❶ 高中數學知識點總結
《高中數學基礎知識梳理(數學小飛俠)》網路網盤免費下載
鏈接:
資源目錄
01.集合例題講解.mp4
01.集合進階.mp4
02函數的值域.mp4
03函數的定義域與解析式.mp4
04函數的單調性.mp4
04函數的奇偶性.mp4
05指數運算與指數函數.mp4
07對數運算與對數函數.mp4
08冪函數突破.mp4
09函數零點專題.mp4
10含參二次函數與不等式專題.mp4
11二次函數根的分布專題.mp4
12空間幾何體.mp4
13點線面位置關系進階.mp4
14平行關系突破.mp4
15垂直關系突破.mp4
16空間幾何關系綜合.mp4
17直線方程突破.mp4
18圓的方程突破.mp4
19演算法初步.mp4
20演算法語句與演算法案例.mp4
21數據的收集與頻率分布.mp4
22常用統計量與相關關系.mp4
23古典概型概率.mp4
24幾何概型概率.mp4
25任意角重難點.mp4
26三角函數定義與誘導公式.mp4
27三角函數圖像及性質.mp4
28平面向量幾何運算.mp4
29平面向量代數運算.mp4
30.三角恆等變換.mp4
31.三角函數計算專題.mp4
32.正弦定理與餘弦定理.mp4
33.等差數列突破.mp4
34.等比數列突破.mp4
35.數列通項公式專題 .mp4
36.數列求和公式專題 .mp4
37.二次不等式與分式不等式.mp4
38.線性規劃問題.mp4
39.基本不等式突破.mp4
40.邏輯用語專題.mp4
41.橢圓方程及其幾何性質.mp4
42.雙曲線方程及其性質.mp4
43.拋物線方程及其性質.mp4
44.直線與圓錐曲線綜合.mp4
45.空間向量突破.mp4
46.導數的計算專題.mp4
47.導數的應用.mp4
48.導數的應用(二).mp4
49.定積分與微積分.mp4
50.復數專題.mp4
51.排列組合.mp4
52.二項式定理.mp4
53.隨機變數及其變數.mp4
54回歸分析與獨立性檢驗.mp4
資源目錄
01.集合例題講解.mp4
01.集合進階.mp4
02函數的值域.mp4
03函數的定義域與解析式.mp4
04函數的單調性.mp4
04函數的奇偶性.mp4
05指數運算與指數函數.mp4
07對數運算與對數函數.mp4
08冪函數突破.mp4
09函數零點專題.mp4
10含參二次函數與不等式專題.mp4
11二次函數根的分布專題.mp4
12空間幾何體.mp4
13點線面位置關系進階.mp4
14平行關系突破.mp4
15垂直關系突破.mp4
16空間幾何關系綜合.mp4
17直線方程突破.mp4
18圓的方程突破.mp4
19演算法初步.mp4
20演算法語句與演算法案例.mp4
21數據的收集與頻率分布.mp4
22常用統計量與相關關系.mp4
23古典概型概率.mp4
24幾何概型概率.mp4
25任意角重難點.mp4
26三角函數定義與誘導公式.mp4
27三角函數圖像及性質.mp4
28平面向量幾何運算.mp4
29平面向量代數運算.mp4
30.三角恆等變換.mp4
31.三角函數計算專題.mp4
32.正弦定理與餘弦定理.mp4
33.等差數列突破.mp4
34.等比數列突破.mp4
35.數列通項公式專題 .mp4
36.數列求和公式專題 .mp4
37.二次不等式與分式不等式.mp4
38.線性規劃問題.mp4
39.基本不等式突破.mp4
40.邏輯用語專題.mp4
41.橢圓方程及其幾何性質.mp4
42.雙曲線方程及其性質.mp4
43.拋物線方程及其性質.mp4
44.直線與圓錐曲線綜合.mp4
45.空間向量突破.mp4
46.導數的計算專題.mp4
47.導數的應用.mp4
48.導數的應用(二).mp4
49.定積分與微積分.mp4
50.復數專題.mp4
51.排列組合.mp4
52.二項式定理.mp4
53.隨機變數及其變數.mp4
54回歸分析與獨立性檢驗.mp4
❷ 高中數學知識點大全
有的學生認為高中數學難做難做。其實高中數學整體上很簡單,很簡單,很多知識只要讀兩遍就可以了。下面是我整理的高中數學知識點大全,希望對你們有所幫助!
高中數學知識點
1、基本初等函數
指數、對數、冪函數三大函數的運算性質及圖像
函數的幾大要素和相關考點基本都在函數圖像上有所體現,單調性、增減性、極值、零點等等。關於這三大函數的運算公式,多記多用,多做一點練習,基本就沒問題。
函數圖像是這一章的重難點,而且圖像問題是不能靠記憶的,必須要理解,要會熟練的畫出函數圖像,定義域、值域、零點等等。對於冪函數還要搞清楚當指數冪大於一和小於一時圖像的不同及函數值的大小關系,這也是常考點。另外指數函數和對數函數的對立關系及其相互之間要怎樣轉化等問題,需要著重回看課本例題。
2、函數的應用
這一章主要考是函數與方程的結合,其實就是函數的零點,也就是函數圖像與X軸的交點。這三者之間的轉化關系是這一章的重點,要學會在這三者之間靈活轉化,以求能最簡單的解決問題。關於證明零點的 方法 ,直接計算加得必有零點,連續函數在x軸上方下方有定義則有零點等等,這些難點對應的證明方法都要記住,多練習。二次函數的零點的Δ判別法,這個需要你看懂定義,多畫多做題。
3、空間幾何
三視圖和直觀圖的繪制不算難,但是從三視圖復原出實物從而計算就需要比較強的空間感,要能從三張平面圖中慢慢在腦海中畫出實物,這就要求學生特別是空間感弱的學生多看書上的例圖,把實物圖和平面圖結合起來看,先熟練地正推,再慢慢的逆推(建議用紙做一個立方體來找感覺)。
在做題時結合草圖是有必要的,不能單憑想像。後面的錐體、柱體、台體的表面積和體積,把公式記牢問題就不大。
4、點、直線、平面之間的位置關系
這一章除了面與面的相交外,對空間概念的要求不強,大部分都可以直接畫圖,這就要求學生多看圖。自己畫草圖的時候要嚴格注意好實線虛線,這是個規范性問題。
關於這一章的內容,牢記直線與直線、面與面、直線與 面相 交、垂直、平行的幾大定理及幾大性質,同時能用圖形語言、文字語言、數學表達式表示出來。只要這些全部過關這一章就解決了一大半。這一章的難點在於二面角這個概念,大多同學即使知道有這個概念,也無法理解怎麼在二面裡面做出這個角。對這種情況只有從定義入手,先要把定義記牢,再多做多看,這個沒有什麼捷徑可走。
5、圓與方程
能熟練地把一般式方程轉化為標准方程,通常的考試形式是等式的一邊含根號,另一邊不含,這時就要注意開方後定義域或值域的限制。通過點到點的距離、點到直線的距離、圓半徑的大小關系來判斷點與圓、直線與圓、圓與圓的位置關系。另外注意圓的對稱性引起的相切、相交等的多種情況,自己把幾種對稱的形式羅列出來,多思考就不難理解了。
6、三角函數
考試必在這一塊出題,且題量不小!誘導公式和基本三角函數圖像的一些性質,沒有太大難度,只要會畫圖就行。難度都在三角函數形函數的振幅、頻率、周期、相位、初相上,及根據最值計算A、B的值和周期,及恆等變化時的圖像及性質變化,這部分的知識點內容較多,需要多花時間,不要再定義上死扣,要從圖像和例題入手。
7、平面向量
向量的運算性質及三角形法則、平行四邊形法則的難度都不大,只要在計算的時候記住要「同起點的向量」這一條就OK了。向量共線和垂直的數學表達,是計算當中經常用到的公式。向量的共線定理、基本定理、數量積公式。分點坐標公式是重點內容,也是難點內容,要花心思記憶。
8、三角恆等變換
這一章公式特別多,像差倍半形公式這類內容常會出現,所以必須要記牢。由於量比較大,記憶難度大,所以建議用紙寫好後貼在桌子上,天天都要看。要提一點,就是三角恆等變換是有一定規律的,記憶的時候可以集合三角函數去記。
9、解三角形
掌握正弦、餘弦公式及其變式、推論、三角面積公式即可。
10、數列
等差、等比數列的通項公式、前n項及一些性質常出現於填空、解答題中,這部分內容學起來比較簡單,但考驗對其推導、計算、活用的層面較深,因此要仔細。考試題中,通項公式、前n項和的內容出現頻次較多,這類題看到後要帶有目的的去推導就沒問題了。
11、不等式
這一章一般用線性規劃的形式來考察學生,這種題通常是和實際問題聯系的,所以要會讀題,從題中找不等式,畫出線性規劃圖,然後再根據實際問題的限制要求來求最值。
高中數學公式大全
乘法與因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根與系數的關系 X1+X2=-b/a X1_X2=c/a 註:韋達定理
判別式
b2-4ac=0 註:方程有兩個相等的實根
b2-4ac>0 註:方程有兩個不等的實根
b2-4ac<0 註:方程沒有實根,有共軛復數根
三角函數公式
兩角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半形公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化積
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
某些數列前n項和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1_2+2_3+3_4+4_5+5_6+6_7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 註: 其中 R 表示三角形的外接圓半徑
餘弦定理 b2=a2+c2-2accosB 註:角B是邊a和邊c的夾角
圓的標准方程 (x-a)2+(y-b)2=r2 註:(a,b)是圓心坐標
圓的一般方程 x2+y2+Dx+Ey+F=0 註:D2+E2-4F>0
拋物線標准方程 y2=2px y2=-2px x2=2py x2=-2py
直稜柱側面積 S=c_h 斜稜柱側面積 S=c'_h
正棱錐側面積 S=1/2c_h' 正稜台側面積 S=1/2(c+c')h'
圓台側面積 S=1/2(c+c')l=pi(R+r)l 球的表面積 S=4pi_r2
圓柱側面積 S=c_h=2pi_h 圓錐側面積 S=1/2_c_l=pi_r_l
弧長公式 l=a_r a是圓心角的弧度數r >0 扇形面積公式 s=1/2_l_r
錐體體積公式 V=1/3_S_H 圓錐體體積公式 V=1/3_pi_r2h
斜稜柱體積 V=S'L 註:其中,S'是直截面面積, L是側棱長
柱體體積公式 V=s_h 圓柱體 V=pi_r2h
高考前數學知識點 總結
選擇填空題
1、易錯點歸納:
九大模塊易混淆難記憶考點分析,如概率和頻率概念混淆、數列求和公式記憶錯誤等,強化基礎知識點記憶,避開因為知識點失誤造成的客觀性解題錯誤。
針對審題、解題思路不嚴謹如集合題型未考慮空集情況、函數問題未考慮定義域等主觀性因素造成的失誤進行專項訓練。
2、答題方法:
選擇題十大速解方法:
排除法、增加條件法、以小見大法、極限法、關鍵點法、對稱法、小結論法、歸納法、感覺法、分析選項法;
填空題四大速解方法:直接法、特殊化法、數形結合法、等價轉化法。
解答題
專題一、三角變換與三角函數的性質問題
1、解題路線圖
①不同角化同角
②降冪擴角
③化f(x)=Asin(ωx+φ)+h
④結合性質求解。
2、構建答題模板
①化簡:三角函數式的化簡,一般化成y=Asin(ωx+φ)+h的形式,即化為「一角、一次、一函數」的形式。
②整體代換:將ωx+φ看作一個整體,利用y=sin x,y=cos x的性質確定條件。
③求解:利用ωx+φ的范圍求條件解得函數y=Asin(ωx+φ)+h的性質,寫出結果。
④ 反思 :反思回顧,查看關鍵點,易錯點,對結果進行估算,檢查規范性。
專題二、解三角形問題
1、解題路線圖
(1) ①化簡變形;②用餘弦定理轉化為邊的關系;③變形證明。
(2) ①用餘弦定理表示角;②用基本不等式求范圍;③確定角的取值范圍。
2、構建答題模板
①定條件:即確定三角形中的已知和所求,在圖形中標注出來,然後確定轉化的方向。
②定工具:即根據條件和所求,合理選擇轉化的工具,實施邊角之間的互化。
③求結果。
④再反思:在實施邊角互化的時候應注意轉化的方向,一般有兩種思路:一是全部轉化為邊之間的關系;二是全部轉化為角之間的關系,然後進行恆等變形。
專題三、數列的通項、求和問題
1、解題路線圖
①先求某一項,或者找到數列的關系式。
②求通項公式。
③求數列和通式。
2、構建答題模板
①找遞推:根據已知條件確定數列相鄰兩項之間的關系,即找數列的遞推公式。
②求通項:根據數列遞推公式轉化為等差或等比數列求通項公式,或利用累加法或累乘法求通項公式。
③定方法:根據數列表達式的結構特徵確定求和方法(如公式法、裂項相消法、錯位相減法、分組法等)。
④寫步驟:規范寫出求和步驟。
⑤再反思:反思回顧,查看關鍵點、易錯點及解題規范。
專題四、利用空間向量求角問題
1、解題路線圖
①建立坐標系,並用坐標來表示向量。
②空間向量的坐標運算。
③用向量工具求空間的角和距離。
2、構建答題模板
①找垂直:找出(或作出)具有公共交點的三條兩兩垂直的直線。
②寫坐標:建立空間直角坐標系,寫出特徵點坐標。
③求向量:求直線的方向向量或平面的'法向量。
④求夾角:計算向量的夾角。
⑤得結論:得到所求兩個平面所成的角或直線和平面所成的角。
專題五、圓錐曲線中的范圍問題
1、解題路線圖
①設方程。
②解系數。
③得結論。
2、構建答題模板
①提關系:從題設條件中提取不等關系式。
②找函數:用一個變數表示目標變數,代入不等關系式。
③得范圍:通過求解含目標變數的不等式,得所求參數的范圍。
④再回顧:注意目標變數的范圍所受題中其他因素的制約。
專題六、解析幾何中的探索性問題
1、解題路線圖
①一般先假設這種情況成立(點存在、直線存在、位置關系存在等)
②將上面的假設代入已知條件求解。
③得出結論。
2、構建答題模板
①先假定:假設結論成立。
②再推理:以假設結論成立為條件,進行推理求解。
③下結論:若推出合理結果, 經驗 證成立則肯。 定假設;若推出矛盾則否定假設。
④再回顧:查看關鍵點,易錯點(特殊情況、隱含條件等),審視解題規范性。
專題七、離散型隨機變數的均值與方差
1、解題路線圖
(1)①標記事件;②對事件分解;③計算概率。
(2)①確定ξ取值;②計算概率;③得分布列;④求數學期望。
2、構建答題模板
①定元:根據已知條件確定離散型隨機變數的取值。
②定性:明確每個隨機變數取值所對應的事件。
③定型:確定事件的概率模型和計算公式。
④計算:計算隨機變數取每一個值的概率。
⑤列表:列出分布列。
⑥求解:根據均值、方差公式求解其值。
專題八、函數的單調性、極值、最值問題
1、解題路線圖
(1)①先對函數求導;②計算出某一點的斜率;③得出切線方程。
(2)①先對函數求導;②談論導數的正負性;③列表觀察原函數值;④得到原函數的單調區間和極值。
2、構建答題模板
①求導數:求f(x)的導數f′(x)。(注意f(x)的定義域)
②解方程:解f′(x)=0,得方程的根
③列表格:利用f′(x)=0的根將f(x)定義域分成若干個小開區間,並列出表格。
④得結論:從表格觀察f(x)的單調性、極值、最值等。
⑤再回顧:對需討論根的大小問題要特殊注意,另外觀察f(x)的間斷點及步驟規范性。
以上模板僅供參考,希望大家能針對自己的情況整理出來最適合的「套路」。
高中數學 學習心得
數學是一們基礎學科,我們從小就開始接觸到它。現在我們已經步入高中,由於高中數學對知識的難度、深度、廣度要求更高,有一部分同學由於不適應這種變化,數學成績總是不如人意。甚至產生這樣的困惑:「我在初中時數學成績很好,可現在怎麼了?」其實,學習是一個不斷接收新知識的過程。正是由於你在進入高中後 學習方法 或 學習態度 的影響,才會造成學得累死而成績不好的後果。那麼,究竟該如何學好高中數學呢?以下我談談我的高中數學學習心得。
一、 認清學習的能力狀態。
1、 心理素質。我們在高中學習環境下取決於我們是否具有面對挫折、冷靜分析問題的辦法。當我們面對困難時不應產生畏懼感,面對失敗時不應灰心喪氣,而要勇於正視自己,及時作出總結教訓,改變學習方法。
2、 學習方式、習慣的反思與認識。(1) 學習的主動性。我們在進入高中以後,不能還像初中時那樣有很強的依賴心理,不訂 學習計劃 ,坐等上課,課前不預習,上課忙於記筆記而忽略了真正的聽課,顧此失彼,被動學習。(2) 學習的條理性。我們在每學習一課內容時,要學會將知識有條理地分為若干類,剖析概念的內涵外延,重點難點要突出。不要忙於記筆記,而對要點沒有聽清楚或聽不全。筆記記了一大摞,問題也有一大堆。如果還不能及時鞏固、總結,而忙於套著題型趕作業,對概念、定理、公式不能理解而死記硬背,則會事倍功半,收效甚微。(3) 忽視基礎。在我身邊,常有些「自我感覺良好」的同學,忽視基礎知識、基本技能和基本方法,不能牢牢地抓住課本,而是偏重於對難題的攻解,好高騖遠,重「量」而輕「質」,陷入題海,往往在考試中不是演算錯誤就是中途「卡殼」。(4) 不良習慣。主要有對答案,卷面書寫不工整,格式不規范,不相信自己的結論,缺乏對問題解決的信心和決心,遇到問題不能獨立思考,養成一種依賴於老師解說的心理,做作業不講究效率,學習效率不高。
二、 努力提高自己的學習能力。
1、 抓要點提高學習效率。(1) 抓教材處理。正所謂「萬變不離其中」。要知道,教材始終是我們學習的根本依據。教學是活的,思維也是活的,學習能力是隨著知識的積累而同時形成的。我們要通過老師教學,理解所學內容在教材中的地位,並將前後知識聯系起來,把握教材,才能掌握學習的主動性。(2) 抓問題暴露。對於那些典型的問題,必須及時解決,而不能把問題遺留下來,而要對遺留的問題及時、有效的解決。(3) 抓 思維訓練 。數學的特點是具有高度的抽象性、邏輯性和廣泛的適用性,對能力要求較高。我們在平時的訓練中,要注重一個思維的過程,學習能力是在不斷運用中才能培養出來的。(5) 抓45分鍾課堂效率。我們學習的大部分時間都在學校,如果不能很好地抓住課堂時間,而寄希望於課外去補,則會使學習效率大打折扣。
高中數學知識點大全相關 文章 :
★ 高二數學知識點總結
★ 高一數學必修一知識點匯總
★ 高中數學學習方法:知識點總結最全版
★ 高中數學知識點總結
★ 高一數學知識點總結歸納
★ 高三數學知識點考點總結大全
★ 高中數學基礎知識大全
★ 高三數學知識點梳理匯總
★ 高中數學必考知識點歸納整理
★ 高一數學知識點總結期末必備
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();❸ 高中數學知識點最全總結
高考數學考試要取得好成績,一方面要有扎實的基本功、熟練的計算能力,同時還要有一定的答題技巧。下面是我給大家帶來的高中數學知識點最全 總結 ,以供大家參考!
數學重點知識點及答題技巧總結
一、高考數學必考題型 之 函數與導數
考查集合運算、函數的有關概念定義域、值域、解析式、函數的極限、連續、導數。
函數與導數單調性
若導數大於零,則單調遞增;若導數小於零,則單調遞減;導數等於零為函數駐點,不一定為極值點。需代入駐點左右兩邊的數值求導數正負判斷單調性。
若已知函數為遞增函數,則導數大於等於零;若已知函數為遞減函數,則導數小於等於零。
二、高考數學必考題型 之 幾何
公理1:如果一條直線上的兩點在一個平面內,那麼這條直線上所有的點在此平面內
公理2:過不在同一條直線上的三點,有且只有一個平面
公理3:如果兩個不重合的平面有一個公共點,那麼它們有且只有一條過該點的公共直線
公理4:平行於同一條直線的兩條直線互相平行
定理:空間中如果一個角的兩邊與另一個角的兩邊分別平行,那麼這兩個角相等或互補
判定定理:
如果平面外一條直線與此平面內的一條直線平行,那麼該直線與此平面平行 「線面平行」
如果一個平面內的兩條相交直線與另一個平面都平行,那麼這兩個平面平行「面面平行」
如果一條直線與一個平面內的兩條相交直線都垂直,那麼該直線與此平面垂直「線面垂直」
如果一個平面經過另一個平面的垂線,那麼這兩個平面互相垂直「面面垂直」
三、高考數學必考題型 之 不等式
對稱性
傳遞性
加法單調性,即同向不等式可加性
乘法單調性
同向正值不等式可乘性
正值不等式可乘方
正值不等式可開方
倒數法則
四、高考數學必考題型 之 數列
(1)理解數列的概念,了解數列通項公式的意義了解遞推公式是給出數列的一種 方法 ,並能根據遞推公式寫出數列的前幾項。
(2)理解等差數列的概念,掌握等差數列的通項公式與前n項和公式,並能解決簡單的實際問題。
(3)理解等比數列的概念,掌握等比數列的通項公式與前n項和公式,井能解決簡單的實際問題。
必背公式
1、一元二次方程的解
-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a
根與系數的關系x1+x2=-b/ax1x2=c/a註:韋達定理
判別式b2-4a=0註:方程有相等的兩實根
b2-4ac>0註:方程有兩個不相等的個實根
b2-4ac<0註:方程有共軛復數根
2、立體圖形及平面圖形的公式
圓的標准方程(x-a)2+(y-b)2=r2註:(a,b)是圓心坐標
圓的一般方程x2+y2+Dx+Ey+F=0註:D2+E2-4F>0
拋物線標准方程y2=2pxy2=-2px2=2pyx2=-2py
直稜柱側面積S=cxh斜稜柱側面積S=c'xh
正棱錐側面積S=1/2cxh'正稜台側面積S=1/2(c+c')h'
圓台側面積S=1/2(c+c')l=pi(R+r)l球的表面積S=4pixr2
圓柱側面積S=cxh=2pixh圓錐側面積S=1/2xcxl=pixrxl
弧長公式l=axra是圓心角的弧度數r>0扇形面積公式s=1/2xlxr
錐體體積公式V=1/3xSxH圓錐體體積公式V=1/3xpixr2h
斜稜柱體積V=S'L註:其中,S'是直截面面積,L是側棱長
柱體體積公式V=sxh圓柱體V=pixr2h
3、圖形周長、面積、體積公式
長方形的周長=(長+寬)×2
正方形的周長=邊長×4
長方形的面積=長×寬
正方形的面積=邊長×邊長
三角形的面積
已知三角形底a,高h,則S=ah/2
已知三角形三邊a,b,c,半周長p,則S=√[p(p-a)(p-b)(p-c)](海倫公式)(p=(a+b+c)/2)
和:(a+b+c)x(a+b-c)x1/4
已知三角形兩邊a,b,這兩邊夾角C,則S=absinC/2
設三角形三邊分別為a、b、c,內切圓半徑為r
則三角形面積=(a+b+c)r/2
設三角形三邊分別為a、b、c,外接圓半徑為r
則三角形面積=abc/4r
常用的三角函數公式
兩角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半形公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化積
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
高考應試技巧
技巧一提前進入「角色」
考前晚上要睡足八個小時,早晨最好吃些清淡的早餐,帶齊一切高考用具,如筆、橡皮、作圖工具、身分證、准考證等。
提前半小時到達高考考區,一方面可以消除新異刺激,穩定情緒,從容進場,另一方面也留有時間提前進入「角色」讓大腦開始簡單的數學活動。回憶一下高考數學常用公式,有助於高考數學超常發揮。
技巧二情緒要自控
最易導致高考心理緊張、焦慮和恐懼的是入場後與答卷前的「臨戰」階段,此間保持心態平衡的方法有三種
轉移注意法:把注意力轉移到對你感興趣的事情上或滑稽事情的回憶中。
自我安慰法:如「我經過的考試多了,沒什麼了不起」等。
抑制思維法:閉目而坐,氣貫丹田,四肢放鬆,深呼吸,慢吐氣,如此進行到高考發卷時。
技巧三摸透「題情」
剛拿到高考數學試卷,不要匆匆作答,可先從頭到尾通覽全卷,通覽全卷是克服「前面難題做不出,後面易題沒時間做」的有效 措施 ,也從根本上防止了「漏做題」。
從高考數學卷面上獲取最多的信息,為實施正確的解題策略作準備,順利解答那些一眼看得出結論的簡單選擇或填空題,這樣可以使緊張的情緒立即穩定,使高考數學能夠超常發揮。
技巧四信心要充足,暗示靠自己
高考數學答卷中,見到簡單題,要細心,莫忘乎所以,謹防「大意失荊州」。面對偏難的題,要耐心,不能急。
考試全程都要確定「人家會的我也會,人家不會的我也會」的必勝信念,使自己始終處於最佳競技狀態
技巧五數學答題有先有後
1、答題應先易後難,先做簡單的數學題,再做復雜的數學題;根據自己的實際情況,跳過實在沒有思路的高考數學題,從易到難。
2、先高分後低分,在高考數學考試的後半段時要特別注重時間,如兩道題都會做,先做高分題,後做低分題,對那些拿不下來的數學難題也就是高分題應「分段得分」,以增加在時間不足前提下的得到更多的分,這樣在高考中就會增加數學超常發揮的幾率。
高中數學知識點最全總結相關 文章 :
★ 高中數學知識點歸納最新
★ 高中數學基本知識點最新
★ 高一數學知識點全面總結
★ 高中數學知識點總結
★ 高中數學知識點:橢圓方程式知識點總結
★ 高一數學考試基礎知識點
★ 高中數學必修一三角函數知識點總結
★ 高中數學知識點:平面向量的公式的知識點總結
★ 高中數學全部知識點提綱整理
★ 人教版高中數學知識點總結最新
❹ 高中數學知識點總結(最全版)(強烈推薦)
鏈接:
高中數學基礎知識梳理(數學小飛俠)
❺ 高中數學的總結!要求簡單易懂,針對與幾乎零基礎的同學!!!整理下拜託了!!!!!
一、《集合與函數》 內容子交並補集,還有冪指對函數。性質奇偶與增減,觀察圖象最明顯。 復合函數式出現,性質乘法法則辨,若要詳細證明它,還須將那定義抓。 指數與對數函數,兩者互為反函數。底數非1的正數,1兩邊增減變故。 函數定義域好求。分母不能等於0,偶次方根須非負,零和負數無對數; 正切函數角不直,餘切函數角不平;其餘函數實數集,多種情況求交集。 兩個互為反函數,單調性質都相同;圖象互為軸對稱,Y=X是對稱軸; 求解非常有規律,反解換元定義域;反函數的定義域,原來函數的值域。 冪函數性質易記,指數化既約分數;函數性質看指數,奇母奇子奇函數, 奇母偶子偶函數,偶母非奇偶函數;圖象第一象限內,函數增減看正負。 二、《三角函數》 三角函數是函數,象限符號坐標注。函數圖象單位圓,周期奇偶增減現。 同角關系很重要,化簡證明都需要。正六邊形頂點處,從上到下弦切割; 中心記上數字1,連結頂點三角形;向下三角平方和,倒數關系是對角, 頂點任意一函數,等於後面兩根除。誘導公式就是好,負化正後大化小, 變成稅角好查表,化簡證明少不了。二的一半整數倍,奇數化余偶不變, 將其後者視銳角,符號原來函數判。兩角和的餘弦值,化為單角好求值, 餘弦積減正弦積,換角變形眾公式。和差化積須同名,互餘角度變名稱。 計算證明角先行,注意結構函數名,保持基本量不變,繁難向著簡易變。 逆反原則作指導,升冪降次和差積。條件等式的證明,方程思想指路明。 萬能公式不一般,化為有理式居先。公式順用和逆用,變形運用加巧用; 1加餘弦想餘弦,1 減餘弦想正弦,冪升一次角減半,升冪降次它為范; 三角函數反函數,實質就是求角度,先求三角函數值,再判角取值范圍; 利用直角三角形,形象直觀好換名,簡單三角的方程,化為最簡求解集; 三、《不等式》 解不等式的途徑,利用函數的性質。對指無理不等式,化為有理不等式。 高次向著低次代,步步轉化要等價。數形之間互轉化,幫助解答作用大。 證不等式的方法,實數性質威力大。求差與0比大小,作商和1爭高下。 直接困難分析好,思路清晰綜合法。非負常用基本式,正面難則反證法。 還有重要不等式,以及數學歸納法。圖形函數來幫助,畫圖建模構造法。 四、《數列》 等差等比兩數列,通項公式N項和。兩個有限求極限,四則運算順序換。 數列問題多變幻,方程化歸整體算。數列求和比較難,錯位相消巧轉換, 取長補短高斯法,裂項求和公式算。歸納思想非常好,編個程序好思考: 一算二看三聯想,猜測證明不可少。還有數學歸納法,證明步驟程序化: 首先驗證再假定,從 K向著K加1,推論過程須詳盡,歸納原理來肯定。 五、《復數》 虛數單位i一出,數集擴大到復數。一個復數一對數,橫縱坐標實虛部。 對應復平面上點,原點與它連成箭。箭桿與X軸正向,所成便是輻角度。 箭桿的長即是模,常將數形來結合。代數幾何三角式,相互轉化試一試。 代數運算的實質,有i多項式運算。i的正整數次慕,四個數值周期現。 一些重要的結論,熟記巧用得結果。虛實互化本領大,復數相等來轉化。 利用方程思想解,注意整體代換術。幾何運算圖上看,加法平行四邊形, 減法三角法則判;乘法除法的運算,逆向順向做旋轉,伸縮全年模長短。 三角形式的運算,須將輻角和模辨。利用棣莫弗公式,乘方開方極方便。 輻角運算很奇特,和差是由積商得。四條性質離不得,相等和模與共軛, 兩個不會為實數,比較大小要不得。復數實數很密切,須注意本質區別。 六、《排列、組合、二項式定理》 加法乘法兩原理,貫穿始終的法則。與序無關是組合,要求有序是排列。 兩個公式兩性質,兩種思想和方法。歸納出排列組合,應用問題須轉化。 排列組合在一起,先選後排是常理。特殊元素和位置,首先注意多考慮。 不重不漏多思考,捆綁插空是技巧。排列組合恆等式,定義證明建模試。 關於二項式定理,中國楊輝三角形。兩條性質兩公式,函數賦值變換式。 七、《立體幾何》 點線面三位一體,柱錐檯球為代表。距離都從點出發,角度皆為線線成。 高中《立體幾何》
垂直平行是重點,證明須弄清概念。線線線面和面面、三對之間循環現。 方程思想整體求,化歸意識動割補。計算之前須證明,畫好移出的圖形。 立體幾何輔助線,常用垂線和平面。射影概念很重要,對於解題最關鍵。 異面直線二面角,體積射影公式活。公理性質三垂線,解決問題一大片。 八、《平面解析幾何》 有向線段直線圓,橢圓雙曲拋物線,參數方程極坐標,數形結合稱典範。 笛卡爾的觀點對,點和有序實數對,兩者—一來對應,開創幾何新途徑。 兩種思想相輝映,化歸思想打前陣;都說待定系數法,實為方程組思想。 三種類型集大成,畫出曲線求方程,給了方程作曲線,曲線位置關系判。 四件工具是法寶,坐標思想參數好;平面幾何不能丟,旋轉變換復數求。 解析幾何是幾何,得意忘形學不活。圖形直觀數入微,數學本是數形學。
編輯本段數學 必修1
1. 集合
(約4課時) (1)集合的含義與表示 ①通過實例,了解集合的含義,體會元素與集合的「屬於」關系。 ②能選擇自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題,感受集合語言的意義和作用。 (2)集合間的基本關系 ①理解集合之間包含與相等的含義,能識別給定集合的子集。 ②在具體情境中,了解全集與空集的含義。 (3)集合的基本運算 ①理解兩個集合的並集與交集的含義,會求兩個簡單集合的並集與交集。 ②理解在給定集合中一個子集的補集的含義,會求給定子集的補集。 ③能使用Venn圖表達集合的關系及運算,體會直觀圖示對理解抽象概念的作用。
2. 函數概念與基本初等函數I
(約32課時) (1)函數 ①進一步體會函數是描述變數之間的依賴關系的重要數學模型,在此基礎上學慣用集合與對應的語言來刻畫函數,體會對應關系在刻畫函數概念中的作用;了解構成函數的要素,會求一些簡單函數的定義域和值域;了解映射的概念。 ②在實際情境中,會根據不同的需要選擇恰當的方法(如圖象法、列表法、解析法)表示函數。 ③了解簡單的分段函數,並能簡單應用。 ④通過已學過的函數特別是二次函數,理解函數的單調性、最大(小)值及其幾何意義;結合具體函數,了解奇偶性的含義。 ⑤學會運用函數圖象理解和研究函數的性質(參見例1)。 (2)指數函數 ①(細胞的分裂,考古中所用的C的衰減,葯物在人體內殘留量的變化等),了解指數函數模型的實際背景。 ②理解有理指數冪的含義,通過具體實例了解實數指數冪的意義,掌握冪的運算。 ③理解指數函數的概念和意義,能藉助計算器或計算機畫出具體指數函數的圖象,探索並理解指數函數的單調性與特殊點。 ④在解決簡單實際問題的過程中,體會指數函數是一類重要的函數模型(參見例2)。 (3)對數函數 ①理解對數的概念及其運算性質,知道用換底公式能將一般對數轉化成自然對數或常用對數;通過閱讀材料,了解對數的產生歷史以及對簡化運算的作用。 ②通過具體實例,直觀了解對數函數模型所刻畫的數量關系,初步理解對數函數的概念,體會對數函數是一類重要的函數模型;能藉助計算器或計算機畫出具體對數函數的圖象,探索並了解對數函數的單調性與特殊點。 ③知道指數函數 與對數函數 互為反函數(a>0,a≠1)。 (4)冪函數 通過實例,了解冪函數的概念;結合函數 的圖象,了解它們的變化情況。 (5)函數與方程 ①結合二次函數的圖象,判斷一元二次方程根的存在性及根的個數,從而了解函數的零點與方程根的聯系。 ②根據具體函數的圖象,能夠藉助計算器用二分法求相應方程的近似解,了解這種方法是求方程近似解的常用方法。 (6)函數模型及其應用 ①利用計算工具,比較指數函數、對數函數以及冪函數增長差異;結合實例體會直線上升、指數爆炸、對數增長等不同函數類型增長的含義。 ②收集一些社會生活中普遍使用的函數模型(指數函數、對數函數、冪函數、分段函數等)的實例,了解函數模型的廣泛應用。 (7)實習作業 根據某個主題,收集17世紀前後發生的一些對數學發展起重大作用的歷史事件和人物(開普勒、伽利略、笛卡兒、牛頓、萊布尼茨、歐拉等)的有關資料或現實生活中的函數實例,採取小組合作的方式寫一篇有關函數概念的形成、發展或應用的文章,在班級中進行交流。具體要求參見數學文化的要求。
編輯本段數學 必修2
1. 立體幾何初步
(約18課時) (1)空間幾何體 ①利用實物模型、計算機軟體觀察大量空間圖形,認識柱、錐、台、球及其簡單組合體的結構特徵,並能運用這些特徵描述現實生活中簡單物體的結構。 ②能畫出簡單空間圖形(長方體、球、圓柱、圓錐、稜柱等的簡易組合)的三視圖,能識別上述的三視圖所表示的立體模型,會使用材料(如紙板)製作模型,會用斜二側法畫出它們的直觀圖。 ③通過觀察用兩種方法(平行投影與中心投影)畫出的視圖與直觀圖,了解空間圖形的不同表示形式。 ④完成實習作業,如畫出某些建築的視圖與直觀圖(在不影響圖形特徵的基礎上,尺寸、線條等不作嚴格要求)。 ⑤了解球、稜柱、棱錐、台的表面積和體積的計算公式(不要求記憶公式)。 (2)點、線、面之間的位置關系 ①藉助長方體模型,在直觀認識和理解空間點、線、面的位置關系的基礎上,抽象出空間線、面位置關系的定義,並了解如下可以作為推理依據的公理和定理。 ◆公理1:如果一條直線上的兩點在一個平面內,那麼這條直線在此平面內。 ◆公理2:過不在一條直線上的三點,有且只有一個平面。 ◆公理3:如果兩個不重合的平面有一個公共點,那麼它們有且只有一條過該點的公共直線。 ◆公理4:平行於同一條直線的兩條直線平行。 ◆定理:空間中如果兩個角的兩條邊分別對應平行,那麼這兩個角相等或互補。 ②以立體幾何的上述定義、公理和定理為出發點,通過直觀感知、操作確認、思辨論證,認識和理解空間中線面平行、垂直的有關性質與判定。 操作確認,歸納出以下判定定理。 ◆平面外一條直線與此平面內的一條直線平行,則該直線與此平面平行。 ◆一個平面內的兩條相交直線與另一個平面平行,則這兩個平面平行。 ◆一條直線與一個平面內的兩條相交直線垂直,則該直線與此平面垂直。 ◆一個平面過另一個平面的垂線,則兩個平面垂直。 操作確認,歸納出以下性質定理,並加以證明。 ◆一條直線與一個平面平行,則過該直線的任一個平面與此平面的交線與該直線平行。 ◆兩個平面平行,則任意一個平面與這兩個平面相交所得的交線相互平行。 ◆垂直於同一個平面的兩條直線平行。 ◆兩個平面垂直,則一個平面內垂直於交線的直線與另一個平面垂直。 ③能運用已獲得的結論證明一些空間位置關系的簡單命題。
2. 平面解析幾何初步
(約18課時) (1)直線與方程 ①在平面直角坐標系中,結合具體圖形,探索確定直線位置的幾何要素。 ②理解直線的傾斜角和斜率的概念,經歷用代數方法刻畫直線斜率的過程,掌握過兩點的直線斜率的計算公式。 ③能根據斜率判定兩條直線平行或垂直。 ④根據確定直線位置的幾何要素,探索並掌握直線方程的幾種形式(點斜式、兩點式及一般式),體會斜截式與一次函數的關系。 ⑤能用解方程組的方法求兩直線的交點坐標。 ⑥探索並掌握兩點間的距離公式、點到直線的距離公式,會求兩條平行直線間的距離。 (2)圓與方程 ①回顧確定圓的幾何要素,在平面直角坐標系中,探索並掌握圓的標准方程與一般方程。 ②能根據給定直線、圓的方程,判斷直線與圓、圓與圓的位置關系。 ③能用直線和圓的方程解決一些簡單的問題。 (3)在平面解析幾何初步的學習過程中,體會用代數方法處理幾何問題的思想。 (4)空間直角坐標系 ①通過具體情境,感受建立空間直角坐標系的必要性,了解空間直角坐標系,會用空間直角坐標系刻畫點的位置。 ②通過表示特殊長方體(所有棱分別與坐標軸平行)頂點的坐標,探索並得出空間兩點間的距離公式。
編輯本段數學 必修3
1. 演算法初步
(約12課時) (1)演算法的含義、程序框圖 ①通過對解決具體問題過程與步驟的分析(如二元一次方程組求解等問題),體會演算法的思想,了解演算法的含義。 ②通過模仿、操作、探索,經歷通過設計程序框圖表達解決問題的過程。在具體問題的解決過程中(如三元一次方程組求解等問題),理解程序框圖的三種基本邏輯結構:順序、條件分支、循環。 (2)基本演算法語句:經歷將具體問題的程序框圖轉化為程序語句的過程,理解幾種基本演算法語句——輸入語句、輸出語句、賦值語句、條件語句、循環語句,進一步體會演算法的基本思想。 (3)通過閱讀中國古代數學中的演算法案例,體會中國古代數學對世界數學發展的貢獻。
2. 統計
(約16課時) (1)隨機抽樣 ①能從現實生活或其他學科中提出具有一定價值的統計問題。 ②結合具體的實際問題情境,理解隨機抽樣的必要性和重要性。 ③在參與解決統計問題的過程中,學會用簡單隨機抽樣方法從總體中抽取樣本;通過對實例的分析,了解分層抽樣和系統抽樣方法。 ④能通過試驗、查閱資料、設計調查問卷等方法收集數據。 (2)用樣本估計總體 ①通過實例體會分布的意義和作用,在表示樣本數據的過程中,學會列頻率分布表、畫頻率分布直方圖、頻率折線圖、莖葉圖(參見例1),體會它們各自的特點。 ②通過實例理解樣本數據標准差的意義和作用,學會計算數據標准差。 ③能根據實際問題的需求合理地選取樣本,從樣本數據中提取基本的數字特徵(如平均數、標准差),並作出合理的解釋。 ④在解決統計問題的過程中,進一步體會用樣本估計總體的思想,會用樣本的頻率分布估計總體分布,會用樣本的基本數字特徵估計總體的基本數字特徵;初步體會樣本頻率分布和數字特徵的隨機性。 ⑤會用隨機抽樣的基本方法和樣本估計總體的思想,解決一些簡單的實際問題;能通過對數據的分析為合理的決策提供一些依據,認識統計的作用,體會統計思維與確定性思維的差異。 ⑥形成對數據處理過程進行初步評價的意識。 (3)變數的相關性 ①通過收集現實問題中兩個有關聯變數的數據作出散點圖,並利用散點圖直觀認識變數間的相關關系。 ②經歷用不同估算方法描述兩個變數線性相關的過程。知道最小二乘法的思想,能根據給出的線性回歸方程系數公式建立線性回歸方程(參見例2)。
3. 概率
(約8課時) (1)在具體情境中,了解隨機事件發生的不確定性和頻率的穩定性,進一步了解概率的意義以及頻率與概率的區別。 (2)通過實例,了解兩個互斥事件的概率加法公式。 (3)通過實例,理解古典概型及其概率計算公式,會用列舉法計算一些隨機事件所含的基本事件數及事件發生的概率。 (4)了解隨機數的意義,能運用模擬方法(包括計算器產生隨機數來進行模擬)估計概率,初步體會幾何概型的意義(參見例3)。 (5)通過閱讀材料,了解人類認識隨機現象的過程。
編輯本段數學 必修4
1. 三角函數
(約16課時) (1)任意角、弧度 了解任意角的概念和弧度制,能進行弧度與角度的互化。 (2)三角函數 ①藉助單位圓理解任意角三角函數(正弦、餘弦、正切)的定義。 ②藉助單位圓中的三角函數線推導出誘導公式( 的正弦、餘弦、正切),能畫出 的圖象,了解三角函數的周期性。 ③藉助圖象理解正弦函數、餘弦函數在 ,正切函數在 上的性質(如單調性、最大和最小值、圖象與x軸交點等)。 ④理解同角三角函數的基本關系式: ⑤結合具體實例,了解 的實際意義;能藉助計算器或計算機畫出 的圖象,觀察參數A,ω, 對函數圖象變化的影響。 ⑥會用三角函數解決一些簡單實際問題,體會三角函數是描述周期變化現象的重要函數模型。
2. 平面向量
(約12課時) (1)平面向量的實際背景及基本概念 通過力和力的分析等實例,了解向量的實際背景,理解平面向量和向量相等的含義,理解向量的幾何表示。 (2)向量的線性運算 ①掌握向量加、減法的運算,並理解其幾何意義。 ②掌握向量數乘的運算,並理解其幾何意義,以及兩個向量共線的含義。 ③了解向量的線性運算性質及其幾何意義。 (3)平面向量的基本定理及坐標表示 ①了解平面向量的基本定理及其意義。 ②掌握平面向量的正交分解及其坐標表示。 ③會用坐標表示平面向量的加、減與數乘運算。 ④理解用坐標表示的平面向量共線的條件。 (4)平面向量的數量積 ①通過物理中「功」等實例,理解平面向量數量積的含義及其物理意義。 ②體會平面向量的數量積與向量投影的關系。 ③掌握數量積的坐標表達式,會進行平面向量數量積的運算。 ④能運用數量積表示兩個向量的夾角,會用數量積判斷兩個平面向量的垂直關系。 (5)向量的應用 經歷用向量方法解決某些簡單的平面幾何問題、力學問題與其他一些實際問題的過程,體會向量是一種處理幾何問題、物理問題等的工具,發展運算能力和解決實際問題的能力。
3. 三角恆等變換
(約8課時) (1)經歷用向量的數量積推導出兩角差的餘弦公式的過程,進一步體會向量方法的作用。 (2)能從兩角差的餘弦公式導出兩角和與差的正弦、餘弦、正切公式,二倍角的正弦、餘弦、正切公式,了解它們的內在聯系。 (3)能運用上述公式進行簡單的恆等變換(包括引導導出積化和差、和差化積、半形公式,但不要求記憶)。
編輯本段數學 必修5
1. 解三角形
(約8課時) (1)通過對任意三角形邊長和角度關系的探索,掌握正弦定理、餘弦定理,並能解決一些簡單的三角形度量問題。 (2)能夠運用正弦定理、餘弦定理等知識和方法解決一些與測量和幾何計算有關的實際問題。
2. 數列
(約12課時) (1)數列的概念和簡單表示法 了解數列的概念和幾種簡單的表示方法(列表、圖象、通項公式),了解數列是一種特殊函數。 (2)等差數列、等比數列 ①理解等差數列、等比數列的概念。 ②探索並掌握等差數列、等比數列的通項公式與前n項和的公式。 ③能在具體的問題情境中,發現數列的等差關系或等比關系,並能用有關知識解決相應的問題(參見例1)。 ④體會等差數列、等比數列與一次函數、指數函數的關系。
3. 不等式
(約16課時) (1)不等關系 感受在現實世界和日常生活中存在著大量的不等關系,了解不等式(組)的實際背景。 (2)一元二次不等式 ①經歷從實際情境中抽象出一元二次不等式模型的過程。 ②通過函數圖象了解一元二次不等式與相應函數、方程的聯系。 ③會解一元二次不等式,對給定的一元二次不等式,嘗試設計求解的程序框圖。 (3)二元一次不等式組與簡單線性規劃問題 ①從實際情境中抽象出二元一次不等式組。 ②了解二元一次不等式的幾何意義,能用平面區域表示二元一次不等式組(參見例2)。 ③從實際情境中抽象出一些簡單的二元線性規劃問題,並能加以解決(參見例3)。 (4)基本不等式: 。 ①探索並了解基本不等式的證明過程。 ②會用基本不等式解決簡單的最大(小)值問題(參見例4)。 函數的性質 指數和對數 (1)定義域、值域、對應法則 (2)單調性 對於任意x1,x2∈D 若x1<x2 f(x1)<f(x2),稱f(x)在D上是增函數 若x1<x2 f(x1)>f(x2),稱f(x)在D上是減函數 (3)奇偶性 對於函數f(x)的定義域內的任一x,若f(-x)=f(x),稱f(x)是偶函數 若f(-x)=-f(x),稱f(x)是奇函數 (4)周期性 對於函數f(x)的定義域內的任一x,若存在常數T,使得f(x+T)=f(x),則稱f(x)是周期函數 (1)分數指數冪 數學 選修
編輯本段選修2-1
1. 常用邏輯用語
(約8課時) (1)命題及其關系 ①了解命題的逆命題、否命題與逆否命題。 ②理解必要條件、充分條件與充要條件的意義,會分析四種命題的相互關系。 (2)簡單的邏輯聯結詞 了解邏輯聯結詞「或」「且」「非」的含義。 (3)全稱量詞與存在量詞 ①理解全稱量詞與存在量詞的意義。 ②能正確地對含有一個量詞的命題進行否定。
2. 圓錐曲線與方程
(約16課時) (1)圓錐曲線 ①了解圓錐曲線的實際背景,感受圓錐曲線在刻畫現實世界和解決實際問題中的作用。 ②經歷從具體情境中抽象出橢圓、拋物線模型的過程,掌握它們的定義、標准方程、幾何圖形及簡單性質。 ③了解雙曲線的定義、幾何圖形和標准方程,知道雙曲線的有關性質。 ④能用坐標法解決一些與圓錐曲線有關的簡單幾何問題(直線與圓錐曲線的位置關系)和實際問題。 ⑤通過圓錐曲線的學習,進一步體會數形結合的思想。 (2)曲線與方程 了解曲線與方程的對應關系,進一步感受數形結合的基本思想。 (3)橢圓、雙曲線與拋物線 橢圓 標准方程x^2/a^2+y^2/b^2=1(a>b>0,c^2=a^2-b^2)(焦點在x軸上) 焦點F1(-c,0),F2(c,0) 離心率e=c/a 雙曲線 標准方程x^2/a^2-y^2/b^2=1(a>0,b>0,c^2=a^2+b^2)(焦點在x軸上) 焦點F1(-c,0),F2(c,0) 離心率e=c/a 拋物線 標准方程 y^2=2px(p>0)(焦點在x軸正半軸上) 焦點F(p/2,0)
3. 空間向量與立體幾何
(約12課時) (1)空間向量及其運算 (2)空間向量的應用
編輯本段選修2-2
1. 導數及其應用
(約24課時) (1)導數概念及其幾何意義 ①通過對大量實例的分析,經歷由平均變化率過渡到瞬時變化率的過程,了解導數概念的實際背景,知道瞬時變化率就是導數,體會導數的思想及其內涵(參見選修1-1案例中的例2、例3)。 ②通過函數圖象直觀地理解導數的幾何意義。 (2)導數的運算 ①能根據導數定義求函數的導數。 ②能利用給出的基本初等函數的導數公式和導數的四則運演算法則求簡單函數的導數,能求簡單的復合函數(僅限於形如 )的導數。 ③會使用導數公式表。 (3)導數在研究函數中的應用 ①藉助幾何直觀探索並了解函數的單調性與導數的關系(參見選修1-1案例中的例4);能利用導數研究函數的單調性,會求不超過三次的多項式函數的單調區間。 ②結合函數的圖象,了解函數在某點取得極值的必要條件和充分條件;會用導數求不超過三次的多項式函數的極大值、極小值,以及閉區間上不超過三次的多項式函數最大值、最小值;體會導數方法在研究函數性質中的一般性和有效性。 (4)生活中的優化問題舉例。 例如,通過使利潤最大、用料最省、效率最高等優化問題,體會導數在解決實際問題中的作用(參見選修1-1案例中的例5)。 (5)定積分與微積分基本定理 ①通過求曲邊梯形的面積、變力做功等,從問題情境中了解定積分的實際背景;藉助幾何直觀體會定積分的基本思想,初步了解定積分的概念。
❻ 高一數學基礎知識點
學習適合自己的 學習 方法 ,重視每一門學科,關注社會和時代的發展,並且堅持不懈,才能給自己的終身發展奠定堅持的基礎,創造成功的機會。學習真的可以成就我們的人生,也確實可以致富。下面是我給大家帶來的 高一數學 基礎知識點,希望大家能夠喜歡!
高一數學基礎知識點1
立體幾何初步
柱、錐、台、球的結構特徵
稜柱
定義:有兩個面互相平行,其餘各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。
分類:以底面多邊形的邊數作為分類的標准分為三稜柱、四稜柱、五稜柱等。
表示:用各頂點字母,如五稜柱或用對角線的端點字母,如五稜柱。
幾何特徵:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行於底面的截面是與底面全等的多邊形。
棱錐
定義:有一個面是多邊形,其餘各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體。
分類:以底面多邊形的邊數作為分類的標准分為三棱錐、四棱錐、五棱錐等
表示:用各頂點字母,如五棱錐
幾何特徵:側面、對角面都是三角形;平行於底面的截面與底 面相 似,其相似比等於頂點到截面距離與高的比的平方。
稜台
定義:用一個平行於棱錐底面的平面去截棱錐,截面和底面之間的部分。
分類:以底面多邊形的邊數作為分類的標准分為三棱態、四稜台、五稜台等
表示:用各頂點字母,如五稜台
幾何特徵:①上下底面是相似的平行多邊形②側面是梯形③側棱交於原棱錐的頂點
圓柱
定義:以矩形的一邊所在的直線為軸旋轉,其餘三邊旋轉所成的曲面所圍成的幾何體。
幾何特徵:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側面展開圖是一個矩形。
圓錐
定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成的曲面所圍成的幾何體。
幾何特徵:①底面是一個圓;②母線交於圓錐的頂點;③側面展開圖是一個扇形。
圓台
定義:用一個平行於圓錐底面的平面去截圓錐,截面和底面之間的部分
幾何特徵:①上下底面是兩個圓;②側面母線交於原圓錐的頂點;③側面展開圖是一個弓形。
球體
定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體
幾何特徵:①球的截面是圓;②球面上任意一點到球心的距離等於半徑。
NO.2空間幾何體的三視圖
定義三視圖
定義三視圖:正視圖(光線從幾何體的前面向後面正投影);側視圖(從左向右)、俯視圖(從上向下)
註:正視圖反映了物體上下、左右的位置關系,即反映了物體的高度和長度;
俯視圖反映了物體左右、前後的位置關系,即反映了物體的長度和寬度;
側視圖反映了物體上下、前後的位置關系,即反映了物體的高度和寬度。
NO.3空間幾何體的直觀圖——斜二測畫法
斜二測畫法
斜二測畫法特點
①原來與x軸平行的線段仍然與x平行且長度不變;
②原來與y軸平行的線段仍然與y平行,長度為原來的一半。
直線與方程
直線的傾斜角
定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°
直線的斜率
定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。
過兩點的直線的斜率公式:
(注意下面四點)
(1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;
(2)k與P1、P2的順序無關;
(3)以後求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;
(4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到。
冪函數
定義
形如y=x^a(a為常數)的函數,即以底數為自變數冪為因變數,指數為常量的函數稱為冪函數。
定義域和值域
當a為不同的數值時,冪函數的定義域的不同情況如下:如果a為任意實數,則函數的定義域為大於0的所有實數;如果a為負數,則x肯定不能為0,不過這時函數的定義域還必須根[據q的奇偶性來確定,即如果同時q為偶數,則x不能小於0,這時函數的定義域為大於0的所有實數;如果同時q為奇數,則函數的定義域為不等於0的所有實數。當x為不同的數值時,冪函數的值域的不同情況如下:在x大於0時,函數的值域總是大於0的實數。在x小於0時,則只有同時q為奇數,函數的值域為非零的實數。而只有a為正數,0才進入函數的值域
性質
對於a的取值為非零有理數,有必要分成幾種情況來討論各自的特性:
首先我們知道如果a=p/q,q和p都是整數,則x^(p/q)=q次根號(x的p次方),如果q是奇數,函數的定義域是R,如果q是偶數,函數的定義域是[0,+∞)。當指數n是負整數時,設a=-k,則x=1/(x^k),顯然x≠0,函數的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來源於兩點,一是有可能作為分母而不能是0,一是有可能在偶數次的根號下而不能為負數,那麼我們就可以知道:
排除了為0與負數兩種可能,即對於x>0,則a可以是任意實數;
排除了為0這種可能,即對於x<0和x>0的所有實數,q不能是偶數;
排除了為負數這種可能,即對於x為大於且等於0的所有實數,a就不能是負數。
指數函數
指數函數
(1)指數函數的定義域為所有實數的集合,這里的前提是a大於0,對於a不大於0的情況,則必然使得函數的定義域不存在連續的區間,因此我們不予考慮。
(2)指數函數的值域為大於0的實數集合。
(3)函數圖形都是下凹的。
(4)a大於1,則指數函數單調遞增;a小於1大於0,則為單調遞減的。
(5)可以看到一個顯然的規律,就是當a從0趨向於無窮大的過程中(當然不能等於0),函數的曲線從分別接近於Y軸與X軸的正半軸的單調遞減函數的位置,趨向分別接近於Y軸的正半軸與X軸的負半軸的單調遞增函數的位置。其中水平直線y=1是從遞減到遞增的一個過渡位置。
(6)函數總是在某一個方向上無限趨向於X軸,永不相交。
(7)函數總是通過(0,1)這點。
(8)顯然指數函數無界。
奇偶性
定義
一般地,對於函數f(x)
(1)如果對於函數定義域內的任意一個x,都有f(-x)=-f(x),那麼函數f(x)就叫做奇函數。
(2)如果對於函數定義域內的任意一個x,都有f(-x)=f(x),那麼函數f(x)就叫做偶函數。
(3)如果對於函數定義域內的任意一個x,f(-x)=-f(x)與f(-x)=f(x)同時成立,那麼函數f(x)既是奇函數又是偶函數,稱為既奇又偶函數。
(4)如果對於函數定義域內的任意一個x,f(-x)=-f(x)與f(-x)=f(x)都不能成立,那麼函數f(x)既不是奇函數又不是偶函數,稱為非奇非偶函數。
高一數學基礎知識點2
一、集合有關概念
1.集合的含義
2.集合的中元素的三個特性:
(1)元素的確定性如:世界上的山
(2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}
(3)元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個集合
3.集合的表示:{…}如:{我校的 籃球 隊員},{太平洋,大西洋,印度洋,北冰洋}
(1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
(2)集合的表示方法:列舉法與描述法。
注意:常用數集及其記法:XKb1.Com
非負整數集(即自然數集)記作:N
正整數集:N_或N+
整數集:Z
有理數集:Q
實數集:R
1)列舉法:{a,b,c……}
2)描述法:將集合中的元素的公共屬性描述出來,寫在大括弧內表示集合{x?R|x-3>2},{x|x-3>2}
3)語言描述法:例:{不是直角三角形的三角形}
4)Venn圖:
4、集合的分類:
(1)有限集含有有限個元素的集合
(2)無限集含有無限個元素的集合
(3)空集不含任何元素的集合例:{x|x2=-5}
二、集合間的基本關系
1.「包含」關系—子集
注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之:集合A不包含於集合B,或集合B不包含集合A,記作AB或BA
2.「相等」關系:A=B(5≥5,且5≤5,則5=5)
實例:設A={x|x2-1=0}B={-1,1}「元素相同則兩集合相等」
即:①任何一個集合是它本身的子集。A?A
②真子集:如果A?B,且A?B那就說集合A是集合B的真子集,記作AB(或BA)
③如果A?B,B?C,那麼A?C
④如果A?B同時B?A那麼A=B
3.不含任何元素的集合叫做空集,記為Φ
規定:空集是任何集合的子集,空集是任何非空集合的真子集。
4.子集個數:
有n個元素的集合,含有2n個子集,2n-1個真子集,含有2n-1個非空子集,含有2n-1個非空真子集
三、集合的運算
運算類型交集並集補集
定義由所有屬於A且屬於B的元素所組成的集合,叫做A,B的交集.記作AB(讀作『A交B』),即AB={x|xA,且xB}.
由所有屬於集合A或屬於集合B的元素所組成的集合,叫做A,B的並集.記作:AB(讀作『A並B』),即AB={x|xA,或xB}).
設S是一個集合,A是S的一個子集,由S中所有不屬於A的元素組成的集合,叫做S中子集A的補集(或余集)
記作,即
CSA=
AA=A
AΦ=Φ
AB=BA
ABA
ABB
AA=A
AΦ=A
AB=BA
ABA
ABB
(CuA)(CuB)
=Cu(AB)
(CuA)(CuB)
=Cu(AB)
A(CuA)=U
A(CuA)=Φ.
高一數學基礎知識點3
易錯點1:遺忘空集致誤
由於空集是任何非空集合的真子集,因此B=?時也滿足B?A.解含有參數的集合問題時,要特別注意當參數在某個范圍內取值時所給的集合可能是空集這種情況.
易錯點2:忽視集合元素的三性致誤
集合中的元素具有確定性、無序性、互異性,集合元素的三性中互異性對解題的影響,特別是帶有字母參數的集合,實際上就隱含著對字母參數的一些要求.
易錯點3:混淆命題的否定與否命題
命題的「否定」與命題的「否命題」是兩個不同的概念,命題p的否定是否定命題所作的判斷,而「否命題」是對「若p,則q」形式的命題而言,既要否定條件也要否定結論.
易錯點4:充分條件、必要條件顛倒致誤
對於兩個條件A,B,如果A?B成立,則A是B的充分條件,B是A的必要條件;
如果B?A成立,則A是B的必要條件,B是A的充分條件;
如果A?B,則A,B互為充分必要條件.解題時最容易出錯的就是顛倒了充分性與必要性,所以在解決這類問題時一定要根據充分條件和必要條件的概念作出准確的判斷.
易錯點5:「或」「且」「非」理解不準致誤
命題p∨q真?p真或q真,命題p∨q假?p假且q假(概括為一真即真);
命題p∧q真?p真且q真,命題p∧q假?p假或q假(概括為一假即假);
綈p真?p假,綈p假?p真(概括為一真一假).求參數取值范圍的題目,也可以把「或」「且」「非」與集合的「並」「交」「補」對應起來進行理解,通過集合的運算求解.
易錯點6:函數的單調區間理解不準致誤
在研究函數問題時要時時刻刻想到「函數的圖像」,學會從函數圖像上去分析問題、尋找解決問題的方法.對於函數的幾個不同的單調遞增(減)區間,切忌使用並集,只要指明這幾個區間是該函數的單調遞增(減)區間即可.
易錯點7:判斷函數的奇偶性忽略定義域致誤
判斷函數的奇偶性,首先要考慮函數的定義域,一個函數具備奇偶性的必要條件是這個函數的定義域關於原點對稱,如果不具備這個條件,函數一定是非奇非偶函數.
易錯點8:函數零點定理使用不當致誤
如果函數y=f(x)在區間[a,b]上的圖像是一條連續的曲線,並且有f(a)f(b)<0,那麼,函數y=f(x)在區間(a,b)內有零點,但f(a)f(b)>0時,不能否定函數y=f(x)在(a,b)內有零點.函數的零點有「變號零點」和「不變號零點」,對於「不變號零點」函數的零點定理是「無能為力」的,在解決函數的零點問題時要注意這個問題.
易錯點9:導數的幾何意義不明致誤
函數在一點處的導數值是函數圖像在該點處的切線的斜率.但在許多問題中,往往是要解決過函數圖像外的一點向函數圖像上引切線的問題,解決這類問題的基本思想是設出切點坐標,根據導數的幾何意義寫出切線方程.然後根據題目中給出的其他條件列方程(組)求解.因此解題中要分清是「在某點處的切線」,還是「過某點的切線」.
易錯點10:導數與極值關系不清致誤
f(x0)=0隻是可導函數f(x)在x0處取得極值的必要條件,即必須有這個條件,但只有這個條件還不夠,還要考慮是否滿足f′(x)在x0兩側異號.另外,已知極值點求參數時要進行檢驗.
高一數學基礎知識點相關 文章 :
★ 高一數學基礎知識學習方法歸納
★ 高一數學基礎知識總結歸納
★ 高一數學必修一知識點匯總
★ 高一數學集合知識點匯總
★ 高一數學知識點總結歸納
★ 高一數學知識點小歸納
★ 高一數學必修1知識點歸納
★ 高中數學基礎知識大全
★ 高一數學知識點記憶法
★ 高中數學高一數學必修一知識點
❼ 高一數學基礎知識點總結
學習這件事不在乎有沒有人教你,最重要的是在於你自己有沒有覺悟和恆心。任何科目 學習 方法 其實都是一樣的,不斷的記憶與練習,使知識刻在腦海里。下面是我給大家整理的一些 高一數學 的知識點,希望對大家有所幫助。
高一上冊數學必修一知識點梳理
兩個平面的位置關系:
(1)兩個平面互相平行的定義:空間兩平面沒有公共點
(2)兩個平面的位置關系:
兩個平面平行-----沒有公共點;兩個平 面相 交-----有一條公共直線。
a、平行
兩個平面平行的判定定理:如果一個平面內有兩條相交直線都平行於另一個平面,那麼這兩個平面平行。
兩個平面平行的性質定理:如果兩個平行平面同時和第三個平面相交,那麼交線平行。
b、相交
二面角
(1)半平面:平面內的一條直線把這個平面分成兩個部分,其中每一個部分叫做半平面。
(2)二面角:從一條直線出發的兩個半平面所組成的圖形叫做二面角。二面角的取值范圍為[0°,180°]
(3)二面角的棱:這一條直線叫做二面角的棱。
(4)二面角的面:這兩個半平面叫做二面角的面。
(5)二面角的平面角:以二面角的棱上任意一點為端點,在兩個面內分別作垂直於棱的兩條射線,這兩條射線所成的角叫做二面角的平面角。
(6)直二面角:平面角是直角的二面角叫做直二面角。
esp.兩平面垂直
兩平面垂直的定義:兩平面相交,如果所成的角是直二面角,就說這兩個平面互相垂直。記為⊥
兩平面垂直的判定定理:如果一個平面經過另一個平面的一條垂線,那麼這兩個平面互相垂直
兩個平面垂直的性質定理:如果兩個平面互相垂直,那麼在一個平面內垂直於交線的直線垂直於另一個平面。
高一數學必修五知識點 總結
⑴公差為d的等差數列,各項同加一數所得數列仍是等差數列,其公差仍為d.
⑵公差為d的等差數列,各項同乘以常數k所得數列仍是等差數列,其公差為kd.
⑶若{a}、{b}為等差數列,則{a±b}與{ka+b}(k、b為非零常數)也是等差數列.
⑷對任何m、n,在等差數列{a}中有:a=a+(n-m)d,特別地,當m=1時,便得等差數列的通項公式,此式較等差數列的通項公式更具有一般性.
⑸、一般地,如果l,k,p,…,m,n,r,…皆為自然數,且l+k+p+…=m+n+r+…(兩邊的自然數個數相等),那麼當{a}為等差數列時,有:a+a+a+…=a+a+a+….
⑹公差為d的等差數列,從中取出等距離的項,構成一個新數列,此數列仍是等差數列,其公差為kd(k為取出項數之差).
⑺如果{a}是等差數列,公差為d,那麼,a,a,…,a、a也是等差數列,其公差為-d;在等差數列{a}中,a-a=a-a=md.(其中m、k、)
⑻在等差數列中,從第一項起,每一項(有窮數列末項除外)都是它前後兩項的等差中項.
⑼當公差d>0時,等差數列中的數隨項數的增大而增大;當d<0時,等差數列中的數隨項數的減少而減小;d=0時,等差數列中的數等於一個常數.
⑽設a,a,a為等差數列中的三項,且a與a,a與a的項距差之比=(≠-1),則a=.
⑴數列{a}為等差數列的充要條件是:數列{a}的前n項和S可以寫成S=an+bn的形式(其中a、b為常數).
⑵在等差數列{a}中,當項數為2n(nN)時,S-S=nd,=;當項數為(2n-1)(n)時,S-S=a,=.
⑶若數列{a}為等差數列,則S,S-S,S-S,…仍然成等差數列,公差為.
⑷若兩個等差數列{a}、{b}的前n項和分別是S、T(n為奇數),則=.
⑸在等差數列{a}中,S=a,S=b(n>m),則S=(a-b).
⑹等差數列{a}中,是n的一次函數,且點(n,)均在直線y=x+(a-)上.
⑺記等差數列{a}的前n項和為S.①若a>0,公差d<0,則當a≥0且a≤0時,S;②若a<0,公差d>0,則當a≤0且a≥0時,S最小.
高一 數學學習方法
1、培養良好的學習習慣。
(1)制定計劃明確學習目的。合理的 學習計劃 是推動我們主動學習和克服困難的內在動力。計劃先由老師指導督促,再一定要由自己切實完成,既有長遠打算,又有短期安排,執行過程中嚴格要求自己,磨煉學習意志。
(2) 課前預習 是取得較好學習效果的基礎。課前預習不僅能培養自學能力,而且能提高學習新課的興趣,掌握學習的主動權。預習不能搞走過場,要講究質量,力爭在課前把教材弄懂,上課著重聽老師講思路,把握重點,突破難點,盡可能把問題解決在課堂上。
(3)上課是理解和掌握基本知識、基本技能和基本方法的關鍵環節。學然後知不足,上課更能專心聽重點難點,把老師補充的內容記錄下來,而不是全抄全錄,顧此失彼。
(4)及時復習是提高效率學習的重要一環。通過反復閱讀教材,多方面查閱有關資料,強化對基本概念知識體系的理解與記憶,將所學的新知識與有關舊知識聯系起來,進行分析比效,一邊復習一邊將復習成果整理在 筆記本 上,使對所學的新知識由懂到會。
(5)獨立作業是通過自己的獨立思考,靈活地分析問題、解決問題,進一步加深對所學新知識的理解和對新技能的掌握過程。這一過程也是對我們意志毅力的考驗,通過運用使我們對所學知識由會到熟。
(6)解決疑難是指對獨立完成作業過程中暴露出來對知識理解的錯誤,或由於思維受阻遺漏解答,通過點撥使思路暢通,補遺解答的過程。解決疑難一定要有鍥而不舍的精神。做錯的作業再做一遍。對錯誤的地方沒弄清楚要反復思考。實在解決不了的要請教老師和同學,並要經常把易錯的地方拿來復習強化,作適當的重復性練習,把求老師問同學獲得的東西消化變成自己的知識,長期堅持使對所學知識由熟到活。
(7)系統小結是通過積極思考,達到全面系統深刻地掌握知識和發展認識能力的重要環節。小結要在系統復習的基礎上以教材為依據,參照筆記與資料,通過分析、綜合、類比、概括,揭示知識間的內在聯系,以達到對所學知識融會貫通的目的。經常進行多層次小結,能對所學知識由活到悟。
(8)課外學習包括閱讀課外書籍與報刊,參加學科競賽與講座,走訪高年級同學或老師交流 學習心得 等。課外學習是課內學習的補充和繼續,它不僅能豐富同學們的 文化 科學知識,加深和鞏固課內所學的知識,而且能夠滿足和發展我們的 興趣 愛好 ,培養獨立學習和工作的能力,激發求知慾與學習熱情。
高一數學基礎知識點總結相關 文章 :
★ 高一數學知識點新總結
★ 高一數學知識點小歸納
★ 高中數學基礎知識點總結
★ 高一數學基礎知識學習方法歸納
★ 高一數學集合知識點匯總
★ 高一數學知識點總結歸納
★ 高一數學知識點總結
★ 高一數學常考知識點總結
★ 高一數學知識點總結下冊
★ 高一數學必修一知識點匯總
❽ 高中數學所有知識點歸納
高中數學基礎知識梳理(數學小飛俠)
鏈接:
若資源有問題,歡迎追問~