㈠ 2019年高中數學知識點總結及公式大全
學好數學的第一步是「記住並深刻理解公式」,這樣在做題時才會有貨。我應同學們的需求,把整理好的高中數學公式分享給大家,還沒有記住的同學抓緊時間了!
1.幾何與常用邏輯用語
高中數學有哪些重點公式?
乘法與因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根與系數的關系 X1+X2=-b/a X1*X2=c/a 註:韋達定理
判別式
b2-4ac=0 註:方程有兩個相等的實根
b2-4ac>0 註:方程有兩個不等的實根
b2-4ac<0 註:方程沒有實根,有共軛復數根
三角函數公式
兩角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctg
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半形公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化積
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
某些數列前n項和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 註:其中 R 表示三角形的外接圓半徑
餘弦定理 b2=a2+c2-2accosB 註:角B是邊a和邊c的夾角
圓的標准方程 (x-a)2+(y-b)2=r2 註:(a,b)是圓心坐標
圓的一般方程 x2+y2+Dx+Ey+F=0 註:D2+E2-4F>0
拋物線標准方程 y2=2px y2=-2px x2=2py x2=-2py
直稜柱側面積 S=c*h 斜稜柱側面積 S=c'*h
正棱錐側面積 S=1/2c*h' 正稜台側面積 S=1/2(c+c')h'
圓台側面積 S=1/2(c+c')l=pi(R+r)l 球的表面積 S=4pi*r2
圓柱側面積 S=c*h=2pi*h 圓錐側面積 S=1/2*c*l=pi*r*l
弧長公式 l=a*r a是圓心角的弧度數r >0 扇形面積公式 s=1/2*l*r
錐體體積公式 V=1/3*S*H 圓錐體體積公式 V=1/3*pi*r2h
斜稜柱體積 V=S'L 註:其中,S'是直截面面積, L是側棱長
柱體體積公式 V=s*h 圓柱體 V=pi*r2h
【課外閱讀】:
影響高中數學成績的原因及解決方法
作為衡量一個人能力的重要學科,從小學到高中絕大多數同學對它情有獨鍾,投入了大量的時間與精力.然而並非人人都是成功者,許多小學、初中數學學科成績的佼佼者,進入高中階段,第一個跟頭就栽在數學上。這種現象目前是比較普遍的,應當引起重視。當然造成這種現象的原因是多方面的,本文僅就從學生的學習狀態方面淺談如下:
面對眾多初中學習的成功者淪為高中學習的失敗者,有人對他們的學習狀態進行了研究、調查,表明,造成成績滑坡的主要原因有以下幾個方面.
1.被動學習.許多同學進入高中後,還像初中那樣,有很強的依賴心理,跟隨老師慣性運轉,沒有掌握學習主動權.表現在不定計劃,坐等上課,課前沒有預習,對老師要上課的內容不了解,上課忙於記筆記,沒聽到「門道」.沒有真正理解所學內容。
2.學不得法.老師上課一般都要講清知識的來龍去脈,剖析概念的內涵,分析重點難點,突出思想方法.而一部分同學上課沒能專心聽課,對要點沒聽到或聽不全,筆記記了一大本,問題也有一大堆,課後又不能及時鞏固、總結、尋找知識間的聯系,只是趕做作業,亂套題型,對概念、法則、公式、定理一知半解,機械模仿,死記硬背.也有的晚上加班加點,白天無精打采,或是上課根本不聽,自己另搞一套,結果是事倍功半,收效甚微.
3.不重視基礎.一些「自我感覺良好」的同學,常輕視基本知識、基本技能和基本方法的學習與訓練,經常是知道怎麼做就算了,而不去認真演算書寫,但對難題很感興趣,以顯示自己的「水平」,好高鶩遠,重「量」輕「質」,陷入題海.到正規作業或考試中不是演算出錯就是中途「卡殼」.
4.進一步學習條件不具備.高中數學與初中數學相比,知識的深度、廣度,能力要求都是一次飛躍.這就要求必須掌握基礎知識與技能為進一步學習作好准備.高中數學很多地方難度大、方法新、分析能力要求高.如二次函數在閉區間上的最值問題,函數值域的求法,實根分布與參變數方程,三角公式的變形與靈活運用,空間概念的形成,排列組合應用題及實際應用問題等.客觀上這些觀點就是分化點,有的內容還是高初中教材都不講的脫節內容,如不採取補救措施,查缺補漏,分化是不可避免的.
解決對策:
1.培養良好學習習慣。良好的學習習慣包括制定計劃、課前自學、專心上課、及時復習、獨立作業、解決疑難、系統小結和課外學習幾個方面.
制定計劃使學習目的明確,時間安排合理,不慌不忙,穩扎穩打,它是推動學生主動學習和克服困難的內在動力.但計劃一定要切實可行,既有長遠打算,又有短期安排,執行過程中嚴格要求自己,磨煉學習意志.
課前自學是學生上好新課,取得較好學習效果的基礎.課前自學不僅能培養自學能力,而且能提高學習新課的興趣,掌握學習主動權.自學不能搞走過場,要講究質量,力爭在課前把教材弄懂,上課著重聽老師講課的思路,把握重點,突破難點,盡可能把問題解決在課堂上.
上課是理解和掌握基本知識、基本技能和基本方法的關鍵環節.「學然後知不足」,課前自學過的同學上課更能專心聽課,他們知道什麼地方該詳,什麼地方可略;什麼地方該精雕細刻,什麼地方可以一帶而過,該記的地方才記下來,而不是全抄全錄,顧此失彼.
及時復習是高效率學習的重要一環,通過反復閱讀教材,多方查閱有關資料,強化對基本概念知識體系的理解與記憶,將所學的新知識與有關舊知識聯系起來,進行分析比較,一邊復習一邊將復習成果整理在筆記上,使對所學的新知識由「懂」到「會」.
獨立作業是學生通過自己的獨立思考,靈活地分析問題、解決問題,進一步加深對所學新知識的理解和對新技能的掌握過程.這一過程是對學生意志毅力的考驗,通過運用使學生對所學知識由「會」到「熟」.
解決疑難是指對獨立完成作業過程中暴露出來對知識理解的錯誤,或由於思維受阻遺漏解答,通過點撥使思路暢通,補遺解答的過程.解決疑難一定要有鍥而不舍的精神,做錯的作業再做一遍.對錯誤的地方沒弄清楚要反復思考,實在解決不了的要請教老師和同學,並要經常把易錯的地方拿出來復習強化,作適當的重復性練習,把求老師問同學獲得的東西消化變成自己的知識,長期堅持使對所學知識由「熟」到「活」.
系統小結是學生通過積極思考,達到全面系統深刻地掌握知識和發展認識能力的重要環節.小結要在系統復習的基礎上以教材為依據,參照筆記與有關資料,通過分析、綜合、類比、概括,揭示知識間的內在聯系.以達到對所學知識融會貫通的目的.經常進行多層次小結,能對所學知識由「活」到「悟」.
課外學習包括閱讀課外書籍與報刊,參加學科競賽與講座,走訪高年級同學或老師交流學習心得等.課外學習是課內學習的補充和繼續,它不僅能豐富學生的文化科學知識,加深和鞏固課內所學的知識,而且能滿足和發展他們的興趣愛好,培養獨立學習和工作能力,激發求知慾與學習熱情.
2.循序漸進,防止急躁
由於學生年齡較小,閱歷有限,為數不少的高中學生容易急躁,有的同學貪多求快,囫圇吞棗,有的同學想憑幾天「沖刺」一蹴而就,有的取得一點成績便洋洋自得,遇到挫折又一蹶不振.針對這些情況,學生應懂得學習是一個長期的鞏固舊知識、發現新知識的積累過程,決非一朝一夕可以完成,為什麼高中要上三年而不是三天!許多優秀的同學能取得好成績,其中一個重要原因是他們的基本功扎實,他們的閱讀、書寫、運算技能達到了自動化或半自動化的熟練程度.
3.研究學科特點,尋找最佳學習方法
數學學科擔負著培養學生運算能力、邏輯思維能力、空間想像能力,以及運用所學知識分析問題、解決問題的能力的重任.它的特點是具有高度的抽象性、邏輯性和廣泛的適用性,對能力要求較高.學習數學一定要講究「活」,只看書不做題不行,埋頭做題不總結積累不行,對課本知識既要能鑽進去,又要能跳出來,結合自身特點,尋找最佳學習方法.華羅庚先生倡導的「由薄到厚」和「由厚到薄」的學習過程就是這個道理.方法因人而異,但學習的四個環節(預習、上課、整理、作業)和一個步驟(復習總結)是少不了的。
;㈡ 高中數學基礎知識都有哪些,要簡單一點的。
函數是基本點也是難點,三角函數記牢公式就可以掌握好,向量法是關鍵立體幾何中常用,實際上也簡單。數列掌握好幾種基本求通項方法,解不等式及幾種基本不等式掌握牢,概率做好基礎題
㈢ 高中數學知識點總結
《高中數學基礎知識梳理(數學小飛俠)》網路網盤免費下載
鏈接:
資源目錄
01.集合例題講解.mp4
01.集合進階.mp4
02函數的值域.mp4
03函數的定義域與解析式.mp4
04函數的單調性.mp4
04函數的奇偶性.mp4
05指數運算與指數函數.mp4
07對數運算與對數函數.mp4
08冪函數突破.mp4
09函數零點專題.mp4
10含參二次函數與不等式專題.mp4
11二次函數根的分布專題.mp4
12空間幾何體.mp4
13點線面位置關系進階.mp4
14平行關系突破.mp4
15垂直關系突破.mp4
16空間幾何關系綜合.mp4
17直線方程突破.mp4
18圓的方程突破.mp4
19演算法初步.mp4
20演算法語句與演算法案例.mp4
21數據的收集與頻率分布.mp4
22常用統計量與相關關系.mp4
23古典概型概率.mp4
24幾何概型概率.mp4
25任意角重難點.mp4
26三角函數定義與誘導公式.mp4
27三角函數圖像及性質.mp4
28平面向量幾何運算.mp4
29平面向量代數運算.mp4
30.三角恆等變換.mp4
31.三角函數計算專題.mp4
32.正弦定理與餘弦定理.mp4
33.等差數列突破.mp4
34.等比數列突破.mp4
35.數列通項公式專題 .mp4
36.數列求和公式專題 .mp4
37.二次不等式與分式不等式.mp4
38.線性規劃問題.mp4
39.基本不等式突破.mp4
40.邏輯用語專題.mp4
41.橢圓方程及其幾何性質.mp4
42.雙曲線方程及其性質.mp4
43.拋物線方程及其性質.mp4
44.直線與圓錐曲線綜合.mp4
45.空間向量突破.mp4
46.導數的計算專題.mp4
47.導數的應用.mp4
48.導數的應用(二).mp4
49.定積分與微積分.mp4
50.復數專題.mp4
51.排列組合.mp4
52.二項式定理.mp4
53.隨機變數及其變數.mp4
54回歸分析與獨立性檢驗.mp4
資源目錄
01.集合例題講解.mp4
01.集合進階.mp4
02函數的值域.mp4
03函數的定義域與解析式.mp4
04函數的單調性.mp4
04函數的奇偶性.mp4
05指數運算與指數函數.mp4
07對數運算與對數函數.mp4
08冪函數突破.mp4
09函數零點專題.mp4
10含參二次函數與不等式專題.mp4
11二次函數根的分布專題.mp4
12空間幾何體.mp4
13點線面位置關系進階.mp4
14平行關系突破.mp4
15垂直關系突破.mp4
16空間幾何關系綜合.mp4
17直線方程突破.mp4
18圓的方程突破.mp4
19演算法初步.mp4
20演算法語句與演算法案例.mp4
21數據的收集與頻率分布.mp4
22常用統計量與相關關系.mp4
23古典概型概率.mp4
24幾何概型概率.mp4
25任意角重難點.mp4
26三角函數定義與誘導公式.mp4
27三角函數圖像及性質.mp4
28平面向量幾何運算.mp4
29平面向量代數運算.mp4
30.三角恆等變換.mp4
31.三角函數計算專題.mp4
32.正弦定理與餘弦定理.mp4
33.等差數列突破.mp4
34.等比數列突破.mp4
35.數列通項公式專題 .mp4
36.數列求和公式專題 .mp4
37.二次不等式與分式不等式.mp4
38.線性規劃問題.mp4
39.基本不等式突破.mp4
40.邏輯用語專題.mp4
41.橢圓方程及其幾何性質.mp4
42.雙曲線方程及其性質.mp4
43.拋物線方程及其性質.mp4
44.直線與圓錐曲線綜合.mp4
45.空間向量突破.mp4
46.導數的計算專題.mp4
47.導數的應用.mp4
48.導數的應用(二).mp4
49.定積分與微積分.mp4
50.復數專題.mp4
51.排列組合.mp4
52.二項式定理.mp4
53.隨機變數及其變數.mp4
54回歸分析與獨立性檢驗.mp4
㈣ 高中數學講解知識點
分集合,函數,數列,向量,解析幾何,立體幾何,排列組合,概率,導數等知識。
㈤ 跪求高中數學知識點總結
高考數學基礎知識匯總
第一部分 集合
(1)含n個元素的集合的子集數為2^n,真子集數為2^n-1;非空真子集的數為2^n-2;
(2) 注意:討論的時候不要遺忘了 的情況。
(3)
第二部分 函數與導數
1.映射:注意 ①第一個集合中的元素必須有象;②一對一,或多對一。
2.函數值域的求法:①分析法 ;②配方法 ;③判別式法 ;④利用函數單調性 ;
⑤換元法 ;⑥利用均值不等式 ; ⑦利用數形結合或幾何意義(斜率、距離、絕對值的意義等);⑧利用函數有界性( 、 、 等);⑨導數法
3.復合函數的有關問題
(1)復合函數定義域求法:
① 若f(x)的定義域為〔a,b〕,則復合函數f[g(x)]的定義域由不等式a≤g(x)≤b解出② 若f[g(x)]的定義域為[a,b],求 f(x)的定義域,相當於x∈[a,b]時,求g(x)的值域。
(2)復合函數單調性的判定:
①首先將原函數 分解為基本函數:內函數 與外函數 ;
②分別研究內、外函數在各自定義域內的單調性;
③根據「同性則增,異性則減」來判斷原函數在其定義域內的單調性。
注意:外函數 的定義域是內函數 的值域。
4.分段函數:值域(最值)、單調性、圖象等問題,先分段解決,再下結論。
5.函數的奇偶性
⑴函數的定義域關於原點對稱是函數具有奇偶性的必要條件;
⑵ 是奇函數 ;
⑶ 是偶函數 ;
⑷奇函數 在原點有定義,則 ;
⑸在關於原點對稱的單調區間內:奇函數有相同的單調性,偶函數有相反的單調性;
(6)若所給函數的解析式較為復雜,應先等價變形,再判斷其奇偶性;
6.函數的單調性
⑴單調性的定義:
① 在區間 上是增函數 當 時有 ;
② 在區間 上是減函數 當 時有 ;
⑵單調性的判定
1 定義法:
注意:一般要將式子 化為幾個因式作積或作商的形式,以利於判斷符號;
②導數法(見導數部分);
③復合函數法(見2 (2));
④圖像法。
註:證明單調性主要用定義法和導數法。
7.函數的周期性
(1)周期性的定義:
對定義域內的任意 ,若有 (其中 為非零常數),則稱函數 為周期函數, 為它的一個周期。
所有正周期中最小的稱為函數的最小正周期。如沒有特別說明,遇到的周期都指最小正周期。
(2)三角函數的周期
① ;② ;③ ;
④ ;⑤ ;
⑶函數周期的判定
①定義法(試值) ②圖像法 ③公式法(利用(2)中結論)
⑷與周期有關的結論
① 或 的周期為 ;
② 的圖象關於點 中心對稱 周期為2 ;
③ 的圖象關於直線 軸對稱 周期為2 ;
④ 的圖象關於點 中心對稱,直線 軸對稱 周期為4 ;
8.基本初等函數的圖像與性質
⑴冪函數: ( ;⑵指數函數: ;
⑶對數函數: ;⑷正弦函數: ;
⑸餘弦函數: ;(6)正切函數: ;⑺一元二次函數: ;
⑻其它常用函數:
1 正比例函數: ;②反比例函數: ;特別的
2 函數 ;
9.二次函數:
⑴解析式:
①一般式: ;②頂點式: , 為頂點;
③零點式: 。
⑵二次函數問題解決需考慮的因素:
①開口方向;②對稱軸;③端點值;④與坐標軸交點;⑤判別式;⑥兩根符號。
⑶二次函數問題解決方法:①數形結合;②分類討論。
10.函數圖象:
⑴圖象作法 :①描點法 (特別注意三角函數的五點作圖)②圖象變換法③導數法
⑵圖象變換:
1 平移變換:ⅰ ,2 ———「正左負右」
ⅱ ———「正上負下」;
3 伸縮變換:
ⅰ , ( ———縱坐標不變,橫坐標伸長為原來的 倍;
ⅱ , ( ———橫坐標不變,縱坐標伸長為原來的 倍;
4 對稱變換:ⅰ ;ⅱ ;
ⅲ ; ⅳ ;
5 翻轉變換:
ⅰ ———右不動,右向左翻( 在 左側圖象去掉);
ⅱ ———上不動,下向上翻(| |在 下面無圖象);
11.函數圖象(曲線)對稱性的證明
(1)證明函數 圖像的對稱性,即證明圖像上任意點關於對稱中心(對稱軸)的對稱點仍在圖像上;
(2)證明函數 與 圖象的對稱性,即證明 圖象上任意點關於對稱中心(對稱軸)的對稱點在 的圖象上,反之亦然;
註:
①曲線C1:f(x,y)=0關於點(a,b)的對稱曲線C2方程為:f(2a-x,2b-y)=0;
②曲線C1:f(x,y)=0關於直線x=a的對稱曲線C2方程為:f(2a-x, y)=0;
③曲線C1:f(x,y)=0,關於y=x+a(或y=-x+a)的對稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);
④f(a+x)=f(b-x) (x∈R) y=f(x)圖像關於直線x= 對稱;
特別地:f(a+x)=f(a-x) (x∈R) y=f(x)圖像關於直線x=a對稱;
⑤函數y=f(x-a)與y=f(b-x)的圖像關於直線x= 對稱;
12.函數零點的求法:
⑴直接法(求 的根);⑵圖象法;⑶二分法.
13.導數
⑴導數定義:f(x)在點x0處的導數記作 ;
⑵常見函數的導數公式: ① ;② ;③ ;
④ ;⑤ ;⑥ ;⑦ ;
⑧ 。
⑶導數的四則運演算法則:
⑷(理科)復合函數的導數:
⑸導數的應用:
①利用導數求切線:注意:ⅰ所給點是切點嗎?ⅱ所求的是「在」還是「過」該點的切線?
②利用導數判斷函數單調性:
ⅰ 是增函數;ⅱ 為減函數;
ⅲ 為常數;
③利用導數求極值:ⅰ求導數 ;ⅱ求方程 的根;ⅲ列表得極值。
④利用導數最大值與最小值:ⅰ求的極值;ⅱ求區間端點值(如果有);ⅲ得最值。
14.(理科)定積分
⑴定積分的定義:
⑵定積分的性質:① ( 常數);
② ;
③ (其中 。
⑶微積分基本定理(牛頓—萊布尼茲公式):
⑷定積分的應用:①求曲邊梯形的面積: ;
3 求變速直線運動的路程: ;③求變力做功: 。
第三部分 三角函數、三角恆等變換與解三角形
1.⑴角度制與弧度制的互化: 弧度 , 弧度, 弧度
⑵弧長公式: ;扇形面積公式: 。
2.三角函數定義:角 中邊上任意一點 為 ,設 則:
3.三角函數符號規律:一全正,二正弦,三兩切,四餘弦;
4.誘導公式記憶規律:「函數名不(改)變,符號看象限」;
5.⑴ 對稱軸: ;對稱中心: ;
⑵ 對稱軸: ;對稱中心: ;
6.同角三角函數的基本關系: ;
7.兩角和與差的正弦、餘弦、正切公式:①
② ③ 。
8.二倍角公式:① ;
② ;③ 。
9.正、餘弦定理:
⑴正弦定理: ( 是 外接圓直徑 )
註:① ;② ;③ 。
⑵餘弦定理: 等三個;註: 等三個。
10。幾個公式:
⑴三角形面積公式: ;
⑵內切圓半徑r= ;外接圓直徑2R=
11.已知 時三角形解的個數的判定:
第四部分 立體幾何
1.三視圖與直觀圖:註:原圖形與直觀圖面積之比為 。
2.表(側)面積與體積公式:
⑴柱體:①表面積:S=S側+2S底;②側面積:S側= ;③體積:V=S底h
⑵錐體:①表面積:S=S側+S底;②側面積:S側= ;③體積:V= S底h:
⑶台體:①表面積:S=S側+S上底S下底;②側面積:S側= ;③體積:V= (S+ )h;
⑷球體:①表面積:S= ;②體積:V= 。
3.位置關系的證明(主要方法):
⑴直線與直線平行:①公理4;②線面平行的性質定理;③面面平行的性質定理。
⑵直線與平面平行:①線面平行的判定定理;②面面平行 線面平行。
⑶平面與平面平行:①面面平行的判定定理及推論;②垂直於同一直線的兩平面平行。
⑷直線與平面垂直:①直線與平面垂直的判定定理;②面面垂直的性質定理。
⑸平面與平面垂直:①定義---兩平面所成二面角為直角;②面面垂直的判定定理。
註:理科還可用向量法。
4.求角:(步驟-------Ⅰ。找或作角;Ⅱ。求角)
⑴異面直線所成角的求法:
1 平移法:平移直線,2 構造三角形;
3 ②補形法:補成正方體、平行六面體、長方體等,4 發現兩條異面直線間的關系。
註:理科還可用向量法,轉化為兩直線方向向量的夾角。
⑵直線與平面所成的角:
①直接法(利用線面角定義);②先求斜線上的點到平面距離h,與斜線段長度作比,得sin 。
註:理科還可用向量法,轉化為直線的方向向量與平面法向量的夾角。
⑶二面角的求法:
①定義法:在二面角的棱上取一點(特殊點),作出平面角,再求解;
②三垂線法:由一個半面內一點作(或找)到另一個半平面的垂線,用三垂線定理或逆定理作出二面角的平面角,再求解;
③射影法:利用面積射影公式: ,其中 為平面角的大小;
註:對於沒有給出棱的二面角,應先作出棱,然後再選用上述方法;
理科還可用向量法,轉化為兩個班平面法向量的夾角。
5.求距離:(步驟-------Ⅰ。找或作垂線段;Ⅱ。求距離)
⑴兩異面直線間的距離:一般先作出公垂線段,再進行計算;
⑵點到直線的距離:一般用三垂線定理作出垂線段,再求解;
⑶點到平面的距離:
①垂面法:藉助面面垂直的性質作垂線段(確定已知面的垂面是關鍵),再求解;
5 等體積法;
理科還可用向量法: 。
⑷球面距離:(步驟)
(Ⅰ)求線段AB的長;(Ⅱ)求球心角∠AOB的弧度數;(Ⅲ)求劣弧AB的長。
6.結論:
⑴從一點O出發的三條射線OA、OB、OC,若∠AOB=∠AOC,則點A在平面∠BOC上的射影在∠BOC的平分線上;
⑵立平斜公式(最小角定理公式):
⑶正棱錐的各側面與底面所成的角相等,記為 ,則S側cos =S底;
⑷長方體的性質
①長方體體對角線與過同一頂點的三條棱所成的角分別為 則:cos2 +cos2 +cos2 =1;sin2 +sin2 +sin2 =2 。
②長方體體對角線與過同一頂點的三側面所成的角分別為 則有cos2 +cos2 +cos2 =2;sin2 +sin2 +sin2 =1 。
⑸正四面體的性質:設棱長為 ,則正四面體的:
1 高: ;②對棱間距離: ;③相鄰兩面所成角餘弦值: ;④內切2 球半徑: ;外接球半徑: ;
第五部分 直線與圓
1.直線方程
⑴點斜式: ;⑵斜截式: ;⑶截距式: ;
⑷兩點式: ;⑸一般式: ,(A,B不全為0)。
(直線的方向向量:( ,法向量(
2.求解線性規劃問題的步驟是:
(1)列約束條件;(2)作可行域,寫目標函數;(3)確定目標函數的最優解。
3.兩條直線的位置關系:
4.直線系
5.幾個公式
⑴設A(x1,y1)、B(x2,y2)、C(x3,y3),⊿ABC的重心G:( );
⑵點P(x0,y0)到直線Ax+By+C=0的距離: ;
⑶兩條平行線Ax+By+C1=0與 Ax+By+C2=0的距離是 ;
6.圓的方程:
⑴標准方程:① ;② 。
⑵一般方程: (
註:Ax2+Bxy+Cy2+Dx+Ey+F=0表示圓 A=C≠0且B=0且D2+E2-4AF>0;
7.圓的方程的求法:⑴待定系數法;⑵幾何法;⑶圓系法。
8.圓系:
⑴ ;
註:當 時表示兩圓交線。
⑵ 。
9.點、直線與圓的位置關系:(主要掌握幾何法)
⑴點與圓的位置關系:( 表示點到圓心的距離)
① 點在圓上;② 點在圓內;③ 點在圓外。
⑵直線與圓的位置關系:( 表示圓心到直線的距離)
① 相切;② 相交;③ 相離。
⑶圓與圓的位置關系:( 表示圓心距, 表示兩圓半徑,且 )
① 相離;② 外切;③ 相交;
④ 內切;⑤ 內含。
10.與圓有關的結論:
⑴過圓x2+y2=r2上的點M(x0,y0)的切線方程為:x0x+y0y=r2;
過圓(x-a)2+(y-b)2=r2上的點M(x0,y0)的切線方程為:(x0-a)(x-a)+(y0-b)(y-b)=r2;
⑵以A(x1,y2)、B(x2,y2)為直徑的圓的方程:(x-x1)(x-x2)+(y-y1)(y-y2)=0。
第六部分 圓錐曲線
1.定義:⑴橢圓: ;
⑵雙曲線: ;⑶拋物線:略
2.結論
⑴焦半徑:①橢圓: (e為離心率); (左「+」右「-」);
②拋物線:
⑵弦長公式:
;
註:(Ⅰ)焦點弦長:①橢圓: ;②拋物線: =x1+x2+p= ;(Ⅱ)通徑(最短弦):①橢圓、雙曲線: ;②拋物線:2p。
⑶過兩點的橢圓、雙曲線標准方程可設為: ( 同時大於0時表示橢圓, 時表示雙曲線);
⑷橢圓中的結論:
①內接矩形最大面積 :2ab;
②P,Q為橢圓上任意兩點,且OP 0Q,則 ;
③橢圓焦點三角形:<Ⅰ>. ,( );<Ⅱ>.點 是 內心, 交 於點 ,則 ;
④當點 與橢圓短軸頂點重合時 最大;
⑸雙曲線中的結論:
①雙曲線 (a>0,b>0)的漸近線: ;
②共漸進線 的雙曲線標准方程為 為參數, ≠0);
③雙曲線焦點三角形:<Ⅰ>. ,( );<Ⅱ>.P是雙曲線 - =1(a>0,b>0)的左(右)支上一點,F1、F2分別為左、右焦點,則△PF1F2的內切圓的圓心橫坐標為 ;
④雙曲線為等軸雙曲線 漸近線為 漸近線互相垂直;
(6)拋物線中的結論:
①拋物線y2=2px(p>0)的焦點弦AB性質:<Ⅰ>. x1x2= ;y1y2=-p2;
<Ⅱ>. ;<Ⅲ>.以AB為直徑的圓與准線相切;<Ⅳ>.以AF(或BF)為直徑的圓與 軸相切;<Ⅴ>. 。
②拋物線y2=2px(p>0)內結直角三角形OAB的性質:
<Ⅰ>. ; <Ⅱ>. 恆過定點 ;
<Ⅲ>. 中點軌跡方程: ;<Ⅳ>. ,則 軌跡方程為: ;<Ⅴ>. 。
③拋物線y2=2px(p>0),對稱軸上一定點 ,則:
<Ⅰ>.當 時,頂點到點A距離最小,最小值為 ;<Ⅱ>.當 時,拋物線上有關於 軸對稱的兩點到點A距離最小,最小值為 。
3.直線與圓錐曲線問題解法:
⑴直接法(通法):聯立直線與圓錐曲線方程,構造一元二次方程求解。
注意以下問題:
①聯立的關於「 」還是關於「 」的一元二次方程?
②直線斜率不存在時考慮了嗎?
③判別式驗證了嗎?
⑵設而不求(代點相減法):--------處理弦中點問題
步驟如下:①設點A(x1,y1)、B(x2,y2);②作差得 ;③解決問題。
4.求軌跡的常用方法:(1)定義法:利用圓錐曲線的定義; (2)直接法(列等式);(3)代入法(相關點法或轉移法);⑷待定系數法;(5)參數法;(6)交軌法。
第七部分 平面向量
⑴設a=(x1,y1),b=(x2,y2),則: ① a‖b(b≠0) a= b ( x1y2-x2y1=0;
② a⊥b(a、b≠0) a•b=0 x1x2+y1y2=0 .
⑵a•b=|a||b|cos<a,b>=x2+y1y2;
註:①|a|cos<a,b>叫做a在b方向上的投影;|b|cos<a,b>叫做b在a方向上的投影;
6 a•b的幾何意義:a•b等於|a|與|b|在a方向上的投影|b|cos<a,b>的乘積。
⑶cos<a,b>= ;
⑷三點共線的充要條件:P,A,B三點共線 ;
附:(理科)P,A,B,C四點共面 。
第八部分 數列
1.定義:
⑴等差數列 ;
⑵等比數列
;
2.等差、等比數列性質
等差數列 等比數列
通項公式
前n項和
性質 ①an=am+ (n-m)d, ①an=amqn-m;
②m+n=p+q時am+an=ap+aq ②m+n=p+q時aman=apaq
③ 成AP ③ 成GP
④ 成AP, ④ 成GP,
等差數列特有性質:
1 項數為2n時:S2n=n(an+an+1)=n(a1+a2n); ; ;
2 項數為2n-1時:S2n-1=(2n-1) ; ; ;
3 若 ;若 ;
若 。
3.數列通項的求法:
⑴分析法;⑵定義法(利用AP,GP的定義);⑶公式法:累加法( ;
⑷疊乘法( 型);⑸構造法( 型);(6)迭代法;
⑺間接法(例如: );⑻作商法( 型);⑼待定系數法;⑽(理科)數學歸納法。
註:當遇到 時,要分奇數項偶數項討論,結果是分段形式。
4.前 項和的求法:
⑴拆、並、裂項法;⑵倒序相加法;⑶錯位相減法。
5.等差數列前n項和最值的求法:
⑴ ;⑵利用二次函數的圖象與性質。
第九部分 不等式
1.均值不等式:
注意:①一正二定三相等;②變形, 。
2.絕對值不等式:
3.不等式的性質:
⑴ ;⑵ ;⑶ ;
;⑷ ; ;
;⑸ ;(6)
。
4.不等式等證明(主要)方法:
⑴比較法:作差或作比;⑵綜合法;⑶分析法。
第十部分 復數
1.概念:
⑴z=a+bi∈R b=0 (a,b∈R) z= z2≥0;
⑵z=a+bi是虛數 b≠0(a,b∈R);
⑶z=a+bi是純虛數 a=0且b≠0(a,b∈R) z+ =0(z≠0) z2<0;
⑷a+bi=c+di a=c且c=d(a,b,c,d∈R);
2.復數的代數形式及其運算:設z1= a + bi , z2 = c + di (a,b,c,d∈R),則:
(1) z 1± z2 = (a + b) ± (c + d)i;⑵ z1.z2 = (a+bi)•(c+di)=(ac-bd)+ (ad+bc)i;⑶z1÷z2 = (z2≠0) ;
3.幾個重要的結論:
;⑶ ;⑷
⑸ 性質:T=4; ;
(6) 以3為周期,且 ; =0;
(7) 。
4.運算律:(1)
5.共軛的性質:⑴ ;⑵ ;⑶ ;⑷ 。
6.模的性質:⑴ ;⑵ ;⑶ ;⑷ ;
第十一部分 概率
1.事件的關系:
⑴事件B包含事件A:事件A發生,事件B一定發生,記作 ;
⑵事件A與事件B相等:若 ,則事件A與B相等,記作A=B;
⑶並(和)事件:某事件發生,當且僅當事件A發生或B發生,記作 (或 );
⑷並(積)事件:某事件發生,當且僅當事件A發生且B發生,記作 (或 ) ;
⑸事件A與事件B互斥:若 為不可能事件( ),則事件A與互斥;
(6)對立事件: 為不可能事件, 為必然事件,則A與B互為對立事件。
2.概率公式:
⑴互斥事件(有一個發生)概率公式:P(A+B)=P(A)+P(B);
⑵古典概型: ;
⑶幾何概型: ;
第十二部分 統計與統計案例
1.抽樣方法
⑴簡單隨機抽樣:一般地,設一個總體的個數為N,通過逐個不放回的方法從中抽取一個容量為n的樣本,且每個個體被抽到的機會相等,就稱這種抽樣為簡單隨機抽樣。
註:①每個個體被抽到的概率為 ;
②常用的簡單隨機抽樣方法有:抽簽法;隨機數法。
⑵系統抽樣:當總體個數較多時,可將總體均衡的分成幾個部分,然後按照預先制定的
規則,從每一個部分抽取一個個體,得到所需樣本,這種抽樣方法叫系統抽樣。
註:步驟:①編號;②分段;③在第一段採用簡單隨機抽樣方法確定其時個體編號 ;
④按預先制定的規則抽取樣本。
⑶分層抽樣:當已知總體有差異比較明顯的幾部分組成時,為使樣本更充分的反映總體的情況,將總體分成幾部分,然後按照各部分佔總體的比例進行抽樣,這種抽樣叫分層抽樣。
註:每個部分所抽取的樣本個體數=該部分個體數
2.總體特徵數的估計:
⑴樣本平均數 ;
⑵樣本方差 ;
⑶樣本標准差 = ;
3.相關系數(判定兩個變數線性相關性):
註:⑴ >0時,變數 正相關; <0時,變數 負相關;
⑵① 越接近於1,兩個變數的線性相關性越強;② 接近於0時,兩個變數之間幾乎不存在線性相關關系。
4.回歸分析中回歸效果的判定:
⑴總偏差平方和: ⑵殘差: ;⑶殘差平方和: ;⑷回歸平方和: - ;⑸相關指數 。
註:① 得知越大,說明殘差平方和越小,則模型擬合效果越好;
② 越接近於1,,則回歸效果越好。
5.獨立性檢驗(分類變數關系):
隨機變數 越大,說明兩個分類變數,關系越強,反之,越弱。
第十四部分 常用邏輯用語與推理證明
1. 四種命題:
⑴原命題:若p則q; ⑵逆命題:若q則p;
⑶否命題:若 p則 q;⑷逆否命題:若 q則 p
註:原命題與逆否命題等價;逆命題與否命題等價。
2.充要條件的判斷:
(1)定義法----正、反方向推理;
(2)利用集合間的包含關系:例如:若 ,則A是B的充分條件或B是A的必要條件;若A=B,則A是B的充要條件;
3.邏輯連接詞:
⑴且(and) :命題形式 p q; p q p q p q p
⑵或(or):命題形式 p q; 真 真 真 真 假
⑶非(not):命題形式 p . 真 假 假 真 假
假 真 假 真 真
假 假 假 假 真
4.全稱量詞與存在量詞
⑴全稱量詞-------「所有的」、「任意一個」等,用 表示;
全稱命題p: ;
全稱命題p的否定 p: 。
⑵存在量詞--------「存在一個」、「至少有一個」等,用 表示;
特稱命題p: ;
特稱命題p的否定 p: ;
第十五部分 推理與證明
1.推理:
⑴合情推理:歸納推理和類比推理都是根據已有事實,經過觀察、分析、比較、聯想,在進行歸納、類比,然後提出猜想的推理,我們把它們稱為合情推理。
①歸納推理:由某類食物的部分對象具有某些特徵,推出該類事物的全部對象都具有這些特徵的推理,或者有個別事實概括出一般結論的推理,稱為歸納推理,簡稱歸納。
註:歸納推理是由部分到整體,由個別到一般的推理。
②類比推理:由兩類對象具有類似和其中一類對象的某些已知特徵,推出另一類對象也具有這些特徵的推理,稱為類比推理,簡稱類比。
註:類比推理是特殊到特殊的推理。
⑵演繹推理:從一般的原理出發,推出某個特殊情況下的結論,這種推理叫演繹推理。
註:演繹推理是由一般到特殊的推理。
「三段論」是演繹推理的一般模式,包括:
⑴大前提---------已知的一般結論;
⑵小前提---------所研究的特殊情況;
⑶結 論---------根據一般原理,對特殊情況得出的判斷。
二.證明
⒈直接證明
⑴綜合法
一般地,利用已知條件和某些數學定義、定理、公理等,經過一系列的推理論證,最後推導出所要證明的結論成立,這種證明方法叫做綜合法。綜合法又叫順推法或由因導果法。
⑵分析法
一般地,從要證明的結論出發,逐步尋求使它成立的充分條件,直至最後,把要證明的結論歸結為判定一個明顯成立的條件(已知條件、定義、定理、公理等),這種證明的方法叫分析法。分析法又叫逆推證法或執果索因法。
2.間接證明------反證法
一般地,假設原命題不成立,經過正確的推理,最後得出矛盾,因此說明假設錯誤,從而證明原命題成立,這種證明方法叫反證法。
附:數學歸納法(僅限理科)
一般的證明一個與正整數 有關的一個命題,可按以下步驟進行:
⑴證明當 取第一個值 是命題成立;
⑵假設當 命題成立,證明當 時命題也成立。
那麼由⑴⑵就可以判定命題對從 開始所有的正整數都成立。
這種證明方法叫數學歸納法。
註:①數學歸納法的兩個步驟缺一不可,用數學歸納法證明問題時必須嚴格按步驟進行;
3 的取值視題目而4 定,5 可能是1,6 也可能是2等。
第十六部分 理科選修部分
1. 排列、組合和二項式定理
⑴排列數公式: =n(n-1)(n-2)…(n-m+1)= (m≤n,m、n∈N*),當m=n時為全排列 =n(n-1)(n-2)…3.2.1=n!;
⑵組合數公式: (m≤n), ;
⑶組合數性質: ;
⑷二項式定理:
①通項: ②注意二項式系數與系數的區別;
⑸二項式系數的性質:
①與首末兩端等距離的二項式系數相等;②若n為偶數,中間一項(第 +1項)二項式系數最大;若n為奇數,中間兩項(第 和 +1項)二項式系數最大;
③
(6)求二項展開式各項系數和或奇(偶)數項系數和時,注意運用賦值法。
2. 概率與統計
⑴隨機變數的分布列:
①隨機變數分布列的性質:pi≥0,i=1,2,…; p1+p2+…=1;
②離散型隨機變數:
X x1 X2 … xn …
P P1 P2 … Pn …
期望:EX= x1p1 + x2p2 + … + xnpn + … ;
方差:DX= ;
註: ;
③兩點分布:
X 0 1 期望:EX=p;方差:DX=p(1-p).
P 1-p p
4 超幾何分布:
一般地,在含有M件次品的N件產品中,任取n件,其中恰有X件次品,則 其中, 。
稱分布列
X 0 1 … m
P …
為超幾何分布列, 稱X服從超幾何分布。
⑤二項分布(獨立重復試驗):
若X~B(n,p),則EX=np, DX=np(1- p);註: 。
⑵條件概率:稱 為在事件A發生的條件下,事件B發生的概率。
註:①0 P(B|A) 1;②P(B∪C|A)=P(B|A)+P(C|A)。
⑶獨立事件同時發生的概率:P(AB)=P(A)P(B)。
⑷正態總體的概率密度函數: 式中 是參數,分別表示總體的平均數(期望值)與標准差;
(6)正態曲線的性質:
①曲線位於x軸上方,與x軸不相交;②曲線是單峰的,關於直線x= 對稱;
③曲線在x= 處達到峰值 ;④曲線與x軸之間的面積為1;
5 當 一定時,6 曲線隨 質的變化沿x軸平移;
7 當 一定時,8 曲線形狀由 確定: 越大,9 曲線越「矮胖」,10 表示總體分布越集中;
越小,曲線越「高瘦」,表示總體分布越分散。
註:P =0.6826;P =0.9544
P =0.9974
㈥ 高中數學基礎知識
乘法與因式分解
a^2-b^2=(a+b)(a-b)
a^3+b^3=(a+b)(a^2-ab+b^2)
a^3-b^3=(a-b(a^2+ab+b^2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解 -b+√(b^2-4ac)/2a -b-√(b^2-4ac)/2a
根與系數的關系 X1+X2=-b/a X1*X2=c/a 註:韋達定理
判別式
b^2-4ac=0 註:方程有兩個相等的實根
b^2-4ac>0 註:方程有兩個不等的實根
b^2-4ac<0 註:方程沒有實根,有共軛復數根
三角函數公式
兩角和公式
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
cot(A+B)=(cotAcotB-1)/(cotB+cotA)
cot(A-B)=(cotAcotB+1)/(cotB-cotA)
倍角公式
tan2A=2tanA/[1-(tanA)^2]
cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2
半形公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))
和差化積
2sinAcosB=sin(A+B)+sin(A-B)
2cosAsinB=sin(A+B)-sin(A-B) )
2cosAcosB=cos(A+B)-sin(A-B)
-2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2
cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB
某些數列前n項和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2
1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 5
1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6
1^3+2^3+3^3+4^3+5^3+6^3+…n^3=n2(n+1)2/4
1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 註: 其中 R 表示三角形的外接圓半徑
餘弦定理 b^2=a^2+c^2-2accosB 註:角B是邊a和邊c的夾角
圓的標准方程 (x-a)^2+(y-b)^2=^r2 註:(a,b)是圓心坐標
圓的一般方程 x^2+y^2+Dx+Ey+F=0 註:D^2+E^2-4F>0
拋物線標准方程 y^2=2px y^2=-2px x^2=2py x^2=-2py
直稜柱側面積 S=c*h 斜稜柱側面積 S=c'*h
正棱錐側面積 S=1/2c*h' 正稜台側面積 S=1/2(c+c')h'
圓台側面積 S=1/2(c+c')l=pi(R+r)l 球的表面積 S=4pi*r2
圓柱側面積 S=c*h=2pi*h 圓錐側面積 S=1/2*c*l=pi*r*l
弧長公式 l=a*r a是圓心角的弧度數r >0 扇形面積公式 s=1/2*l*r
錐體體積公式 V=1/3*S*H 圓錐體體積公式 V=1/3*pi*r2h
斜稜柱體積 V=S'L 註:其中,S'是直截面面積, L是側棱長
柱體體積公式 V=s*h 圓柱體 V=pi*r2h
定理:
1 過兩點有且只有一條直線
2 兩點之間線段最短
3 同角或等角的補角相等
4 同角或等角的餘角相等
5 過一點有且只有一條直線和已知直線垂直
6 直線外一點與直線上各點連接的所有線段中,垂線段最短
7 平行公理 經過直線外一點,有且只有一條直線與這條直線平行
8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9 同位角相等,兩直線平行
10 內錯角相等,兩直線平行
11 同旁內角互補,兩直線平行
12兩直線平行,同位角相等
13 兩直線平行,內錯角相等
14 兩直線平行,同旁內角互補
15 定理 三角形兩邊的和大於第三邊
16 推論 三角形兩邊的差小於第三邊
17 三角形內角和定理 三角形三個內角的和等於180°
18 推論1 直角三角形的兩個銳角互余
19 推論2 三角形的一個外角等於和它不相鄰的兩個內角的和
20 推論3 三角形的一個外角大於任何一個和它不相鄰的內角
21 全等三角形的對應邊、對應角相等
22邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等
作者:塵世的Angel 2008-11-22 22:48 回復此發言
--------------------------------------------------------------------------------
2 高中數學公式
23 角邊角公理( ASA)有兩角和它們的夾邊對應相等的兩個三角形全等
24 推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等
25 邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等
26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等
27 定理1 在角的平分線上的點到這個角的兩邊的距離相等
28 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上
29 角的平分線是到角的兩邊距離相等的所有點的集合
30 等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角)
31 推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊
32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33 推論3 等邊三角形的各角都相等,並且每一個角都等於60°
34 等腰三角形的判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)
35 推論1 三個角都相等的三角形是等邊三角形
36 推論 2 有一個角等於60°的等腰三角形是等邊三角形
37 在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半
38 直角三角形斜邊上的中線等於斜邊上的一半
39 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等
40 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42 定理1 關於某條直線對稱的兩個圖形是全等形
43 定理 2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線
44定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上
45逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱
46勾股定理 直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a^2+b^2=c^2
47勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a^2+b^2=c^2 ,那麼這個三角形是直角三角形
48定理 四邊形的內角和等於360°
49四邊形的外角和等於360°
50多邊形內角和定理 n邊形的內角的和等於(n-2)×180°
51推論 任意多邊的外角和等於360°
52平行四邊形性質定理1 平行四邊形的對角相等
53平行四邊形性質定理2 平行四邊形的對邊相等
54推論 夾在兩條平行線間的平行線段相等
55平行四邊形性質定理3 平行四邊形的對角線互相平分
56平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形
57平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形
58平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形
59平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形
60矩形性質定理1 矩形的四個角都是直角
61矩形性質定理2 矩形的對角線相等
62矩形判定定理1 有三個角是直角的四邊形是矩形
63矩形判定定理2 對角線相等的平行四邊形是矩形
64菱形性質定理1 菱形的四條邊都相等
65菱形性質定理2 菱形的對角線互相垂直,並且每一條對角線平分一組對角
66菱形面積=對角線乘積的一半,即S=(a×b)÷2
67菱形判定定理1 四邊都相等的四邊形是菱形
68菱形判定定理2 對角線互相垂直的平行四邊形是菱形
69正方形性質定理1 正方形的四個角都是直角,四條邊都相等
70正方形性質定理2正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角
71定理1 關於中心對稱的兩個圖形是全等的
72定理2 關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分
73逆定理 如果兩個圖形的對應點連線都經過某一點,並且被這一 點平分,那麼這兩個圖形關於這一點對稱
74等腰梯形性質定理 等腰梯形在同一底上的兩個角相等
75等腰梯形的兩條對角線相等
76等腰梯形判定定理 在同一底上的兩個角相等的梯形是等腰梯形
作者:塵世的Angel 2008-11-22 22:48 回復此發言
--------------------------------------------------------------------------------
3 高中數學公式
77對角線相等的梯形是等腰梯形
78平行線等分線段定理 如果一組平行線在一條直線上截得的線段
相等,那麼在其他直線上截得的線段也相等
79 推論1 經過梯形一腰的中點與底平行的直線,必平分另一腰
80 推論2 經過三角形一邊的中點與另一邊平行的直線,必平分第 三邊
81 三角形中位線定理 三角形的中位線平行於第三邊,並且等於它 的一半
82 梯形中位線定理 梯形的中位線平行於兩底,並且等於兩底和的 一半 L=(a+b)÷2 S=L×h
83 (1)比例的基本性質 如果a:b=c:d,那麼ad=bc
如果ad=bc,那麼a:b=c:d wc呁/S∕ ?
84 (2)合比性質 如果a/b=c/d,那麼(a±b)/b=(c±d)/d
85 (3)等比性質 如果a/b=c/d=…=m/n(b+d+…+n≠0),那麼
(a+c+…+m)/(b+d+…+n)=a/b
86 平行線分線段成比例定理 三條平行線截兩條直線,所得的對應 線段成比例
87 推論 平行於三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例
88 定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那麼這條直線平行於三角形的第三邊
89 平行於三角形的一邊,並且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例
90 定理 平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似
91 相似三角形判定定理1 兩角對應相等,兩三角形相似(ASA)
92 直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
93 判定定理2 兩邊對應成比例且夾角相等,兩三角形相似(SAS)
94 判定定理3 三邊對應成比例,兩三角形相似(SSS)
95 定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三 角形的斜邊和一條直角邊對應成比例,那麼這兩個直角三角形相似
96 性質定理1 相似三角形對應高的比,對應中線的比與對應角平 分線的比都等於相似比
97 性質定理2 相似三角形周長的比等於相似比
98 性質定理3 相似三角形面積的比等於相似比的平方
99 任意銳角的正弦值等於它的餘角的餘弦值,任意銳角的餘弦值等 於它的餘角的正弦值
100任意銳角的正切值等於它的餘角的餘切值,任意銳角的餘切值等 於它的餘角的正切值
101圓是定點的距離等於定長的點的集合
102圓的內部可以看作是圓心的距離小於半徑的點的集合
103圓的外部可以看作是圓心的距離大於半徑的點的集合
104同圓或等圓的半徑相等
105到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半 徑的圓
106和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直 平分線
107到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
108到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距 離相等的一條直線
109定理 不在同一直線上的三點確定一個圓。
110垂徑定理 垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧
111推論1 ①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧
②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧
112推論2 圓的兩條平行弦所夾的弧相等
113圓是以圓心為對稱中心的中心對稱圖形
114定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦 相等,所對的弦的弦心距相等
115推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩 弦的弦心距中有一組量相等那麼它們所對應的其餘各組量都相等
116定理 一條弧所對的圓周角等於它所對的圓心角的一半
117推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
118推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所 對的弦是直徑
119推論3 如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形
120定理 圓的內接四邊形的對角互補,並且任何一個外角都等於它 的內對角
121①直線L和⊙O相交 d<r
②直線L和⊙O相切 d=r
③直線L和⊙O相離 d>r
㈦ 高中數學知識點。公式和簡單講解
如何學好高中理科各門課程
成功既不是靠天才,成功也不是靠努力,成功是靠正確的方法。只有方法正確才可能取得成功。我們周圍的同學甚至是我們自己,學習不可能不努力,可是成績就是就始終上不去,不斷增加學習時間,希望自己能夠提高考試成績,總是事與願違。為什麼呢?因為學習方法有問題。
【數學的學習】
數學的考察主要還是基礎知識,難題也不過是在簡單題的基礎上加以綜合。所以課本上的內容是很重要的,如果課本上的知識都不能掌握,就沒有觸類旁通的資本。
對課本上的內容,上課之前最好能夠首先預習一下,否則上課時有一個知識點沒有跟上老師的步驟,下面的就不知所以然了,如此惡性循環,就會開始厭煩數學,對學習來說興趣是很重要的。課後針對性的練習題一定要認真做,不能偷懶,也可以在課後復習時把課堂例題反復演算幾遍,畢竟上課的時候,是老師在進行題目的演算和講解,學生在聽,這是一個比較機械、比較被動的接受知識的過程。也許你認為自己在課堂上聽懂了,但實際上你對於解題方法的理解還沒有達到一個比較深入的程度,並且非常容易忽視一些真正的解題過程中必定遇到的難點。「好腦子不如賴筆頭」。對於數理化題目的解法,光靠腦子里的大致想法是不夠的,一定要經過周密的筆頭計算才能夠發現其中的難點並且掌握化解方法,最終得到正確的計算結果。
其次是要善於總結歸類,尋找不同的題型、不同的知識點之間的共性和聯系,把學過的知識系統化。舉個具體的例子:高一代數的函數部分,我們學習了指數函數、對數函數、冪函數、三角函數等好幾種不同類型的函數。但是把它們對比著總結一下,你就會發現無論哪種函數,我們需要掌握的都是它的表達式、圖象形狀、奇偶性、增減性和對稱性。那麼你可以將這些函數的上述內容製作在一張大表格中,對比著進行理解和記憶。在解題時注意函數表達式與圖形結合使用,必定會收到好得多的效果。
最後就是要加強課後練習,除了作業之外,找一本好的參考書,盡量多做一下書上的練習題(尤其是綜合題和應用題)。熟能生巧,這樣才能鞏固課堂學習的效果,使你的解題速度越來越快。
【物理的學習】
我曾經聽說過一個上海中學生總結的「多理解,多練習,多總結」的「三多法」。我覺得這個方法很能概括高中階段的物理學習要領。
多理解,就是緊緊抓住預習、聽課和復習,對所學知識進行多層次、多角度地理解。預習可分為粗讀和精讀。先粗略看一下所要學的內容,對重要的部分以小標題的方式加以圈注。接著便仔細閱讀圈注部分,進行深入理解,即精讀。上課時可有目的地聽老師講解難點,解答疑問。這樣便對知識理解得較全面、透徹。課後進行復習,除了對公式定理進行理解記憶,還要深入理解老師的講課思路,理解解題的「中心思路」,即抓住例題的知識點對症下葯,應用什麼定理的公式,使其條理化、程序化。
多練習,既指鞏固知識的練習,也指心理素質的「練習」。鞏固知識的練習不光是指要認真完成課內習題,還要完成一定量的課外練習。但單純的「題海戰術」是不可取的,應該有選擇地做一些有代表性的題型。基礎好的同學還應該做一些綜合題和應用題。另外,平日應注意調整自己的心態,培養沉著、自信的心理素質。
多總結,首先要對課堂知識進行詳細分類和整理,特別是定理,要深入理解它的內涵、外延、推導、應用范圍等,總結出各種知識點之間的聯系,在頭腦中形成知識網路。其次要對多種題型的解答方法進行分析和概括。還有一種總結也很重要,就是在平時的練習和考試之後分析自己的錯誤、弱項,以便日後克服。
【化學的學習】
學習化學要做到三抓,即抓基礎、抓思路、抓規律。重視基礎知識的學習是提高能力的保證。學好化學用語如元素符號、化學式、化學方程式等基本概念及元素、化合物的性質。在做題中要善於總結歸納題型及解題思路。化學知識之間是有內在規律的,掌握了規律就能駕馭知識,記憶知識。如化合價的一般規律,金屬元素通常顯正價,非金屬元素通常顯負價,單質元素的化合價為零,許多元素有變價,條件不同價態不同。
關於化學有一種說法就是化學是理科中的文科,因為化學要記要背的東西很多,而且化學是一門實驗性很強的學科,因此在化學的學習過程中要注意閱讀與動手、動筆結合。要自己動手推演、計算、寫結構式、寫化學方程式,或者動手做實驗,來驗證、加深印象和幫助理解,有時還要動手查找資料來核對、補充某些材料。同時在化學學習中,經過思考提出存在於化學事物內部或化學事物之間的矛盾,即化學問題,由自己來加以研究和解決,或者在自己解決不了時請求別人幫助解決,是化學學習的一種基本活動方法,也是提高化學學習效果的一種基本方法。
【生物的學習】
基本方針:
1.生物是正確了解身體,學習人和環境(植物,動物,自然界)之間關系的科目。
2.不要盲目記憶,跟生活中的經驗聯系起來理解。
運用方案:
1.仔細了解課本內容,理解和記憶基本概念。
(1)根據每單元的學習目標,聯系各個概念進行學習。
(2)不要只記憶核心事項,要一步一步進行深入的學習。
(3)要正確把握課本上的圖像、表格、相片所表示的意思。
2.把所學的內容跟實際生活聯系起來理解。
3.把日常用語和科學用語互做比較,確實理解整理後再記憶。
4.把內容用圖或表格表述後,再進行整理和理解。
5.實驗整理以後跟概念聯系起來理解。(把握實驗目的,把結果跟自己的想法做比較,找出差距,並分析差距產生的原因)
*正確了解顯微鏡的結構和使用方法,直接觀察了解各生物的特徵。
*養成寫實驗觀察日記的習慣。
6.以學習資料的解釋部分和習題集的整理部分為中心進行記憶。
7.根據內容用不同方法記憶。
(1)把所學的內容聯系起來整理進行記憶。
*把想起來的主題不管順序先隨便記下來。
*把中心主題寫在中間位置。
*按照知識間的相互關系用線或圖連接起來完成地圖。
(2)利用對自己有特別意義或特殊意思的詞進行記憶。
(3)同時使用眼睛、手和嘴、耳朵記憶。
8.不懂的題必須解決。(先給自己提問,把握自己具體不懂哪部分後再請教其他人。)
9.通過解題確認所學內容。
(1)整理做錯的題,下次考試前重點復習。
(2)不太明白的題查課本和學習資料弄清楚。
(3)以基本題——中等難度題——難題的順序做題,理解內容。
其他:
1.時間比較寬松的時候,如假期可先從自己感興趣的部分開始重點學習。(相聯系的部分也能培養興趣)
2.平時利用網路全書查找不懂的事項
㈧ 高二數學上冊知識點總結
因為高二開始努力,所以前面的知識肯定有一定的欠缺,這就要求自己要制定一定的計劃,更要比別人付出更多的努力,相信付出的汗水不會白白流淌的,收獲總是自己的。我高二頻道為你整理了《高二上冊數學知識點 總結 》,助你金榜題名!
高二數學 上冊知識點總結
一、變數間的相關關系
1.常見的兩變數之間的關系有兩類:一類是函數關系,另一類是相關關系;與函數關系不同,相關關系是一種非確定性關系.
2.從散點圖上看,點分布在從左下角到右上角的區域內,兩個變數的這種相關關系稱為正相關,點分布在左上角到右下角的區域內,兩個變數的相關關系為負相關.
二、兩個變數的線性相關
1.從散點圖上看,如果這些點從整體上看大致分布在通過散點圖中心的一條直線附近,稱兩個變數之間具有線性相關關系,這條直線叫回歸直線.
當r>0時,表明兩個變數正相關;
當r<0時,表明兩個變數負相關.
r的絕對值越接近於1,表明兩個變數的線性相關性越強.r的絕對值越接近於0時,表明兩個變數之間幾乎不存在線性相關關系.通常|r|大於0.75時,認為兩個變數有很強的線性相關性.
三、解題 方法
1.相關關系的判斷方法一是利用散點圖直觀判斷,二是利用相關系數作出判斷.
2.對於由散點圖作出相關性判斷時,若散點圖呈帶狀且區域較窄,說明兩個變數有一定的線性相關性,若呈曲線型也是有相關性.
3.由相關系數r判斷時|r|越趨近於1相關性越強.
高二數學上冊知識點總結
圓與圓的位置關系
1、利用平面直角坐標系解決直線與圓的位置關系;
2、過程與方法
用坐標法解決幾何問題的步驟:
第一步:建立適當的平面直角坐標系,用坐標和方程表示問題中的幾何元素,將平面幾何問題轉化為代數問題;
第二步:通過代數運算,解決代數問題;
第三步:將代數運算結果「翻譯」成幾何結論.
高二數學上冊知識點總結
1、圓的定義:平面內到一定點的距離等於定長的點的集合叫圓,定點為圓心,定長為圓的半徑.
2、圓的方程
(1)標准方程,圓心,半徑為r;
(2)一般方程
當時,方程表示圓,此時圓心為,半徑為
當時,表示一個點;當時,方程不表示任何圖形.
(3)求圓方程的方法:
一般都採用待定系數法:先設後求.確定一個圓需要三個獨立條件,若利用圓的標准方程,
需求出a,b,r;若利用一般方程,需要求出D,E,F;
另外要注意多利用圓的幾何性質:如弦的中垂線必經過原點,以此來確定圓心的位置.
3、高中數學必修二知識點總結:直線與圓的位置關系:
直線與圓的位置關系有相離,相切,相交三種情況:
(1)設直線,圓,圓心到l的距離為,則有;;
(2)過圓外一點的切線:k不存在,驗證是否成立k存在,設點斜式方程,用圓心到該直線距離=半徑,求解k,得到方程【一定兩解】
(3)過圓上一點的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點為(x0,y0),則過此點的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r2
4、圓與圓的位置關系:通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定.
設圓,
兩圓的位置關系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定.
當時兩圓外離,此時有公切線四條;
當時兩圓外切,連心線過切點,有外公切線兩條,內公切線一條;
當時兩圓相交,連心線垂直平分公共弦,有兩條外公切線;
當時,兩圓內切,連心線經過切點,只有一條公切線;
當時,兩圓內含;當時,為同心圓.
注意:已知圓上兩點,圓心必在中垂線上;已知兩圓相切,兩圓心與切點共線
5、空間點、直線、平面的位置關系
公理1:如果一條直線的兩點在一個平面內,那麼這條直線是所有的點都在這個平面內.
應用:判斷直線是否在平面內
用符號語言表示公理1:
公理2:如果兩個不重合的平面有一個公共點,那麼它們有且只有一條過該點的公共直線
符號:平面α和β相交,交線是a,記作α∩β=a.
符號語言:
公理2的作用:
它是判定兩個平 面相 交的方法.
它說明兩個平面的交線與兩個平面公共點之間的關系:交線公共點.
它可以判斷點在直線上,即證若干個點共線的重要依據.
公理3:經過不在同一條直線上的三點,有且只有一個平面.
推論:一直線和直線外一點確定一平面;兩相交直線確定一平面;兩平行直線確定一平面.
公理3及其推論作用:它是空間內確定平面的依據它是證明平面重合的依據
公理4:平行於同一條直線的兩條直線互相平行
高二數學上冊知識點總結相關 文章 :
★ 高二數學上冊知識點總結與復習方法(2)
★ 高二數學知識點總結歸納
★ 2020高二上冊數學知識點
★ 高二數學上下學期知識點復習提綱
★ 最新高二數學基礎知識點歸納
★ 高二數學必修三知識點總結
★ 2018高二數學會考知識點總結
★ 人教版高二數學上冊演算法框圖的基本結構及設計知識點
★ 高二各知識點數學題
★ 高二數學期末復習方法
高二數學上冊知識點總結相關文章:
★ 高二數學上冊知識點總結與復習方法(2)
★ 高二數學知識點總結歸納
★ 2020高二上冊數學知識點
★ 高二數學上下學期知識點復習提綱
★ 最新高二數學基礎知識點歸納
★ 高二數學必修三知識點總結
★ 2018高二數學會考知識點總結
★ 人教版高二數學上冊演算法框圖的基本結構及設計知識點
★ 高二各知識點數學題
★ 高二數學期末復習方法
㈨ 新人教版高一數學知識點
知識是一座寶庫,而實踐就是開啟寶庫的鑰匙。學習任何學科,不僅需要大量的記憶,還需要大量的練習,從而達到鞏固知識的效果。下面是我給大家整理的一些 高一數學 的知識點,希望對大家有所幫助。
高一上冊數學必修一知識點梳理
函數的性質
函數的單調性(局部性質)
(1)增函數
設函數y=f(x)的定義域為I,如果對於定義域I內的某個區間D內的任意兩個自變數x1,x2,當x1
如果對於區間D上的任意兩個自變數的值x1,x2,當x1f(x2),那麼就說f(x)在這個區間上是減函數.區間D稱為y=f(x)的單調減區間.
注意:函數的單調性是函數的局部性質;
(2)圖象的特點
如果函數y=f(x)在某個區間是增函數或減函數,那麼說函數y=f(x)在這一區間上具有(嚴格的)單調性,在單調區間上增函數的圖象從左到右是上升的,減函數的圖象從左到右是下降的.
(3).函數單調區間與單調性的判定 方法
(A)定義法:
(1)任取x1,x2∈D,且x1
(2)作差f(x1)-f(x2);或者做商
(3)變形(通常是因式分解和配方);
(4)定號(即判斷差f(x1)-f(x2)的正負);
(5)下結論(指出函數f(x)在給定的區間D上的單調性).
(B)圖象法(從圖象上看升降)
(C)復合函數的單調性
復合函數f[g(x)]的單調性與構成它的函數u=g(x),y=f(u)的單調性密切相關,其規律:「同增異減」
注意:函數的單調區間只能是其定義域的子區間,不能把單調性相同的區間和在一起寫成其並集.
函數的奇偶性(整體性質)
(1)偶函數:一般地,對於函數f(x)的定義域內的任意一個x,都有f(-x)=f(x),那麼f(x)就叫做偶函數.
(2)奇函數:一般地,對於函數f(x)的定義域內的任意一個x,都有f(-x)=—f(x),那麼f(x)就叫做奇函數.
(3)具有奇偶性的函數的圖象的特徵:偶函數的圖象關於y軸對稱;奇函數的圖象關於原點對稱.
9.利用定義判斷函數奇偶性的步驟:
1首先確定函數的定義域,並判斷其是否關於原點對稱;
2確定f(-x)與f(x)的關系;
3作出相應結論:若f(-x)=f(x)或f(-x)-f(x)=0,則f(x)是偶函數;若f(-x)=-f(x)或f(-x)+f(x)=0,則f(x)是奇函數.
高一數學必修五知識點 總結
⑴公差為d的等差數列,各項同加一數所得數列仍是等差數列,其公差仍為d.
⑵公差為d的等差數列,各項同乘以常數k所得數列仍是等差數列,其公差為kd.
⑶若{a}、{b}為等差數列,則{a±b}與{ka+b}(k、b為非零常數)也是等差數列.
⑷對任何m、n,在等差數列{a}中有:a=a+(n-m)d,特別地,當m=1時,便得等差數列的通項公式,此式較等差數列的通項公式更具有一般性.
⑸、一般地,如果l,k,p,…,m,n,r,…皆為自然數,且l+k+p+…=m+n+r+…(兩邊的自然數個數相等),那麼當{a}為等差數列時,有:a+a+a+…=a+a+a+….
⑹公差為d的等差數列,從中取出等距離的項,構成一個新數列,此數列仍是等差數列,其公差為kd(k為取出項數之差).
⑺如果{a}是等差數列,公差為d,那麼,a,a,…,a、a也是等差數列,其公差為-d;在等差數列{a}中,a-a=a-a=md.(其中m、k、)
⑻在等差數列中,從第一項起,每一項(有窮數列末項除外)都是它前後兩項的等差中項.
⑼當公差d>0時,等差數列中的數隨項數的增大而增大;當d<0時,等差數列中的數隨項數的減少而減小;d=0時,等差數列中的數等於一個常數.
⑽設a,a,a為等差數列中的三項,且a與a,a與a的項距差之比=(≠-1),則a=.
⑴數列{a}為等差數列的充要條件是:數列{a}的前n項和S可以寫成S=an+bn的形式(其中a、b為常數).
⑵在等差數列{a}中,當項數為2n(nN)時,S-S=nd,=;當項數為(2n-1)(n)時,S-S=a,=.
⑶若數列{a}為等差數列,則S,S-S,S-S,…仍然成等差數列,公差為.
⑷若兩個等差數列{a}、{b}的前n項和分別是S、T(n為奇數),則=.
⑸在等差數列{a}中,S=a,S=b(n>m),則S=(a-b).
⑹等差數列{a}中,是n的一次函數,且點(n,)均在直線y=x+(a-)上.
⑺記等差數列{a}的前n項和為S.①若a>0,公差d<0,則當a≥0且a≤0時,S;②若a<0,公差d>0,則當a≤0且a≥0時,S最小.
高一 數學 學習方法 參考
基礎是關鍵,課本是首選
首先,新高一同學要明確的是:高一數學是高中數學的重點基礎。剛進入高一,有些學生還不是很適應,如果直接學習高考技巧彷彿是「沒學好走就想跑」。任何的技巧都是建立在牢牢的基礎知識之上,因此建議高一的學生多抓基礎,多看課本。
在應試 教育 中,只有多記公式,掌握解題技巧,熟悉各種題型,把自己變成一個做題機器,才能在考試中取得的成績。在高考中只會做題是不行的,一定要在會的基礎上加個「熟練」才行,小題一般要控制在每個兩分鍾左右。
高一數學的知識掌握較多,高一試題約占高考得分的70%,一學年要學五本書,只要把高一的數學掌握牢靠,高二,高三則只是對高一的復習與補充,所以進入高中後,要盡快適應新環境,上課認真聽,多做筆記,一定會學好數學。
因此,新高一同學應該在熟記概念的基礎上,多做練習,穩扎穩打,只有這樣,才能學好數學。
一、數學預習
預習是學好數學的必要前提,可謂是「火燒赤壁」所需「東風」.總的來說,預習可以分為以下2步。
1.預習即將學習的章節的課本知識。在預習課本的過程中,要將課本中的定義、定理記熟,做到活學活用。有是要仔細做課本上的例題以及課後練習,這些基礎性的東西往往是最重要的。
2.自覺完成自學稿。自學稿是新課改以來歡迎的學習方式!首先應將自學稿上的《預習檢測》部分寫完,然後想後看題。在剛開始,可能會有一些不會做,記住不要苦心去鑽研,那樣往往會事倍功半!
二、數學聽講
聽講是學好數學的重要環節。可以這么說,不聽講,就不會有好成績。
1.在上課時,認真聽老師講課,積極發言。在遇到不懂的問題時,做上標記,課後及時的向老師請教!
2.記錄往往是一個細小的環節。注意老師重復的語句,以及寫在黑板上的大量文字(數學老師一般不多寫字),及時地用一個小本記錄下來,這樣日積月累,會形成一個知識小冊。
新人教版高一數學知識點相關 文章 :
★ 高一數學知識點總結(人教版)
★ 人教版高中數學知識點提綱
★ 人教版高中數學必修一知識點
★ 高一數學人教版上學期知識點
★ 高一數學必修一知識點匯總
★ 高中階段的高一數學課本知識點歸納
★ 人教版高一高二數學知識點
★ 人教版高中數學知識點總結最新
★ 人教版高中數學必修一知識點規納數學公式
★ 人教版高一數學函數知識點
㈩ 求高中數學基礎知識點
太多內容 自己進去看看 非常全面 自己可以把它下載出來
http://wenku..com/view/28b055175f0e7cd1842536a4.html
高中數學高考知識點總結附有經典例題
還有你可以到人教網上看看http://www.pep.com.cn/gzsx/jszx/xkbsyjc/dzkb/bx1/
上面有每冊的電子課本
希望這個回答對你有幫助 祝學業有成!