數: 小數是分數的一種特殊形式。但是不能說小數就是分數。
循環小數: 一個小數,從小數部分的某一位起,一個數字或幾個數字依次不斷地重復出現,這樣的小數叫做循環小數。
純循環小數: 循環節從小數部分第一位開始的循環小數,叫做純循環小數。
混循環小數: 循環節不是從小數部分的第一位開始循環的循環小數,叫混循環小數。
有限小數: 小數的小數部分的位數是有限的,這樣的小數叫做有限小數。
無限小數: 小數的小數部分的位數是無限的,這樣的小數叫做無限小數。循環小數都是無限小數。
減法: 被減數-減數=差。減法是加法的逆運算。
乘法: 求幾個相同加數的和的簡便運算,叫做乘法。因數×因數=積
除法: 被除數÷除數=商。除法是乘法的逆運算。
加、減法的運算定律:
加法交換律:a+b=b+a
加法結合律:a+b+c=a+(b+c)
減法的運算定律:a-b -c=a-(b+c)
乘、除法運算定律:
乘法的交換律:ab=ba
乘法的結合律:abc=a(bc)
乘法分配律:(a+b)c=ac+bc 或(a—b)c=ac—bc
除法的運算定律:a÷b÷c=a÷(b×c)
商不變的性質: 兩個數相除,被除數和除數同時乘上或除以相同的數(0 除外),商的大小不變(余數的大小有變化)。
積不變性質: 一個因數擴大若干倍,另一個因數縮小相同的倍數,其積不變。
乘法的意義:
1、求幾個相同加數的和是多少?例如:27×13,表示求 13 個 27 的和是多少?也可以表示求 27 的 13 倍是多少?
2、求一個數的幾分之幾是多少?例如:27×0.3 的意義:求 27 的十分之三是多少?
除法的意義:
1、把一個數平均分成若干份,每份是多少?例如:24÷3,表示把 24 平均分成 3 份,每份是多少?
2、一個數是另一個數的多少倍。例如:24÷3,表示 24 是 3 的多少倍?
3、一個數里有幾個除數。例如 24÷3 表示 24 裡麵包含有幾個 3。
4、已知一個數的幾分之幾是多少,求這個數。例如:24÷3 已知一個數的 3 倍是 24,
整除與除盡:
整除:被除數、除數、商都是整數(除數不為 0)。
除盡:整除都可以說是除盡,但除盡不一定是整除。例如:l÷5=0.2,叫除盡,不叫整除,因為商是小數。又如:10÷3=3.33…,既不叫整除,也不叫除盡,叫除不盡。
因數和倍數:
當甲數能被乙數整除時,就說甲數是乙數的倍數,乙數是甲數的因數。如 12÷3=4,就說 12 是 3 的倍數,3 是 12 的因數。這兩個概念都是相對而存在,一個自然數是不存在是否是倍數或因數的。例如:「3 是因數」,就是一個錯誤說法。只能說 3 是 12 的因數,或 12的因數有3。又例如:「12 是倍數」,也是一個錯誤說法。只能說 12 是 3 的倍數,或 3 的倍數有 12。
奇數與偶數: 凡是能被 2 整除的數叫偶數,不能被 2 整除的數叫奇數。
質數(素數)與合數: 一個數的因數只有 1 和它本身兩個因數的數叫做質數,也叫素數,如2。一個數的因數除了 1 和它的本身以外,還有其他的因數,這個數就叫合數,如 4。
100 以內的質數 :2 3 5 7 l1 13 17 19 23 29 3l 37 4l 43 47 53 5961 67 71 73 79 83 89 97
1 既不是質數,也不是合數。最小的質數是 2,最小的合數是 4。
公因數:
幾個數公有的因數,叫做公因數。它的個數是有限的。既有最大的。也有最小的,最小的公因數是 1。
互質數:
兩個數的公因數只有 1,而沒有其他公因數的,這兩個數就叫互質數。例如 8 和 9,11 和13,6 和 7。
任意兩個質數都是互質數。但互質的兩個數不一定都是質數。如 8 和 9 互質,但它們都是合數。
私信獲取小學數學知識點完整版。 關注 並分享 ,更多的學習干貨與教育知識,盡在玩學世界!
4. 有關數學的小知識數學
1.數學趣味小知識 簡短的 20到50字左右
趣味數學小知識
數論部分:
1、沒有最大的質數。歐幾里得給出了優美而簡單的證明。
2、哥德巴赫猜想:任何一個偶數都能表示成兩個質數之和。陳景潤的成果為:任何一個偶數都能表示成一個質數和不多於兩個質數的乘積之和。
3、費馬大定理:x的n次方+y的n次方=z的n次方,n>2時沒有整數解。歐拉證明了3和4,1995年被英國數學家 安德魯*懷爾斯 證明。
拓撲學部分:
1、多面體點面棱的關系:定點數+面數=棱數+2,笛卡爾提出,歐拉證明,也稱歐拉定理。
2、歐拉定理推論:可能只有5種正多面體,正四面體,正八面體,正六面體,正二十面體,正十二面體。
3、把空間翻過來,左手系的物體就能變成右手系的,通過克萊因瓶模擬,一節很好的頭腦體操,
摘自:/bbs2/ThreadDetailx?id=31900
2.數學小知識
這是一個有趣的數學常識,做數學報用上它也很不錯。
人們把12345679叫做「缺8數」,這「缺8數」有許多讓人驚訝的特點,比如用9的倍數與它相乘,乘積竟會是由同一個數組成,人們把這叫做「清一色」。比如: 12345679*9=111111111 12345679*18=222222222 12345679*27=333333333 …… 12345679*81=999999999 這些都是9的1倍至9的9倍的。
還有99、108、117至171。最後,得出的答案是: 12345679*99=1222222221 12345679*108=1333333332 12345679*117=1444444443 … … 12345679*171=2111111109 也是「清一色數學小常識(轉載) [ 2007-11-28 12:58:00 | By: gnwz ] 數學小常識1.悖論: (1)羅素悖論 一天,薩維爾村理發師掛出了一塊招牌:村裡所有不自己理發的男人都由我給他們理發。
於是有人問他:「您的頭發誰給理呢?」理發師頓時啞口無言。 1874年,德國數學家康托爾創立了 *** 論,很快滲透到大部分數學分支,成為它們的基礎。
到十九世紀末,全部數學幾乎都建立在 *** 論的基礎上了。就在這時, *** 論接連出現了一系列自相矛盾的結果。
特別是1902年羅素提出理發師故事反映的悖論,它極為簡單、明確、通俗。於是,數學的基礎被動搖了,這就是所謂的第三次「數學危機」。
此後,為了克服這些悖論,數學家們做了大量研究工作,由此產生了大批新成果,也帶來了數學觀念的革命。 (2)說謊者悖論: 「我正在說的這句話是慌話。」
公元前四世紀的希臘數學家歐幾里德提出的這個悖論,至今還在困擾著數學家和邏輯學家。這就是著名的說慌者悖論。
類似的悖論最早是在公元前六世紀出現的,當時克里特島哲學家愛皮梅尼特曾說過:「所有的克里特島人都說慌。」在中國古代《墨經》中,也有一句十分相似的話:「以言為盡悖,悖,說在其言。」
意思是:以為所有的話都是錯的,這是錯的,因為這本身就是一句話。 說慌者悖論有多種變化形式,例如,在同一張紙上寫出下列兩句話: 下一句話是慌話。
上一句話是真話。 更有趣的是下面的對話。
甲對乙說:「你下面要講的是『不』,對不對?請用『是』或『不』來回答!」 還有一個例子。有個虔誠的教徒,他在演說中口口聲聲說上帝是無所不能的,什麼事都做得到。
一位過路人問了一句話:「上帝能創造一塊他自己也舉不起來的石頭嗎?」 2. *** 數字 在生活中,我們經常會用到0、1、2、3、4、5、6、7、8、9這些數字。那麼你知道這些數字是誰發明的嗎? 這些數字元號原來是古代印度人發明的,後來傳到 *** ,又從 *** 傳到歐洲,歐洲人誤以為是 *** 人發明的,就把它們叫做「 *** 數字」,因為流傳了許多年,人們叫得順口,所以至今人們仍然將錯就錯,把這些古代印度人發明的數字元號叫做 *** 數字。
現在, *** 數字已成了全世界通用的數字元號。
3.小學數學知識集錦
小學數學復習考試知識點匯總一、小學生數學法則知識歸類(一)筆算兩位數加法,要記三條1、相同數位對齊;2、從個位加起;3、個位滿10向十位進1。
(二)筆算兩位數減法,要記三條1、相同數位對齊;2、從個位減起;3、個位不夠減從十位退1,在個位加10再減。(三)混合運算計演算法則1、在沒有括弧的算式里,只有加減法或只有乘除法的,都要從左往右按順序運算;2、在沒有括弧的算式里,有乘除法和加減法的,要先算乘除再算加減;3、算式里有括弧的要先算括弧裡面的。
(四)四位數的讀法1、從高位起按順序讀,千位上是幾讀幾千,百位上是幾讀幾百,依次類推;2、中間有一個0或兩個0隻讀一個「零」;3、末位不管有幾個0都不讀。(五)四位數寫法1、從高位起,按照順序寫;2、幾千就在千位上寫幾,幾百就在百位上寫幾,依次類推,中間或末尾哪一位上一個也沒有,就在哪一位上寫「0」。
(六)四位數減法也要注意三條1、相同數位對齊;2、從個位減起;3、哪一位數不夠減,從前位退1,在本位加10再減。(七)一位數乘多位數乘法法則1、從個位起,用一位數依次乘多位數中的每一位數;2、哪一位上乘得的積滿幾十就向前進幾。
(八)除數是一位數的除法法則1、從被除數高位除起,每次用除數先試除被除數的前一位數,如果它比除數小再試除前兩位數;2、除數除到哪一位,就把商寫在那一位上面;3、每求出一位商,餘下的數必須比除數小。(九)一個因數是兩位數的乘法法則1、先用兩位數個位上的數去乘另一個因數,得數的末位和兩位數個位對齊;2、再用兩位數的十位上的數去乘另一個因數,得數的末位和兩位數十位對齊;3、然後把兩次乘得的數加起來。
(十)除數是兩位數的除法法則1、從被除數高位起,先用除數試除被除數前兩位,如果它比除數小,2、除到被除數的哪一位就在哪一位上面寫商;3、每求出一位商,餘下的數必須比除數小。(十一)萬級數的讀法法則1、先讀萬級,再讀個級;2、萬級的數要按個級的讀法來讀,再在後面加上一個「萬」字;3、每級末位不管有幾個0都不讀,其它數位有一個0或連續幾個零都只讀一個「零」。
(十二)多位數的讀法法則1、從高位起,一級一級往下讀;2、讀億級或萬級時,要按照個級數的讀法來讀,再往後面加上「億」或「萬」字;3、每級末尾的0都不讀,其它數位有一個0或連續幾個0都只讀一個零。(十三)小數大小的比較比較兩個小數的大小,先看它們整數部分,整數部分大的那個數就大,整數部分相同的,十分位上的數大的那個數就大,十分位數也相同的,百分位上的數大的那個數就大,依次類推。
(十四)小數加減法計演算法則計算小數加減法,先把小數點對齊(也就是把相同的數位上的數對齊),再按照整數加減法則進行計算,最後在得數里對齊橫線上的小數點位置,點上小數點。(十五)小數乘法的計演算法則計算小數乘法,先按照乘法的法則算出積,再看因數中一共幾位小數,就從積的右邊起數出幾位,點上小數點。
(十六)除數是整數除法的法則除數是整數的小數除法,按照整數除法的法則去除,商的小數點要和被除數小數點對齊,如果除到被除數的末尾仍有餘數,就在余數後面添0再繼續除。(十七)除數是小數的除法運演算法則除數是小數的除法,先移動除數小數點,使它變成整數;除數的小數點向右移幾位,被除數小數點也向右移幾位(位數不夠在被除數末尾用0補足)然後按照除數是整數的小數除法進行計算。
(十八)解答應用題步驟1、弄清題意,並找出已知條件和所求問題,分析題里的數量關系,確定先算什麼,再算什麼,最後算什麼; 2、確定每一步該怎樣算,列出算式,算出得數;3、進行檢驗,寫出答案。(十九)列方程解應用題的一般步驟1、弄清題意,找出未知數,並用X表示;2、找出應用題中數量之間的相等關系,列方程;3、解方程;4、檢驗、寫出答案。
(二十)同分母分數加減的法則同分母分數相加減,分母不變,只把分子相加減。(二十一)同分母帶分數加減的法則帶分數相加減,先把整數部分和分數部分分別相加減,再把所得的數合並起來。
(二十二)異分母分數加減的法則異分母分數相加減,先通分,然後按照同分母分數加減的法則進行計算。(二十三)分數乘以整數的計演算法則分數乘以整數,用分數的分子和整數相乘的積作分子,分母不變。
(二十四)分數乘以分數的計演算法則分數乘以分數,用分子相乘的積作分子,分母相乘的積作分母。(二十五)一個數除以分數的計演算法則一個數除以分數,等於這個數乘以除數的倒數。
(二十六)把小數化成百分數和把百分數化成小數的方法把小數化成百分數,只要把小數點向右移動兩位,同時在後面添上百分號;把百分數化成小數,把百分號去掉,同時小數點向左移動兩位。(二十七)把分數化成百分數和把百分數化成分數的方法把分數化成百分數,通常先把分數化成小數(除不盡通常保留三位小數),再把小數化成百分數;把百分數化成小數,先把百分數改寫成分母是100的分數,能約分的要約成最簡分數。
二、小學數學口決定義歸類1、什麼是圖形的周長?圍成一個圖形所。
4.小學數學的所有知識點 要詳細
常用的數量關系式1、每份數*份數=總數 總數÷每份數=份數 總數÷份數=每份數 2、1倍數*倍數=幾倍數 幾倍數÷1倍數=倍數 幾倍數÷倍數=1倍數 3、速度*時間=路程 路程÷速度=時間 路程÷時間=速度 4、單價*數量=總價 總價÷單價=數量 總價÷數量=單價 5、工作效率*工作時間=工作總量 工作總量÷工作效率=工作時間 工作總量÷工作時間=工作效率 6、加數+加數=和 和-一個加數=另一個加數7、被減數-減數=差 被減數-差=減數 差+減數=被減數 8、因數*因數=積 積÷一個因數=另一個因數 9、被除數÷除數=商 被除數÷商=除數 商*除數=被除數 小學數學圖形計算公式 1、正方形 (C:周長 S:面積 a:邊長 ) 周長=邊長*4 C=4a 面積=邊長*邊長 S=a*a 2、正方體 (V:體積 a:棱長 ) 表面積=棱長*棱長*6 S表=a*a*6 體積=棱長*棱長*棱長 V=a*a*a 3、長方形( C:周長 S:面積 a:邊長 ) 周長=(長+寬)*2 C=2(a+b) 面積=長*寬 S=ab 4、長方體 (V:體積 s:面積 a:長 b: 寬 h:高)(1)表面積(長*寬+長*高+寬*高)*2 S=2(ab+ah+bh) (2)體積=長*寬*高 V=abh 5、三角形 (s:面積 a:底 h:高) 面積=底*高÷2 s=ah÷2 三角形高=面積 *2÷底 三角形底=面積 *2÷高 6、平行四邊形 (s:面積 a:底 h:高) 面積=底*高 s=ah 7、梯形 (s:面積 a:上底 b:下底 h:高) 面積=(上底+下底)*高÷2 s=(a+b)* h÷28、圓形 (S:面積 C:周長 л d=直徑 r=半徑) (1)周長=直徑*л=2*л*半徑 C=лd=2лr (2)面積=半徑*半徑*л9、圓柱體 (v:體積 h:高 s:底面積 r:底面半徑 c:底面周長) (1)側面積=底面周長*高=ch(2лr或лd) (2)表面積=側面積+底面積*2 (3)體積=底面積*高 (4)體積=側面積÷2*半徑10、圓錐體 (v:體積 h:高 s:底面積 r:底面半徑) 體積=底面積*高÷3 11、總數÷總份數=平均數 12、和差問題的公式:(和+差)÷2=大數 (和-差)÷2=小數 13、和倍問題: 和÷(倍數-1)=小數 小數*倍數=大數 (或者 和-小數=大數)14、差倍問題: 差÷(倍數-1)=小數 小數*倍數=大數 (或 小數+差=大數) 15、相遇問題 相遇路程=速度和*相遇時間; 相遇時間=相遇路程÷速度和; 速度和=相遇路程÷相遇時間 16、濃度問題 溶質的重量+溶劑的重量=溶液的重量 溶質的重量÷溶液的重量*100%=濃度 溶液的重量*濃度=溶質的重量 溶質的重量÷濃度=溶液的重量17、利潤與折扣問題 利潤=售出價-成本; 利潤率=利潤÷成本*100%=(售出價÷成本-1)*100% 漲跌金額=本金*漲跌百分比; 利息=本金*利率*時間; 稅後利息=本金*利率*時間*(1-20%) 常用單位換算 長度單位換算 1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米 面積單位換算:1平方千米=100公頃 1公頃=10000平方米 1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米 體(容)積單位換算:1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升 1立方厘米=1毫升 1立方米=1000升 重量單位換算: 1噸=1000 千克 1千克=1000克 1千克=1公斤 人民幣單位換算: 1元=10角 1角=10分 1元=100分 時間單位換算:1世紀=100年 1年=12月 大月(31天)有:1\3\5\7\8\10\12月 小月(30天)的有:4\6\9\11月 平年2月28天, 閏年2月29天 平年全年365天, 閏年全年366天 1日=24小時 1時=60分 1分=60秒 1時=3600秒 基本概念 第一章 數和數的運算 一 概念 (一)整數 1 整數的意義: 自然數和0都是整數。
2 自然數:我們在數物體的時候,用來表示物體個數的1,2,3……叫做自然數。 一個物體也沒有,用0表示。
0也是自然數。 3計數單位 一(個)、十、百、千、萬、十萬、百萬、千萬、億……都是計數單位。
每相鄰兩個計數單位之間的進率都是10。這樣的計數法叫做十進制計數法。
4 數位: 計數單位按照一定的順序排列起來,它們所佔的位置叫做數位。 5數的整除 整數a除以整數b(b ≠ 0),除得的商是整數而沒有餘數,我們就說a能被b整除,或者說b能整除a 。
如果數a能被數b(b ≠ 0)整除,a就叫做b的倍數,b就叫做a的約數(或a的因數)。倍數和約數是相互依存的。
因為35能被7整除,所以35是7的倍數,7是35的約數。 一個數的約數的個數是有限的,其中最小的約數是1,最大的 約數是它本身。
例如:10的約數有1、2、5、10,其中最小的約數是1,最大的約數是10。 一個數的倍數的個數是無限的,其中最小的倍數是它本身。
3的倍數有:3、6、9、12……其中最小的倍數是3 ,沒有最大的倍數。 個位上是0、2、4、6、8的數,都能被2整除,例如:202、480、304,都能被2整除。
個位上是0或5的數,都能被5整除,例如:5、30、405都能被5整除。
一個數的各位上的數的和能被3整除,這個數就能被3整除,例如:12、108、204都能被3整除。
一個數各位數上的和能被9整除,這個數就能被9整除。 能被3整除的數不一定能被9整除,但是能被9整除的數一定能被3整除。
一個數的末兩位數能被4(或25)整除,這個數就能被4(或25)整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。
一個數的末三位數能被8(或125)整除,這個數就能被8(或125)整。
5.小學的數學知識點總結歸納
1、數與代數:數的認識、數的運算、式與方程、比和比例。
2、空間與圖形:線與角、平面圖形、立體圖形、圖形與變換、圖形與位置。3、統計與可能性:量的計量、統計、可能性。
4、實踐與綜合應用:探索規律、一般復合應用問題、典型應用問題、分數和百分數應用問題、比和比例問題、解決問題的策略、綜合應用問題。(4)小數學基礎知識整理擴展閱讀:整數1、整數的意義:…像-4,-3,-2,-1,0,1,2,3,…這樣的數叫整數。
2、自然數:我們在數物體的時候,用來表示物體個數的1,2,3,4……叫做自然數。一個物體也沒有,用0表示,0也是自然數。
3、計數單位 一(個)、十、百、千、萬、十萬、百萬、千萬、億……都是計數單位。每相鄰兩個計數單位之間的進率都是10。
這樣的計數法叫做十進制計數法。4、數位 計數單位按照一定的順序排列起來,它們所佔的位置叫做數位。
5、數的整除:整數a除以整數b(b≠0),除得的商是整數而沒有餘數,我們就說a能被b整除,或者說b能整除a。如果數a能被數b(b≠0)整除,a就叫做b的倍數,b就叫做a的約數(或a的因數)。
倍數和約數是相互依存的。因為35能被7整除,所以35是7的倍數,7是35的約數。
7、什麼叫比:兩個數相除就叫做兩個數的比。如:2÷5或3:6或1/3 比的前項和後項同時乘以或除以一個相同的數(0除外),比值不變。
8、什麼叫比例:表示兩個比相等的式子叫做比例。如3:6=9:189、比例的基本性質:在比例里,兩外項之積等於兩內項之積。
10、解比例:求比例中的未知項,叫做解比例。如3:χ=9:18 解比例的依據是比例的基本性質。
11、正比例:兩種相關聯的量,一種量變化,另一種量也隨著化,如果這兩種量中相對應的的比值(也就是商k)一定,這兩種量就叫做成正比例的量,它們的關系就叫做正比例關系。如:y/x=k(k一定)或kx=y12、反比例:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,它們的關系就叫做反比例關系。
如:x*y=k(k一定)或k/x=y 百分數:表示一個數是另一個數的百分之幾的數,叫做百分數。百分數也叫做百分率或百分比。
13、把小數化成百分數,只要把小數點向右移動兩位,同時在後面添上百分號。其實,把小數化成百分數,只要把這個小數乘以100%就行了。
把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。14、把分數化成百分數,通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。
其實,把分數化成百分數,要先把分數化成小數後,再乘以100%就行了。把百分數化成分數,先把百分數改寫成分數,能約分的要約成最簡分數。
15、要學會把小數化成分數和把分數化成小數的化法。16、最大公因數:幾個數都能被同一個數一次性整除,這個數就叫做這幾個數的最大公約數。
(或幾個數公有的約數,叫做這幾個數的公約數。其中最大的一個,叫做最大公約數。)
17、互質數:公因數只有1的兩個數,叫做互質數。18、最小公倍數:幾個數公有的倍數,叫做這幾個數的公倍數,其中最小的一個叫做這幾個數的最小公倍數。
19、通分:把異分母分數的分別化成和原來分數相等的同分母的分數,叫做通分。(通分用最小公倍數)20、約分:把一個分數化成同它相等,但分子、分母都比較小的分數,叫做約分。
(約分用最大公因數)21、最簡分數:分子、分母是互質數的分數,叫做最簡分數。分數計算到最後,得數必須化成最簡分數。
個位上是0、2、4、6、8的數,都能被2整,即能用2進行 約分。個位上是0或者5的數,都能被5整除,即能用5進行約分。
在約分時應注意利用。22、偶數和奇數:能被2整除的數叫做偶數。
不能被2整除的數叫做奇數。23、質數(素數):一個數,如果只有1和它本身兩個約數,這樣的數叫做質數(或素數)。
24、合數:一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數。1不是質數,也不是合數。
28、利息=本金*利率*時間(時間一般以年或月為單位,應與利率的單位相對應)29、利率:利息與本金的比值叫做利率。一年的利息與本金的比值叫做年利率。
一月的利息與本金的比值叫做月利率。30、自然數:用來表示物體個數的整數,叫做自然數。
0也是自然數。31、循環小數:一個小數,從小數部分的某一位起,一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做循環小數。
5. 六年級數學基礎知識點總結
學習從來無捷徑,循序漸進登高峰。如果說學習一定有捷徑,那隻能是勤奮,因為努力永遠不會騙人。學習需要勤奮,做任何事情都需要勤奮。下面是我給大家整理的一些 六年級數學 的知識點,希望對大家有所幫助。
小學六年級數學總復習知識點:數的互化
1. 小數化成分數:原來有幾位小數,就在1的後面寫幾個零作分母,把原來的小數去掉小數點作分子,能約分的要約分。
2. 分數化成小數:用分母去除分子。能除盡的就化成有限小數,有的不能除盡,不能化成有限小數的,一般保留三位小數。
3. 一個最簡分數,如果分母中除了2和5以外,不含有其他的質因數,這個分數就能化成有限小數;如果分母中含有2和5 以外的質因數,這個分數就不能化成有限小數。
4. 小數化成百分數:只要把小數點向右移動兩位,同時在後面添上百分號。
5. 百分數化成小數:把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。
6. 分數化成百分數:通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。
7. 百分數化成小數:先把百分數改寫成分數,能約分的要約成最簡分數。
六年級數學知識點:圖形計算公式
1、正方形 (C:周長 S:面積 a:邊長)
周長=邊長×4 C=4a 面積=邊長×邊長 S=a×a
2、正方體 (V:體積 a:棱長 )
表面積=棱長×棱長×6 S表=a×a×6
體積=棱長×棱長×棱長 V=a×a×a
3、長方形( C:周長 S:面積 a:邊長)
周長=(長+寬)×2 C=2(a+b)
面積=長×寬 S=ab
4、長方體 (V:體積 s:面積 a:長 b: 寬 h:高)
(1)表面積(長×寬+長×高+寬×高)×2 S=2(ab+ah+bh)
(2)體積=長×寬×高 V=abh
5、三角形 (s:面積 a:底 h:高)
面積=底×高÷2 s=ah÷2
三角形高=面積 ×2÷底 三角形底=面積 ×2÷高
6、平行四邊形 (s:面積 a:底 h:高)
面積=底×高 s=ah
7、梯形 (s:面積 a:上底 b:下底 h:高)
面積=(上底+下底)×高÷2 s=(a+b)× h÷2
8、圓形 (S:面積 C:周長 л d=直徑 r=半徑)
(1)周長=直徑×л=2×л×半徑 C=лd=2лr
(2)面積=半徑×半徑×л
9、圓柱體 (v:體積 h:高 s:底面積 r:底面半徑 c:底面周長)
(1)側面積=底面周長×高=ch(2лr或лd) (2)表面積=側面積+底面積×2
(3)體積=底面積×高 (4)體積=側面積÷2×半徑
圓錐體 (v:體積 h:高 s:底面積 r:底面半徑)
體積=底面積×高÷3
11、總數÷總份數=平均數
12、和差問題的公式
(和+差)÷2=大數 (和-差)÷2=小數
13、和倍問題
和÷(倍數-1)=小數 小數×倍數=大數 (或者 和-小數=大數)
數學 學習 方法 技巧
一、明確教學目標,制訂復習計劃
小學 畢業 班數學總復習知識容量多、時間跨度大,所學知識的遺忘率高,復習之前教師必須再次鑽研教材,進一步了解教材的知識內容和編排特點,還要重新學習《數學課程標准》,把握好教學要點和數學知識重點,並對學生掌握知識的情況全面摸底,然後確定復習目標,制定復習計劃,主要包括:復習的內容要點,分幾節課完成,設計好每節課的內容和目標。例如,制訂「數的運算」這一單元復習計劃:第一節復習四則運算計算方法及其關系,第二節復習運算定律,第三節復習整數小數分數四則混合運算。這樣才能使復習工作有計劃、有步驟地進行,這種邏輯遞進的 復習方法 可以從根本上克服復習的盲目性、隨意性還有簡單地以教材上的復習題為內容,讓學生照書做完了事的思想。
二、了解學情,制定復習方法
俗話說:「知己知彼,百戰不殆」。這句話雖是用於指揮行軍打仗,但細斟此言,筆者認為它同樣適用於指導教學。作為一名有 經驗 的教師,首先要掌握學生一舉一動,一言一行,及時對教學工作作出調整,以減少無效勞動,確保教學活動不偏離預定的教學目標。了解學情的途徑很多,諸如「教學觀察」、「師生談心法」、「開展第二課堂法」等等,老師可在教學實踐中,多留心觀察,多 總結 經驗,多開動腦筋,把多種的方法靈活運用,以期達到對學生的行為,思想情感,學習情況等做到心中有數,從而進行有的放矢的教學工作,提高課堂教學質量。
三、梳理知識,形成知識網路
小學畢業生通過六年的數學學習,大多都掌握了比較可觀的知識點,如果沒有一個清晰的思路來幫助學生,就好比是一堆貨物,品種繁多,堆放零亂,要想記住特別困難。只有加以整理,有序分類,才能清清楚楚,一目瞭然。因此,在復習時應根據知識的重點、學習的難點和學生的薄弱環節,引導學生把已經學的知識進行梳理、分類、整合,弄清它們的來龍去脈,溝通其縱橫聯系,從整體上把握知識結構。引導學生自主整理,促進知識系統化的目的不僅要構建完整的知識網路,還要在構建知識網路的的同時,使學生對以前所學的知識有新的認識、提高。同時,要重視在復習整理過程中培養學生自主整理的意識,發展學生自主學習的能力。復習時,引導學生將知識分塊,系統整理,按塊復習,一塊一塊復習記憶。如果再將每一小類找出共性,規律,記憶效果就會大大加強。將知識分成大類,以表格形式呈現,細化到每一個知識點,逐一復習,鞏固強化達到熟練,運用時,從塊狀知識記憶中調用,速度也可加快。例如空間與圖形部分,筆者給學生搭建了這樣的框架:點、線、面、體。點有:端點、頂點、起點、垂足等;線有直線、射線、線段等;面有長方形、正方形、三角形、平行四邊形、梯形、圓等;體有長方體、正方體、圓柱、圓錐等。每一點知識都有其自身意義和特點,通過這樣的邏輯順利建構了一種復合學生思維規律的知識脈絡,點是構成線的基礎,點可以連成線,線可構成面,面可圍成體,垂線實際就是面和體的高等等。這些知識即單獨存在,也相互聯系,形成一個體系,易於學生系統掌握。
六年級數學基礎知識點總結相關 文章 :
★ 六年級數學期末復習知識點匯總
★ 小學六年級數學知識點總結
★ 小學六年級數學學習方法和技巧大全
★ 六年級上冊數學知識點整理歸納
★ 六年級數學上冊知識點總結
★ 六年級數學幾何的初步知識知識點總結
★ 六年級上冊數學知識點總結
★ 六年級數學上冊知識點復習
★ 小學數學基礎知識點整理
★ 六年級數學的重難點知識總結
6. 小學數學知識點有哪些
數學作為一門具有很強邏輯性和連續性的學科,是每個小學生都應該掌握的基礎知識.小學數學重點是基礎知識的掌握基和學習,學習數學的標准就是能夠對該學籍范圍內的題目進行正確的解答.考察公式概念是小學數學重點要掌握的知識,下面這幾個學習方法帶你學好數學.
(同學們開講)
學習小學數學重點就是注重學習的方法,但是也需要學生有堅持不懈的精神.勤學多問不恥下問是學習的良好態度,他們會把你帶到一個更高的層次,掌握好學習方法,你會對每一天的新知識充滿興趣.
7. 小學數學基礎知識點整理
小學數學知識點有哪些?哪些基礎知識是我們一定要整理的?下面是我為大家整理的關於小學數學基礎知識點整理,希望對您有所幫助。歡迎大家閱讀參考學習!
小學數學基礎知識整理(一到六年級)
小學一年級 初步認識加減法。學會基礎加減。
小學二年級 完善加減法,表內乘法,學會應用題,基礎幾何圖形。
小學三年級 學會萬以內加減法,長度單位和質量單位,倍數的認知,多位數乘一位數,時間量及單位。長方形和正方形幾何圖形、分數的初步認識。
小學四年級 億萬數的認識、面積單位(公頃和平方千米)、角的度量,兩位數的乘數法、平行四邊形和梯形幾何圖形及條形統計圖的了解。
小學五年級 小數乘除法,簡易方程運算,圖形面積計算,可能性和植樹問題了解。
小學六年級 掌握分數乘除法,比和百分數,圓和扇形。
必背定義、定理公式
三角形的面積=底×高÷2。 公式 S= a×h÷2
正方形的面積=邊長×邊長 公式 S= a×a
長方形的面積=長×寬 公式 S= a×b
平行四邊形的面積=底×高 公式 S= a×h
梯形的面積=(上底+下底)×高÷2 公式 S=(a+b)h÷2
內角和:三角形的內角和=180度。
長方體的體積=長×寬×高 公式:V=abh
長方體(或正方體)的體積=底面積×高 公式:V=abh
正方體的體積=棱長×棱長×棱長 公式:V=aaa
圓的周長=直徑×π 公式:L=πd=2πr
圓的面積=半徑×半徑×π 公式:S=πr2
圓柱的表(側)面積:圓柱的表(側)面積等於底面的周長乘高。公式:S=ch=πdh=2πrh
圓柱的表面積:圓柱的表面積等於底面的周長乘高再加上兩頭的圓的面積。公式:S=ch+2s=ch+2πr2
圓柱的體積:圓柱的體積等於底面積乘高。公式:V=Sh
圓錐的體積=1/3底面×積高。公式:V=1/3Sh
分數的加、減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
分數的乘法則:用分子的積做分子,用分母的積做分母。
分數的除法則:除以一個數等於乘以這個數的倒數。
定義定理性質公式
1、加法交換律:兩數相加交換加數的位置,和不變。
2、加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第三個數相加,和不變。
3、乘法交換律:兩數相乘,交換因數的位置,積不變。
4、乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。
5、乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。如:(2+4)×5=2×5+4×5
6、除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。 0除以任何不是0的數都得0。
簡便乘法:被乘數、乘數末尾有0的乘法,可以先把0前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。
7、什麼叫等式?等號左邊的數值與等號右邊的數值相等的式子叫做等式。
等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,等式仍然成立。
8、什麼叫方程式?答:含有未知數的等式叫方程式。
9、 什麼叫一元一次方程式?答:含有一個未知數,並且未知數的次 數是一次的等式叫做一元一次方程式。
學會一元一次方程式的例法及計算。即例出代有χ的算式並計算。
10、分數:把單位"1"平均分成若干份,表示這樣的一份或幾分的數,叫做分數。
11、分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
12、分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。異分母的分數相比較,先通分然後再比較;若分子相同,分母大的反而小。
13、分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。
14、分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。
15、分數除以整數(0除外),等於分數乘以這個整數的倒數。
16、真分數:分子比分母小的分數叫做真分數。
17、假分數:分子比分母大或者分子和分母相等的分數叫做假分數。假分數大於或等於1。
18、帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。
19、分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小不變。
20、一個數除以分數,等於這個數乘以分數的倒數。
21、甲數除以乙數(0除外),等於甲數乘以乙數的倒數。
數量關系計算公式方面
1、單價×數量=總價
2、單產量×數量=總產量
3、速度×時間=路程
4、工效×時間=工作總量
5、加數+加數=和 一個加數=和+另一個加數
被減數-減數=差 減數=被減數-差 被減數=減數+差
因數×因數=積 一個因數=積÷另一個因數
被除數÷除數=商 除數=被除數÷商 被除數=商×除數
有餘數的除法: 被除數=商×除數+余數
一個數連續用兩個數除,可以先把後兩個數相乘,再用它們的積去除這個數,結果不變。例:90÷5÷6=90÷(5×6)
6、 1公里=1千米 1千米=1000米
1米=10分米 1分米=10厘米 1厘米=10毫米
1平方米=100平方分米 1平方分米=100平方厘米
1平方厘米=100平方毫米
1立方米=1000立方分米 1立方分米=1000立方厘米
1立方厘米=1000立方毫米
1噸=1000千克 1千克= 1000克= 1公斤= 1市斤
1公頃=10000平方米。 1畝=666.666平方米。
1升=1立方分米=1000毫升 1毫升=1立方厘米
7、什麼叫比:兩個數相除就叫做兩個數的比。如:2÷5或3:6或1/3
比的前項和後項同時乘以或除以一個相同的數(0除外),比值不變。
8、什麼叫比例:表示兩個比相等的式子叫做比例。如3:6=9:18
9、比例的基本性質:在比例里,兩外項之積等於兩內項之積。
10、解比例:求比例中的未知項,叫做解比例。如3:χ=9:18
11、正比例:兩種相關聯的量,一種量變化,另一種量也隨著化,如果這兩種量中相對應的的比值(也就是商k)一定,這兩種量就叫做成正比例的量,它們的關系就叫做正比例關系。如:y/x=k( k一定)或kx=y
12、反比例:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,它們的關系就叫做反比例關系。如:x×y = k( k一定)或k / x = y
百分數:表示一個數是另一個數的百分之幾的數,叫做百分數。百分數也叫做百分率或百分比。
13、把小數化成百分數,只要把小數點向右移動兩位,同時在後面添上百分號。其實,把小數化成百分數,只要把這個小數乘以100%就行了。
把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。
14、把分數化成百分數,通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。其實,把分數化成百分數,要先把分數化成小數後,再乘以100%就行了。
把百分數化成分數,先把百分數改寫成分數,能約分的要約成最簡分數。
15、要學會把小數化成分數和把分數化成小數的化發。
16、最大公約數:幾個數都能被同一個數一次性整除,這個數就叫做這幾個數的最大公約數。(或幾個數公有的約數,叫做這幾個數的公約數。其中最大的一個,叫做最大公約數。)
17、互質數: 公約數只有1的兩個數,叫做互質數。
18、最小公倍數:幾個數公有的倍數,叫做這幾個數的公倍數,其中最小的一個叫做這幾個數的最小公倍數。
19、通分:把異分母分數的分別化成和原來分數相等的同分母的分數,叫做通分。(通分用最小公倍數)
20、約分:把一個分數化成同它相等,但分子、分母都比較小的分數,叫做約分。(約分用最大公約數)
21、最簡分數:分子、分母是互質數的分數,叫做最簡分數。
分數計算到最後,得數必須化成最簡分數。
個位上是0、2、4、6、8的數,都能被2整除,即能用2進行約分。個位上是0或者5的數,都能被5整除,即能用5進行約分。在約分時應注意利用。
22、偶數和奇數:能被2整除的數叫做偶數。不能被2整除的數叫做奇數。
23、質數(素數):一個數,如果只有1和它本身兩個約數,這樣的數叫做質數(或素數)。
24、合數:一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數。1不是質數,也不是合數。
28、利息=本金×利率×時間(時間一般以年或月為單位,應與利率的單位相對應)
29、利率:利息與本金的比值叫做利率。一年的利息與本金的比值叫做年利率。一月的利息與本金的比值叫做月利率。
30、自然數:用來表示物體個數的整數,叫做自然數。0也是自然數。
31、循環小數:一個小數,從小數部分的某一位起,一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做循環小數。如3. 141414
32、不循環小數:一個小數,從小數部分起,沒有一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做不循環小數。
如3. 141592654
33、無限不循環小數:一個小數,從小數部分起到無限位數,沒有一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做無限不循環小數。如3. 141592654……
34、什麼叫代數? 代數就是用字母代替數。
35、什麼叫代數式?用字母表示的式子叫做代數式。如:3x =ab+c
一般運算規則
1、 每份數×份數=總數總數÷每份數=份數 總數÷份數=每份數
2、 1倍數×倍數=幾倍數幾倍數÷1倍數=倍數 幾倍數÷倍數=1倍數
3、 速度×時間=路程路程÷速度=時間 路程÷時間=速度
4、 單價×數量=總價總價÷單價=數量 總價÷數量=單價
5、工作效率×工作時間=工作總量工作總量÷工作效率=工作時間 工作總量÷工作時間=工作效率
6、 加數+加數=和和-一個加數=另一個加數
7、 被減數-減數=差被減數-差=減數 差+減數=被減數
8、 因數×因數=積積÷一個因數=另一個因數
9、 被除數÷除數=商被除數÷商=除數 商×除數=被除數
小學數學圖形計算公式
1、正方形 C周長 S面積 a邊長
周長=邊長×4 C=4a
面積=邊長×邊長 S=a×a
2、正方體 V:體積 a:棱長
表面積=棱長×棱長×6 S表=a×a×6
體積=棱長×棱長×棱長 V=a×a×a
3、長方形 C周長 S面積 a邊長
周長=(長+寬)×2 C=2(a+b)
面積=長×寬 S=ab
4、長方體 V:體積 s:面積 a:長 b: 寬 h:高
表面積(長×寬+長×高+寬×高)×2 S=2(ab+ah+bh)
體積=長×寬×高 V=abh
5、三角形 s面積 a底 h高
面積=底×高÷2 s=ah÷2
三角形高=面積 ×2÷底三角形底=面積 ×2÷高
6、平行四邊形 s面積 a底 h高
面積=底×高 s=ah
7、梯形 s面積 a上底 b下底 h高
面積=(上底+下底)×高÷2 s=(a+b)× h÷2
8、圓形 S面積 C周長 πd=直徑 r=半徑
周長=直徑×π=2×π×半徑 C=πd=2πr
面積=半徑×半徑×π
9、圓柱體 v:體積 h:高 s;底面積 r:底面半徑 c:底面周長
側面積=底面周長×高表面積=側面積+底面積×2
體積=底面積×高體積=側面積÷2×半徑
10、圓錐體 v:體積 h:高 s;底面積 r:底面半徑體積=底面積×高÷3
相關 文章 :
1. 小升初數學基礎知識點順口溜
2. 小學三年級數學學習內容重點知識匯總
3. 小升初數學知識點匯總與常見易錯點
4. 小學數學六年級圓的知識要點解析
5. 六年級上冊數學知識點整理歸納
8. 小學各年級數學知識點總結
貪玩是孩子的天性,大多數孩子缺少自我控制能力,所以需要家長們平時多督促孩子認真完成家庭作業,培養他們良好的作業習慣,寫字姿勢。家長督促他們寫作業,及時檢查他們的作業,發現沒學會的知識要及時給他們講解,每天的作業認真完成是學習的基本保障。下面是我為大家整理的關於小學各年級數學知識點 總結 ,希望對您有所幫助。歡迎大家閱讀參考學習!
一年級的知識點及重難點
(一)數與計算
(1)20以內數的認識。加法和減法。
數數。數的組成、順序、大小、讀法和寫法。加法和減法。連加、連減和加減混合運算。
(2)100以內數的認識。加法和減法。數數。個位、十位。數的順序、大小、讀法和寫法。
兩位數加、減整十數和兩位數加、減一位數的口算。兩步計算的加減式題。
(二)量與計量鍾面的認識(整時)。人民幣的認識和簡單計算。
(三)幾何初步知識
長方體、正方體、圓柱和球的直觀認識。
長方形、正方形、三角形和圓的直觀認識。
(四)應用題
比較容易的加法、減法一步計算的應用題。 多和少的應用題(抓有效信息的能力)
(五)實踐活動
選擇與生活密切聯系的內容。例如根據本班男、女生人數,每組人數分布情況,想到哪些數學問題。
一年級 數學 學習 方法
1、要培養學生的學習習慣。學習習慣的一方面就是作業的按時完成,作業格式訓練也是學習習慣培養的一個方面。要利用數學練習本讓學生練習寫數和寫算式
2、重視孩子計算能力的培養
口算20以內的加減法是十分重要的基礎知識,孩子必須學好,並能夠達到熟練計算的程度。由於孩子的基礎不同,不同孩子的計算熟練程度和速度也就存在一定差異,要縮小這一差異,僅靠每天一節數學課練習是不客觀的,所以要經常性的練習。一年級要多讓孩子藉助小棒等學具擺一擺、說一說計算思路。
3、依據生活理解數學,讓孩子在游戲中成長
有些數學知識較抽象,容易混淆,我們要注意給孩子創造生活情境,讓孩子在實際體驗中理解知識。如「左右」的認識,分辨左右是孩子本學期學習的一個難點,在生活中強化孩子對左右手的認識,引導孩子藉此來分辨物體間的左右關系。同時還要注意一個參照物的問題,如兩人面對面時,如何判別對面之人的左右邊。
4、重視數學語言發展,讓學生養成積極思維的習慣。 在生活中要多為孩子創設說數學的機會,數學是「思維的 體操 」,如果不積極動腦思考就不可能學好數學。如在學習「10的分與合」時,在復習鋪墊的基礎上,提問:「10可以分成幾和幾呢?」引導學生一邊塗珠算一邊思考,從而自己得出結論。多問幾個「為什麼」比直接告訴學生「是這樣的」要好得多。,學生在相互之間的思維撞擊中學會了知識,獲得了積極的成功體驗。
總之,一年級學生由於特殊的年齡特徵,所以要重視培養學生良好書寫、思維的學習習慣。
二年級的知識點和重難點
(一)數與計算
(1)兩位數加、減兩位數。 ? 兩位數加、減兩位數。加、減法豎式。兩步計算的加減式題。
(2)表內乘法和表內除法。 ? 乘法的初步認識。乘法口訣。乘法豎式。除法的初步認識。用乘法口訣求商。除法豎式。有餘數除法。兩步計算的式題。
(3)萬以內數的讀法和寫法。 ? 數數。百位、千位、萬位。數的讀法、寫法和大小比較。
(4)加法和減法。 ?加法,減法。連加法。加法驗算,用加法驗算減法。
(5)混合運算。 ? 先乘除後加減。兩步計算式題。小括弧。
(二)量與計量
時、分、秒的認識。
米、分米、厘米的認識和簡單計算。
千克(公斤)的認識
(三)幾何初步知識
直線和線段的初步認識。 ? 角的初步認識。直角。
(四)應用題
加法和減法一步計算的應用題。 ? 乘法和除法一步計算的應用題。 ?比較容易的兩步計算的應用題。
(五)實踐活動
與生活密切聯系的內容。例如調查家中本周各項消費的開支情況,想到哪些數學問題。
二年級數學 學習方法
小學生是以具體形象思維為主,根據二年級學生的特點,應該:
第一:要適度應用學具,例如:在教學乘法的初步認識時,用擺小棒的方法,應按照從一般到特殊的規律,先擺出兩堆不同數目的小棒,再擺出兩份數目相同的,讓學生覺得加法的累贅,再介紹乘法,學生就很容易理解乘法的意義,並且樂意學乘法了。
第二:利用 生活知識 教學。
例如:小紅做了18朵紙花,送給同學們12朵,還剩下多少朵。這是兩位數減兩位數,如果在生活中做一做,學生就明白意思了,所以說,有一些應用題,能從實際生活出發,先用學生的生活 經驗 來解答,再用數學知識來解答,就可以使學生理解題意。
第三:利用社會環境提高數學實際應用能力。例如:在學習統計時,可以帶學生到商城或社會中,利用新學的統計知識,通過觀察、計量、比較,從而收集到有用的信息和知識。
第四:為學生創造機會,使學生去思、去想、去問。比如,二年級教材學習了「角的認識」,對於什麼叫角,角各部分名稱,「角的大小與邊的長短無關」這些內容,學生已經知道了
「還有什麼問題嗎?」學生答道「沒問題」。真的沒問題了嗎?「那我來問個問題」我提出了一個問題:「角的大小為什麼與邊的長短無關呢?」經過討論,大家明白了,角的邊是射線,射線是沒有長短的,所以,角的大小與邊的長短無關。角的大小決定於兩條邊張開的程度。教師從學生的角度示範提問題,久而久之,也就讓學生有了提問題的意識,在引導學生提問題的同時,也培養了學生積極思考問題和解決問題的能力。
三年級知識點和重難點
(一)數與計算
(1)一位數的乘、除法。一個乘數是一位數的乘法(另一個乘數一般不超過三位數)。0的乘法。連乘。除數是一位數的除法。0除以一個數。用乘法驗算除法。連除。
(2)兩位數的乘、除法。一個乘數是兩位數的乘法(另一個乘數一般不超過三位數)。乘數末尾有0的簡便演算法。乘法驗算。除數是兩位數的除法。連乘、連除的簡便演算法。
(3)四則混合運算。兩步計算的式題。小括弧的使用。
(4)分數的初步認識。分數的初步認識,讀法和寫法。看圖比較分數的大小。簡單的同分母分數加、減法。
(二)量與計量千米(公里)、毫米的認識和簡單計算。噸、克的認識和簡單計算。
(三)幾何初步知識長方形和正方形的特徵。長方形和正方形的周長。平行四邊形的直觀認識。周長的含義。長方形、正方形的周長。
(四)應用題常見的數量關系。解答兩步計算的應用題。
(五)實踐活動聯系周圍接觸到的事物組織活動。例如記錄10天內的天氣情況,分類整理,並作簡單分析。
三年級數學 學習方法
小學三年級學生學習數學的三種數學能力中,影響程度最大的是運用數概念的能力,其次是空間關系的知覺能力,再次是基本能力(概括和推理)。
第一,加強小學三年級學生運用「數概念」的能力培養。
有不少小學數學的教學中,常只重演算法,忽視數概念的掌握和算理的理解。因而只能機械地應用學過的東西,或簡單地模仿做過的例題,不能在變化了情況下遷移;或者只知道一些定義,而不能全面掌握屬於這一概念的東西。
例如,學生能說出什麼是圓的半徑,但在作圖或解題時又常常只能舉出垂直方向上的半徑,不能反轉過來去解決逆向問題,沒有納入到一般的范疇或嵌入數概念體系的認知結構中去。所以在小學數學教學中,不僅要重視演算法和演算過程,尤其要重視數概念的掌握和算理的理解,加強小學生運用數概念的能力培養。三年級數學中,會出現長度單位的認識,什麼千米、毫米、厘米,很多孩子總是無法記清楚,怎麼辦呢?請大家伸出自己的右手,手心面向自己,從小拇指到大拇指,依次為:毫米、厘米、分米、米、千米。兩指之間的距離大小表示進率的大小。你們看,小指、無名指、中指、食指每相臨的兩指間的距離相等,也就表示毫米、厘米、分米、米每相臨兩個單位間的進率相等,都是10。而毫米與分米、厘米與米間的進率為100,毫米與米之間的進率為1000,食指與大拇指之間的距離較大,也是1000。記住單位對應的拇指,這個換算就變得十分簡單而且准確了。
第二,重視和加強發展小學三年級學生「空間關系」的知覺能力。
數和形是不可分開的。因此,學生掌握空間關系的知覺能力也是小學數學能力的重要組成部分。例如三年級下冊如用圓圈圖(韋恩圖)向學生直觀的滲透集合概念。讓他們感知圈內的物體具有某種共同的屬性,可以看作一個整體,這個整體就是一個集合。
第三,觀察活動:
所謂觀察是指學生對客觀事物或某種現象的仔細察看,因而是一種有意注意。培養的途徑是:教師提供的「客觀事物或某種現象」特徵有序、背景鮮明,而且要給出一些觀察的思考題。這樣有助於學生明確觀察目標,進而使他們邊觀察,邊思考,邊議論,邊作觀察記錄,以發現數學規律、本質。
「乘法分配律」的教學,根據例證得到三個等式:
(5+3)×2=5×2+3×2
(6+4)×30=6×30+4×30
(25+9)×4=25×4+9×4
教師要求學生結合下面的兩個思考題觀察上面的三個等式都具有什麼相同點(即規律)。①豎里觀察,等式的左邊都有什麼特點?等式右邊又有什麼特徵?②橫里觀察,等式的左邊與右邊有怎樣的關系?
教師再要求學生把記錄的文字:兩個加數的和與一個數相乘,兩個積的和,兩個加數分別與一個數相乘……整理一下就得到了「乘法分配律」。
四年級知識點和重難點
(一)數與計算
(1)億以內數的讀法和寫法。
計數單位「十萬」、「百萬」、「千萬」。相鄰計數單位間的十進關系。讀法和寫法。數的大小比較。以萬作單位的近似數。
(2)加法和減法。
加法,減法。
接近整十、整百數的加、減法的簡便演算法。
加、減法算式中各部分之間的關系。求未知數x。
(3)乘、除數是三位數的乘、除法。
乘數是三位數的乘法。積的變化。除數是三位數的除法。商不變的性質。被除數和除數末尾有0的簡便演算法。
_乘、除計算的簡單估算。
乘數接近整十、整百的簡便演算法。
乘、除法算式中各部分之間的關系。求未知數x。
(4)四則混合運算。
中括弧。三步計算的式題。
(5)整數及其四則運算的關系和運算定律。
自然數與整數。十進制計數法。讀法和寫法。
四則運算的意義。加法與減法、乘法與除法之間的關系。整除和有餘數的除法。
運算定律。簡便運算。
(6)小數的意義、性質,加法和減法。
小數的意義、性質。小數大小的比較。小數點移位引起小數大小的變化。小數的近似值
加法和減法。加法運算定律推廣到小數。
(註:小數如果分段教學,可以把小數的初步認識安排在前面的適當年級)。
(二)量與計量
年、月、日。平年、閏年。世紀。24時計時法。
角的度量。
面積單位。
(三)幾何初步知識。
直線的測定。測量距離(工具測、步測、目測)。
射線。直角、銳角、鈍角、平角、_周角。垂線。畫垂線。平行線。畫平行線。
三角形的特徵。_三角形的內角和。
(四)統計初步知識
簡單數據整理。簡單統計圖表的初步認識。平均數的意義。求簡單的平均數。
(五)應用題列綜合算式解答比較容易的三步計算的應用題。
四年級數學 學習方法
四年級的學生思維正處在從直觀思維向抽象 邏輯思維 過渡的階段,因此,通過練習鞏固所學知識只是其中的一個方面,而通過比較、概括、推理、綜合等思維方法的學習運用發展其邏輯思維是這個年齡段學生的一個重要任務,除了注意學生思維方法的掌握,最明顯的表現是培養學生畫概念圖和線段圖,促進其知識系統化和思維能力的發展。)
在數學知識中,數學概念又是數學知識的基礎,數學原理、數學方法也是由數學概念構成。概念的清晰性、穩定性、可辨性以及概念之間的關聯性極大地影響數學知識的質量。概念圖包括節點、連線、層級和命題四個基本要素。根據小學四年級學生思維發展水平,引導學生思考如何更好建構自己的概念圖,掌握這種方法。數學知識就像~張縱橫交錯的網,每個知識點都是一個網點,網點上的一條條知識,連接起了一個個的網點,從而形成一張密密的「知識網」。培養學生自己去「織網」能力應該是新課改對教師的要求之一,而且對於小學四年級的教師來說,在學生思維折的關鍵時期,有意識地通過讓學生畫概念圖的方法來培養思維能力也是行之有效的法之一。
「線段圖」是指由有一定意義的線段、箭頭、數字元號等構成的圖式,它的特點是形象直觀,能夠引起學生的注意和興趣。利用線段圖將題中蘊涵的抽象的數量關系以形象、直觀的方式表達出來,化 抽象思維 為形象思維,符合小學生特別是中高年級學生的認知特點。小學數學各種類型的應用題:如分數應用題、行程問題、工程問題等用線段圖扳書分析數量關系,易化繁為簡,化抽象思維為形象思維。四年級教材中的路程問題(第七冊59—61頁),很容易通過例題中的線段圖理解問題。對於第七冊第64頁的習題5,學生們也能輕松地把情景圖用線段圖表示出來;第八冊「解方程一」(第95頁)的練習2,即使學困生也很容易列出方程,我所教的兩個班的學生能把一些方程用線段圖畫出來,比如97頁的練習l、2,通過這種 思維訓練 ,學生的表徵能力得到提高,實現《標准》提出的「能從具體情境中抽象出數量關系和變化規律,並用符號來表示:理解符號所代表的數量關系和變化規律;會進行符號間的轉換;能選擇適當的程序和方法解決用符號所表達的問題。」
五年級知識點和重難點
小數乘法,小數除法,簡易方程,多邊形的面積,統計與可能性等是本冊教材的重點教學內容。
在數與代數方面,這一冊教材安排了小數乘法、小數除法和簡易方程。小數的乘法和除法在實際生活中和數學學習中都有著廣泛的應用,是小學生應該掌握和形成的基礎知識和基本技能。這部分內容是在前面學習整數四則運算和小數加、減法的基礎上進行教學,繼續培養學生小數的四則運算能力。簡易方程是小學階段集中教學代數初步知識的單元,在這一單元里安排了用字母表示數、等式的性質、解簡單的方程、用方程表示等量關系進而解決簡單的實際問題等內容,進一步發展學生的抽象思維能力,提高解決問題的能力。
在空間與圖形方面,這一冊教材安排了觀察物體和多邊形的面積兩個單元。在已有知識和經驗的基礎上,通過豐富的現實的數學活動,讓學生獲得探究學習的經歷,能辨認從不同方位看到的物體的形狀和相對位置;探索並體會各種圖形的特徵、圖形之間的關系,及圖形之間的轉化,掌握平行四邊形、三角形、梯形的面積公式及公式之間的關系,滲透平移、旋轉、轉化的數學思想方法,促進學生空間觀念的進一步發展。
在統計與概率方面,本冊教材讓學生學習有關可能性和中位數的知識。通過操作與實驗,讓學生體驗事件發生的等可能性以及游戲規則的公平性,學會求一些事件發生的可能性;在平均數的基礎上教學中位數,使學生理解平均數和中位數各自的統計意義、各自的特徵和適用范圍;進一步體會統計和概率在現實生活中的作用。
在用數學解決問題方面,教材一方面結合小數乘法和除法兩個單元,教學用所學的乘除法計算知識解決生活中的簡單問題;另一方面,安排了「數學廣角」的教學內容,通過觀察、猜測、實驗、推理等活動向學生滲透初步的數字編碼的數學思想方法,體會運用數字的有規律排列可以使人與人之間的信息交換變得安全、有序、快捷,給人們的生活和工作帶來便利,感受數學的魅力。培養學生的符號感,及觀察、分析、推理的能力,培養他們探索數學問題的興趣和發現、欣賞數學美的意識。
五年級數學 學習方法
(一)數與代數
1、第一單元「倍數與因數」:結合具體情境,經歷探索數的有關特徵的活動,認識自然數,認識倍數和因數,能在100以內的自然數中找出10以內某個自然數的所有倍數,能找出100以內某個自然數的所有因數,知道質數、合數;經歷 2、3、5的倍數特徵的探索過程,知道2、3、5的倍數的特徵,知道奇數和偶數;能根據解決問題的需要,收集有用的信息,進行歸納、類比與猜測,發展初步的合情推理能力;
2.第三單元「分數」:進一步理解分數的意義,能正確用分數描述圖形或簡單的生活現象;認識真分數、假分數與帶分數,理解分數與除法的關系,會進行分數的大小比較;能找出10以內兩個自然數的公倍數和最小公倍數,能找出兩個自然數的公因數和最大公因數,會正確進行約分和通分;初步了解分數在實際生活中的應用,能運用分數知識解決一些簡單的實際問題。
3.第四單元「分數加減法」:理解異分母分數加減法的算理,並能正確計算;能理解分數加減混合運算的順序,並能正確計算;能把分數化成有限小數,也能把有限小數化成分數;能結合實際情境,解決簡單分數加減法的實際問題。
(二)在學習《空間與圖形》可採用數、形結合的方式,以及類比法等教學
1.第二單元「圖形的面積(一)」:知道比較面積大小方法的多樣性;經歷探索平行四邊形、三角形、梯形面積計算方法的過程,並能運用計算的方法解決生活中一些簡單的問題;在探索圖形面積的計算方法中,獲得探索問題成功的體驗。
2.第五單元「圖形的面積(二)」:在探索活動中,認識組合圖形,並會運用不同的方法計算組合圖形的面積;能正確運用計算組合圖形面積的方法,解決相應的實際問題;能估計不規則圖形的面積大小,並能用不同方法計算面積。
六年級數學
(一)數與計算
(1)分數的乘法和除法。分數乘法的意義。分數乘法。乘法的運算定律推廣到分數。倒數。分數除法的意義。分數除法。
(2)分數四則混合運算。分數四則混合運算。
(3)百分數。百分數的意義和寫法。百分數和分數、小數的互化。
(二)比和比例
比的意義和性質。比例的意義和基本性質。解比例。成正比例的量和成反比例的量。
(三)幾何初步知識
圓的認識。圓周率。畫圓。圓的周長和面積。_扇形的認識。軸對稱圖形的初步認識。圓柱的認識。圓柱的表面積和體積。圓錐的認識。圓錐的體積。球和球的半徑、直徑的初步認識。
(四)統計初步知識
統計表。條形統計圖,折線統計圖,_扇形統計圖。
(五)應用題
分數四則應用題(包括工程問題)。百分數的實際應用(包括發芽率、合格率、利率、稅率等的計算)。比例尺。按比例分配。
(六)實踐活動
聯系學生所接觸到的社會情況組織活動。例如就家中的卧室,畫一個平面圖。
(七)整理和復習
六年級數學學習方法:
進入小學高年級後,科目稍微增加、內容拓寬、知識深化……學生認知結構發生根本變化,許多同學容易忽略老師所講的數學思想、數學方法,而注重題目的解答,其實諸如「化歸」、「數形結合」等思想方法遠遠重要於某道題目的解答。
總結比較,理清思緒
知識點的總結比較。每學完一章都應將本章內容做一個框架圖或在腦中過一遍,整理出它們的關系。對於相似易混淆的知識點應分項歸納比較,有時可用聯想法將其區分開。題目的總結比較。同學們可以建立自己的題庫。
在學習《位置》在用數對確定點的位置,這部分滲透了數形結合的思想,和一一對應的思想。學生可在方格紙上畫畫。
學習分數乘法的意義:1、分數乘整數是求幾個相同加數的和的簡便運算,與整數乘法的意義相同。2、分數乘分數是求一個數的幾分之幾是多少。
例:一小時刷一面牆的1/4,1/5小時刷一面牆的多少?實際上是求1/5的1/4是多少?
這種題型可以利用數形結合的數學思想,畫一畫,折一折。再就是利用:工作效率_工作時間=工作總量
在學習分數除法這一節時,例如:分數、除法和小數之間的關系和區別,以及分數除法應用題無論是 折紙 實驗,還是畫線段圖,都是用圖形語言揭示分數除法計算過程的幾何意義。分數乘除法,比的知識,運用了類比的數學。(相似和變式)
在學習圓這一節時,用逐漸逼近的轉化思想。把一個園等分(偶數份)成的份數越多,拼成的圖像越接近長方形。體現化圓為方,化曲為直的思想,應用轉化思想。在應用中,我們還知道面積相同時,長方形的周長最長,正方形居中,圓周長最短。周長一定時,圓面積最大,正方形居中,長方形面積最小。這題蘊含著一個數學規律,即在面積相等的情況下,圓的周長最短,而長方形的周長最長;反之,在周長相等的情況下,圓的面積最大,而長方形的面積則最小。
在學習數學廣角這一章節中,例如,研究古代雞兔同籠的問題,就應用了假設法來教學。這種 思維方式 就是劃歸法。
9. 一年級數學重要基礎知識點
學習這件事不在乎有沒有人教你,最重要的是在於你自己有沒有覺悟和恆心。任何科目 學習 方法 其實都是一樣的,不斷的記憶與練習,使知識刻在腦海里。下面是我給大家整理的一些 一年級數學 的知識點,希望對大家有所幫助。
一年級數學基本知識點
前後(前後的位置關系)
【知識點】:
1、注意用前、後等詞語描述物體的順序與描述物體的准確位置兩者之間的區別。
2、鹿在最前面,誰在它的後面?這個答案不,不僅僅有一個松鼠,還有兔子、烏龜和蝸牛都在鹿的後面。
3、注意讓學生會用前、後等詞語描述物體的相對位置。
上下(上下的位置關系)
【知識點】:
1、在具體的情境中理解「上下」的相對性。
2、能用語言表達實際情境中物體的「上下」位置關系。
左右(左右的位置關系)
【知識點】:
1、能用語言描述物體的左右位置關系。
2、能在情境中體會左右位置的相對性。進一步再體會:兩人如果面向同一方向,他們所看到的左右位置與順序是一致的;如果面對著面,他們看到的左右位置與順序是相反的。
教室(前後、上下、左右綜合應用)
【知識點】:
綜合運用前面三課所學的知識,進行物品的位置與順序的描述活動
小學一年級數學知識點
1. 數的認識
(1)數數,讀數,寫數
(2)比大小(「<」或「>」〉,排序
(3)數的組成
(4)基數,序數
2.0的認識---表示沒有,表示起點。
3.計算:
加法計算---意義的理解,認識加號。
減法計算---意義的理解,認識減號。
會相關的計算(5以內):加法、減法、0的計算。
1到5的加減法練習題:
1 + 3 =( )1 + 1 =( )3 - 3 =( )2 + 3 =( )
4 - 4 =( )3 - 3 =( )3 - 1 =( )2 - 2 =( )
1 + 1 =( )3 + 1 =( )2 + 3 =( )1 + 4 =( )
1 + 2 =( )3 - 2 =( )4 - 3 =( )2 - 2 =( )
1 + 1 =( )2 - 1 =( )3 - 1 =( )4 + 1 =( )
2 - 2 =( )4 - 2 =( )3 - 3 =( )2 + 3 =( )
4 - 3 =( )2 + 2 =( )3 - 2 =( )2 + 2 =( )
4 - 4 =( )3 - 1 =( )2 + 2 =( )3 - 2 =( )
4 - 4 =( )2 + 3 =( )3 + 1 =( )3 + 1 =( )
1 - 1 =( )4 - 3 =( )4 - 1 =( )4 + 1 =( )
3 + 1 =( )1 + 2 =( )4 - 2 =( )2 - 2 =( )
3 - 1 =( )3 + 1 =( )4 + 1 =( )1 + 1 =( )
2 + 2 =( )1 - 1 =( )3 + 1 =( )2 + 1 =( )
數學學習方法 技巧
.復習是一個鞏固和改進你所學到的東西的過程
三十二知道事情應該是什麼意味著你是聰明的;知道事情是什麼,你是有 經驗 的;知道如何使事情變得更好意味著你是有才華的
人們常說,時間就是生命,所以要控制時間控制的生活,學會管理自己的時間,我們可以做時間的主人、生活的主人,自己的主人
碎片似乎是麻煩,但實際上它是非常有效的,因為它符合人腦記憶的規則,但可以節省時間
.隱喻可以將枯燥的知識轉化為生動有趣的知識教師總是善於運用隱喻來加深學生的理解學生也應該善於使用隱喻來幫助他們記憶
.深入理解的基礎是深層記憶,以理解和應用記憶的方式教學知識是最合適的,如果有類似的公式、定理等,可以用列表記憶的方式進行比較
.不要把學習看成是一個枯燥的 邏輯思維 過程,在自己的學習生活中,大膽運用 想像力 ,對提高學業成績很有幫助
如果我們把每節課都看成是一場小小的戰斗,那麼在課前進行充分的預習是非常必要的,就像戰前的警察一樣
歲面對挫折,有意識地調整自己的心理狀態,不要專注於痛苦的經驗
四十保持健康,保持機體活力,是一項持久的工作,應注重培養自己的良好習慣,堅持鍛煉,保證生活節欲有序
.學會清理和表達自己的情緒和情緒,了解情緒與身心健康之間的巨大關系,學會調節和控制自己的情緒,擁有健康快樂的青春
學習是一項長期而艱巨的腦力勞動如果學習過於緊張,持續時間過長,就會導致學習疲勞
.學習疲勞不僅會影響你的學習效率,更重要的是過度的學習疲勞也會傷害你的身體,影響你的健康
.俗話說,一分鍾辛苦,一分鍾收獲要長大,我們必須付出努力,學習不是一件容易的事情,為了取得好的結果,我們必須付出相應的勞動
.數字與形式的內在關系,特別是其本質屬性和科學規律,僅靠感覺、感知或表象是難以理解的只有通過思考,它們才能被深刻地理解和牢牢地抓住
.一個人不僅要靠與生俱來的東西,還要靠他從學習中學到的東西來塑造自己
、急功近利容易導致失敗,學習應循序漸進
針對不同類型的問題,我們可以使用各種各樣的方法,在實踐中根據實際情況選擇正確的方法,它可以節省時間和精力完成的問題
.聽課教師應始終遵循思路,善於掌握教師講解中的關鍵詞,建立自己的知識結構
五十通過對上節課解題過程中的分析推理過程進行 反思 和提煉,有助於理解新課程的內容
使用圖表進行比較和復習可以幫助我們准確地、准確地復習知識
.對於具有明顯遞進關系的知識,可以繪制知識電路圖
.做練習是鞏固知識最有效的方法,是學習過程中的一個重要環節
.不要以為教科書上的老師說過,即使過去,要知道這些例子往往是的考試,你的基礎知識是否掌握牢固
.問題後思維是提高知識水平、深化思維深度、提高思維緊張度的有效途徑
.將已完成的結果替換為問題,看原問題所給出的已知量是否可以反向求解,或者從得到的結論到已知條件是否與原問題的已知條件一致
「做一個好工作,必須首先加強他的「——好學生非常善於使用學習材料來鞏固記憶,從而提高成績
.教科書一直是學生學習的重點因此,我們不僅要把握教科書中的概念和公式,而且不能忽視教科書中的一些細節
.參考書上不需要做三類問題:完全掌握的問題不必做,超出考試大綱的問題不必做,太奇怪的問題不必做
教師提問往往是相關知識、難點或學生容易犯錯的地方當其他學生說話時,他們應該注意聽,聽和分析
一年級數學重要基礎知識點相關 文章 :
★ 一年級數學的學習重點
★ 一年級數學重點知識點總結
★ 小學一年級數學重點知識點總結
★ 小學一年級數學知識點
★ 一年級數學知識點難點及學習方法總結
★ 一年級數學上冊知識點學習
★ 一年級數學上冊知識點
★ 小學一年級,數學學習方法與知識點總結
★ 各年級數學學習方法大全