當前位置:首頁 » 基礎知識 » 衡水數學知識點
擴展閱讀
幼升小知識點歸納數學 2024-11-19 07:24:15

衡水數學知識點

發布時間: 2022-12-26 11:52:12

1. 高中數學必考知識點歸納大全

總結 是指社會團體、企業單位和個人對某一階段的學習、工作或其完成情況加以回顧和分析,得出教訓和一些規律性認識的一種書面材料,下面是我給大家帶來的數學必考知識點歸納大全,以供大家參考!

高中數學必考知識點歸納大全

1、 高一數學 知識點總結:集合一、集合有關概念

1.集合的含義

2.集合的中元素的三個特性:

(1)元素的確定性如:世界上最高的山

(2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}

(3)元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個集合

3.集合的表示:{…}如:{我校的 籃球 隊員},{太平洋,大西洋,印度洋,北冰洋}

(1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

(2)集合的表示 方法 :列舉法與描述法。

注意:常用數集及其記法:

非負整數集(即自然數集)記作:N

正整數集N或N+整數集Z有理數集Q實數集R

1)列舉法:{a,b,c……}

2)描述法:將集合中的元素的公共屬性描述出來,寫在大

括弧內表示集合的方法。{x∈R|x-3>2},{x|x-3>2}

3)語言描述法:例:{不是直角三角形的三角形}

4)Venn圖:

4、集合的分類:

(1)有限集含有有限個元素的集合

(2)無限集含有無限個元素的集合

(3)空集不含任何元素的集合例:{x|x2=-5}

2、高一數學知識點總結:集合間的基本關系

1.「包含」關系—子集

注意:A?B有兩種可能(1)A是B的一部分;(2)A與B是同一集合。

反之:集合A不包含於集合B,或集合B不包含集合A,記作A?/B或B?/A

2.「相等」關系:A=B(5≥5,且5≤5,則5=5)

實例:設A={x|x2

-1=0}B={-1,1}「元素相同則兩集合相等」即:①任何一個集合是它本身的子集。A?A

②真子集:如果A?B,且A≠B那就說集合A是集合B的真子集,記作AB(或BA)

③如果A?B,B?C,那麼A?C

④如果A?B同時B?A那麼A=B

3.不含任何元素的集合叫做空集,記為Φ

規定:空集是任何集合的子集,空集是任何非空集合的真子集。

有n個元素的集合,含有2n個子集,2n-1個真子集,一般我們把不含任何元素的集合叫做空集。

3、高一數學知識點總結:集合的分類(1)按元素屬性分類,如點集,數集。(2)按元素的個數多少,分為有/無限集

關於集合的概念:

(1)確定性:作為一個集合的元素,必須是確定的,這就是說,不能確定的對象就不能構成集合,也就是說,給定一個集合,任何一個對象是不是這個集合的元素也就確定了。

(2)互異性:對於一個給定的集合,集合中的元素一定是不同的(或說是互異的),這就是說,集合中的任何兩個元素都是不同的對象,相同的對象歸入同一個集合時只能算作集合的一個元素。

(3)無序性:判斷一些對象時候構成集合,關鍵在於看這些對象是否有明確的標准。

集合可以根據它含有的元素的個數分為兩類:

含有有限個元素的集合叫做有限集,含有無限個元素的集合叫做無限集。

非負整數全體構成的集合,叫做自然數集,記作N;

在自然數集內排除0的集合叫做正整數集,記作N+或N;

整數全體構成的集合,叫做整數集,記作Z;

有理數全體構成的集合,叫做有理數集,記作Q;(有理數是整數和分數的統稱,一切有理數都可以化成分數的形式。)

實數全體構成的集合,叫做實數集,記作R。(包括有理數和無理數。其中無理數就是無限不循環小數,有理數就包括整數和分數。數學上,實數直觀地定義為和數軸上的點一一對應的數。)

1.列舉法:如果一個集合是有限集,元素又不太多,常常把集合的所有元素都列舉出來,寫在花括弧「{}」內表示這個集合,例如,由兩個元素0,1構成的集合可表示為{0,1}.

有些集合的元素較多,元素的排列又呈現一定的規律,在不致於發生誤解的情況下,也可以列出幾個元素作為代表,其他元素用省略號表示。

例如:不大於100的自然數的全體構成的集合,可表示為{0,1,2,3,…,100}.

無限集有時也用上述的列舉法表示,例如,自然數集N可表示為{1,2,3,…,n,…}.

2.描述法:一種更有效地描述集合的方法,是用集合中元素的特徵性質來描述。

例如:正偶數構成的集合,它的每一個元素都具有性質:「能被2整除,且大於0」

而這個集合外的其他元素都不具有這種性質,因此,我們可以用上述性質把正偶數集合表示為

{x∈R│x能被2整除,且大於0}或{x∈R│x=2n,n∈N+},

大括弧內豎線左邊的X表示這個集合的任意一個元素,元素X從實數集合中取值,在豎線右邊寫出只有集合內的元素x才具有的性質。

一般地,如果在集合I中,屬於集合A的任意一個元素x都具有性質p(x),而不屬於集合A的元素都不具有的性質p(x),則性質p(x)叫做集合A的一個特徵性質。於是,集合A可以用它的性質p(x)描述為{x∈I│p(x)}

它表示集合A是由集合I中具有性質p(x)的所有元素構成的,這種表示集合的方法,叫做特徵性質描述法,簡稱描述法。

例如:集合A={x∈R│x2-1=0}的特徵是X2-1=0

高一數學必修一知識點摘要

(1)直線的傾斜角

定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°

(2)直線的斜率

①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。

②過兩點的直線的斜率公式:

注意下面四點:

(1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;

(2)k與P1、P2的順序無關;

(3)以後求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;

(4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到。

(3)直線方程

①點斜式:直線斜率k,且過點

注意:當直線的斜率為0°時,k=0,直線的方程是y=y1。當直線的斜率為90°時,直線的斜率不存在,它的方程不能用點斜式表示.但因l上每一點的橫坐標都等於x1,所以它的方程是x=x1。

②斜截式:,直線斜率為k,直線在y軸上的截距為b

③兩點式:()直線兩點,

④截矩式:其中直線與軸交於點,與軸交於點,即與軸、軸的截距分別為。

⑤一般式:(A,B不全為0)

⑤一般式:(A,B不全為0)

注意:○1各式的適用范圍

○2特殊的方程如:平行於x軸的直線:(b為常數);平行於y軸的直線:(a為常數);

(4)直線系方程:即具有某一共同性質的直線

高一數學知識點小結

1.二次函數y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點坐標及對稱軸如下表:

解析式

頂點坐標

對稱軸

y=ax^2

(0,0)

x=0

y=a(x-h)^2

(h,0)

x=h

y=a(x-h)^2+k

(h,k)

x=h

y=ax^2+bx+c

(-b/2a,[4ac-b^2]/4a)

x=-b/2a

當h>0時,y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動h個單位得到,

當h<0時,則向左平行移動|h|個單位得到.

當h>0,k>0時,將拋物線y=ax^2向右平行移動h個單位,再向上移動k個單位,就可以得到y=a(x-h)^2+k的圖象;

當h>0,k<0時,將拋物線y=ax^2向右平行移動h個單位,再向下移動|k|個單位可得到y=a(x-h)^2+k的圖象;

當h<0,k>0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y=a(x-h)^2+k的圖象;

當h<0,k<0時,將拋物線向左平行移動|h|個單位,再向下移動|k|個單位可得到y=a(x-h)^2+k的圖象;

因此,研究拋物線y=ax^2+bx+c(a≠0)的圖象,通過配方,將一般式化為y=a(x-h)^2+k的形式,可確定其頂點坐標、對稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便.

2.拋物線y=ax^2+bx+c(a≠0)的圖象:當a>0時,開口向上,當a<0時開口向下,對稱軸是直線x=-b/2a,頂點坐標是(-b/2a,[4ac-b^2]/4a).

3.拋物線y=ax^2+bx+c(a≠0),若a>0,當x≤-b/2a時,y隨x的增大而減小;當x≥-b/2a時,y隨x的增大而增大.若a<0,當x≤-b/2a時,y隨x的增大而增大;當x≥-b/2a時,y隨x的增大而減小.

4.拋物線y=ax^2+bx+c的圖象與坐標軸的交點:

(1)圖象與y軸一定相交,交點坐標為(0,c);

(2)當△=b^2-4ac>0,圖象與x軸交於兩點A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0

(a≠0)的兩根.這兩點間的距離AB=|x?-x?|

當△=0.圖象與x軸只有一個交點;

當△<0.圖象與x軸沒有交點.當a>0時,圖象落在x軸的上方,x為任何實數時,都有y>0;當a<0時,圖象落在x軸的下方,x為任何實數時,都有y<0.

5.拋物線y=ax^2+bx+c的最值:如果a>0(a<0),則當x=-b/2a時,y最小(大)值=(4ac-b^2)/4a.

頂點的橫坐標,是取得最值時的自變數值,頂點的縱坐標,是最值的取值.

6.用待定系數法求二次函數的解析式

(1)當題給條件為已知圖象經過三個已知點或已知x、y的三對對應值時,可設解析式為一般形式:

y=ax^2+bx+c(a≠0).

(2)當題給條件為已知圖象的頂點坐標或對稱軸時,可設解析式為頂點式:y=a(x-h)^2+k(a≠0).

(3)當題給條件為已知圖象與x軸的兩個交點坐標時,可設解析式為兩根式:y=a(x-x?)(x-x?)(a≠0).

7.二次函數知識很容易與 其它 知識綜合應用,而形成較為復雜的綜合題目。因此,以二次函數知識為主的綜合性題目是中考的 熱點 考題,往往以大題形式出現.


高中數學必考知識點歸納大全相關 文章 :

★ 高中數學必考知識點歸納整理

★ 高中數學必考知識點歸納

★ 高中數學知識點全總結最全版

★ 高一數學有用必考知識點歸納

★ 高考數學必考知識點考點2020大全總結

★ 高中數學知識點大全

★ 高中數學全部知識點提綱整理

★ 高中數學考點整理歸納

★ 高中數學知識點總結及公式大全

★ 高中數學知識點全總結

2. 高中數學必考知識點歸納

高考數學必考知識點有哪些,高中數學重點知識有哪些,需要我們掌握?下面是我為大家整理的關於高中數學必考知識點歸納,希望對您有所幫助。

高中數學知識點 總結

1.必修課程由5個模塊組成:

必修1:集合,函數概念與基本初等函數(指數函數,冪函數,對數函數)

必修2:立體幾何初步、平面解析幾何初步。

必修3:演算法初步、統計、概率。

必修4:基本初等函數(三角函數)、平面向量、三角恆等變換。

必修5:解三角形、數列、不等式。

以上所有的知識點是所有高中生必須掌握的,而且要懂得運用。

選修課程分為4個系列:

系列1:2個模塊

選修1-1:常用邏輯用語、圓錐曲線與方程、空間向量與立體幾何。

選修1-2:統計案例、推理與證明、數系的擴充與復數、框圖

系列2: 3個模塊

選修2-1:常用邏輯用語、圓錐曲線與方程、空間向量與立體幾何

選修2-2:導數及其應用、推理與證明、數系的擴充與復數

選修2-3:計數原理、隨機變數及其分布列、統計案例

選修4-1:幾何證明選講

選修4-4:坐標系與參數方程

選修4-5:不等式選講

2.高考數學必考重難點及其考點:

重點:函數,數列,三角函數,平面向量,圓錐曲線,立體幾何,導數

難點:函數,圓錐曲線

高考相關考點:

1. 集合與邏輯:集合的邏輯與運算(一般出現在高考卷的第一道選擇題)、簡易邏輯、充要條件

2. 函數:映射與函數、函數解析式與定義域、值域與最值、反函數、三大性質、函數圖象、指數函數、對數函數、函數的應用

3. 數列:數列的有關概念、等差數列、等比數列、數列求通項、求和

4. 三角函數:有關概念、同角關系與誘導公式、和差倍半公式、求值、化簡、證明、三角函數的圖像及其性質、應用

5. 平面向量:初等運算、坐標運算、數量積及其應用

6. 不等式:概念與性質、均值不等式、不等式的證明、不等式的解法、絕對值不等式(經常出現在大題的選做題里)、不等式的應用

7. 直線與圓的方程:直線的方程、兩直線的位置關系、線性規劃、圓、直線與圓的位置關系

8. 圓錐曲線方程:橢圓、雙曲線、拋物線、直線與圓錐曲線的位置關系、軌跡問題、圓錐曲線的應用

9. 直線、平面、簡單幾何體:空間直線、直線與平面、平面與平面、稜柱、棱錐、球、空間向量

10. 排列、組合和概率:排列、組合應用題、二項式定理及其應用

11. 概率與統計:概率、分布列、期望、方差、抽樣、正態分布

12. 導數:導數的概念、求導、導數的應用

13. 復數:復數的概念與運算

高中數學易錯知識點整理

一.集合與函數

1.進行集合的交、並、補運算時,不要忘了全集和空集的特殊情況,不要忘記了藉助數軸和文氏圖進行求解.

2.在應用條件時,易A忽略是空集的情況

3.你會用補集的思想解決有關問題嗎?

4.簡單命題與復合命題有什麼區別?四種命題之間的相互關系是什麼?如何判斷充分與必要條件?

5.你知道「否命題」與「命題的否定形式」的區別.

6.求解與函數有關的問題易忽略定義域優先的原則.

7.判斷函數奇偶性時,易忽略檢驗函數定義域是否關於__對稱.

8.求一個函數的解析式和一個函數的反函數時,易忽略標注該函數的定義域.

9.原函數在區間[-a,a]上單調遞增,則一定存在反函數,且反函數也單調遞增;但一個函數存在反函數,此函數不一定單調.例如:.

10.你熟練地掌握了函數單調性的證明 方法 嗎?定義法(取值,作差,判正負)和導數法

11.求函數單調性時,易錯誤地在多個單調區間之間添加符號「∪」和「或」;單調區間不能用集合或不等式表示.

12.求函數的值域必須先求函數的定義域。

13.如何應用函數的單調性與奇偶性解題?①比較函數值的大小;②解抽象函數不等式;③求參數的范圍(恆成立問題).這幾種基本應用你掌握了嗎?

14.解對數函數問題時,你注意到真數與底數的限制條件了嗎?

(真數大於零,底數大於零且不等於1)字母底數還需討論

15.三個二次(哪三個二次?)的關系及應用掌握了嗎?如何利用二次函數求最值?

16.用換元法解題時易忽略換元前後的等價性,易忽略參數的范圍。

17.「實系數一元二次方程有實數解」轉化時,你是否注意到:當時,「方程有解」不能轉化為。若原題中沒有指出是二次方程,二次函數或二次不等式,你是否考慮到二次項系數可能為的零的情形?

二.不等式

18.利用均值不等式求最值時,你是否注意到:「一正;二定;三等」.

19.絕對值不等式的解法及其幾何意義是什麼?

20.解分式不等式應注意什麼問題?用「根軸法」解整式(分式)不等式的注意事項是什麼?

21.解含參數不等式的通法是「定義域為前提,函數的單調性為基礎,分類討論是關鍵」,注意解完之後要寫上:「綜上,原不等式的解集是……」.

22.在求不等式的解集、定義域及值域時,其結果一定要用集合或區間表示;不能用不等式表示.

23.兩個不等式相乘時,必須注意同向同正時才能相乘,即同向同正可乘;同時要注意「同號可倒」即a>b>0,a<0.

三.數列

24.解決一些等比數列的前項和問題,你注意到要對公比及兩種情況進行討論了嗎?

25.在「已知,求」的問題中,你在利用公式時注意到了嗎?(時,應有)需要驗證,有些題目通項是分段函數。

26.你知道存在的條件嗎?(你理解數列、有窮數列、無窮數列的概念嗎?你知道無窮數列的前項和與所有項的和的不同嗎?什麼樣的無窮等比數列的所有項的和必定存在?

27.數列單調性問題能否等同於對應函數的單調性問題?(數列是特殊函數,但其定義域中的值不是連續的。)

28.應用數學歸納法一要注意步驟齊全,二要注意從到過程中,先假設時成立,再結合一些數學方法用來證明時也成立。

四.三角函數

29.正角、負角、零角、象限角的概念你清楚嗎?,若角的終邊在坐標軸上,那它歸哪個象限呢?你知道銳角與第一象限的角;終邊相同的角和相等的角的區別嗎?

30.三角函數的定義及單位圓內的三角函數線(正弦線、餘弦線、正切線)的定義你知道嗎?

31.在解三角問題時,你注意到正切函數、餘切函數的定義域了嗎?你注意到正弦函數、餘弦函數的有界性了嗎?

32.你還記得三角化簡的通性通法嗎?(切割化弦、降冪公式、用三角公式轉化出現特殊角.異角化同角,異名化同名,高次化低次)

33.反正弦、反餘弦、反正切函數的取值范圍分別是

34.你還記得某些特殊角的三角函數值嗎?

35.掌握正弦函數、餘弦函數及正切函數的圖象和性質.你會寫三角函數的單調區間嗎?會寫簡單的三角不等式的解集嗎?(要注意數形結合與書寫規范,可別忘了),你是否清楚函數的圖象可以由函數經過怎樣的變換得到嗎?

36.函數的圖象的平移,方程的平移以及點的平移公式易混:

(1)函數的圖象的平移為「左+右-,上+下-」;如函數的圖象左移2個單位且下移3個單位得到的圖象的解析式為,即.

(2)方程表示的圖形的平移為「左+右-,上-下+」;如直線左移2個個單位且下移3個單位得到的圖象的解析式為,即.

(3)點的平移公式:點按向量平移到點,則.

37.在三角函數中求一個角時,注意考慮兩方面了嗎?(先求出某一個三角函數值,再判定角的范圍)

38.形如的周期都是,但的周期為。

39.正弦定理時易忘比值還等於2R.

五.平面向量

40.數0有區別,的模為數0,它不是沒有方向,而是方向不定。可以看成與任意向量平行,但與任意向量都不垂直。

41.數量積與兩個實數乘積的區別:

在實數中:若,且ab=0,則b=0,但在向量的數量積中,若,且,不能推出.

已知實數,且,則a=c,但在向量的數量積中沒有.

在實數中有,但是在向量的數量積中,這是因為左邊是與共線的向量,而右邊是與共線的向量.

42.是向量與平行的充分而不必要條件,是向量和向量夾角為鈍角的必要而不充分條件。

六.解析幾何

43.在用點斜式、斜截式求直線的方程時,你是否注意到不存在的情況?

44.用到角公式時,易將直線l1、l2的斜率k1、k2的順序弄顛倒。

45.直線的傾斜角、到的角、與的夾角的取值范圍依次是。

46.定比分點的坐標公式是什麼?(起點,中點,分點以及值可要搞清),在利用定比分點解題時,你注意到了嗎?

47.對不重合的兩條直線

(建議在解題時,討論後利用斜率和截距)

48.直線在兩坐標軸上的截距相等,直線方程可以理解為,但不要忘記當時,直線在兩坐標軸上的截距都是0,亦為截距相等。

49.解決線性規劃問題的基本步驟是什麼?請你注意解題格式和完整的文字表達.(①設出變數,寫出目標函數②寫出線性約束條件③畫出可行域④作出目標函數對應的系列平行線,找到並求出最優解⑦應用題一定要有答。)

50.三種圓錐曲線的定義、圖形、標准方程、幾何性質,橢圓與雙曲線中的兩個特徵三角形你掌握了嗎?

51.圓、和橢圓的參數方程是怎樣的?常用參數方程的方法解決哪一些問題?

52.利用圓錐曲線第二定義解題時,你是否注意到定義中的定比前後項的順序?如何利用第二定義推出圓錐曲線的焦半徑公式?如何應用焦半徑公式?

53.通徑是拋物線的所有焦點弦中最短的弦.(想一想在雙曲線中的結論?)

54.在用圓錐曲線與直線聯立求解時,消元後得到的方程中要注意:二次項的系數是否為零?橢圓,雙曲線二次項系數為零時直線與其只有一個交點,判別式的限制.(求交點,弦長,中點,斜率,對稱,存在性問題都在下進行).

55.解析幾何問題的求解中,平面幾何知識利用了嗎?題目中是否已經有坐標系了,是否需要建立直角坐標系?

七.立體幾何

56.你掌握了空間圖形在平面上的直觀畫法嗎?(斜二測畫法)。

57.線面平行和面面平行的定義、判定和性質定理你掌握了嗎?線線平行、線面平行、面面平行這三者之間的聯系和轉化在解決立幾問題中的應用是怎樣的?每種平行之間轉換的條件是什麼?

58.三垂線定理及其逆定理你記住了嗎?你知道三垂線定理的關鍵是什麼嗎?(一面、四線、三垂直、立柱即面的垂線是關鍵)一面四直線,立柱是關鍵,垂直三處見

59.線面平行的判定定理和性質定理在應用時都是三個條件,但這三個條件易混為一談;面面平行的判定定理易把條件錯誤地記為」一個平面內的兩條相交直線與另一個平面內的兩條相交直線分別平行」而導致證明過程跨步太大.

60.求兩條異面直線所成的角、直線與平面所成的角和二面角時,如果所求的角為90°,那麼就不要忘了還有一種求角的方法即用證明它們垂直的方法.

61.異面直線所成角利用「平移法」求解時,一定要注意平移後所得角等於所求角(或其補角),特別是題目告訴異面直線所成角,應用時一定要從題意出發,是用銳角還是其補角,還是兩種情況都有可能。

62.你知道公式:和中每一字母的意思嗎?能夠熟練地應用它們解題嗎?

63.兩條異面直線所成的角的范圍:0°<α≤90° >

直線與平面所成的角的范圍:0o≤α≤90°

二面角的平面角的取值范圍:0°≤α≤180°

64.你知道異面直線上兩點間的距離公式如何運用嗎?

65.平面圖形的翻折,立體圖形的展開等一類問題,要注意翻折,展開前後有關幾何元素的「不變數」與「不變性」。

66.立幾問題的求解分為「作」,「證」,「算」三個環節,你是否只注重了「作」,「算」,而忽視了「證」這一重要環節?

67.稜柱及其性質、平行六面體與長方體及其性質.這些知識你掌握了嗎?(注意運用向量的方法解題)

68.球及其性質;經緯度定義易混.經度為二面角,緯度為線面角、球面距離的求法;球的表面積和體積公式.這些知識你掌握了嗎?

八.排列、組合和概率

69.解排列組合問題的依據是:分類相加,分步相乘,有序排列,無序組合.

解排列組合問題的規律是:相鄰問題捆綁法;不鄰問題插空法;多排問題單排法;定位問題優先法;定序問題倍縮法;多元問題分類法;有序分配問題法;選取問題先排後排法;至多至少問題間接法.

70.二項式系數與展開式某一項的系數易混,第r+1項的二項式系數為。二項式系數最大項與展開式中系數最大項易混.二項式系數最大項為中間一項或兩項;展開式中系數最大項的求法要用解不等式組來確定r.

71.你掌握了三種常見的概率公式嗎?(①等可能事件的概率公式;②互斥事件有一個發生的概率公式;③相互獨立事件同時發生的概率公式.)

72.二項式展開式的通項公式、n次獨立重復試驗中事件A發生k次的概率易記混。

通項公式:它是第r+1項而不是第r項;

事件A發生k次的概率:.其中k=0,1,2,3,…,n,且0

<1,p+q=1.< p="">

73.求分布列的解答題你能把步驟寫全嗎?

74.如何對總體分布進行估計?(用樣本估計總體,是研究統計問題的一個基本思想方法,一般地,樣本容量越大,這種估計就越精確,要求能畫出頻率分布表和頻率分布直方圖;理解頻率分布直方圖矩形面積的幾何意義.)

75.你還記得一般正態總體如何化為標准正態總體嗎?(對任一正態總體來說,取值小於x的概率,其中表示標准正態總體取值小於的概率)

相關 文章 :

1. 高中數學重要知識點巧記口訣

2. 高中數學學習方法:知識點總結最全版

3. 高一數學必背公式及知識匯總

4. 高一數學重點知識點公式總結

5. 高中數學重點知識結構總結

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

3. 高三數學必考知識點梳理歸納

高三數學必考知識點總結【五篇】1

一、函數的定義域的常用求法:

1、分式的分母不等於零;

2、偶次方根的被開方數大於等於零;

3、對數的真數大於零;

4、指數函數和對數函數的底數大於零且不等於1;

5、三角函數正切函數y=tanx中x≠kπ+π/2;

6、如果函數是由實際意義確定的解析式,應依據自變數的實際意義確定其取值范圍。

二、函數的解析式的常用求法:

1、定義法;

2、換元法;

3、待定系數法;

4、函數方程法;

5、參數法;

6、配方法

三、函數的值域的常用求法:

1、換元法;

2、配方法;

3、判別式法;

4、幾何法;

5、不等式法;

6、單調性法;

7、直接法

四、函數的最值的常用求法:

1、配方法;

2、換元法;

3、不等式法;

4、幾何法;

5、單調性法

五、函數單調性的常用結論:

1、若f(x),g(x)均為某區間上的增(減)函數,則f(x)+g(x)在這個區間上也為增(減)函數。

2、若f(x)為增(減)函數,則—f(x)為減(增)函數。

3、若f(x)與g(x)的單調性相同,則f[g(x)]是增函數;若f(x)與g(x)的單調性不同,則f[g(x)]是減函數。

4、奇函數在對稱區間上的單調性相同,偶函數在對稱區間上的單調性相反。

5、常用函數的單調性解答:比較大小、求值域、求最值、解不等式、證不等式、作函數圖象。

六、函數奇偶性的常用結論:

1、如果一個奇函數在x=0處有定義,則f(0)=0,如果一個函數y=f(x)既是奇函數又是偶函數,則f(x)=0(反之不成立)。

2、兩個奇(偶)函數之和(差)為奇(偶)函數;之積(商)為偶函數。

3、一個奇函數與一個偶函數的積(商)為奇函數。

4、兩個函數y=f(u)和u=g(x)復合而成的函數,只要其中有一個是偶函數,那麼該復合函數就是偶函數;當兩個函數都是奇函數時,該復合函數是奇函數。

5、若函數f(x)的定義域關於原點對稱,則f(x)可以表示為f(x)=1/2[f(x)+f(—x)]+1/2[f(x)+f(—x)],該式的特點是:右端為一個奇函數和一個偶函數的和。

高三數學必考知識點總結【五篇】2

a(1)=a,a(n)為公差為r的等差數列

通項公式:

a(n)=a(n—1)+r=a(n—2)+2r=、、、=a[n—(n—1)]+(n—1)r=a(1)+(n—1)r=a+(n—1)r、

可用歸納法證明。

n=1時,a(1)=a+(1—1)r=a。成立。

假設n=k時,等差數列的通項公式成立。a(k)=a+(k—1)r

則,n=k+1時,a(k+1)=a(k)+r=a+(k—1)r+r=a+[(k+1)—1]r、

通項公式也成立。

因此,由歸納法知,等差數列的通項公式是正確的。

求和公式:

S(n)=a(1)+a(2)+、、、+a(n)

=a+(a+r)+、、、+[a+(n—1)r]

=na+r[1+2+、、、+(n—1)]

=na+n(n—1)r/2

同樣,可用歸納法證明求和公式。

a(1)=a,a(n)為公比為r(r不等於0)的等比數列

通項公式:

a(n)=a(n—1)r=a(n—2)r^2=、、、=a[n—(n—1)]r^(n—1)=a(1)r^(n—1)=ar^(n—1)、

可用歸納法證明等比數列的通項公式。

求和公式:

S(n)=a(1)+a(2)+、、、+a(n)

=a+ar+、、、+ar^(n—1)

=a[1+r+、、、+r^(n—1)]

r不等於1時,

S(n)=a[1—r^n]/[1—r]

r=1時,

S(n)=na、

同樣,可用歸納法證明求和公式。

高三數學必考知識點總結【五篇】3

1、函數的奇偶性

(1)若f(x)是偶函數,那麼f(x)=f(—x);

(2)若f(x)是奇函數,0在其定義域內,則f(0)=0(可用於求參數);

(3)判斷函數奇偶性可用定義的等價形式:f(x)±f(—x)=0或(f(x)≠0);

(4)若所給函數的解析式較為復雜,應先化簡,再判斷其奇偶性;

(5)奇函數在對稱的單調區間內有相同的單調性;偶函數在對稱的單調區間內有相反的單調性;

2、復合函數的有關問題

(1)復合函數定義域求法:若已知的定義域為[a,b],其復合函數f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求f(x)的定義域,相當於x∈[a,b]時,求g(x)的值域(即f(x)的定義域);研究函數的問題一定要注意定義域優先的原則。

(2)復合函數的單調性由「同增異減」判定;

3、函數圖像(或方程曲線的對稱性)

(1)證明函數圖像的對稱性,即證明圖像上任意點關於對稱中心(對稱軸)的對稱點仍在圖像上;

(2)證明圖像C1與C2的對稱性,即證明C1上任意點關於對稱中心(對稱軸)的對稱點仍在C2上,反之亦然;

(3)曲線C1:f(x,y)=0,關於y=x+a(y=—x+a)的`對稱曲線C2的方程為f(y—a,x+a)=0(或f(—y+a,—x+a)=0);

(4)曲線C1:f(x,y)=0關於點(a,b)的對稱曲線C2方程為:f(2a—x,2b—y)=0;

(5)若函數y=f(x)對x∈R時,f(a+x)=f(a—x)恆成立,則y=f(x)圖像關於直線x=a對稱;

(6)函數y=f(x—a)與y=f(b—x)的圖像關於直線x=對稱;

4、函數的周期性

(1)y=f(x)對x∈R時,f(x+a)=f(x—a)或f(x—2a)=f(x)(a>0)恆成立,則y=f(x)是周期為2a的周期函數;

(2)若y=f(x)是偶函數,其圖像又關於直線x=a對稱,則f(x)是周期為2︱a︱的周期函數;

(3)若y=f(x)奇函數,其圖像又關於直線x=a對稱,則f(x)是周期為4︱a︱的周期函數;

(4)若y=f(x)關於點(a,0),(b,0)對稱,則f(x)是周期為2的周期函數;

(5)y=f(x)的圖象關於直線x=a,x=b(a≠b)對稱,則函數y=f(x)是周期為2的周期函數;

(6)y=f(x)對x∈R時,f(x+a)=—f(x)(或f(x+a)=,則y=f(x)是周期為2的周期函數;

5、方程k=f(x)有解k∈D(D為f(x)的值域);

6、a≥f(x)恆成立a≥[f(x)]max,;a≤f(x)恆成立a≤[f(x)]min;

7、(1)(a>0,a≠1,b>0,n∈R+);

(2)logaN=(a>0,a≠1,b>0,b≠1);

(3)logab的符號由口訣「同正異負」記憶;

(4)alogaN=N(a>0,a≠1,N>0);

8、判斷對應是否為映射時,抓住兩點:

(1)A中元素必須都有象且;

(2)B中元素不一定都有原象,並且A中不同元素在B中可以有相同的象;

9、能熟練地用定義證明函數的單調性,求反函數,判斷函數的奇偶性。

10、對於反函數,應掌握以下一些結論:

(1)定義域上的單調函數必有反函數;

(2)奇函數的反函數也是奇函數;

(3)定義域為非單元素集的偶函數不存在反函數;

(4)周期函數不存在反函數;

(5)互為反函數的兩個函數具有相同的單調性;

(6)y=f(x)與y=f—1(x)互為反函數,設f(x)的定義域為A,值域為B,則有f[f——1(x)]=x(x∈B),f——1[f(x)]=x(x∈A);

11、處理二次函數的問題勿忘數形結合

二次函數在閉區間上必有最值,求最值問題用「兩看法」:一看開口方向;二看對稱軸與所給區間的相對位置關系;

12、依據單調性

利用一次函數在區間上的保號性可解決求一類參數的范圍問題;

13、恆成立問題的處理方法

(1)分離參數法;

(2)轉化為一元二次方程的根的分布列不等式(組)求解;

高三數學必考知識點總結【五篇】4

1、有關平行與垂直(線線、線面及面面)的問題,是在解決立體幾何問題的過程中,大量的、反復遇到的,而且是以各種各樣的問題(包括論證、計算角、與距離等)中不可缺少的內容,因此在主體幾何的總復習中,首先應從解決「平行與垂直」的有關問題著手,通過較為基本問題,熟悉公理、定理的內容和功能,通過對問題的分析與概括,掌握立體幾何中解決問題的規律——充分利用線線平行(垂直)、線面平行(垂直)、面面平行(垂直)相互轉化的思想,以提高邏輯思維能力和空間想像能力。

2、判定兩個平面平行的方法:

(1)根據定義——證明兩平面沒有公共點;

(2)判定定理——證明一個平面內的兩條相交直線都平行於另一個平面;

(3)證明兩平面同垂直於一條直線。

3、兩個平面平行的主要性質:

(1)由定義知:「兩平行平面沒有公共點」;

(2)由定義推得:「兩個平面平行,其中一個平面內的直線必平行於另一個平面」;

(3)兩個平面平行的性質定理:「如果兩個平行平面同時和第三個平面相交,那麼它們的交線平行」;

(4)一條直線垂直於兩個平行平面中的一個平面,它也垂直於另一個平面;

(5)夾在兩個平行平面間的平行線段相等;

(6)經過平面外一點只有一個平面和已知平面平行。

高三數學必考知識點總結【五篇】5

1、直線的傾斜角

定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°

2、直線的斜率

①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。

②過兩點的直線的斜率公式:

注意下面四點:

(1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;

(2)k與P1、P2的順序無關;

(3)以後求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;

(4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到。

3、直線方程

點斜式:

直線斜率k,且過點

注意:當直線的斜率為0°時,k=0,直線的方程是y=y1。當直線的斜率為90°時,直線的斜率不存在,它的方程不能用點斜式表示、但因l上每一點的橫坐標都等於x1,所以它的方程是x=x1。 (1)、高三數學知識點及公式總結大全 (2)、高三數學必考知識點歸納公式大全 (3)、高三女兒數學只考了108分 老爸的這一做法絕了 (4)、2019揚州高三模擬統考語文數學試題難度點評 (5)、2019年湖北高三2月聯考數學理試題及答案 (6)、高三數學教師教學工作總結 (7)、高三復習班數學班主任工作總結

4. 初中數學必考知識點

初中生在學習數學的過程中應該注意知識點的總結,下面總結了初中數學必考知識點,供大家參考。

絕對值

(1)概念:數軸上某個數與原點的距離叫做這個數的絕對值。

①互為相反數的兩個數絕對值相等;

②絕對值等於一個正數的數有兩個,絕對值等於0的數有一個,沒有絕對值等於負數的數。

③有理數的絕對值都是非負數。

(2)如果用字母a表示有理數,則數a 絕對值要由字母a本身的取值來確定:

①當a是正有理數時,a的絕對值是它本身a;

②當a是負有理數時,a的絕對值是它的相反數﹣a;

③當a是零時,a的絕對值是零。

即|a|={a(a>0)0(a=0)﹣a(a<0)

分式

(一)分式的運算

分式四則運算,順序乘除加減,

乘除同級運算,除法符號須變(乘),

乘法進行化簡,因式分解在先,

分子分母相約,然後再行運算,

加減分母需同,分母化積關鍵,

找出最簡公分母,通分不是很難,

變號必須兩處,結果要求最簡。

(二)分式的運演算法則

(1)約分

①如果分式的分子和分母都是單項式或者是幾個因式乘積的形式,將它們的公因式約去。

②分式的分子和分母都是多項式,將分子和分母分別分解因式,再將公因式約去。

(2)公因式的提取方法

系數取分子和分母系數的最大公約數,字母取分子和分母共有的字母,指數取公共字母的最小指數,即為它們的公因式。

(3)除法

兩個分式相除,把除式的分子和分母顛倒位置後再與被除式相乘。

(4)乘方

分子乘方做分子,分母乘方做分母,可以約分的約分,最後化成最簡。

平面直角坐標系

1.定義:平面內畫兩條互相垂直、原點重合的數軸,組成平面直角坐標系。水平的數軸稱為x軸或橫軸,習慣上取向右為正方向;豎直的數軸稱為y軸或縱軸,取向上方向為正方向;兩坐標軸的交點為平面直角坐標系的原點。

2.平面上的任意一點都可以用一個有序數對來表示,記為(a,b),a是橫坐標,b是縱坐標。

3.原點的坐標是(0,0);

縱坐標相同的點的連線平行於x軸;

橫坐標相同的點的連線平行於y軸;

x軸上的點的縱坐標為0,表示為(x,0);

y軸上的點的橫坐標為0,表示為(0,y)。

4.建立了平面直角坐標系以後,坐標平面就被兩條坐標軸分為了Ⅰ、Ⅱ、Ⅲ、Ⅳ四個部分,分別叫做第一象限、第二象限、第三象限和第四象限。坐標軸上的點不屬於任何象限。

5.幾個象限內點的特點:

第一象限(+,+);第二象限(—,+);

第三象限(—,—);第四象限(+,—)。

6.(x,y)關於原點對稱的點是(—x,—y);

(x,y)關於x軸對稱的點是(x,—y);

(x,y)關於y軸對稱的點是(—x,y)。

7.點到兩軸的距離:點P(x,y)到x軸的距離是︱y︳;

點P(x,y)到y軸的距離是︱x︳。

8.在第一、三象限角平分線上的點的坐標是(m,m);

在第二、四象限叫平分線上的點的坐標是(m,—m)。

全等三角形

(一)經過翻轉、平移後,能夠完全重合的兩個三角形叫做全等三角形,而該兩個三角形的三條邊及三個角都對應相等。

(二)全等三角形的性質

1.全等三角形的對應角相等。

2.全等三角形的對應邊相等。

3.能夠完全重合的頂點叫對應頂點。

4.全等三角形的對應邊上的高對應相等。

5.全等三角形的對應角的角平分線相等。

6.全等三角形的對應邊上的中線相等。

7.全等三角形面積和周長相等。

8.全等三角形的對應角的三角函數值相等。

(三)全等三角形的判定

(1)SSS(邊邊邊)

三邊對應相等的三角形是全等三角形。

(2)SAS(邊角邊)

兩邊及其夾角對應相等的三角形是全等三角形。

(3)ASA(角邊角)

兩角及其夾邊對應相等的三角形全等。

(4)AAS(角角邊)

兩角及其一角的對邊對應相等的三角形全等。

(5)RHS(直角、斜邊、邊)

在一對直角三角形中,斜邊及另一條直角邊相等。

一元一次不等式(組)

1.不等式:用不等號「>」「<」「≤」「≥」「≠」,把兩個代數式連接起來的式子叫不等式。

2.不等式的基本性質:

a不等式兩邊都加上(或減去)同一個數或同一個整式,不等號的方向不變;

b不等式兩邊都乘以(或除以)同一個正數,不等號的方向不變;

c不等式兩邊都乘以(或除以)同一個負數,不等號的方向要改變。

3.不等式的解集:能使不等式成立的未知數的值,叫做這個不等式的解;不等式所有解的集合,叫做這個不等式的解集。

4.一元一次不等式:只含有一個未知數,並且未知數的次數是1,系數不等於零的不等式,叫做一元一次不等式;它的標准形式是ax+b>0或ax+b<0,(a≠0).

5.用不等式表示,利用數軸或口訣解不等式組(口訣(簡單不等式):同大取大,同小取小,大(於)小小(於)大取中間,大(於)大小(於)小,解不見了。

相交線與平行線

1.平行線的性質

性質1:兩直線平行,同位角相等。 性質2:兩直線平行,內錯角相等。 性質3:兩直線平行,同旁內角互補。 平行線的判定:

判定1:同位角相等,兩直線平行。 判定2:內錯角相等,兩直線平行。 判定3:同旁內角相等,兩直線平行。

2.鄰補角:兩條直線相交所構成的四個角中,有公共頂點且有一條公共邊的兩個角是鄰補角。

對頂角:一個角的兩邊分別是另一個叫的兩邊的反向延長線,像這樣的兩個角互為對頂角。

垂線:兩條直線相交成直角時,叫做互相垂直,其中一條叫做另一條的垂線。

平行線:在同一平面內,不相交的兩條直線叫做平行線。 同位角、內錯角、同旁內角:

3.同位角:∠1與∠5像這樣具有相同位置關系的一對角叫做同位角。

內錯角:∠2與∠6像這樣的一對角叫做內錯角。

同旁內角:∠2與∠5像這樣的一對角叫做同旁內角。 命題:判斷一件事情的語句叫命題。

4.平移:在平面內,將一個圖形沿某個方向移動一定的距離,圖形的這種移動叫做平移平移變換,簡稱平移。

對應點:平移後得到的新圖形中每一點,都是由原圖形中的某一點移動後得到的,這樣的兩個點叫做對應點。

代數式求值

1.代數式:用數值代替代數式里的字母,計算後所得的結果叫做代數式的值。

2.代數式的求值:求代數式的值可以直接代入、計算.如果給出的代數式可以化簡,要先化簡再求值。

必考題型簡單總結以下三種:

①已知條件不化簡,所給代數式化簡;

②已知條件化簡,所給代數式不化簡;

③已知條件和所給代數式都要化簡。

5. 數學初中知識點總結歸納

初中生學習數學要特別注意知識點的總結,下面為大家總結了初中數學重點知識點,僅供大家參考。

有理數

1.有理數的加法運算

同號兩數來相加,絕對值加不變號。

異號相加大減小,大數決定和符號。

互為相反數求和,結果是零須記好。

「大」減「小」是指絕對值的大小。

2.有理數的減法運算

減正等於加負,減負等於加正。

有理數的乘法運算符號法則。

同號得正異號負,一項為零積是零。

3.有理數混合運算的四種運算技巧

轉化法:一是將除法轉化為乘法,二是將乘方轉化為乘法,三是在乘除混合運算中,通常將小數轉化為分數進行約分計算。

湊整法:在加減混合運算中,通常將和為零的兩個數,分母相同的兩個數,和為整數的兩個數,乘積為整數的兩個數分別結合為一組求解。

分拆法:先將帶分數分拆成一個整數與一個真分數的和的形式,然後進行計算。

巧用運算律:在計算中巧妙運用加法運算律或乘法運算律往往使計算更簡便。

整式的加減

1.整式加減的理論根據是:去括弧法則,合並同類項法則,以及乘法分配率。

去括弧法則:如果括弧前是「十」號,把括弧和它前面的「+」號去掉,括弧里各項都不變符號;如果括弧前是「一」號,把括弧和它前面的「一」號去掉,括弧里各項都改變符號。

2.同類項:所含字母相同,並且相同字母的指數也相同的項叫做同類項。

合並同類項:

(1)合並同類項的概念:把多項式中的同類項合並成一項叫做合並同類項。

(2)合並同類項的法則:同類項的系數相加,所得結果作為系數,字母和字母的指數不變。

(3)合並同類項步驟:

a.准確的找出同類項。

b.逆用分配律,把同類項的系數加在一起(用小括弧),字母和字母的指數不變。

c.寫出合並後的結果。

實數

1.平方根

平方根,又叫二次方根,表示為〔±√ ̄〕,其中屬於非負數的平方根稱之為算術平方根。一個正數有兩個實平方根,它們互為相反數,負數沒有平方根。

2.立方根

如果一個數的立方等於a,那麼這個數叫a的立方根,也稱為三次方根。

立方根性質

①在實數范圍內,任何實數的立方根只有一個

②在實數范圍內,負數不能開平方,但可以開立方。

③0的立方根是0

3.實數

實數,是有理數和無理數的總稱。實數具有封閉性、有序性、傳遞性、稠密性、完備性等。

分式方程的解法

1.一般解法:去分母法,即方程兩邊同乘以最簡公分母。

2.特殊解法:換元法。

3.驗根:由於在去分母過程中,當未知數的取值范圍擴大而有可能產生增根.因此,驗根是解分式方程必不可少的步驟,一般把整式方程的根的值代人最簡公分母,看結果是不是零,使最簡公分母為零的根是原方程的增根,必須捨去。

說明:解分式方程,一般先考慮換元法,再考慮去分母法。

全等三角形的判定定理

1.邊邊邊:三邊對應相等的兩個三角形全等。

2.邊角邊:兩邊和它們的夾角對應相等的兩個三角形全等。

3.角邊角:兩角和它們的夾邊對應相等的兩個三角形全等。

4.角角邊:兩角和其中一個角的對邊對應相等的兩個三角形全等。

5.斜邊、直角邊:斜邊和一條直角邊對應相等的兩個直角三角形全等。

圖形的初步認識

1.幾何圖形:即從實物中抽象出的各種圖形,可幫助人們有效的刻畫錯綜復雜的世界。

2.平面圖形:平面圖形是幾何圖形的一種,指所有點都在同一平面內的圖形,如直線、三角形等。

3.立體圖形:是各部分不在同一平面內的幾何圖形,由一個或多個面圍成的可以存在於現實生活中的三維圖形。

4.展開圖:有些立體圖形是有一些平面圖形圍成的,將它們的表面適當剪開,可以展成平面圖形,這樣的平面圖形稱為相應立體圖形的展開圖。

5.點,線,面,體

(1)圖形是由點,線,面構成的。

(2)線與線相交得點,面與面相交得線。

(3)點動成線,線動成面,面動成體。

一元一次方程

1.定義:

一元一次方程指只含有一個未知數、未知數的最高次數為1且兩邊都為整式的等式,叫做一元一次方程。求出方程中未知數的值叫做方程式的解。

2.解一元一次方程的步驟

①去分母:把系數化成整數。

②去括弧

③移項:把等式一邊的某項變號後移到另一邊。

④合並同類項

⑤系數化為1

6. 初三數學常考知識點重點歸納

數學知識點整理可以幫助到考前復習,下面我就大家整理一下初三數學常考知識點重點歸納是多少,僅供參考。

初三數學易錯知識點整理
1、有理數、無理數以及實數的有關概念理解錯誤,相反數、倒數、絕對值的意義概念混淆。弄不清絕對值與數的分類。選擇題考得比較多。

2、關於實數的運算,要掌握好與實數的有關概念、性質,靈活地運用各種運算律,關鍵是把好符號關;在較復雜的運算中,不注意運算順序或者不合理使用運算律,從而使運算出現錯誤。

3、平方根、算術平方根、立方根的區別。

4、分式值為零時易忽略分母不能為零。

5、分式運算要注意運演算法則和符號的變化。當分式的分子分母是多項式時要先因式分解,因式分解要分解到不能再分解為止,注意計算方法,不能去分母,把分式化為最簡分式。填空題易考。
相似三角形常見考點
考點:相似三角形的概念、相似比的意義、畫圖形的放大和縮小

考核要求:(1)理解相似形的概念;(2)掌握相似圖形的特點以及相似比的意義,能將已知圖形按照要求放大和縮小.

考點:平行線分線段成比例定理、 三角形 一邊的平行線的有關定理

考核要求:理解並利用平行線分線段成比例定理解決一些幾何證明和幾何計算.

注意:被判定平行的一邊不可以作為條件中的對應線段成比例使用.

考點:相似三角形的概念

考核要求:以相似三角形的概念為基礎,抓住相似三角形的特徵,理解相似三角形的定義.

考點:相似三角形的判定和性質及其應用

考核要求:熟練掌握相似三角形的判定定理(包括預備定理、三個判定定理、直角三角形相似的判定定理)和性質,並能較好地應用.
函數與算式知識點
易錯點1:有理數、無理數以及實數的有關概念理解錯誤,相反數、倒數、絕對值的意義概念混淆。以及絕對值與數的分類。每年選擇必考。

易錯點2:實數的運算要掌握好與實數有關的概念、性質,靈活地運用各種運算律,關鍵是把好符號關;在較復雜的運算中,不注意運算順序或者不合理使用運算律,從而使運算出現錯誤。

易錯點3:平方根、算術平方根、立方根的區別。填空題必考。

易錯點4:求分式值為零時學生易忽略分母不能為零。

易錯點5:分式運算時要注意運演算法則和符號的變化。當分式的分子分母是多項式時要先因式分解,因式分解要分解到不能再分解為止,注意計算方法,不能去分母,把分式化為最簡分式。填空題必考。

易錯點6:非負數的性質:幾個非負數的和為0,每個式子都為0;整體代入法;完全平方式。

以上就是我為大家整理的初三數學常考知識點重點歸納是多少。

7. 初中數學重要知識點總結

初中生在學習數學的過程中應該注意知識點的總結,下面總結了初中數學重點知識點,供大家參考。

因式分解

1.因式分解時,各項如果有公因式應先提公因式,再進一步分解。

2.因式分解,必須進行到每一個多項式因式不能再分解為止。

完全平方公式

(1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反過來,就可以得到:

a2+2ab+b2=(a+b)2

a2-2ab+b2=(a-b)2

這就是說,兩個數的平方和,加上(或者減去)這兩個數的積的2倍,等於這兩個數的和(或者差)的平方。

把a2+2ab+b2和a2-2ab+b2這樣的式子叫完全平方式。

上面兩個公式叫完全平方公式。

(2)完全平方式的形式和特點

①項數:三項

②有兩項是兩個數的的平方和,這兩項的符號相同。

③有一項是這兩個數的積的兩倍。

(3)當多項式中有公因式時,應該先提出公因式,再用公式分解。

(4)完全平方公式中的a、b可表示單項式,也可以表示多項式。這里只要將多項式看成一個整體就可以了。

(5)分解因式,必須分解到每一個多項式因式都不能再分解為止。

全等三角形

(一)經過翻轉、平移後,能夠完全重合的兩個三角形叫做全等三角形,而該兩個三角形的三條邊及三個角都對應相等。

(二)全等三角形的性質

1.全等三角形的對應角相等。

2.全等三角形的對應邊相等。

3.能夠完全重合的頂點叫對應頂點。

4.全等三角形的對應邊上的高對應相等。

5.全等三角形的對應角的角平分線相等。

6.全等三角形的對應邊上的中線相等。

7.全等三角形面積和周長相等。

8.全等三角形的對應角的三角函數值相等。

(三)全等三角形的判定

(1)SSS(邊邊邊)

三邊對應相等的三角形是全等三角形。

(2)SAS(邊角邊)

兩邊及其夾角對應相等的三角形是全等三角形。

(3)ASA(角邊角)

兩角及其夾邊對應相等的三角形全等。

(4)AAS(角角邊)

兩角及其一角的對邊對應相等的三角形全等。

(5)RHS(直角、斜邊、邊)

在一對直角三角形中,斜邊及另一條直角邊相等。

角相關定理公式

1、同位角相等,兩直線平行。

2、內錯角相等,兩直線平行。

3、同旁內角互補,兩直線平行。

4、兩直線平行,同位角相等。

5、兩直線平行,內錯角相等。

6、兩直線平行,同旁內角互補。

7、定理1在角的平分線上的點到這個角的兩邊的距離相等。

8、定理2到一個角的兩邊的距離相同的點,在這個角的平分線上。

9、角的平分線是到角的兩邊距離相等的所有點的集合。

二元一次方程

含有兩個未知數,並且所含未知數的項的次數都是1的方程叫做二元一次方程。

二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。

適合一個二元一次方程的一組未知數的值,叫做這個二元一次方程的一個解。

二元一次方程組中各個方程的公共解,叫做這個二元一次方程的解。

解二元一次方程組的方法:代入消元法/加減消元法。

不等式與不等式組

(1)不等式

用不等號(<,>,≥,≤,≠)連接的式子叫做不等式。

(2)不等式的性質

①對稱性;

②傳遞性;

③加法單調性,即同向不等式可加性;

④乘法單調性;

⑤同向正值不等式可乘性;

⑥正值不等式可乘方;

⑦正值不等式可開方;

(3)一元一次不等式

用不等號連接的,含有一個未知數,並且未知數的次數都是1,未知數的系數不為0,左右兩邊為整式的式子叫做一元一次不等式。

(4)一元一次不等式組

一元一次不等式組是由幾個含有同一個未知數的一元一次不等式組成的不等式組。

代數

1.代數式:用運算符號「+-×÷……」連接數及表示數的字母的式子稱為代數式(字母所取得數應保證它所在的式子有意義,其次字母所取得數還應使實際生活或生產有意義;單獨一個數或一個字母也是代數式)

2.列代數式的幾個注意事項:

(1)數與字母相乘,或字母與字母相乘通常使用「·」乘,或省略不寫;

(2)數與數相乘,仍應使用「×」乘,不用「·」乘,也不能省略乘號;

(3)數與字母相乘時,一般在結果中把數寫在字母前面,如a×5應寫成5a;

(4)帶分數與字母相乘時,要把帶分數改成假分數形式,如a×應寫成a;

(5)在代數式中出現除法運算時,一般用分數線將被除式和除式聯系,如3÷a寫成的形式;

(6)a與b的差寫作a-b,要注意字母順序;若只說兩數的差,當分別設兩數為a、b時,則應分類,寫做a-b和b-a。

8. 高三數學重點知識點

總結 是在一段時間內對學習和工作生活等表現加以總結和概括的一種書面材料,它可以幫助我們有尋找學習和工作中的規律,因此我們要做好歸納,寫好總結。那麼總結有什麼格式呢?下面是我給大家帶來的 高三數學 重點知識點,以供大家參考!

高三數學重點知識點

1、課程內容:

必修課程由5個模塊組成:

必修1:集合、函數概念與基本初等函數(指、對、冪函數)

必修2:立體幾何初步、平面解析幾何初步。

必修3:演算法初步、統計、概率。

必修4:基本初等函數(三角函數)、平面向量、三角恆等變換。

必修5:解三角形、數列、不等式。

以上是每一個高中學生所必須學習的。

上述內容覆蓋了高中階段傳統的數學基礎知識和基本技能的主要部分,其中包括集合、函數、數列、不等式、解三角形、立體幾何初步、平面解析幾何初步等。不同的是在保證打好基礎的同時,進一步強調了這些知識的發生、發展過程和實際應用,而不在技巧與難度上做過高的要求。

此外,基礎內容還增加了向量、演算法、概率、統計等內容。

2、重難點及考點:

重點:函數,數列,三角函數,平面向量,圓錐曲線,立體幾何,導數

難點:函數、圓錐曲線

高考相關考點:

⑴集合與簡易邏輯:集合的概念與運算、簡易邏輯、充要條件

⑵函數:映射與函數、函數解析式與定義域、值域與最值、反函數、三大性質、函數圖象、指數與指數函數、對數與對數函數、函數的應用

⑶數列:數列的有關概念、等差數列、等比數列、數列求和、數列的應用

⑷三角函數:有關概念、同角關系與誘導公式、和、差、倍、半公式、求值、化簡、證明、三角函數的圖象與性質、三角函數的應用

⑸平面向量:有關概念與初等運算、坐標運算、數量積及其應用

⑹不等式:概念與性質、均值不等式、不等式的'證明、不等式的解法、絕對值不等式、不等式的應用

⑺直線和圓的方程:直線的方程、兩直線的位置關系、線性規劃、圓、直線與圓的位置關系

⑻圓錐曲線方程:橢圓、雙曲線、拋物線、直線與圓錐曲線的位置關系、軌跡問題、圓錐曲線的應用

⑼直線、平面、簡單幾何體:空間直線、直線與平面、平面與平面、稜柱、棱錐、球、空間向量

⑽排列、組合和概率:排列、組合應用題、二項式定理及其應用

⑾概率與統計:概率、分布列、期望、方差、抽樣、正態分布

⑿導數:導數的概念、求導、導數的應用

⒀復數:復數的概念與運算

高三數學知識點歸納總結

第一部分集合

(1)含n個元素的集合的子集數為2^n,真子集數為2^n—1;非空真子集的數為2^n—2;

(2)注意:討論的時候不要遺忘了的情況。

第二部分函數與導數

1、映射:注意①第一個集合中的元素必須有象;②一對一,或多對一。

2、函數值域的求法:①分析法;②配 方法 ;③判別式法;④利用函數單調性;⑤換元法;⑥利用均值不等式;⑦利用數形結合或幾何意義(斜率、距離、絕對值的意義等);⑧利用函數有界性(、、等);⑨導數法

3、復合函數的有關問題

(1)復合函數定義域求法:

①若f(x)的定義域為〔a,b〕,則復合函數f[g(x)]的定義域由不等式a≤g(x)≤b解出

②若f[g(x)]的定義域為[a,b],求f(x)的定義域,相當於x∈[a,b]時,求g(x)的值域。

(2)復合函數單調性的判定:

①首先將原函數分解為基本函數:內函數與外函數;

②分別研究內、外函數在各自定義域內的單調性;

③根據「同性則增,異性則減」來判斷原函數在其定義域內的單調性。

注意:外函數的定義域是內函數的值域。

4、分段函數:值域(最值)、單調性、圖象等問題,先分段解決,再下結論。

5、函數的奇偶性

⑴函數的定義域關於原點對稱是函數具有奇偶性的必要條件;

⑵是奇函數;

⑶是偶函數;

⑷奇函數在原點有定義,則;

⑸在關於原點對稱的單調區間內:奇函數有相同的單調性,偶函數有相反的單調性;

(6)若所給函數的解析式較為復雜,應先等價變形,再判斷其奇偶性;

1、對於函數f(x),如果對於定義域內任意一個x,都有f(—x)=—f(x),那麼f(x)為奇函數;

2、對於函數f(x),如果對於定義域內任意一個x,都有f(—x)=f(x),那麼f(x)為偶函數;

3、一般地,對於函數y=f(x),定義域內每一個自變數x,都有f(a+x)=2b—f(a—x),則y=f(x)的圖象關於點(a,b)成中心對稱;

4、一般地,對於函數y=f(x),定義域內每一個自變數x都有f(a+x)=f(a—x),則它的圖象關於x=a成軸對稱。

5、函數是奇函數或是偶函數稱為函數的奇偶性,函數的奇偶性是函數的整體性質;

6、由函數奇偶性定義可知,函數具有奇偶性的一個必要條件是,對於定義域內的任意一個x,則—x也一定是定義域內的一個自變數(即定義域關於原點對稱)。

高 三年級數學 知識點歸納

一、函數的定義域的常用求法:

1、分式的分母不等於零;

2、偶次方根的被開方數大於等於零;

3、對數的真數大於零;

4、指數函數和對數函數的底數大於零且不等於1;

5、三角函數正切函數y=tanx中x+

6、如果函數是由實際意義確定的解析式,應依據自變數的實際意義確定其取值范圍。

二、函數的解析式的常用求法:

1、定義法;

2、換元法;

3、待定系數法;

4、函數方程法;

5、參數法;

6、配方法

三、函數的值域的常用求法:

1、換元法;

2、配方法;

3、判別式法;

4、幾何法;

5、不等式法;

6、單調性法;

7、直接法

四、函數的最值的常用求法:

1、配方法;

2、換元法;

3、不等式法;

4、幾何法;

5、單調性法

五、函數單調性的常用結論:

1、若f(x),g(x)均為某區間上的增(減)函數,則f(x)+g(x)在這個區間上也為增(減)函數。

2、若f(x)為增(減)函數,則-f(x)為減(增)函數。

3、若f(x)與g(x)的單調性相同,則f[g(x)]是增函數;若f(x)與g(x)的.單調性不同,則f[g(x)]是減函數。

4、奇函數在對稱區間上的單調性相同,偶函數在對稱區間上的單調性相反。

5、常用函數的單調性解答:比較大小、求值域、求最值、解不等式、證不等式、作函數圖象。

六、函數奇偶性的常用結論:

1、如果一個奇函數在x=0處有定義,則f(0)=0,如果一個函數y=f(x)既是奇函數又是偶函數,則f(x)=0(反之不成立)。

2、兩個奇(偶)函數之和(差)為奇(偶)函數;之積(商)為偶函數。

3、一個奇函數與一個偶函數的積(商)為奇函數。

4、兩個函數y=f(u)和u=g(x)復合而成的函數,只要其中有一個是偶函數,那麼該復合函數就是偶函數;當兩個函數都是奇函數時,該復合函數是奇函數。

5、若函數f(x)的定義域關於原點對稱,則f(x)可以表示為f(x)=1/2[f(x)+f(-x)]+1/2[f(x)+f(-x)],該式的特點是:右端為一個奇函數和一個偶函數的和。


高三數學重點知識點相關 文章 :

★ 高三數學考試必考的重要知識點歸納

★ 高三數學知識點考點總結大全

★ 高三數學復習重要知識點

★ 高三數學必考知識點

★ 高三數學的主要知識點筆記

★ 高三數學第一輪復習知識點

★ 高三數學知識點大全

★ 高三數學知識點歸納

★ 高三數學知識點梳理匯總

9. 初中數學!!!!!!!!!!!!!!!!!!!!!!

衡水內部初中數學人教版七八九年級知識點及公式總結大全word文檔 網路網盤

鏈接: https://pan..com/s/1DCSYoe1_Xz656yFc4qgSFw

提取碼: d6ew 復制這段內容後打開網路網盤手機App,操作更方便哦

若資源有問題歡迎追問~