當前位置:首頁 » 基礎知識 » 高中數學知識梳理表格
擴展閱讀
拜訪同學時該說些什麼 2024-11-19 03:43:40
怎麼使用刀具基礎 2024-11-19 03:31:27
小學生知識點英語 2024-11-19 03:30:40

高中數學知識梳理表格

發布時間: 2022-12-26 08:40:32

Ⅰ 高一數學必修四知識點梳理

要盡快適應高中學習,同學們必須在了解高中學習特點的基礎上,掌握科學的 學習 方法 。掌握科學的學習方法,應做到主動預習、正確聽課、有效復習。以下是我給大家整理的 高一數學 必修四知識點梳理,希望能幫助到你!

高一數學必修四知識點梳理1

【公式一】

設α為任意角,終邊相同的角的同一三角函數的值相等:

sin(2kπ+α)=sinα(k∈Z)

cos(2kπ+α)=cosα(k∈Z)

tan(2kπ+α)=tanα(k∈Z)

cot(2kπ+α)=cotα(k∈Z)

【公式二】

設α為任意角,π+α的三角函數值與α的三角函數值之間的關系:

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

【公式三】

任意角α與-α的三角函數值之間的關系:

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

【公式四】

利用公式二和公式三可以得到π-α與α的三角函數值之間的關系:

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

【公式五】

利用公式一和公式三可以得到2π-α與α的三角函數值之間的關系:

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

【公式六】

π/2±α及3π/2±α與α的三角函數值之間的關系:

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

tan(π/2+α)=-cotα

cot(π/2+α)=-tanα

sin(π/2-α)=cosα

cos(π/2-α)=sinα

tan(π/2-α)=cotα

cot(π/2-α)=tanα

sin(3π/2+α)=-cosα

cos(3π/2+α)=sinα

tan(3π/2+α)=-cotα

cot(3π/2+α)=-tanα

sin(3π/2-α)=-cosα

cos(3π/2-α)=-sinα

tan(3π/2-α)=cotα

cot(3π/2-α)=tanα

(以上k∈Z)

高一數學必修四知識點梳理2

問題提出

1.函數是研究兩個變數之間的依存關系的一種數量形式.對於兩個變數,如果當一個變數的取值一定時,另一個變數的取值被惟一確定,則這兩個變數之間的關系就是一個函數關系.

2.在中學校園里,有這樣一種說法:「如果你的數學成績好,那麼你的物理學習就不會有什麼大問題.」按照這種說法,似乎學生的物理成績與數學成績之間存在著某種關系,我們把數學成績和物理成績看成是兩個變數,那麼這兩個變數之間的關系是函數關系嗎?

3.我們不能通過一個人的數學成績是多少就准確地斷定其物理成績能達到多少,學習興趣、學習時間、教學水平等,也是影響物理成績的一些因素,但這兩個變數是有一定關系的,它們之間是一種不確定性的關系.類似於這樣的兩個變數之間的關系,有必要從理論上作些探討,如果能通過數學成績對物理成績進行合理估計,將有著非常重要的現實意義.

知識探究(一):變數之間的相關關系

思考1:考察下列問題中兩個變數之間的關系:

(1)商品銷售收入與 廣告 支出經費;

(2)糧食產量與施肥量;

(3)人體內的脂肪含量與年齡.

這些問題中兩個變數之間的關系是函數關系嗎?

思考2:「名師出高徒」可以解釋為教師的水平越高,學生的水平就越高,那麼學生的學業成績與教師的教學水平之間的關系是函數關系嗎?你能舉出類似的描述生活中兩個變數之間的這種關系的 成語 嗎?

思考3:上述兩個變數之間的關系是一種非確定性關系,稱之為相關關系,那麼相關關系的含義如何?

自變數取值一定時,因變數的取值帶有一定隨機性的兩個變數之間的關系,叫做相關關系.

1、球的體積和球的半徑具有()

A函數關系B相關關系

C不確定關系D無任何關系

2、下列兩個變數之間的關系不是

函數關系的是()

A角的度數和正弦值

B速度一定時,距離和時間的關系

C正方體的棱長和體積

D日照時間和水稻的畝產量AD練:知識探究(二):散點圖

【問題】在一次對人體脂肪含量和年齡關系的研究中,研究人員獲得了一組樣本數據:

其中各年齡對應的脂肪數據是這個年齡人群脂肪含量的樣本平均數.

思考1:對某一個人來說,他的體內脂肪含量不一定隨年齡增長而增加或減少,但是如果把很多個體放在一起,就可能表現出一定的規律性.觀察上表中的數據,大體上看,隨著年齡的增加,人體脂肪含量怎樣變化?

思考2:為了確定年齡和人體脂肪含量之間的更明確的關系,我們需要對數據進行分析,通過作圖可以對兩個變數之間的關系有一個直觀的印象.以x軸表示年齡,y軸表示脂肪含量,你能在直角坐標系中描出樣本數據對應的圖形嗎?

思考3:上圖叫做散點圖,你能描述一下散點圖的含義嗎?

在平面直角坐標系中,表示具有相關關系的兩個變數的一組數據圖形,稱為散點圖.

思考4:觀察散點圖的大致趨勢,人的年齡的與人體脂肪含量具有什麼相關關系?

思考5:在上面的散點圖中,這些點散布在從左下角到右上角的區域,對於兩個變數的這種相關關系,我們將它稱為正相關.一般地,如果兩個變數成正相關,那麼這兩個變數的變化趨勢如何?

思考6:如果兩個變數成負相關,從整體上看這兩個變數的變化趨勢如何?其散點圖有什麼特點?

一個變數隨另一個變數的變大而變小,散點圖中的點散布在從左上角到右下角的區域.

一般情況下兩個變數之間的相關關系成正相關或負相關,類似於函數的單調性.

知識探究(一):回歸直線

思考1:一組樣本數據的平均數是樣本數據的中心,那麼散點圖中樣本點的中心如何確定?它一定是散點圖中的點嗎?

思考2:在各種各樣的散點圖中,有些散點圖中的點是雜亂分布的,有些散點圖中的點的分布有一定的規律性,年齡和人體脂肪含量的樣本數據的散點圖中的點的分布有什麼特點?

這些點大致分布在一條直線附近.

思考3:如果散點圖中的點的分布,從整體上看大致在一條直線附近,則稱這兩個變數之間具有線性相關關系,這條直線叫做回歸直線.對具有線性相關關系的兩個變數,其回歸直線一定通過樣本點的中心嗎?

思考4:對一組具有線性相關關系的樣本數據,你認為其回歸直線是一條還是幾條?

思考5:在樣本數據的散點圖中,能否用直尺准確畫出回歸直線?藉助計算機怎樣畫出回歸直線?

知識探究(二):回歸方程

在直角坐標系中,任何一條直線都有相應的方程,回歸直線的方程稱為回歸方程.對一組具有線性相關關系的樣本數據,如果能夠求出它的回歸方程,那麼我們就可以比較具體、清楚地了解兩個相關變數的內在聯系,並根據回歸方程對總體進行估計.

思考1:回歸直線與散點圖中各點的位置應具有怎樣的關系?

整體上最接近

思考2:對於求回歸直線方程,你有哪些想法?

思考4:為了從整體上反映n個樣本數據與回歸直線的接近程度,你認為選用哪個數量關系來刻畫比較合適?20.9%某小賣部為了了解熱茶銷售量與氣溫

之間的關系,隨機統計並製作了某6天

賣出熱茶的杯數與當天氣溫的對照表:

如果某天的氣溫是-50C,你能根據這些

數據預測這天小賣部賣出熱茶的杯數嗎?

實例探究

為了了解熱茶銷量與

氣溫的大致關系,我們

以橫坐標x表示氣溫,

縱坐標y表示熱茶銷量,

建立直角坐標系.將表

中數據構成的6個數對

表示的點在坐標系內

標出,得到下圖。

你發現這些點有什麼規律?

今後我們稱這樣的圖為散點圖(scatterplot).

建構數學

所以,我們用類似於估計平均數時的

思想,考慮離差的平方和

當x=-5時,熱茶銷量約為66杯

線性回歸方程:

一般地,設有n個觀察數據如下:當a,b使2.三點(3,10),(7,20),(11,24)的

線性回歸方程是()D11.69

二、求線性回歸方程

例2:觀察兩相關變數得如下表:

求兩變數間的回歸方程解1:列表:

閱讀課本P73例1

EXCEL作散點圖

利用線性回歸方程解題步驟:

1、先畫出所給數據對應的散點圖;

2、觀察散點,如果在一條直線附近,則說明所給量具有線性相關關系

3、根據公式求出線性回歸方程,並解決其他問題。

(1)如果x=3,e=1,分別求兩個模型中y的值;(2)分別說明以上兩個模型是確定性

模型還是隨機模型.

模型1:y=6+4x;模型2:y=6+4x+e.

解(1)模型1:y=6+4x=6+4×3=18;

模型2:y=6+4x+e=6+4×3+1=19.C線性相關與線性回歸方程小結1、變數間相關關系的散點圖

2、如何利用「最小二乘法」思想求直線的回歸方程

3、學會用回歸思想考察現實生活中變數之間的相關關系

高一數學必修四知識點梳理3

定義:

形如y=x^a(a為常數)的函數,即以底數為自變數冪為因變數,指數為常量的函數稱為冪函數。

定義域和值域:

當a為不同的數值時,冪函數的定義域的不同情況如下:如果a為任意實數,則函數的定義域為大於0的所有實數;如果a為負數,則x肯定不能為0,不過這時函數的定義域還必須根[據q的奇偶性來確定,即如果同時q為偶數,則x不能小於0,這時函數的定義域為大於0的所有實數;如果同時q為奇數,則函數的定義域為不等於0的所有實數。當x為不同的數值時,冪函數的值域的不同情況如下:在x大於0時,函數的值域總是大於0的實數。在x小於0時,則只有同時q為奇數,函數的值域為非零的實數。而只有a為正數,0才進入函數的值域

性質:

對於a的取值為非零有理數,有必要分成幾種情況來討論各自的特性:

首先我們知道如果a=p/q,q和p都是整數,則x^(p/q)=q次根號(x的p次方),如果q是奇數,函數的定義域是R,如果q是偶數,函數的定義域是[0,+∞)。當指數n是負整數時,設a=-k,則x=1/(x^k),顯然x≠0,函數的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來源於兩點,一是有可能作為分母而不能是0,一是有可能在偶數次的根號下而不能為負數,那麼我們就可以知道:

排除了為0與負數兩種可能,即對於x>0,則a可以是任意實數;

排除了為0這種可能,即對於x<0和x>0的所有實數,q不能是偶數;

排除了為負數這種可能,即對於x為大於且等於0的所有實數,a就不能是負數。

總結 起來,就可以得到當a為不同的數值時,冪函數的定義域的不同情況如下:

如果a為任意實數,則函數的定義域為大於0的所有實數;

如果a為負數,則x肯定不能為0,不過這時函數的定義域還必須根據q的奇偶性來確定,即如果同時q為偶數,則x不能小於0,這時函數的定義域為大於0的所有實數;如果同時q為奇數,則函數的定義域為不等於0的所有實數。

在x大於0時,函數的值域總是大於0的實數。

在x小於0時,則只有同時q為奇數,函數的值域為非零的實數。

而只有a為正數,0才進入函數的值域。

由於x大於0是對a的任意取值都有意義的,因此下面給出冪函數在第一象限的各自情況.

可以看到:

(1)所有的圖形都通過(1,1)這點。

(2)當a大於0時,冪函數為單調遞增的,而a小於0時,冪函數為單調遞減函數。

(3)當a大於1時,冪函數圖形下凹;當a小於1大於0時,冪函數圖形上凸。

(4)當a小於0時,a越小,圖形傾斜程度越大。

(5)a大於0,函數過(0,0);a小於0,函數不過(0,0)點。

(6)顯然冪函數_。


高一數學必修四知識點梳理相關 文章 :

★ 高一數學必修4知識點總結(人教版)

★ 高一數學必修4知識點

★ 高中數學必修四第一章知識點總結

★ 高中數學必修四三角函數萬能公式歸納

★ 高中數學必修四公式總結

★ 高中必修4數學三角函數知識點歸納

★ 高中數學必修4目錄

★ 高一數學必修一知識點匯總

★ 高一數學知識點匯總大全

★ 高一數學知識點總結歸納

Ⅱ 高一數學基礎知識點總結

學習這件事不在乎有沒有人教你,最重要的是在於你自己有沒有覺悟和恆心。任何科目 學習 方法 其實都是一樣的,不斷的記憶與練習,使知識刻在腦海里。下面是我給大家整理的一些 高一數學 的知識點,希望對大家有所幫助。

高一上冊數學必修一知識點梳理

兩個平面的位置關系:

(1)兩個平面互相平行的定義:空間兩平面沒有公共點

(2)兩個平面的位置關系:

兩個平面平行-----沒有公共點;兩個平 面相 交-----有一條公共直線。

a、平行

兩個平面平行的判定定理:如果一個平面內有兩條相交直線都平行於另一個平面,那麼這兩個平面平行。

兩個平面平行的性質定理:如果兩個平行平面同時和第三個平面相交,那麼交線平行。

b、相交

二面角

(1)半平面:平面內的一條直線把這個平面分成兩個部分,其中每一個部分叫做半平面。

(2)二面角:從一條直線出發的兩個半平面所組成的圖形叫做二面角。二面角的取值范圍為[0°,180°]

(3)二面角的棱:這一條直線叫做二面角的棱。

(4)二面角的面:這兩個半平面叫做二面角的面。

(5)二面角的平面角:以二面角的棱上任意一點為端點,在兩個面內分別作垂直於棱的兩條射線,這兩條射線所成的角叫做二面角的平面角。

(6)直二面角:平面角是直角的二面角叫做直二面角。

esp.兩平面垂直

兩平面垂直的定義:兩平面相交,如果所成的角是直二面角,就說這兩個平面互相垂直。記為⊥

兩平面垂直的判定定理:如果一個平面經過另一個平面的一條垂線,那麼這兩個平面互相垂直

兩個平面垂直的性質定理:如果兩個平面互相垂直,那麼在一個平面內垂直於交線的直線垂直於另一個平面。

高一數學必修五知識點 總結

⑴公差為d的等差數列,各項同加一數所得數列仍是等差數列,其公差仍為d.

⑵公差為d的等差數列,各項同乘以常數k所得數列仍是等差數列,其公差為kd.

⑶若{a}、{b}為等差數列,則{a±b}與{ka+b}(k、b為非零常數)也是等差數列.

⑷對任何m、n,在等差數列{a}中有:a=a+(n-m)d,特別地,當m=1時,便得等差數列的通項公式,此式較等差數列的通項公式更具有一般性.

⑸、一般地,如果l,k,p,…,m,n,r,…皆為自然數,且l+k+p+…=m+n+r+…(兩邊的自然數個數相等),那麼當{a}為等差數列時,有:a+a+a+…=a+a+a+….

⑹公差為d的等差數列,從中取出等距離的項,構成一個新數列,此數列仍是等差數列,其公差為kd(k為取出項數之差).

⑺如果{a}是等差數列,公差為d,那麼,a,a,…,a、a也是等差數列,其公差為-d;在等差數列{a}中,a-a=a-a=md.(其中m、k、)

⑻在等差數列中,從第一項起,每一項(有窮數列末項除外)都是它前後兩項的等差中項.

⑼當公差d>0時,等差數列中的數隨項數的增大而增大;當d<0時,等差數列中的數隨項數的減少而減小;d=0時,等差數列中的數等於一個常數.

⑽設a,a,a為等差數列中的三項,且a與a,a與a的項距差之比=(≠-1),則a=.

⑴數列{a}為等差數列的充要條件是:數列{a}的前n項和S可以寫成S=an+bn的形式(其中a、b為常數).

⑵在等差數列{a}中,當項數為2n(nN)時,S-S=nd,=;當項數為(2n-1)(n)時,S-S=a,=.

⑶若數列{a}為等差數列,則S,S-S,S-S,…仍然成等差數列,公差為.

⑷若兩個等差數列{a}、{b}的前n項和分別是S、T(n為奇數),則=.

⑸在等差數列{a}中,S=a,S=b(n>m),則S=(a-b).

⑹等差數列{a}中,是n的一次函數,且點(n,)均在直線y=x+(a-)上.

⑺記等差數列{a}的前n項和為S.①若a>0,公差d<0,則當a≥0且a≤0時,S;②若a<0,公差d>0,則當a≤0且a≥0時,S最小.

高一 數學學習方法

1、培養良好的學習習慣。

(1)制定計劃明確學習目的。合理的 學習計劃 是推動我們主動學習和克服困難的內在動力。計劃先由老師指導督促,再一定要由自己切實完成,既有長遠打算,又有短期安排,執行過程中嚴格要求自己,磨煉學習意志。

(2) 課前預習 是取得較好學習效果的基礎。課前預習不僅能培養自學能力,而且能提高學習新課的興趣,掌握學習的主動權。預習不能搞走過場,要講究質量,力爭在課前把教材弄懂,上課著重聽老師講思路,把握重點,突破難點,盡可能把問題解決在課堂上。

(3)上課是理解和掌握基本知識、基本技能和基本方法的關鍵環節。學然後知不足,上課更能專心聽重點難點,把老師補充的內容記錄下來,而不是全抄全錄,顧此失彼。

(4)及時復習是提高效率學習的重要一環。通過反復閱讀教材,多方面查閱有關資料,強化對基本概念知識體系的理解與記憶,將所學的新知識與有關舊知識聯系起來,進行分析比效,一邊復習一邊將復習成果整理在 筆記本 上,使對所學的新知識由懂到會。

(5)獨立作業是通過自己的獨立思考,靈活地分析問題、解決問題,進一步加深對所學新知識的理解和對新技能的掌握過程。這一過程也是對我們意志毅力的考驗,通過運用使我們對所學知識由會到熟。

(6)解決疑難是指對獨立完成作業過程中暴露出來對知識理解的錯誤,或由於思維受阻遺漏解答,通過點撥使思路暢通,補遺解答的過程。解決疑難一定要有鍥而不舍的精神。做錯的作業再做一遍。對錯誤的地方沒弄清楚要反復思考。實在解決不了的要請教老師和同學,並要經常把易錯的地方拿來復習強化,作適當的重復性練習,把求老師問同學獲得的東西消化變成自己的知識,長期堅持使對所學知識由熟到活。

(7)系統小結是通過積極思考,達到全面系統深刻地掌握知識和發展認識能力的重要環節。小結要在系統復習的基礎上以教材為依據,參照筆記與資料,通過分析、綜合、類比、概括,揭示知識間的內在聯系,以達到對所學知識融會貫通的目的。經常進行多層次小結,能對所學知識由活到悟。

(8)課外學習包括閱讀課外書籍與報刊,參加學科競賽與講座,走訪高年級同學或老師交流 學習心得 等。課外學習是課內學習的補充和繼續,它不僅能豐富同學們的 文化 科學知識,加深和鞏固課內所學的知識,而且能夠滿足和發展我們的 興趣 愛好 ,培養獨立學習和工作的能力,激發求知慾與學習熱情。


高一數學基礎知識點總結相關 文章 :

★ 高一數學知識點新總結

★ 高一數學知識點小歸納

★ 高中數學基礎知識點總結

★ 高一數學基礎知識學習方法歸納

★ 高一數學集合知識點匯總

★ 高一數學知識點總結歸納

★ 高一數學知識點總結

★ 高一數學常考知識點總結

★ 高一數學知識點總結下冊

★ 高一數學必修一知識點匯總

Ⅲ 高中數學知識點大全

有的學生認為高中數學難做難做。其實高中數學整體上很簡單,很簡單,很多知識只要讀兩遍就可以了。下面是我整理的高中數學知識點大全,希望對你們有所幫助!

高中數學知識點

1、基本初等函數

指數、對數、冪函數三大函數的運算性質及圖像

函數的幾大要素和相關考點基本都在函數圖像上有所體現,單調性、增減性、極值、零點等等。關於這三大函數的運算公式,多記多用,多做一點練習,基本就沒問題。

函數圖像是這一章的重難點,而且圖像問題是不能靠記憶的,必須要理解,要會熟練的畫出函數圖像,定義域、值域、零點等等。對於冪函數還要搞清楚當指數冪大於一和小於一時圖像的不同及函數值的大小關系,這也是常考點。另外指數函數和對數函數的對立關系及其相互之間要怎樣轉化等問題,需要著重回看課本例題。

2、函數的應用

這一章主要考是函數與方程的結合,其實就是函數的零點,也就是函數圖像與X軸的交點。這三者之間的轉化關系是這一章的重點,要學會在這三者之間靈活轉化,以求能最簡單的解決問題。關於證明零點的 方法 ,直接計算加得必有零點,連續函數在x軸上方下方有定義則有零點等等,這些難點對應的證明方法都要記住,多練習。二次函數的零點的Δ判別法,這個需要你看懂定義,多畫多做題。

3、空間幾何

三視圖和直觀圖的繪制不算難,但是從三視圖復原出實物從而計算就需要比較強的空間感,要能從三張平面圖中慢慢在腦海中畫出實物,這就要求學生特別是空間感弱的學生多看書上的例圖,把實物圖和平面圖結合起來看,先熟練地正推,再慢慢的逆推(建議用紙做一個立方體來找感覺)。

在做題時結合草圖是有必要的,不能單憑想像。後面的錐體、柱體、台體的表面積和體積,把公式記牢問題就不大。

4、點、直線、平面之間的位置關系

這一章除了面與面的相交外,對空間概念的要求不強,大部分都可以直接畫圖,這就要求學生多看圖。自己畫草圖的時候要嚴格注意好實線虛線,這是個規范性問題。

關於這一章的內容,牢記直線與直線、面與面、直線與 面相 交、垂直、平行的幾大定理及幾大性質,同時能用圖形語言、文字語言、數學表達式表示出來。只要這些全部過關這一章就解決了一大半。這一章的難點在於二面角這個概念,大多同學即使知道有這個概念,也無法理解怎麼在二面裡面做出這個角。對這種情況只有從定義入手,先要把定義記牢,再多做多看,這個沒有什麼捷徑可走。

5、圓與方程

能熟練地把一般式方程轉化為標准方程,通常的考試形式是等式的一邊含根號,另一邊不含,這時就要注意開方後定義域或值域的限制。通過點到點的距離、點到直線的距離、圓半徑的大小關系來判斷點與圓、直線與圓、圓與圓的位置關系。另外注意圓的對稱性引起的相切、相交等的多種情況,自己把幾種對稱的形式羅列出來,多思考就不難理解了。

6、三角函數

考試必在這一塊出題,且題量不小!誘導公式和基本三角函數圖像的一些性質,沒有太大難度,只要會畫圖就行。難度都在三角函數形函數的振幅、頻率、周期、相位、初相上,及根據最值計算A、B的值和周期,及恆等變化時的圖像及性質變化,這部分的知識點內容較多,需要多花時間,不要再定義上死扣,要從圖像和例題入手。

7、平面向量

向量的運算性質及三角形法則、平行四邊形法則的難度都不大,只要在計算的時候記住要「同起點的向量」這一條就OK了。向量共線和垂直的數學表達,是計算當中經常用到的公式。向量的共線定理、基本定理、數量積公式。分點坐標公式是重點內容,也是難點內容,要花心思記憶。

8、三角恆等變換

這一章公式特別多,像差倍半形公式這類內容常會出現,所以必須要記牢。由於量比較大,記憶難度大,所以建議用紙寫好後貼在桌子上,天天都要看。要提一點,就是三角恆等變換是有一定規律的,記憶的時候可以集合三角函數去記。

9、解三角形

掌握正弦、餘弦公式及其變式、推論、三角面積公式即可。

10、數列

等差、等比數列的通項公式、前n項及一些性質常出現於填空、解答題中,這部分內容學起來比較簡單,但考驗對其推導、計算、活用的層面較深,因此要仔細。考試題中,通項公式、前n項和的內容出現頻次較多,這類題看到後要帶有目的的去推導就沒問題了。

11、不等式

這一章一般用線性規劃的形式來考察學生,這種題通常是和實際問題聯系的,所以要會讀題,從題中找不等式,畫出線性規劃圖,然後再根據實際問題的限制要求來求最值。



高中數學公式大全

乘法與因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b

|a-b|≥|a|-|b| -|a|≤a≤|a|

一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a

根與系數的關系 X1+X2=-b/a X1_X2=c/a 註:韋達定理

判別式

b2-4ac=0 註:方程有兩個相等的實根

b2-4ac>0 註:方程有兩個不等的實根

b2-4ac<0 註:方程沒有實根,有共軛復數根

三角函數公式

兩角和公式

sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)

ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

倍角公式

tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

半形公式

sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))

和差化積

2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB

某些數列前n項和

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2

2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

13+23+33+43+53+63+…n3=n2(n+1)2/4 1_2+2_3+3_4+4_5+5_6+6_7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理 a/sinA=b/sinB=c/sinC=2R 註: 其中 R 表示三角形的外接圓半徑

餘弦定理 b2=a2+c2-2accosB 註:角B是邊a和邊c的夾角

圓的標准方程 (x-a)2+(y-b)2=r2 註:(a,b)是圓心坐標

圓的一般方程 x2+y2+Dx+Ey+F=0 註:D2+E2-4F>0

拋物線標准方程 y2=2px y2=-2px x2=2py x2=-2py

直稜柱側面積 S=c_h 斜稜柱側面積 S=c'_h

正棱錐側面積 S=1/2c_h' 正稜台側面積 S=1/2(c+c')h'

圓台側面積 S=1/2(c+c')l=pi(R+r)l 球的表面積 S=4pi_r2

圓柱側面積 S=c_h=2pi_h 圓錐側面積 S=1/2_c_l=pi_r_l

弧長公式 l=a_r a是圓心角的弧度數r >0 扇形面積公式 s=1/2_l_r

錐體體積公式 V=1/3_S_H 圓錐體體積公式 V=1/3_pi_r2h

斜稜柱體積 V=S'L 註:其中,S'是直截面面積, L是側棱長

柱體體積公式 V=s_h 圓柱體 V=pi_r2h

高考前數學知識點 總結

選擇填空題

1、易錯點歸納:

九大模塊易混淆難記憶考點分析,如概率和頻率概念混淆、數列求和公式記憶錯誤等,強化基礎知識點記憶,避開因為知識點失誤造成的客觀性解題錯誤。

針對審題、解題思路不嚴謹如集合題型未考慮空集情況、函數問題未考慮定義域等主觀性因素造成的失誤進行專項訓練。

2、答題方法:

選擇題十大速解方法:

排除法、增加條件法、以小見大法、極限法、關鍵點法、對稱法、小結論法、歸納法、感覺法、分析選項法;

填空題四大速解方法:直接法、特殊化法、數形結合法、等價轉化法。

解答題

專題一、三角變換與三角函數的性質問題

1、解題路線圖

①不同角化同角

②降冪擴角

③化f(x)=Asin(ωx+φ)+h

④結合性質求解。

2、構建答題模板

①化簡:三角函數式的化簡,一般化成y=Asin(ωx+φ)+h的形式,即化為「一角、一次、一函數」的形式。

②整體代換:將ωx+φ看作一個整體,利用y=sin x,y=cos x的性質確定條件。

③求解:利用ωx+φ的范圍求條件解得函數y=Asin(ωx+φ)+h的性質,寫出結果。

④ 反思 :反思回顧,查看關鍵點,易錯點,對結果進行估算,檢查規范性。

專題二、解三角形問題

1、解題路線圖

(1) ①化簡變形;②用餘弦定理轉化為邊的關系;③變形證明。

(2) ①用餘弦定理表示角;②用基本不等式求范圍;③確定角的取值范圍。

2、構建答題模板

①定條件:即確定三角形中的已知和所求,在圖形中標注出來,然後確定轉化的方向。

②定工具:即根據條件和所求,合理選擇轉化的工具,實施邊角之間的互化。

③求結果。

④再反思:在實施邊角互化的時候應注意轉化的方向,一般有兩種思路:一是全部轉化為邊之間的關系;二是全部轉化為角之間的關系,然後進行恆等變形。

專題三、數列的通項、求和問題

1、解題路線圖

①先求某一項,或者找到數列的關系式。

②求通項公式。

③求數列和通式。

2、構建答題模板

①找遞推:根據已知條件確定數列相鄰兩項之間的關系,即找數列的遞推公式。

②求通項:根據數列遞推公式轉化為等差或等比數列求通項公式,或利用累加法或累乘法求通項公式。

③定方法:根據數列表達式的結構特徵確定求和方法(如公式法、裂項相消法、錯位相減法、分組法等)。

④寫步驟:規范寫出求和步驟。

⑤再反思:反思回顧,查看關鍵點、易錯點及解題規范。

專題四、利用空間向量求角問題

1、解題路線圖

①建立坐標系,並用坐標來表示向量。

②空間向量的坐標運算。

③用向量工具求空間的角和距離。

2、構建答題模板

①找垂直:找出(或作出)具有公共交點的三條兩兩垂直的直線。

②寫坐標:建立空間直角坐標系,寫出特徵點坐標。

③求向量:求直線的方向向量或平面的'法向量。

④求夾角:計算向量的夾角。

⑤得結論:得到所求兩個平面所成的角或直線和平面所成的角。

專題五、圓錐曲線中的范圍問題

1、解題路線圖

①設方程。

②解系數。

③得結論。

2、構建答題模板

①提關系:從題設條件中提取不等關系式。

②找函數:用一個變數表示目標變數,代入不等關系式。

③得范圍:通過求解含目標變數的不等式,得所求參數的范圍。

④再回顧:注意目標變數的范圍所受題中其他因素的制約。

專題六、解析幾何中的探索性問題

1、解題路線圖

①一般先假設這種情況成立(點存在、直線存在、位置關系存在等)

②將上面的假設代入已知條件求解。

③得出結論。

2、構建答題模板

①先假定:假設結論成立。

②再推理:以假設結論成立為條件,進行推理求解。

③下結論:若推出合理結果, 經驗 證成立則肯。 定假設;若推出矛盾則否定假設。

④再回顧:查看關鍵點,易錯點(特殊情況、隱含條件等),審視解題規范性。

專題七、離散型隨機變數的均值與方差

1、解題路線圖

(1)①標記事件;②對事件分解;③計算概率。

(2)①確定ξ取值;②計算概率;③得分布列;④求數學期望。

2、構建答題模板

①定元:根據已知條件確定離散型隨機變數的取值。

②定性:明確每個隨機變數取值所對應的事件。

③定型:確定事件的概率模型和計算公式。

④計算:計算隨機變數取每一個值的概率。

⑤列表:列出分布列。

⑥求解:根據均值、方差公式求解其值。

專題八、函數的單調性、極值、最值問題

1、解題路線圖

(1)①先對函數求導;②計算出某一點的斜率;③得出切線方程。

(2)①先對函數求導;②談論導數的正負性;③列表觀察原函數值;④得到原函數的單調區間和極值。

2、構建答題模板

①求導數:求f(x)的導數f′(x)。(注意f(x)的定義域)

②解方程:解f′(x)=0,得方程的根

③列表格:利用f′(x)=0的根將f(x)定義域分成若干個小開區間,並列出表格。

④得結論:從表格觀察f(x)的單調性、極值、最值等。

⑤再回顧:對需討論根的大小問題要特殊注意,另外觀察f(x)的間斷點及步驟規范性。

以上模板僅供參考,希望大家能針對自己的情況整理出來最適合的「套路」。

高中數學 學習心得

數學是一們基礎學科,我們從小就開始接觸到它。現在我們已經步入高中,由於高中數學對知識的難度、深度、廣度要求更高,有一部分同學由於不適應這種變化,數學成績總是不如人意。甚至產生這樣的困惑:「我在初中時數學成績很好,可現在怎麼了?」其實,學習是一個不斷接收新知識的過程。正是由於你在進入高中後 學習方法 或 學習態度 的影響,才會造成學得累死而成績不好的後果。那麼,究竟該如何學好高中數學呢?以下我談談我的高中數學學習心得。

一、 認清學習的能力狀態。

1、 心理素質。我們在高中學習環境下取決於我們是否具有面對挫折、冷靜分析問題的辦法。當我們面對困難時不應產生畏懼感,面對失敗時不應灰心喪氣,而要勇於正視自己,及時作出總結教訓,改變學習方法。

2、 學習方式、習慣的反思與認識。(1) 學習的主動性。我們在進入高中以後,不能還像初中時那樣有很強的依賴心理,不訂 學習計劃 ,坐等上課,課前不預習,上課忙於記筆記而忽略了真正的聽課,顧此失彼,被動學習。(2) 學習的條理性。我們在每學習一課內容時,要學會將知識有條理地分為若干類,剖析概念的內涵外延,重點難點要突出。不要忙於記筆記,而對要點沒有聽清楚或聽不全。筆記記了一大摞,問題也有一大堆。如果還不能及時鞏固、總結,而忙於套著題型趕作業,對概念、定理、公式不能理解而死記硬背,則會事倍功半,收效甚微。(3) 忽視基礎。在我身邊,常有些「自我感覺良好」的同學,忽視基礎知識、基本技能和基本方法,不能牢牢地抓住課本,而是偏重於對難題的攻解,好高騖遠,重「量」而輕「質」,陷入題海,往往在考試中不是演算錯誤就是中途「卡殼」。(4) 不良習慣。主要有對答案,卷面書寫不工整,格式不規范,不相信自己的結論,缺乏對問題解決的信心和決心,遇到問題不能獨立思考,養成一種依賴於老師解說的心理,做作業不講究效率,學習效率不高。

二、 努力提高自己的學習能力。

1、 抓要點提高學習效率。(1) 抓教材處理。正所謂「萬變不離其中」。要知道,教材始終是我們學習的根本依據。教學是活的,思維也是活的,學習能力是隨著知識的積累而同時形成的。我們要通過老師教學,理解所學內容在教材中的地位,並將前後知識聯系起來,把握教材,才能掌握學習的主動性。(2) 抓問題暴露。對於那些典型的問題,必須及時解決,而不能把問題遺留下來,而要對遺留的問題及時、有效的解決。(3) 抓 思維訓練 。數學的特點是具有高度的抽象性、邏輯性和廣泛的適用性,對能力要求較高。我們在平時的訓練中,要注重一個思維的過程,學習能力是在不斷運用中才能培養出來的。(5) 抓45分鍾課堂效率。我們學習的大部分時間都在學校,如果不能很好地抓住課堂時間,而寄希望於課外去補,則會使學習效率大打折扣。

高中數學知識點大全相關 文章 :

★ 高二數學知識點總結

★ 高一數學必修一知識點匯總

★ 高中數學學習方法:知識點總結最全版

★ 高中數學知識點總結

★ 高一數學知識點總結歸納

★ 高三數學知識點考點總結大全

★ 高中數學基礎知識大全

★ 高三數學知識點梳理匯總

★ 高中數學必考知識點歸納整理

★ 高一數學知識點總結期末必備

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

Ⅳ 高中數學必考知識點歸納

高考數學必考知識點有哪些,高中數學重點知識有哪些,需要我們掌握?下面是我為大家整理的關於高中數學必考知識點歸納,希望對您有所幫助。

高中數學知識點 總結

1.必修課程由5個模塊組成:

必修1:集合,函數概念與基本初等函數(指數函數,冪函數,對數函數)

必修2:立體幾何初步、平面解析幾何初步。

必修3:演算法初步、統計、概率。

必修4:基本初等函數(三角函數)、平面向量、三角恆等變換。

必修5:解三角形、數列、不等式。

以上所有的知識點是所有高中生必須掌握的,而且要懂得運用。

選修課程分為4個系列:

系列1:2個模塊

選修1-1:常用邏輯用語、圓錐曲線與方程、空間向量與立體幾何。

選修1-2:統計案例、推理與證明、數系的擴充與復數、框圖

系列2: 3個模塊

選修2-1:常用邏輯用語、圓錐曲線與方程、空間向量與立體幾何

選修2-2:導數及其應用、推理與證明、數系的擴充與復數

選修2-3:計數原理、隨機變數及其分布列、統計案例

選修4-1:幾何證明選講

選修4-4:坐標系與參數方程

選修4-5:不等式選講

2.高考數學必考重難點及其考點:

重點:函數,數列,三角函數,平面向量,圓錐曲線,立體幾何,導數

難點:函數,圓錐曲線

高考相關考點:

1. 集合與邏輯:集合的邏輯與運算(一般出現在高考卷的第一道選擇題)、簡易邏輯、充要條件

2. 函數:映射與函數、函數解析式與定義域、值域與最值、反函數、三大性質、函數圖象、指數函數、對數函數、函數的應用

3. 數列:數列的有關概念、等差數列、等比數列、數列求通項、求和

4. 三角函數:有關概念、同角關系與誘導公式、和差倍半公式、求值、化簡、證明、三角函數的圖像及其性質、應用

5. 平面向量:初等運算、坐標運算、數量積及其應用

6. 不等式:概念與性質、均值不等式、不等式的證明、不等式的解法、絕對值不等式(經常出現在大題的選做題里)、不等式的應用

7. 直線與圓的方程:直線的方程、兩直線的位置關系、線性規劃、圓、直線與圓的位置關系

8. 圓錐曲線方程:橢圓、雙曲線、拋物線、直線與圓錐曲線的位置關系、軌跡問題、圓錐曲線的應用

9. 直線、平面、簡單幾何體:空間直線、直線與平面、平面與平面、稜柱、棱錐、球、空間向量

10. 排列、組合和概率:排列、組合應用題、二項式定理及其應用

11. 概率與統計:概率、分布列、期望、方差、抽樣、正態分布

12. 導數:導數的概念、求導、導數的應用

13. 復數:復數的概念與運算

高中數學易錯知識點整理

一.集合與函數

1.進行集合的交、並、補運算時,不要忘了全集和空集的特殊情況,不要忘記了藉助數軸和文氏圖進行求解.

2.在應用條件時,易A忽略是空集的情況

3.你會用補集的思想解決有關問題嗎?

4.簡單命題與復合命題有什麼區別?四種命題之間的相互關系是什麼?如何判斷充分與必要條件?

5.你知道「否命題」與「命題的否定形式」的區別.

6.求解與函數有關的問題易忽略定義域優先的原則.

7.判斷函數奇偶性時,易忽略檢驗函數定義域是否關於__對稱.

8.求一個函數的解析式和一個函數的反函數時,易忽略標注該函數的定義域.

9.原函數在區間[-a,a]上單調遞增,則一定存在反函數,且反函數也單調遞增;但一個函數存在反函數,此函數不一定單調.例如:.

10.你熟練地掌握了函數單調性的證明 方法 嗎?定義法(取值,作差,判正負)和導數法

11.求函數單調性時,易錯誤地在多個單調區間之間添加符號「∪」和「或」;單調區間不能用集合或不等式表示.

12.求函數的值域必須先求函數的定義域。

13.如何應用函數的單調性與奇偶性解題?①比較函數值的大小;②解抽象函數不等式;③求參數的范圍(恆成立問題).這幾種基本應用你掌握了嗎?

14.解對數函數問題時,你注意到真數與底數的限制條件了嗎?

(真數大於零,底數大於零且不等於1)字母底數還需討論

15.三個二次(哪三個二次?)的關系及應用掌握了嗎?如何利用二次函數求最值?

16.用換元法解題時易忽略換元前後的等價性,易忽略參數的范圍。

17.「實系數一元二次方程有實數解」轉化時,你是否注意到:當時,「方程有解」不能轉化為。若原題中沒有指出是二次方程,二次函數或二次不等式,你是否考慮到二次項系數可能為的零的情形?

二.不等式

18.利用均值不等式求最值時,你是否注意到:「一正;二定;三等」.

19.絕對值不等式的解法及其幾何意義是什麼?

20.解分式不等式應注意什麼問題?用「根軸法」解整式(分式)不等式的注意事項是什麼?

21.解含參數不等式的通法是「定義域為前提,函數的單調性為基礎,分類討論是關鍵」,注意解完之後要寫上:「綜上,原不等式的解集是……」.

22.在求不等式的解集、定義域及值域時,其結果一定要用集合或區間表示;不能用不等式表示.

23.兩個不等式相乘時,必須注意同向同正時才能相乘,即同向同正可乘;同時要注意「同號可倒」即a>b>0,a<0.

三.數列

24.解決一些等比數列的前項和問題,你注意到要對公比及兩種情況進行討論了嗎?

25.在「已知,求」的問題中,你在利用公式時注意到了嗎?(時,應有)需要驗證,有些題目通項是分段函數。

26.你知道存在的條件嗎?(你理解數列、有窮數列、無窮數列的概念嗎?你知道無窮數列的前項和與所有項的和的不同嗎?什麼樣的無窮等比數列的所有項的和必定存在?

27.數列單調性問題能否等同於對應函數的單調性問題?(數列是特殊函數,但其定義域中的值不是連續的。)

28.應用數學歸納法一要注意步驟齊全,二要注意從到過程中,先假設時成立,再結合一些數學方法用來證明時也成立。

四.三角函數

29.正角、負角、零角、象限角的概念你清楚嗎?,若角的終邊在坐標軸上,那它歸哪個象限呢?你知道銳角與第一象限的角;終邊相同的角和相等的角的區別嗎?

30.三角函數的定義及單位圓內的三角函數線(正弦線、餘弦線、正切線)的定義你知道嗎?

31.在解三角問題時,你注意到正切函數、餘切函數的定義域了嗎?你注意到正弦函數、餘弦函數的有界性了嗎?

32.你還記得三角化簡的通性通法嗎?(切割化弦、降冪公式、用三角公式轉化出現特殊角.異角化同角,異名化同名,高次化低次)

33.反正弦、反餘弦、反正切函數的取值范圍分別是

34.你還記得某些特殊角的三角函數值嗎?

35.掌握正弦函數、餘弦函數及正切函數的圖象和性質.你會寫三角函數的單調區間嗎?會寫簡單的三角不等式的解集嗎?(要注意數形結合與書寫規范,可別忘了),你是否清楚函數的圖象可以由函數經過怎樣的變換得到嗎?

36.函數的圖象的平移,方程的平移以及點的平移公式易混:

(1)函數的圖象的平移為「左+右-,上+下-」;如函數的圖象左移2個單位且下移3個單位得到的圖象的解析式為,即.

(2)方程表示的圖形的平移為「左+右-,上-下+」;如直線左移2個個單位且下移3個單位得到的圖象的解析式為,即.

(3)點的平移公式:點按向量平移到點,則.

37.在三角函數中求一個角時,注意考慮兩方面了嗎?(先求出某一個三角函數值,再判定角的范圍)

38.形如的周期都是,但的周期為。

39.正弦定理時易忘比值還等於2R.

五.平面向量

40.數0有區別,的模為數0,它不是沒有方向,而是方向不定。可以看成與任意向量平行,但與任意向量都不垂直。

41.數量積與兩個實數乘積的區別:

在實數中:若,且ab=0,則b=0,但在向量的數量積中,若,且,不能推出.

已知實數,且,則a=c,但在向量的數量積中沒有.

在實數中有,但是在向量的數量積中,這是因為左邊是與共線的向量,而右邊是與共線的向量.

42.是向量與平行的充分而不必要條件,是向量和向量夾角為鈍角的必要而不充分條件。

六.解析幾何

43.在用點斜式、斜截式求直線的方程時,你是否注意到不存在的情況?

44.用到角公式時,易將直線l1、l2的斜率k1、k2的順序弄顛倒。

45.直線的傾斜角、到的角、與的夾角的取值范圍依次是。

46.定比分點的坐標公式是什麼?(起點,中點,分點以及值可要搞清),在利用定比分點解題時,你注意到了嗎?

47.對不重合的兩條直線

(建議在解題時,討論後利用斜率和截距)

48.直線在兩坐標軸上的截距相等,直線方程可以理解為,但不要忘記當時,直線在兩坐標軸上的截距都是0,亦為截距相等。

49.解決線性規劃問題的基本步驟是什麼?請你注意解題格式和完整的文字表達.(①設出變數,寫出目標函數②寫出線性約束條件③畫出可行域④作出目標函數對應的系列平行線,找到並求出最優解⑦應用題一定要有答。)

50.三種圓錐曲線的定義、圖形、標准方程、幾何性質,橢圓與雙曲線中的兩個特徵三角形你掌握了嗎?

51.圓、和橢圓的參數方程是怎樣的?常用參數方程的方法解決哪一些問題?

52.利用圓錐曲線第二定義解題時,你是否注意到定義中的定比前後項的順序?如何利用第二定義推出圓錐曲線的焦半徑公式?如何應用焦半徑公式?

53.通徑是拋物線的所有焦點弦中最短的弦.(想一想在雙曲線中的結論?)

54.在用圓錐曲線與直線聯立求解時,消元後得到的方程中要注意:二次項的系數是否為零?橢圓,雙曲線二次項系數為零時直線與其只有一個交點,判別式的限制.(求交點,弦長,中點,斜率,對稱,存在性問題都在下進行).

55.解析幾何問題的求解中,平面幾何知識利用了嗎?題目中是否已經有坐標系了,是否需要建立直角坐標系?

七.立體幾何

56.你掌握了空間圖形在平面上的直觀畫法嗎?(斜二測畫法)。

57.線面平行和面面平行的定義、判定和性質定理你掌握了嗎?線線平行、線面平行、面面平行這三者之間的聯系和轉化在解決立幾問題中的應用是怎樣的?每種平行之間轉換的條件是什麼?

58.三垂線定理及其逆定理你記住了嗎?你知道三垂線定理的關鍵是什麼嗎?(一面、四線、三垂直、立柱即面的垂線是關鍵)一面四直線,立柱是關鍵,垂直三處見

59.線面平行的判定定理和性質定理在應用時都是三個條件,但這三個條件易混為一談;面面平行的判定定理易把條件錯誤地記為」一個平面內的兩條相交直線與另一個平面內的兩條相交直線分別平行」而導致證明過程跨步太大.

60.求兩條異面直線所成的角、直線與平面所成的角和二面角時,如果所求的角為90°,那麼就不要忘了還有一種求角的方法即用證明它們垂直的方法.

61.異面直線所成角利用「平移法」求解時,一定要注意平移後所得角等於所求角(或其補角),特別是題目告訴異面直線所成角,應用時一定要從題意出發,是用銳角還是其補角,還是兩種情況都有可能。

62.你知道公式:和中每一字母的意思嗎?能夠熟練地應用它們解題嗎?

63.兩條異面直線所成的角的范圍:0°<α≤90° >

直線與平面所成的角的范圍:0o≤α≤90°

二面角的平面角的取值范圍:0°≤α≤180°

64.你知道異面直線上兩點間的距離公式如何運用嗎?

65.平面圖形的翻折,立體圖形的展開等一類問題,要注意翻折,展開前後有關幾何元素的「不變數」與「不變性」。

66.立幾問題的求解分為「作」,「證」,「算」三個環節,你是否只注重了「作」,「算」,而忽視了「證」這一重要環節?

67.稜柱及其性質、平行六面體與長方體及其性質.這些知識你掌握了嗎?(注意運用向量的方法解題)

68.球及其性質;經緯度定義易混.經度為二面角,緯度為線面角、球面距離的求法;球的表面積和體積公式.這些知識你掌握了嗎?

八.排列、組合和概率

69.解排列組合問題的依據是:分類相加,分步相乘,有序排列,無序組合.

解排列組合問題的規律是:相鄰問題捆綁法;不鄰問題插空法;多排問題單排法;定位問題優先法;定序問題倍縮法;多元問題分類法;有序分配問題法;選取問題先排後排法;至多至少問題間接法.

70.二項式系數與展開式某一項的系數易混,第r+1項的二項式系數為。二項式系數最大項與展開式中系數最大項易混.二項式系數最大項為中間一項或兩項;展開式中系數最大項的求法要用解不等式組來確定r.

71.你掌握了三種常見的概率公式嗎?(①等可能事件的概率公式;②互斥事件有一個發生的概率公式;③相互獨立事件同時發生的概率公式.)

72.二項式展開式的通項公式、n次獨立重復試驗中事件A發生k次的概率易記混。

通項公式:它是第r+1項而不是第r項;

事件A發生k次的概率:.其中k=0,1,2,3,…,n,且0

<1,p+q=1.< p="">

73.求分布列的解答題你能把步驟寫全嗎?

74.如何對總體分布進行估計?(用樣本估計總體,是研究統計問題的一個基本思想方法,一般地,樣本容量越大,這種估計就越精確,要求能畫出頻率分布表和頻率分布直方圖;理解頻率分布直方圖矩形面積的幾何意義.)

75.你還記得一般正態總體如何化為標准正態總體嗎?(對任一正態總體來說,取值小於x的概率,其中表示標准正態總體取值小於的概率)

相關 文章 :

1. 高中數學重要知識點巧記口訣

2. 高中數學學習方法:知識點總結最全版

3. 高一數學必背公式及知識匯總

4. 高一數學重點知識點公式總結

5. 高中數學重點知識結構總結

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

Ⅳ 高中數學必考知識點歸納大全

總結 是指社會團體、企業單位和個人對某一階段的學習、工作或其完成情況加以回顧和分析,得出教訓和一些規律性認識的一種書面材料,下面是我給大家帶來的數學必考知識點歸納大全,以供大家參考!

高中數學必考知識點歸納大全

1、 高一數學 知識點總結:集合一、集合有關概念

1.集合的含義

2.集合的中元素的三個特性:

(1)元素的確定性如:世界上最高的山

(2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}

(3)元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個集合

3.集合的表示:{…}如:{我校的 籃球 隊員},{太平洋,大西洋,印度洋,北冰洋}

(1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

(2)集合的表示 方法 :列舉法與描述法。

注意:常用數集及其記法:

非負整數集(即自然數集)記作:N

正整數集N或N+整數集Z有理數集Q實數集R

1)列舉法:{a,b,c……}

2)描述法:將集合中的元素的公共屬性描述出來,寫在大

括弧內表示集合的方法。{x∈R|x-3>2},{x|x-3>2}

3)語言描述法:例:{不是直角三角形的三角形}

4)Venn圖:

4、集合的分類:

(1)有限集含有有限個元素的集合

(2)無限集含有無限個元素的集合

(3)空集不含任何元素的集合例:{x|x2=-5}

2、高一數學知識點總結:集合間的基本關系

1.「包含」關系—子集

注意:A?B有兩種可能(1)A是B的一部分;(2)A與B是同一集合。

反之:集合A不包含於集合B,或集合B不包含集合A,記作A?/B或B?/A

2.「相等」關系:A=B(5≥5,且5≤5,則5=5)

實例:設A={x|x2

-1=0}B={-1,1}「元素相同則兩集合相等」即:①任何一個集合是它本身的子集。A?A

②真子集:如果A?B,且A≠B那就說集合A是集合B的真子集,記作AB(或BA)

③如果A?B,B?C,那麼A?C

④如果A?B同時B?A那麼A=B

3.不含任何元素的集合叫做空集,記為Φ

規定:空集是任何集合的子集,空集是任何非空集合的真子集。

有n個元素的集合,含有2n個子集,2n-1個真子集,一般我們把不含任何元素的集合叫做空集。

3、高一數學知識點總結:集合的分類(1)按元素屬性分類,如點集,數集。(2)按元素的個數多少,分為有/無限集

關於集合的概念:

(1)確定性:作為一個集合的元素,必須是確定的,這就是說,不能確定的對象就不能構成集合,也就是說,給定一個集合,任何一個對象是不是這個集合的元素也就確定了。

(2)互異性:對於一個給定的集合,集合中的元素一定是不同的(或說是互異的),這就是說,集合中的任何兩個元素都是不同的對象,相同的對象歸入同一個集合時只能算作集合的一個元素。

(3)無序性:判斷一些對象時候構成集合,關鍵在於看這些對象是否有明確的標准。

集合可以根據它含有的元素的個數分為兩類:

含有有限個元素的集合叫做有限集,含有無限個元素的集合叫做無限集。

非負整數全體構成的集合,叫做自然數集,記作N;

在自然數集內排除0的集合叫做正整數集,記作N+或N;

整數全體構成的集合,叫做整數集,記作Z;

有理數全體構成的集合,叫做有理數集,記作Q;(有理數是整數和分數的統稱,一切有理數都可以化成分數的形式。)

實數全體構成的集合,叫做實數集,記作R。(包括有理數和無理數。其中無理數就是無限不循環小數,有理數就包括整數和分數。數學上,實數直觀地定義為和數軸上的點一一對應的數。)

1.列舉法:如果一個集合是有限集,元素又不太多,常常把集合的所有元素都列舉出來,寫在花括弧「{}」內表示這個集合,例如,由兩個元素0,1構成的集合可表示為{0,1}.

有些集合的元素較多,元素的排列又呈現一定的規律,在不致於發生誤解的情況下,也可以列出幾個元素作為代表,其他元素用省略號表示。

例如:不大於100的自然數的全體構成的集合,可表示為{0,1,2,3,…,100}.

無限集有時也用上述的列舉法表示,例如,自然數集N可表示為{1,2,3,…,n,…}.

2.描述法:一種更有效地描述集合的方法,是用集合中元素的特徵性質來描述。

例如:正偶數構成的集合,它的每一個元素都具有性質:「能被2整除,且大於0」

而這個集合外的其他元素都不具有這種性質,因此,我們可以用上述性質把正偶數集合表示為

{x∈R│x能被2整除,且大於0}或{x∈R│x=2n,n∈N+},

大括弧內豎線左邊的X表示這個集合的任意一個元素,元素X從實數集合中取值,在豎線右邊寫出只有集合內的元素x才具有的性質。

一般地,如果在集合I中,屬於集合A的任意一個元素x都具有性質p(x),而不屬於集合A的元素都不具有的性質p(x),則性質p(x)叫做集合A的一個特徵性質。於是,集合A可以用它的性質p(x)描述為{x∈I│p(x)}

它表示集合A是由集合I中具有性質p(x)的所有元素構成的,這種表示集合的方法,叫做特徵性質描述法,簡稱描述法。

例如:集合A={x∈R│x2-1=0}的特徵是X2-1=0

高一數學必修一知識點摘要

(1)直線的傾斜角

定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°

(2)直線的斜率

①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。

②過兩點的直線的斜率公式:

注意下面四點:

(1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;

(2)k與P1、P2的順序無關;

(3)以後求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;

(4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到。

(3)直線方程

①點斜式:直線斜率k,且過點

注意:當直線的斜率為0°時,k=0,直線的方程是y=y1。當直線的斜率為90°時,直線的斜率不存在,它的方程不能用點斜式表示.但因l上每一點的橫坐標都等於x1,所以它的方程是x=x1。

②斜截式:,直線斜率為k,直線在y軸上的截距為b

③兩點式:()直線兩點,

④截矩式:其中直線與軸交於點,與軸交於點,即與軸、軸的截距分別為。

⑤一般式:(A,B不全為0)

⑤一般式:(A,B不全為0)

注意:○1各式的適用范圍

○2特殊的方程如:平行於x軸的直線:(b為常數);平行於y軸的直線:(a為常數);

(4)直線系方程:即具有某一共同性質的直線

高一數學知識點小結

1.二次函數y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點坐標及對稱軸如下表:

解析式

頂點坐標

對稱軸

y=ax^2

(0,0)

x=0

y=a(x-h)^2

(h,0)

x=h

y=a(x-h)^2+k

(h,k)

x=h

y=ax^2+bx+c

(-b/2a,[4ac-b^2]/4a)

x=-b/2a

當h>0時,y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動h個單位得到,

當h<0時,則向左平行移動|h|個單位得到.

當h>0,k>0時,將拋物線y=ax^2向右平行移動h個單位,再向上移動k個單位,就可以得到y=a(x-h)^2+k的圖象;

當h>0,k<0時,將拋物線y=ax^2向右平行移動h個單位,再向下移動|k|個單位可得到y=a(x-h)^2+k的圖象;

當h<0,k>0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y=a(x-h)^2+k的圖象;

當h<0,k<0時,將拋物線向左平行移動|h|個單位,再向下移動|k|個單位可得到y=a(x-h)^2+k的圖象;

因此,研究拋物線y=ax^2+bx+c(a≠0)的圖象,通過配方,將一般式化為y=a(x-h)^2+k的形式,可確定其頂點坐標、對稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便.

2.拋物線y=ax^2+bx+c(a≠0)的圖象:當a>0時,開口向上,當a<0時開口向下,對稱軸是直線x=-b/2a,頂點坐標是(-b/2a,[4ac-b^2]/4a).

3.拋物線y=ax^2+bx+c(a≠0),若a>0,當x≤-b/2a時,y隨x的增大而減小;當x≥-b/2a時,y隨x的增大而增大.若a<0,當x≤-b/2a時,y隨x的增大而增大;當x≥-b/2a時,y隨x的增大而減小.

4.拋物線y=ax^2+bx+c的圖象與坐標軸的交點:

(1)圖象與y軸一定相交,交點坐標為(0,c);

(2)當△=b^2-4ac>0,圖象與x軸交於兩點A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0

(a≠0)的兩根.這兩點間的距離AB=|x?-x?|

當△=0.圖象與x軸只有一個交點;

當△<0.圖象與x軸沒有交點.當a>0時,圖象落在x軸的上方,x為任何實數時,都有y>0;當a<0時,圖象落在x軸的下方,x為任何實數時,都有y<0.

5.拋物線y=ax^2+bx+c的最值:如果a>0(a<0),則當x=-b/2a時,y最小(大)值=(4ac-b^2)/4a.

頂點的橫坐標,是取得最值時的自變數值,頂點的縱坐標,是最值的取值.

6.用待定系數法求二次函數的解析式

(1)當題給條件為已知圖象經過三個已知點或已知x、y的三對對應值時,可設解析式為一般形式:

y=ax^2+bx+c(a≠0).

(2)當題給條件為已知圖象的頂點坐標或對稱軸時,可設解析式為頂點式:y=a(x-h)^2+k(a≠0).

(3)當題給條件為已知圖象與x軸的兩個交點坐標時,可設解析式為兩根式:y=a(x-x?)(x-x?)(a≠0).

7.二次函數知識很容易與 其它 知識綜合應用,而形成較為復雜的綜合題目。因此,以二次函數知識為主的綜合性題目是中考的 熱點 考題,往往以大題形式出現.


高中數學必考知識點歸納大全相關 文章 :

★ 高中數學必考知識點歸納整理

★ 高中數學必考知識點歸納

★ 高中數學知識點全總結最全版

★ 高一數學有用必考知識點歸納

★ 高考數學必考知識點考點2020大全總結

★ 高中數學知識點大全

★ 高中數學全部知識點提綱整理

★ 高中數學考點整理歸納

★ 高中數學知識點總結及公式大全

★ 高中數學知識點全總結

Ⅵ 高一數學必修四知識點

高中階段學科知識交叉多、綜合性強,以理解和應用為主,要求學生要有更強的分析、概括、綜合、實踐的能力。在高中階段,不能只局限於知識的學習,而要重視觀察、思維、分析、閱讀、動手等能力的培養。下面是我給大家帶來的 高一數學 知識點,希望大家能夠喜歡!

高一數學知識點匯總

空間幾何體表面積體積公式:

1、圓柱體:表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)

2、圓錐體:表面積:πR2+πR[(h2+R2)的]體積:πR2h/3(r為圓錐體低圓半徑,h為其高,

3、a-邊長,S=6a2,V=a3

4、長方體a-長,b-寬,c-高S=2(ab+ac+bc)V=abc

5、稜柱S-h-高V=Sh

6、棱錐S-h-高V=Sh/3

7、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/3

8、S1-上底面積,S2-下底面積,S0-中h-高,V=h(S1+S2+4S0)/6

9、圓柱r-底半徑,h-高,C—底面周長S底—底面積,S側—,S表—表面積C=2πrS底=πr2,S側=Ch,S表=Ch+2S底,V=S底h=πr2h

10、空心圓柱R-外圓半徑,r-內圓半徑h-高V=πh(R^2-r^2)

11、r-底半徑h-高V=πr^2h/3

12、r-上底半徑,R-下底半徑,h-高V=πh(R2+Rr+r2)/313、球r-半徑d-直徑V=4/3πr^3=πd^3/6

14、球缺h-球缺高,r-球半徑,a-球缺底半徑V=πh(3a2+h2)/6=πh2(3r-h)/3

15、球台r1和r2-球台上、下底半徑h-高V=πh[3(r12+r22)+h2]/6

16、圓環體R-環體半徑D-環體直徑r-環體截面半徑d-環體截面直徑V=2π2Rr2=π2Dd2/4

17、桶狀體D-桶腹直徑d-桶底直徑h-桶高V=πh(2D2+d2)/12,(母線是圓弧形,圓心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母線是拋物線形)

練習題:

1.正四棱錐P—ABCD的側棱長和底面邊長都等於,有兩個正四面體的棱長也都等於.當這兩個正四面體各有一個面與正四棱錐的側面PAD,側面PBC完全重合時,得到一個新的多面體,該多面體是()

(A)五面體

(B)七面體

(C)九面體

(D)十一面體

2.正四面體的四個頂點都在一個球面上,且正四面體的高為4,則球的表面積為()

(A)9

(B)18

(C)36

(D)64

3.下列說法正確的是()

A.稜柱的側面可以是三角形

B.正方體和長方體都是特殊的四稜柱

C.所有的幾何體的表面都能展成平面圖形

D.稜柱的各條棱都相等

高一數學知識點 總結

一)兩角和差公式 (寫的都要記)

sin(A+B)=sinAcosB+cosAsinB

sin(A-B)=sinAcosB-sinBcosA ?

cos(A+B)=cosAcosB-sinAsinB

cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB)

tan(A-B)=(tanA-tanB)/(1+tanAtanB)

二)用以上公式可推出下列二倍角公式

tan2A=2tanA/[1-(tanA)^2]

cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2

(上面這個餘弦的很重要)

sin2A=2sinA_cosA

三)半形的只需記住這個:

tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA)

四)用二倍角中的餘弦可推出降冪公式

(sinA)^2=(1-cos2A)/2

(cosA)^2=(1+cos2A)/2

五)用以上降冪公式可推出以下常用的化簡公式

1-cosA=sin^(A/2)_2

1-sinA=cos^(A/2)_2

高一數學知識點梳理

重點難點講解:

1.回歸分析:

就是對具有相關關系的兩個變數之間的關系形式進行測定,確定一個相關的數學表達式,以便進行估計預測的統計分析 方法 。根據回歸分析方法得出的數學表達式稱為回歸方程,它可能是直線,也可能是曲線。

2.線性回歸方程

設x與y是具有相關關系的兩個變數,且相應於n組觀測值的n個點(xi,yi)(i=1,......,n)大致分布在一條直線的附近,則回歸直線的方程為。

其中。

3.線性相關性檢驗

線性相關性檢驗是一種假設檢驗,它給出了一個具體檢驗y與x之間線性相關與否的辦法。

①在課本附表3中查出與顯著性水平0.05與自由度n-2(n為觀測值組數)相應的相關系數臨界值r0.05。

②由公式,計算r的值。

③檢驗所得結果

如果|r|≤r0.05,可以認為y與x之間的線性相關關系不顯著,接受統計假設。

如果|r|>r0.05,可以認為y與x之間不具有線性相關關系的假設是不成立的,即y與x之間具有線性相關關系。

典型例題講解:

例1.從某班50名學生中隨機抽取10名,測得其數學考試成績與物理考試成績資料如表:序號12345678910數學成績54666876788285879094,物理成績61806286847685828896試建立該10名學生的物理成績對數學成績的線性回歸模型。

解:設數學成績為x,物理成績為,則可設所求線性回歸模型為,

計算,代入公式得∴所求線性回歸模型為=0.74x+22.28。

說明:將自變數x的值分別代入上述回歸模型中,即可得到相應的因變數的估計值,由回歸模型知:數學成績每增加1分,物理成績平均增加0.74分。大家可以在老師的幫助下對自己班的數學、化學成績進行分析。

例2.假設關於某設備的使用年限x和所支出的維修費用y(萬元),有如下的統計資料:x23456y2.23.85.56.57.0

若由資料可知y對x成線性相關關系。試求:

(1)線性回歸方程;(2)估計使用年限為10年時,維修費用是多少?

分析:本題為了降低難度,告訴了y與x間成線性相關關系,目的是訓練公式的使用。

解:(1)列表如下:i12345xi23456yi2.23.85.56.57.0xiyi4.411.422.032.542.049162536於是b=,。∴線性回歸方程為:=bx+a=1.23x+0.08。

(2)當x=10時,=1.23×10+0.08=12.38(萬元)即估計使用10年時維修費用是12.38萬元。

說明:本題若沒有告訴我們y與x間是線性相關的,應首先進行相關性檢驗。如果本身兩個變數不具備線性相關關系,或者說它們之間相關關系不顯著時,即使求出回歸方程也是沒有意義的,而且其估計與預測也是不可信的。

例3.某省七年的國民生產總值及社會商品零售總額如下表所示:已知國民生產總值與社會商品的零售總額之間存在線性關系,請建立回歸模型。年份國民生產總值(億元)

社會商品零售總額(億元)1985396.26205.821986442.04227.951987517.77268.661988625.10337.521989700.83366.001990792.54375.111991858.47413.18合計4333.012194.24

解:設國民生產總值為x,社會商品零售總額為y,設線性回歸模型為。

依上表計算有關數據後代入的表達式得:∴所求線性回歸模型為y=0.445957x+37.4148,表明國民生產總值每增加1億元,社會商品零售總額將平均增加4459.57萬元。

例4.已知某地每單位面積菜地年平均使用氮肥量xkg與每單位面積蔬菜每年平均產量yt之間的關系有如下數據:年份(kg)7074807885929095y(t)5.16.06.87.89.010.210.012.0年份(kg)92108115123130138145y(t)11.511.011.812.212.512.813.0(1)求x與y之間的相關系數,並檢驗是否線性相關;

(2)若線性相關,求蔬菜產量y與使用氮肥量之間的回歸直線方程,並估計每單位面積施肥150kg時,每單位面積蔬菜的年平均產量。

分析:(1)使用樣本相關系數計算公式來完成;(2)查表得出顯著水平0.05與自由度15-2相應的相關系數臨界值r0.05比較,若r>r0.05,則線性相關,否則不線性相關。

解:(1)列出下表,並用科學計算器進行有關計算:.16.06.87.89.010.210.012.011.511.011.812.212.512.813.0xiyi357444544608.4765938.490011401058118813571500.616251766.41885,.故蔬菜產量與施用氮肥量的相關系數:r=由於n=15,故自由度15-2=13。由相關系數檢驗的臨界值表查出與顯著水平0.05及自由度13相關系數臨界值r0.05=0.514,則r>r0.05,從而說明蔬菜產量與氮肥量之間存在著線性相關關系。

(2)設所求的回歸直線方程為=bx+a,則∴回歸直線方程為=0.0931x+0.7102。

當x=150時,y的估值=0.0931×150+0.7102=14.675(t)。

說明:求解兩個變數的相關系數及它們的回歸直線方程的計算量較大,需要細心謹慎計算,如果會使用含統計的科學計算器,能簡單得到,這些量,也就無需有製表這一步,直接算出結果就行了。另外,利用計算機中有關應用程序也可以對這些數據進行處理。

高一數學知識點相關 文章 :

★ 高一數學必修4知識點

★ 高一數學必修4知識點總結(人教版)

★ 高一數學必修四知識點總結

★ 高一數學必修4知識點總結

★ 高中數學必修四第一章知識點總結

★ 高一數學必修4三角函數知識點總結

★ 高一數學必修4三角函數知識點總結

★ 高一數學必修四三角恆等變換知識點

★ 高一數學必修4教案

★ 高中數學必修4平面向量知識點

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

Ⅶ 高三數學知識點歸納

高三數學知識點匯總歸納
在日復一日的學習中,大家都背過各種知識點吧?知識點是傳遞信息的基本單位,知識點對提高學習導航具有重要的作用。那麼,都有哪些知識點呢?以下是小編為大家整理的高三數學知識點匯總歸納,僅供參考,希望能夠幫助到大家。

高三數學知識點歸納 篇1
高三上冊數學知識點整理
1、函數零點的概念:對於函數,把使成立的實數叫做函數的零點。
2、函數零點的意義:函數的零點就是方程實數根,亦即函數的圖象與軸交點的橫坐標。即:
方程有實數根函數的圖象與軸有交點函數有零點.
3、函數零點的求法:
求函數的零點:
(1)(代數法)求方程的實數根;
(2)(幾何法)對於不能用求根公式的方程,可以將它與函數的圖象聯系起來,並利用函數的性質找出零點.
4、二次函數的零點:
二次函數.
1)△>0,方程有兩不等實根,二次函數的圖象與軸有兩個交點,二次函數有兩個零點.
2)△=0,方程有兩相等實根(二重根),二次函數的圖象與軸有一個交點,二次函數有一個二重零點或二階零點.
3)△
人教版高三數學知識點總結
1.定義:
用符號〉,=,〈號連接的式子叫不等式。
2.性質:
1不等式的兩邊都加上或減去同一個整式,不等號方向不變。
2不等式的兩邊都乘以或者除以一個正數,不等號方向不變。
3不等式的兩邊都乘以或除以同一個負數,不等號方向相反。
3.分類:
1一元一次不等式:左右兩邊都是整式,只含有一個未知數,且未知數的次數是1的不等式叫一元一次不等式。
2一元一次不等式組:
a.關於同一個未知數的幾個一元一次不等式合在一起,就組成了一元一次不等式組。
b.一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。
4.考點:
1解一元一次不等式(組)
2根據具體問題中的數量關系列不等式(組)並解決簡單實際問題
3用數軸表示一元一次不等式(組)的解集
高三數學知識點歸納 篇2
1、圓柱體:
表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)
2、圓錐體:
表面積:πR2+πR[(h2+R2)的平方根]體積:πR2h/3(r為圓錐體低圓半徑,h為其高,
3、正方體
a-邊長,S=6a2,V=a3
4、長方體
a-長,b-寬,c-高S=2(ab+ac+bc)V=abc
5、稜柱
S-底面積h-高V=Sh
6、棱錐
S-底面積h-高V=Sh/3
7、稜台
S1和S2-上、下底面積h-高V=h[S1+S2+(S1S2)^1/2]/3
8、擬柱體
S1-上底面積,S2-下底面積,S0-中截面積
h-高,V=h(S1+S2+4S0)/6
9、圓柱
r-底半徑,h-高,C―底面周長
S底―底面積,S側―側面積,S表―表面積C=2πr
S底=πr2,S側=Ch,S表=Ch+2S底,V=S底h=πr2h
10、空心圓柱
R-外圓半徑,r-內圓半徑h-高V=πh(R^2-r^2)
11、直圓錐
r-底半徑h-高V=πr^2h/3
12、圓台
r-上底半徑,R-下底半徑,h-高V=πh(R2+Rr+r2)/3
13、球
r-半徑d-直徑V=4/3πr^3=πd^3/6
14、球缺
h-球缺高,r-球半徑,a-球缺底半徑V=πh(3a2+h2)/6=πh2(3r-h)/3
高三數學知識點歸納 篇3
復數的概念:
形如a+bi(a,b∈R)的數叫復數,其中i叫做虛數單位。全體復數所成的集合叫做復數集,用字母C表示。
復數的表示:
復數通常用字母z表示,即z=a+bi(a,b∈R),這一表示形式叫做復數的代數形式,其中a叫復數的實部,b叫復數的虛部。
復數的幾何意義:
(1)復平面、實軸、虛軸:
點Z的橫坐標是a,縱坐標是b,復數z=a+bi(a、b∈R)可用點Z(a,b)表示,這個建立了直角坐標系來表示復數的平面叫做復平面,x軸叫做實軸,y軸叫做虛軸。顯然,實軸上的點都表示實數,除原點外,虛軸上的點都表示純虛數
(2)復數的幾何意義:復數集C和復平面內所有的點所成的集合是一一對應關系,即
這是因為,每一個復數有復平面內惟一的一個點和它對應;反過來,復平面內的每一個點,有惟一的一個復數和它對應。
這就是復數的一種幾何意義,也就是復數的另一種表示方法,即幾何表示方法。
復數的模:
復數z=a+bi(a、b∈R)在復平面上對應的點Z(a,b)到原點的距離叫復數的模,記為|Z|,即|Z|=
虛數單位i:
(1)它的平方等於-1,即i2=-1;
(2)實數可以與它進行四則運算,進行四則運算時,原有加、乘運算律仍然成立
(3)i與-1的關系:i就是-1的一個平方根,即方程x2=-1的一個根,方程x2=-1的另一個根是-i。
(4)i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。
復數模的性質:
復數與實數、虛數、純虛數及0的關系:
對於復數a+bi(a、b∈R),當且僅當b=0時,復數a+bi(a、b∈R)是實數a;當b≠0時,復數z=a+bi叫做虛數;當a=0且b≠0時,z=bi叫做純虛數;當且僅當a=b=0時,z就是實數0。
高三數學知識點歸納 篇4
1.不等式的定義
在客觀世界中,量與量之間的不等關系是普遍存在的,我們用數學符號連接兩個數或代數式以表示它們之間的不等關系,含有這些不等號的式子,叫做不等式.
2.比較兩個實數的大小
兩個實數的大小是用實數的運算性質來定義的,
有a-b>0?;a-b=0?;a-b
另外,若b>0,則有>1?;=1?;
概括為:作差法,作商法,中間量法等.
3.不等式的性質
(1)對稱性:a>b?;
(2)傳遞性:a>b,b>c?;
(3)可加性:a>b?a+cb+c,a>b,c>d?a+cb+d;
(4)可乘性:a>b,c>0?ac>bc;a>b>0,c>d>0?;
(5)可乘方:a>b>0?(n∈N,n≥2);
(6)可開方:a>b>0?(n∈N,n≥2).
復習指導
1.「一個技巧」作差法變形的技巧:作差法中變形是關鍵,常進行因式分解或配方.
2.「一種方法」待定系數法:求代數式的范圍時,先用已知的代數式表示目標式,再利用多項式相等的法則求出參數,最後利用不等式的性質求出目標式的范圍.
3.「兩條常用性質」
(1)倒數性質:1a>b,ab>0?<;2a
3a>b>0,0;40
(2)若a>b>0,m>0,則
1真分數的性質:<;>
(b-m>0);
高三數學知識點歸納 篇5
不等式的解集:
1能使不等式成立的未知數的值,叫做不等式的解。
2一個含有未知數的不等式的所有解,組成這個不等式的解集。
3求不等式解集的過程叫做解不等式。
不等式的判定:
1常見的不等號有「>」「<」「≤」「≥」及「≠」。分別讀作「大於,小於,小於等於,大於等於,不等於」,其中「≤」又叫作不大於,「≥」叫作不小於;
2在不等式「a>b」或「a
3不等號的開口所對的數較大,不等號的尖頭所對的數較小;
4在列不等式時,一定要注意不等式關系的關鍵字,如:正數、非負數、不大於、小於等等。
高三數學知識點歸納 篇6
等式的性質:
1不等式的性質可分為不等式基本性質和不等式運算性質兩部分。
不等式基本性質有:
(1)a>bb
(2)a>b,b>ca>c(傳遞性)
(3)a>ba+c>b+c(c∈R)
(4)c>0時,a>bac>bc
c
bac
運算性質有:
(1)a>b,c>da+c>b+d。
(2)a>b>0,c>d>0ac>bd。
(3)a>b>0an>bn(n∈N,n>1)。
(4)a>b>0>(n∈N,n>1)。
應注意,上述性質中,條件與結論的邏輯關系有兩種:「」和「」即推出關系和等價關系。一般地,證明不等式就是從條件出發施行一系列的推出變換。解不等式就是施行一系列的等價變換。因此,要正確理解和應用不等式性質。
2關於不等式的性質的考察,主要有以下三類問題:
(1)根據給定的不等式條件,利用不等式的性質,判斷不等式能否成立。
(2)利用不等式的性質及實數的性質,函數性質,判斷實數值的大小。
(3)利用不等式的性質,判斷不等式變換中條件與結論間的充分或必要關系。
高中數學集合復習知識點
任一A,B,記做AB
AB,BA,A=B
AB={|A|,且|B|}
AB={|A|,或|B|}
Card(AB)=card(A)+card(B)-card(AB)
(1)命題
原命題若p則q
逆命題若q則p
否命題若p則q
逆否命題若q,則p
(2)AB,A是B成立的充分條件
BA,A是B成立的必要條件
AB,A是B成立的充要條件
1.集合元素具有1確定性;2互異性;3無序性
2.集合表示方法1列舉法;2描述法;3韋恩圖;4數軸法
(3)集合的運算
1A∩(B∪C)=(A∩B)∪(A∩C)
2Cu(A∩B)=CuA∪CuB
Cu(A∪B)=CuA∩CuB
(4)集合的性質
n元集合的字集數:2n
真子集數:2n-1;
非空真子集數:2n-2
高中數學集合知識點歸納
1、集合的概念
集合是數學中最原始的不定義的概念,只能給出,描述性說明:某些制定的且不同的對象集合在一起就稱為一個集合。組成集合的對象叫元素,集合通常用大寫字母A、B、C、來表示。元素常用小寫字母a、b、c、來表示。
集合是一個確定的整體,因此對集合也可以這樣描述:具有某種屬性的對象的全體組成的一個集合。

Ⅷ 有沒有完整的高中數學知識點及公式總結

高中數學知識點總結
1. 對於集合,一定要抓住集合的代表元素,及元素的「確定性、互異性、無序性」。

中元素各表示什麼?

注重藉助於數軸和文氏圖解集合問題。
空集是一切集合的子集,是一切非空集合的真子集。

3. 注意下列性質:

(3)德摩根定律:

4. 你會用補集思想解決問題嗎?(排除法、間接法)

的取值范圍。

6. 命題的四種形式及其相互關系是什麼?
(互為逆否關系的命題是等價命題。)
原命題與逆否命題同真、同假;逆命題與否命題同真同假。
7. 對映射的概念了解嗎?映射f:A→B,是否注意到A中元素的任意性和B中與之對應元素的唯一性,哪幾種對應能構成映射?
(一對一,多對一,允許B中有元素無原象。)
8. 函數的三要素是什麼?如何比較兩個函數是否相同?
(定義域、對應法則、值域)
9. 求函數的定義域有哪些常見類型?

10. 如何求復合函數的定義域?

義域是_____________。

11. 求一個函數的解析式或一個函數的反函數時,註明函數的定義域了嗎?

12. 反函數存在的條件是什麼?
(一一對應函數)
求反函數的步驟掌握了嗎?
(①反解x;②互換x、y;③註明定義域)

13. 反函數的性質有哪些?
①互為反函數的圖象關於直線y=x對稱;
②保存了原來函數的單調性、奇函數性;

14. 如何用定義證明函數的單調性?
(取值、作差、判正負)
如何判斷復合函數的單調性?

∴……)
15. 如何利用導數判斷函數的單調性?

值是( )
A. 0 B. 1 C. 2 D. 3

∴a的最大值為3)
16. 函數f(x)具有奇偶性的必要(非充分)條件是什麼?
(f(x)定義域關於原點對稱)

注意如下結論:
(1)在公共定義域內:兩個奇函數的乘積是偶函數;兩個偶函數的乘積是偶函數;一個偶函數與奇函數的乘積是奇函數。

17. 你熟悉周期函數的定義嗎?

函數,T是一個周期。)

如:

18. 你掌握常用的圖象變換了嗎?

注意如下「翻折」變換:

19. 你熟練掌握常用函數的圖象和性質了嗎?

的雙曲線。

應用:①「三個二次」(二次函數、二次方程、二次不等式)的關系——二次方程

②求閉區間[m,n]上的最值。
③求區間定(動),對稱軸動(定)的最值問題。
④一元二次方程根的分布問題。

由圖象記性質! (注意底數的限定!)

利用它的單調性求最值與利用均值不等式求最值的區別是什麼?

20. 你在基本運算上常出現錯誤嗎?

21. 如何解抽象函數問題?
(賦值法、結構變換法)

22. 掌握求函數值域的常用方法了嗎?
(二次函數法(配方法),反函數法,換元法,均值定理法,判別式法,利用函數單調性法,導數法等。)
如求下列函數的最值:

23. 你記得弧度的定義嗎?能寫出圓心角為α,半徑為R的弧長公式和扇形面積公式嗎?

24. 熟記三角函數的定義,單位圓中三角函數線的定義

25. 你能迅速畫出正弦、餘弦、正切函數的圖象嗎?並由圖象寫出單調區間、對稱點、對稱軸嗎?

(x,y)作圖象。

27. 在三角函數中求一個角時要注意兩個方面——先求出某一個三角函數值,再判定角的范圍。

28. 在解含有正、餘弦函數的問題時,你注意(到)運用函數的有界性了嗎?

29. 熟練掌握三角函數圖象變換了嗎?
(平移變換、伸縮變換)
平移公式:

圖象?

30. 熟練掌握同角三角函數關系和誘導公式了嗎?

「奇」、「偶」指k取奇、偶數。

A. 正值或負值 B. 負值 C. 非負值 D. 正值

31. 熟練掌握兩角和、差、倍、降冪公式及其逆向應用了嗎?
理解公式之間的聯系:

應用以上公式對三角函數式化簡。(化簡要求:項數最少、函數種類最少,分母中不含三角函數,能求值,盡可能求值。)
具體方法:

(2)名的變換:化弦或化切
(3)次數的變換:升、降冪公式
(4)形的變換:統一函數形式,注意運用代數運算。

32. 正、餘弦定理的各種表達形式你還記得嗎?如何實現邊、角轉化,而解斜三角形?

(應用:已知兩邊一夾角求第三邊;已知三邊求角。)

33. 用反三角函數表示角時要注意角的范圍。

34. 不等式的性質有哪些?

答案:C
35. 利用均值不等式:

值?(一正、二定、三相等)
注意如下結論:

36. 不等式證明的基本方法都掌握了嗎?
(比較法、分析法、綜合法、數學歸納法等)
並注意簡單放縮法的應用。

(移項通分,分子分母因式分解,x的系數變為1,穿軸法解得結果。)
38. 用「穿軸法」解高次不等式——「奇穿,偶切」,從最大根的右上方開始

39. 解含有參數的不等式要注意對字母參數的討論

40. 對含有兩個絕對值的不等式如何去解?
(找零點,分段討論,去掉絕對值符號,最後取各段的並集。)

證明:

(按不等號方向放縮)
42. 不等式恆成立問題,常用的處理方式是什麼?(可轉化為最值問題,或「△」問題)

43. 等差數列的定義與性質

0的二次函數)

項,即:

44. 等比數列的定義與性質

46. 你熟悉求數列通項公式的常用方法嗎?
例如:(1)求差(商)法

解:

[練習]

(2)疊乘法

解:

(3)等差型遞推公式

[練習]

(4)等比型遞推公式

[練習]

(5)倒數法

47. 你熟悉求數列前n項和的常用方法嗎?
例如:(1)裂項法:把數列各項拆成兩項或多項之和,使之出現成對互為相反數的項。

解:

[練習]

(2)錯位相減法:

(3)倒序相加法:把數列的各項順序倒寫,再與原來順序的數列相加。

[練習]

48. 你知道儲蓄、貸款問題嗎?
△零存整取儲蓄(單利)本利和計算模型:
若每期存入本金p元,每期利率為r,n期後,本利和為:

△若按復利,如貸款問題——按揭貸款的每期還款計算模型(按揭貸款——分期等額歸還本息的借款種類)
若貸款(向銀行借款)p元,採用分期等額還款方式,從借款日算起,一期(如一年)後為第一次還款日,如此下去,第n次還清。如果每期利率為r(按復利),那麼每期應還x元,滿足

p——貸款數,r——利率,n——還款期數
49. 解排列、組合問題的依據是:分類相加,分步相乘,有序排列,無序組合。

(2)排列:從n個不同元素中,任取m(m≤n)個元素,按照一定的順序排成一

(3)組合:從n個不同元素中任取m(m≤n)個元素並組成一組,叫做從n個不

50. 解排列與組合問題的規律是:
相鄰問題捆綁法;相間隔問題插空法;定位問題優先法;多元問題分類法;至多至少問題間接法;相同元素分組可採用隔板法,數量不大時可以逐一排出結果。
如:學號為1,2,3,4的四名學生的考試成績

則這四位同學考試成績的所有可能情況是( )
A. 24 B. 15 C. 12 D. 10
解析:可分成兩類:

(2)中間兩個分數相等

相同兩數分別取90,91,92,對應的排列可以數出來,分別有3,4,3種,∴有10種。
∴共有5+10=15(種)情況
51. 二項式定理

性質:

(3)最值:n為偶數時,n+1為奇數,中間一項的二項式系數最大且為第

表示)

52. 你對隨機事件之間的關系熟悉嗎?

的和(並)。

(5)互斥事件(互不相容事件):「A與B不能同時發生」叫做A、B互斥。

(6)對立事件(互逆事件):

(7)獨立事件:A發生與否對B發生的概率沒有影響,這樣的兩個事件叫做相互獨立事件。

53. 對某一事件概率的求法:
分清所求的是:(1)等可能事件的概率(常採用排列組合的方法,即

(5)如果在一次試驗中A發生的概率是p,那麼在n次獨立重復試驗中A恰好發生

如:設10件產品中有4件次品,6件正品,求下列事件的概率。
(1)從中任取2件都是次品;

(2)從中任取5件恰有2件次品;

(3)從中有放回地任取3件至少有2件次品;
解析:有放回地抽取3次(每次抽1件),∴n=103
而至少有2件次品為「恰有2次品」和「三件都是次品」

(4)從中依次取5件恰有2件次品。
解析:∵一件一件抽取(有順序)

分清(1)、(2)是組合問題,(3)是可重復排列問題,(4)是無重復排列問題。
54. 抽樣方法主要有:簡單隨機抽樣(抽簽法、隨機數表法)常常用於總體個數較少時,它的特徵是從總體中逐個抽取;系統抽樣,常用於總體個數較多時,它的主要特徵是均衡成若幹部分,每部分只取一個;分層抽樣,主要特徵是分層按比例抽樣,主要用於總體中有明顯差異,它們的共同特徵是每個個體被抽到的概率相等,體現了抽樣的客觀性和平等性。
55. 對總體分布的估計——用樣本的頻率作為總體的概率,用樣本的期望(平均值)和方差去估計總體的期望和方差。
要熟悉樣本頻率直方圖的作法:

(2)決定組距和組數;
(3)決定分點;
(4)列頻率分布表;
(5)畫頻率直方圖。

如:從10名女生與5名男生中選6名學生參加比賽,如果按性別分層隨機抽樣,則組成此參賽隊的概率為____________。

56. 你對向量的有關概念清楚嗎?
(1)向量——既有大小又有方向的量。

在此規定下向量可以在平面(或空間)平行移動而不改變。
(6)並線向量(平行向量)——方向相同或相反的向量。
規定零向量與任意向量平行。

(7)向量的加、減法如圖:

(8)平面向量基本定理(向量的分解定理)

的一組基底。
(9)向量的坐標表示

表示。

57. 平面向量的數量積

數量積的幾何意義:

(2)數量積的運演算法則

[練習]

答案:

答案:2

答案:
58. 線段的定比分點

※. 你能分清三角形的重心、垂心、外心、內心及其性質嗎?
59. 立體幾何中平行、垂直關系證明的思路清楚嗎?
平行垂直的證明主要利用線面關系的轉化:

線面平行的判定:

線面平行的性質:

三垂線定理(及逆定理):

線面垂直:

面面垂直:

60. 三類角的定義及求法
(1)異面直線所成的角θ,0°<θ≤90°

(2)直線與平面所成的角θ,0°≤θ≤90°

(三垂線定理法:A∈α作或證AB⊥β於B,作BO⊥棱於O,連AO,則AO⊥棱l,∴∠AOB為所求。)
三類角的求法:
①找出或作出有關的角。
②證明其符合定義,並指出所求作的角。
③計算大小(解直角三角形,或用餘弦定理)。
[練習]
(1)如圖,OA為α的斜線OB為其在α內射影,OC為α內過O點任一直線。

(2)如圖,正四稜柱ABCD—A1B1C1D1中對角線BD1=8,BD1與側面B1BCC1所成的為30°。
①求BD1和底面ABCD所成的角;
②求異面直線BD1和AD所成的角;
③求二面角C1—BD1—B1的大小。

(3)如圖ABCD為菱形,∠DAB=60°,PD⊥面ABCD,且PD=AD,求面PAB與面PCD所成的銳二面角的大小。

(∵AB∥DC,P為面PAB與面PCD的公共點,作PF∥AB,則PF為面PCD與面PAB的交線……)
61. 空間有幾種距離?如何求距離?
點與點,點與線,點與面,線與線,線與面,面與面間距離。
將空間距離轉化為兩點的距離,構造三角形,解三角形求線段的長(如:三垂線定理法,或者用等積轉化法)。
如:正方形ABCD—A1B1C1D1中,棱長為a,則:
(1)點C到面AB1C1的距離為___________;
(2)點B到面ACB1的距離為____________;
(3)直線A1D1到面AB1C1的距離為____________;
(4)面AB1C與面A1DC1的距離為____________;
(5)點B到直線A1C1的距離為_____________。

62. 你是否准確理解正稜柱、正棱錐的定義並掌握它們的性質?
正稜柱——底面為正多邊形的直稜柱
正棱錐——底面是正多邊形,頂點在底面的射影是底面的中心。

正棱錐的計算集中在四個直角三角形中:

它們各包含哪些元素?

63. 球有哪些性質?

(2)球面上兩點的距離是經過這兩點的大圓的劣弧長。為此,要找球心角!
(3)如圖,θ為緯度角,它是線面成角;α為經度角,它是面面成角。

(5)球內接長方體的對角線是球的直徑。正四面體的外接球半徑R與內切球半徑r之比為R:r=3:1。

積為( )

答案:A
64. 熟記下列公式了嗎?

(2)直線方程:

65. 如何判斷兩直線平行、垂直?

66. 怎樣判斷直線l與圓C的位置關系?
圓心到直線的距離與圓的半徑比較。
直線與圓相交時,注意利用圓的「垂徑定理」。
67. 怎樣判斷直線與圓錐曲線的位置?

68. 分清圓錐曲線的定義

70. 在圓錐曲線與直線聯立求解時,消元後得到的方程,要注意其二次項系數是否為零?△≥0的限制。(求交點,弦長,中點,斜率,對稱存在性問題都在△≥0下進行。)

71. 會用定義求圓錐曲線的焦半徑嗎?
如:

通徑是拋物線的所有焦點弦中最短者;以焦點弦為直徑的圓與准線相切。
72. 有關中點弦問題可考慮用「代點法」。

答案:
73. 如何求解「對稱」問題?
(1)證明曲線C:F(x,y)=0關於點M(a,b)成中心對稱,設A(x,y)為曲線C上任意一點,設A'(x',y')為A關於點M的對稱點。

75. 求軌跡方程的常用方法有哪些?注意討論范圍。
(直接法、定義法、轉移法、參數法)
76. 對線性規劃問題:作出可行域,作出以目標函數為截距的直線,在可行域內平移直線,求出目標函數的最值。

Ⅸ 高中數學必修一知識點歸納

1.冪函數

(1)定義形如y=xα的函數叫冪函數,其中α為常數,在中學階段只研究α為有理數的情形

2.指數函數和對數函數

(1)定義

指數函數,y=ax(a>0,且a≠1),注意與冪函數的區別.

對數函數y=logax(a>0,且a≠1).

指數函數y=ax與對數函數y=logax互為反函數.

(2)指數函數y=ax(a>0,且a≠1)與對數函數y=logax(a>0,且a≠1)的圖象和性質如表1-2.

(3)指數方程和對數方程

指數方程和對數方程屬於超越方程,在中學階段只要求會解一些簡單的特殊類型指數方程和對數方程,基本思想是將它們化成代數方程來解.其基本類型和解法見表1-3.