❶ 小學數學六年級下冊知識點
下面是我的復習資料。
1 每份數×份數=總數
總數÷每份數=份數
總數÷份數=每份數
2 1倍數×倍數=幾倍數
幾倍數÷1倍數=倍數
幾倍數÷倍數=1倍數
3 速度×時間=路程
路程÷速度=時間
路程÷時間=速度
4 單價×數量=總價
總價÷單價=數量
總價÷數量=單價
5 工作效率×工作時間=工作總量
工作總量÷工作效率=工作時間
工作總量÷工作時間=工作效率
6 加數+加數=和
和-一個加數=另一個加數
7 被減數-減數=差
被減數-差=減數
差+減數=被減數
8 因數×因數=積
積÷一個因數=另一個因數
9 被除數÷除數=商
被除數÷商=除數
商×除數=被除數
小學數學圖形計算公式
1 正方形
C周長 S面積 a邊長
周長=邊長×4
C=4a
面積=邊長×邊長
S=a×a
2 正方體
V:體積 a:棱長
表面積=棱長×棱長×6
S表=a×a×6
體積=棱長×棱長×棱長
V=a×a×a
3 長方形
C周長 S面積 a邊長
周長=(長+寬)×2
C=2(a+b)
面積=長×寬
S=ab
4 長方體
V:體積 s:面積 a:長 b: 寬 h:高
(1)表面積(長×寬+長×高+寬×高)×2
S=2(ab+ah+bh)
(2)體積=長×寬×高
V=abh
5 三角形
s面積 a底 h高
面積=底×高÷2
s=ah÷2
三角形高=面積 ×2÷底
三角形底=面積 ×2÷高
6 平行四邊形
s面積 a底 h高
面積=底×高
s=ah
7 梯形
s面積 a上底 b下底 h高
面積=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圓形
S面積 C周長 ∏ d=直徑 r=半徑
(1)周長=直徑×∏=2×∏×半徑
C=∏d=2∏r
(2)面積=半徑×半徑×∏
9 圓柱體
v:體積 h:高 s;底面積 r:底面半徑 c:底面周長
(1)側面積=底面周長×高
(2)表面積=側面積+底面積×2
(3)體積=底面積×高
(4)體積=側面積÷2×半徑
10 圓錐體
v:體積 h:高 s;底面積 r:底面半徑
體積=底面積×高÷3
總數÷總份數=平均數
和差問題的公式
(和+差)÷2=大數
(和-差)÷2=小數
和倍問題
和÷(倍數-1)=小數
小數×倍數=大數
(或者 和-小數=大數)
差倍問題
差÷(倍數-1)=小數
小數×倍數=大數
(或 小數+差=大數)小學奧數公式
和差問題的公式
(和+差)÷2=大數 (和-差)÷2=小數
和倍問題的公式
和÷(倍數-1)=小數 小數×倍數=大數 (或者 和-小數=大數)
差倍問題的公式
差÷(倍數-1)=小數 小數×倍數=大數 (或 小數+差=大數)
植樹問題的公式
1 非封閉線路上的植樹問題主要可分為以下三種情形:
⑴如果在非封閉線路的兩端都要植樹,那麼:
株數=段數+1=全長÷株距-1
全長=株距×(株數-1)
株距=全長÷(株數-1)
⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那麼:
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
⑶如果在非封閉線路的兩端都不要植樹,那麼:
株數=段數-1=全長÷株距-1
全長=株距×(株數+1)
株距=全長÷(株數+1)
2 封閉線路上的植樹問題的數量關系如下
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
盈虧問題的公式
(盈+虧)÷兩次分配量之差=參加分配的份數
(大盈-小盈)÷兩次分配量之差=參加分配的份數
(大虧-小虧)÷兩次分配量之差=參加分配的份數
相遇問題的公式
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
追及問題的公式
追及距離=速度差×追及時間
追及時間=追及距離÷速度差
速度差=追及距離÷追及時間
流水問題
順流速度=靜水速度+水流速度
逆流速度=靜水速度-水流速度
靜水速度=(順流速度+逆流速度)÷2
水流速度=(順流速度-逆流速度)÷2
濃度問題的公式
溶質的重量+溶劑的重量=溶液的重量
溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量
溶質的重量÷濃度=溶液的重量
利潤與折扣問題的公式
利潤=售出價-成本
利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
折扣=實際售價÷原售價×100%(折扣<1)
利息=本金×利率×時間
稅後利息=本金×利率×時間×(1-20%)
參考資料:網路知道
(一)數的讀法和寫法 1.
整數的讀法:從高位到低位,一級一級地讀。讀億級、萬級時,先按照個級的讀法去讀,再在後面加一個「億」或「萬」字。每一級末尾的0都不讀出來,其它數位連續有幾個0都只讀一個零。
2. 整數的寫法:從高位到低位,一級一級地寫,哪一個數位上一個單位也沒有,就在那個數位上寫0。 3.
小數的讀法:讀小數的時候,整數部分按照整數的讀法讀,小數點讀作「點」,小數部分從左向右順次讀出每一位數位上的數字。 4.
小數的寫法:寫小數的時候,整數部分按照整數的寫法來寫,小數點寫在個位右下角,小數部分順次寫出每一個數位上的數字。 5.
分數的讀法:讀分數時,先讀分母再讀「分之」然後讀分子,分子和分母按照整數的讀法來讀。 6. 分數的寫法:先寫分數線,再寫分母,最後寫分子,按照整數的寫法來寫。
7. 百分數的讀法:讀百分數時,先讀百分之,再讀百分號前面的數,讀數時按照整數的讀法來讀。 8.
百分數的寫法:百分數通常不寫成分數形式,而在原來的分子後面加上百分號「%」來表示。
(二)數的改寫
一個較大的多位數,為了讀寫方便,常常把它改寫成用「萬」或「億」作單位的數。有時還可以根據需要,省略這個數某一位後面的數,寫成近似數。 1.
准確數:在實際生活中,為了計數的簡便,可以把一個較大的數改寫成以萬或億為單位的數。改寫後的數是原數的准確數。 例如把 1254300000
改寫成以萬做單位的數是 125430 萬;改寫成 以億做單位 的數 12.543 億。 2.
近似數:根據實際需要,我們還可以把一個較大的數,省略某一位後面的尾數,用一個近似數來表示。 例如: 1302490015 省略億後面的尾數是 13 億。 3.
四捨五入法:要省略的尾數的最高位上的數是4 或者比4小,就把尾數去掉;如果尾數的最高位上的數是5或者比5大,就把尾數捨去,並向它的前一位進1。例如:省略
345900 萬後面的尾數約是 35 萬。省略 4725097420 億後面的尾數約是 47 億。 4. 大小比較 1.
比較整數大小:比較整數的大小,位數多的那個數就大,如果位數相同,就看最高位,最高位上的數大,那個數就大;最高位上的數相同,就看下一位,哪一位上的數大那個數就大。
2.
比較小數的大小:先看它們的整數部分,,整數部分大的那個數就大;整數部分相同的,十分位上的數大的那個數就大;十分位上的數也相同的,百分位上的數大的那個數就大……
3. 比較分數的大小:分母相同的分數,分子大的分數比較大;分子相同的數,分母小的分數大。分數的分母和分子都不相同的,先通分,再比較兩個數的大小。 (三)數的互化
1. 小數化成分數:原來有幾位小數,就在1的後面寫幾個零作分母,把原來的小數去掉小數點作分子,能約分的要約分。 2.
分數化成小數:用分母去除分子。能除盡的就化成有限小數,有的不能除盡,不能化成有限小數的,一般保留三位小數。 3.
一個最簡分數,如果分母中除了2和5以外,不含有其他的質因數,這個分數就能化成有限小數;如果分母中含有2和5 以外的質因數,這個分數就不能化成有限小數。 4.
小數化成百分數:只要把小數點向右移動兩位,同時在後面添上百分號。 5. 百分數化成小數:把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。 6.
分數化成百分數:通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。 7. 百分數化成小數:先把百分數改寫成分數,能約分的要約成最簡分數。
(四)數的整除 1. 把一個合數分解質因數,通常用短除法。先用能整除這個合數的質數去除,一直除到商是質數為止,再把除數和商寫成連乘的形式。 2.
求幾個數的最大公約數的方法是:先用這幾個數的公約數連續去除,一直除到所得的商只有公約數1為止,然後把所有的除數連乘求積,這個積就是這幾個數的的最大公約數 。
3.
求幾個數的最小公倍數的方法是:先用這幾個數(或其中的部分數)的公約數去除,一直除到互質(或兩兩互質)為止,然後把所有的除數和商連乘求積,這個積就是這幾個數的最小公倍數。
4. 成為互質關系的兩個數:1和任何自然數互質 ; 相鄰的兩個自然數互質; 當合數不是質數的倍數時,這個合數和這個質數互質;
兩個合數的公約數只有1時,這兩個合數互質。 (五) 約分和通分 約分的方法:用分子和分母的公約數(1除外)去除分子、分母;通常要除到得出最簡分數為止。
通分的方法:先求出原來的幾個分數分母的最小公倍數,然後把各分數化成用這個最小公倍數作分母的分數。
小數
1 小數的意義 把整數1平均分成10份、100份、1000份…… 得到的十分之幾、百分之幾、千分之幾…… 可以用小數表示。
一位小數表示十分之幾,兩位小數表示百分之幾,三位小數表示千分之幾……
一個小數由整數部分、小數部分和小數點部分組成。數中的圓點叫做小數點,小數點左邊的數叫做整數部分,小數點左邊的數叫做整數部分,小數點右邊的數叫做小數部分。
在小數里,每相鄰兩個計數單位之間的進率都是10。小數部分的最高分數單位「十分之一」和整數部分的最低單位「一」之間的進率也是10。 2小數的分類
純小數:整數部分是零的小數,叫做純小數。例如: 0.25 、 0.368 都是純小數。 帶小數:整數部分不是零的小數,叫做帶小數。 例如: 3.25 、
5.26 都是帶小數。 有限小數:小數部分的數位是有限的小數,叫做有限小數。 例如: 41.7 、 25.3 、 0.23 都是有限小數。
無限小數:小數部分的數位是無限的小數,叫做無限小數。 例如: 4.33 …… 3.1415926 ……
無限不循環小數:一個數的小數部分,數字排列無規律且位數無限,這樣的小數叫做無限不循環小數。 例如:∏
循環小數:一個數的小數部分,有一個數字或者幾個數字依次不斷重復出現,這個數叫做循環小數。 例如: 3.555 …… 0.0333 …… 12.109109 ……
一個循環小數的小數部分,依次不斷重復出現的數字叫做這個循環小數的循環節。 例如: 3.99 ……的循環節是「 9 」 , 0.5454 ……的循環節是「 54
」 。 純循環小數:循環節從小數部分第一位開始的,叫做純循環小數。 例如: 3.111 …… 0.5656 ……
混循環小數:循環節不是從小數部分第一位開始的,叫做混循環小數。 3.1222 …… 0.03333 ……
寫循環小數的時候,為了簡便,小數的循環部分只需寫出一個循環節,並在這個循環節的首、末位數字上各點一個圓點。如果循環 節只有
一個數字,就只在它的上面點一個點。例如: 3.777 …… 簡寫作 0.5302302 …… 簡寫作 。
分數
1 分數的意義 把單位「1」平均分成若干份,表示這樣的一份或者幾份的數叫做分數。
在分數里,中間的橫線叫做分數線;分數線下面的數,叫做分母,表示把單位「1」平均分成多少份;分數線下面的數叫做分子,表示有這樣的多少份。
把單位「1」平均分成若干份,表示其中的一份的數,叫做分數單位。 2 分數的分類 真分數:分子比分母小的分數叫做真分數。真分數小於1。
假分數:分子比分母大或者分子和分母相等的分數,叫做假分數。假分數大於或等於1。 帶分數:假分數可以寫成整數與真分數合成的數,通常叫做帶分數。 3 約分和通分
把一個分數化成同它相等但是分子、分母都比較小的分數 ,叫做約分。 分子分母是互質數的分數,叫做最簡分數。
把異分母分數分別化成和原來分數相等的同分母分數,叫做通分。
(四)百分數 1 表示一個數是另一個數的百分之幾的數 叫做百分數,也叫做百分率
或百分比。百分數通常用"%"來表示。百分號是表示百分數的符號。
❷ 小學六年級下冊數學知識點總結
小學六年級下冊數學知識點總結
代數學可以說是最為人們廣泛接受的“數學”.可以說每一個人從小時候開始學數數起,最先接觸到的數學就是代數學。下面是我整理的關於六年級下冊數學知識點總結,歡迎大家參考!
一、負數
1、在熟悉的生活情境中初步認識負數,能正確的讀、寫正數和負數,知道0既不是正數也不是負數。
2、初步學會用負數表示一些日常生活中的實際問題,體驗數學與生活的密切聯系。
3、能藉助數軸初步學會比較正數、0和負數之間的大小。
4、像-16、-500、-3/8、-0.4…這樣的數叫做負數。-3/8讀作負八分之三。16,200,3/8,6.3…這樣的數叫做正數。正數前面可以加“+”號,也可以省去“+”號。+6.3讀作正六點三。0既不是正數,也不是負數。
5、16℃讀作十六攝氏度,表示零上16℃;-16℃讀作負十六攝氏度,表示零下16℃
6、如果2000表示存入2000元,那麼-500表示支出了500元。向東走3m記作+3,向西4m記作-4。
7、在數軸上,從左到右的順序就是數從小到大的順序。0是正數和負數的分界點,所有的.負數都在0的左邊,也就是負數都比0小,而正數都比0大,負數都比正數小。負號後面的數越大,這個數就越小。如:-8<-6。
二、圓柱和圓錐
1、認識圓柱和圓錐,掌握它們的基本特徵。認識圓柱的底面、側面和高。認識圓錐的底面和高。
2、探索並掌握圓柱的側面積、表面積的計算方法,以及圓柱、圓錐體積的計算公式,會運用公式計算體積,解決有關的簡單實際問題。
3、通過觀察、設計和製作圓柱、圓錐模型等活動,了解平面圖形與立體圖形之間的聯系,發展學生的空間觀念。
4、圓柱的兩個圓面叫做底面,周圍的面叫做側面,底面是平面,側面是曲面。
5、圓柱的側面沿高展開後是長方形,長方形的長等於圓柱底面的周長,長方形的寬等於圓柱的高,當底面周長和高相等時,側面沿高展開後是一個正方形。
6、圓柱的表面積=圓柱的側面積+底面積×2即S表=S側+S底×2或2πr×h+2×π。
7、圓柱的側面積=底面周長×高即S側=Ch或2πr×。
8、圓柱的體積=圓柱的底面積×高,即V=sh或πr2×。
進一法:實際中,使用的材料都要比計算的結果多一些,因此,要保留數的時候,省略的位上的是4或者比4小,都要向前一位進1。這種取近似值的方法叫做進一法。
9、圓錐只有一個底面,底面是個圓。圓錐的側面是個曲面。
10、從圓錐的頂點到底面圓心的距離是圓錐的高。圓錐只有一條高。(測量圓錐的高:先把圓錐的底面放平,用一塊平板水平地放在圓錐的頂點上面,豎直地量出平板和底面之間的距離)
11、把圓錐的側面展開得到一個扇形。
12、圓錐的體積等於與它等底等高的圓柱體積的三分之一,即V錐=1/3Sh或πr2×h÷。
13、常見的圓柱圓錐解決問題:①、壓路機壓過路面面積(求側面積);②、壓路機壓過路面長度(求底面周長);③、水桶鐵皮(求側面積和一個底面積);④、廚師帽(求側面積和一個底面積);通風管(求側面積)。
;❸ 六年級下冊數學重點知識點整理
天下沒有免費的午餐,一切成功都要靠自己的努力去爭取。機會需要把握,也需要創造。應屆畢業生考試網為各位小學生同學整理了六年級下冊數學重點知識點整理,供大家參考學習。更多內容請關注應屆畢業生考試網。
一、負數:
1、在熟悉的生活情境中初步認識負數,能正確的讀、寫正數和負數,知道0既不是正數也不是負數。
2、初步學會用負數表示一些日常生活中的實際問題,體驗數學與生活的密切聯系。
3、能藉助數軸初步學會比較正數、0和負數之間的大小。
二、圓柱和圓錐
1、認識圓柱和圓錐,掌握它們的基本特徵。認識圓柱的底面、側面和高。認識圓錐的底面和高。
2、探索並掌握圓柱的側面積、表面積的計算方法,以及圓柱、圓錐體積的計算公式,會運用公式計算體積,解決有關的簡單實際問題。
3、通過觀察、設計和製作圓柱、圓錐模型等活動,了解平面圖形與立體圖形之間的聯系,發展學生的空間觀念。
三、比例
1、理解比例的意義和基本性質,會解比例。
2、理解正比例和反比例的意義,能找出生活中成正比例和成反比例量的實例,能運用比例知識解決簡單的實際問題。
3、認識正比例關系的圖像,能根據給出的有正比例關系的數據在有坐標系的方格紙上畫出圖像,會根據其中一個量在圖像中找出或估計出另一個量的值。
4、了解比例尺,會求平面圖的比例尺以及根據比例尺求圖上距離或實際距離。
5、認識放大與縮小現象,能利用方格紙等形式按一定的比例將簡單圖形放大或縮小,體會圖形的相似。
6、滲透函數思想,使學生受到辯證唯物主義觀點的啟蒙教育
四、統計
1、會綜合應用學過的統計知識,能從統計圖中准確提取統計信息,能夠正確解釋統計結果。
2、能根據統計圖提供的信息,做出正確的判斷或簡單預測。
五、數學廣角
1、經歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會用“抽屜原理”解決簡單的實際問題。 2、通過“抽屜原理”的靈活應用感受數學的魅力。
六、整理和復習
1、比較系統地掌握有關整數、小數、分數和百分數、負數、比和比例、方程的基礎知識。能比較熟練地進行整數、小數、分數的四則運算,能進行整數、小數加、減、乘、除的估算,會使用學過的簡便演算法,合理、靈活地進行計算;會解學過的方程;養成檢查和驗算的習慣。
2、鞏固常用計量單位的表象,掌握所學單位間的進率,能夠進行簡單的改寫。
3、掌握所學幾何形體的特徵;能夠比較熟練地計算一些幾何形體的周長、面積和體積,並能應用;鞏固所學的簡單的畫圖、測量等技能;鞏固軸對稱圖形的認識,會畫一個圖形的對稱軸,鞏固圖形的平移、旋轉的認識;能用數對或根據方向和距離確定物體的位置,掌握有關比例尺的知識,並能應用。
4、掌握所學的統計初步知識,能夠看和繪制簡單的統計圖表,能夠根據數據做出簡單的判斷與預測,會求一些簡單事件的可能性,能夠解決一些計算平均數的實際問題。
5、進一步感受數學知識間的相互聯系,體會數學的作用;掌握所學的常見數量關系和解決問題的思考方法,能夠比較靈活地運用所學知識解決生活中一些簡單的實際問題。
(一)數的讀法和寫法
1.整數的讀法:從高位到低位,一級一級地讀。讀億級、萬級時,先按照個級的讀法去讀,再在後面加一個“億”或“萬”字。每一級末尾的0都不讀出來,其它數位連續有幾個0都只讀一個零。
2. 整數的寫法:從高位到低位,一級一級地寫,哪一個數位上一個單位也沒有,就在那個數位上寫0。
3.小數的讀法:讀小數的時候,整數部分按照整數的讀法讀,小數點讀作“點”,小數部分從左向右順次讀出每一位數位上的數字。
4.小數的寫法:寫小數的時候,整數部分按照整數的寫法來寫,小數點寫在個位右下角,小數部分順次寫出每一個數位上的數字。
5.分數的讀法:讀分數時,先讀分母再讀“分之”然後讀分子,分子和分母按照整數的讀法來讀。
6. 分數的寫法:先寫分數線,再寫分母,最後寫分子,按照整數的寫法來寫。
7. 百分數的讀法:讀百分數時,先讀百分之,再讀百分號前面的數,讀數時按照整數的讀法來讀。
8. 百分數的寫法:百分數通常不寫成分數形式,而在原來的分子後面加上百分號“%”來表示。
(二)數的改寫
一個較大的多位數,為了讀寫方便,常常把它改寫成用“萬”或“億”作單位的數。有時還可以根據需要,省略這個數某一位後面的數,寫成近似數。
1.准確數:在實際生活中,為了計數的簡便,可以把一個較大的數改寫成以萬或億為單位的數。改寫後的數是原數的准確數。 例如把 1254300000
改寫成以萬做單位的數是 125430 萬;改寫成 以億做單位 的數 12.543 億。
2.近似數:根據實際需要,我們還可以把一個較大的數,省略某一位後面的尾數,用一個近似數來表示。 例如: 1302490015 省略億後面的尾數是 13 億。
3.四捨五入法:要省略的尾數的最高位上的數是4 或者比4小,就把尾數去掉;如果尾數的最高位上的數是5或者比5大,就把尾數捨去,並向它的前一位進1。例如:省略
345900 萬後面的尾數約是 35 萬。省略 4725097420 億後面的尾數約是 47 億。
4. 大小比較
1.比較整數大小:比較整數的大小,位數多的那個數就大,如果位數相同,就看最高位,最高位上的數大,那個數就大;最高位上的數相同,就看下一位,哪一位上的數大那個數就大。
2. 比較小數的大小:先看它們的整數部分,,整數部分大的那個數就大;整數部分相同的,十分位上的數大的那個數就大;十分位上的數也相同的,百分位上的數大的那個數就大……
3. 比較分數的大小:分母相同的分數,分子大的分數比較大;分子相同的數,分母小的分數大。分數的分母和分子都不相同的,先通分,再比較兩個數的大小。
(三)數的互化
1. 小數化成分數:原來有幾位小數,就在1的後面寫幾個零作分母,把原來的小數去掉小數點作分子,能約分的要約分。
2. 分數化成小數:用分母去除分子。能除盡的就化成有限小數,有的不能除盡,不能化成有限小數的,一般保留三位小數。
3. 一個最簡分數,如果分母中除了2和5以外,不含有其他的質因數,這個分數就能化成有限小數;如果分母中含有2和5 以外的質因數,這個分數就不能化成有限小數。
4. 小數化成百分數:只要把小數點向右移動兩位,同時在後面添上百分號。
5. 百分數化成小數:把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。
6. 分數化成百分數:通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。
7. 百分數化成小數:先把百分數改寫成分數,能約分的要約成最簡分數。
(四)數的整除
1. 把一個合數分解質因數,通常用短除法。先用能整除這個合數的質數去除,一直除到商是質數為止,再把除數和商寫成連乘的形式。
2. 求幾個數的最大公約數的方法是:先用這幾個數的公約數連續去除,一直除到所得的商只有公約數1為止,然後把所有的除數連乘求積,這個積就是這幾個數的的最大公約數 。
3. 求幾個數的最小公倍數的方法是:先用這幾個數(或其中的部分數)的'公約數去除,一直除到互質(或兩兩互質)為止,然後把所有的除數和商連乘求積,這個積就是這幾個數的最小公倍數。
4. 成為互質關系的兩個數:1和任何自然數互質 ; 相鄰的兩個自然數互質; 當合數不是質數的倍數時,這個合數和這個質數互質;
兩個合數的公約數只有1時,這兩個合數互質。
(五) 約分和通分
約分的方法:用分子和分母的公約數(1除外)去除分子、分母;通常要除到得出最簡分數為止。
通分的方法:先求出原來的幾個分數分母的最小公倍數,然後把各分數化成用這個最小公倍數作分母的分數。
小數
1.小數的意義
把整數1平均分成10份、100份、1000份…… 得到的十分之幾、百分之幾、千分之幾…… 可以用小數表示。
一位小數表示十分之幾,兩位小數表示百分之幾,三位小數表示千分之幾……
一個小數由整數部分、小數部分和小數點部分組成。數中的圓點叫做小數點,小數點左邊的數叫做整數部分,小數點左邊的數叫做整數部分,小數點右邊的數叫做小數部分。
在小數里,每相鄰兩個計數單位之間的進率都是10。小數部分的最高分數單位“十分之一”和整數部分的最低單位“一”之間的進率也是10。
2.小數的分類
純小數:整數部分是零的小數,叫做純小數。例如: 0.25 、 0.368 都是純小數。 帶小數:整數部分不是零的小數,叫做帶小數。 例如: 3.25 、5.26 都是帶小數。
有限小數:小數部分的數位是有限的小數,叫做有限小數。 例如: 41.7 、 25.3 、 0.23 都是有限小數。
無限小數:小數部分的數位是無限的小數,叫做無限小數。 例如: 4.33 …… 3.1415926 ……
無限不循環小數:一個數的小數部分,數字排列無規律且位數無限,這樣的小數叫做無限不循環小數。 例如:∏
循環小數:一個數的小數部分,有一個數字或者幾個數字依次不斷重復出現,這個數叫做循環小數。 例如: 3.555 …… 0.0333 …… 12.109109 ……
一個循環小數的小數部分,依次不斷重復出現的數字叫做這個循環小數的循環節。 例如: 3.99 ……的循環節是“ 9 ” , 0.5454 ……的循環節是“ 54” 。 純循環小數:循環節從小數部分第一位開始的,叫做純循環小數。 例如: 3.111 …… 0.5656 ……
混循環小數:循環節不是從小數部分第一位開始的,叫做混循環小數。 3.1222 …… 0.03333 ……
寫循環小數的時候,為了簡便,小數的循環部分只需寫出一個循環節,並在這個循環節的首、末位數字上各點一個圓點。如果循環 節只有一個數字,就只在它的上面點一個點。例如: 3.777 …… 簡寫作 0.5302302 …… 簡寫作 。
分數
1.分數的意義
把單位“1”平均分成若干份,表示這樣的一份或者幾份的數叫做分數。
在分數里,中間的橫線叫做分數線;分數線下面的數,叫做分母,表示把單位“1”平均分成多少份;分數線下面的數叫做分子,表示有這樣的多少份。
把單位“1”平均分成若干份,表示其中的一份的數,叫做分數單位。
2.分數的分類
真分數:分子比分母小的分數叫做真分數。真分數小於1。
假分數:分子比分母大或者分子和分母相等的分數,叫做假分數。假分數大於或等於1。 帶分數:假分數可以寫成整數與真分數合成的數,通常叫做帶分數。 3 約分和通分
把一個分數化成同它相等但是分子、分母都比較小的分數 ,叫做約分。 分子分母是互質數的分數,叫做最簡分數。
把異分母分數分別化成和原來分數相等的同分母分數,叫做通分。
(四)百分數
1.表示一個數是另一個數的百分之幾的數 叫做百分數,也叫做百分率或百分比。百分數通常用"%"來表示。百分號是表示百分數的符號。
比例 表示兩個相等的式子叫做比例。在比例里,兩個外項的積等於兩個內項。這叫做《比例的基本性質》
根據比例的基本性質,如果已知比例中的任何三項,就可以求出這個比例中的另一個未知項。求比例中的未知項,叫做解比例
如: x:320=1:10 10x =320×1 x =320÷10 x =32
❹ 六年級下冊數學重要知識點
人教版 六年級下冊數學知識總結
單元一 負數
1.為了表示兩種相反的量,這里出現了一種新的數:-16.-500.像-16 ,-500,-3/8,-0.4,...這樣的數叫做 {負數}.-3/8讀作負八分之三。
2.而以前所學的16,2000,3/8,6.3,...這樣的數叫做{正數}。正數前面也可以加「+」號,例如:+16,+3/8。+6.3等(也可以省去「+」號)+6.3讀作正六點三。
3.0既不是正數,也不是負數。
4.所有正數都在0的左邊,也就是負數比0小,而正數都比0大,負數都比正數小。
單元二 圓柱與圓錐
1.圓柱的兩個圓面叫做底面;周圍的面叫做側面;兩個底面之間的距離叫做高。
2.圓柱的表面積=圓柱的側面積+兩個底面的面積
3.圓柱的側面積=底圓周長x高 vXs h
4.v圓錐=1/3v圓柱=1/3sh
單元三 比例
1.像 ( 操場上的國旗2.4:1.6=3/2 教室里的國旗:60:40=3/2 所以2.4:1.6=60:40 也可以寫成2.4/1.6=60/40 )這樣表示兩個數的比相等的式子叫做比例。
2組成比例的四個數,叫做比例的項。兩端的兩項叫做比例的外項,中間的兩項叫做比例的內項。
3.在比例里,兩個外項的積等於兩個內項的積,這叫做比例的基本性質。
4.根據比例的基本性質,如果一直比例中的任何第三項,就可以求出這個比例中的另外一個未知項。求比例中的未知項,叫做解比例.
5.因為杯子的底面積一定,所以水的體積隨著高度的變化而變化。水的高度增加,體積也相應增加,水的高度降低,體積也相應減少,而且水的體積和高度的比值一定,我們就說體積和高度成{正比例關系},體積和高度叫做成{正比例的量}。
6.如果用字母x和y表示兩種相關聯的量,用k表示它們的比值(一定),正比例關系可以用 y/x=k(一定)。
7.生活中的正比例:水的質量和體積成正比例;如果長方形的寬一定,長方形的面積和長成正比例。
8..因為水的體積一定,所以水的高度隨著底面積的變化而變化。底面積增加,,高度反而降低,底面積減少,高度反而升高,而且高度和底面積的乘積一定,我們就說高度和底面積成{反比例關系},高度和底面積叫做成反比例的量。
9.如果用字母x和y表示兩種相關聯的量,用k表示它們的乘積(一定),反比例關系可以用 x X y=k(一定)。
10.一幅圖的圖上距離和實際距離的北,叫做這幅圖的{比例尺}。
11.根據:圖上距離/實際距離=比例尺「可以列出方程。
12.因為每噸水的價錢一定,所以水費和用水的噸數成正比例。也就是說,兩家的水費和用水噸數的比值相等。
13.因為書的總數一定,所以包數和每包的本書成反比例,也就是說,每包的本書和包數的乘積相等。
❺ 小學六年級數學下冊知識點歸納:負數、圓柱與圓錐
第一單元:負數
1.(1)正、負數的讀寫方法:
①寫正數時,加+號或省略+號兩種形式都可以,但是讀正數時,加+的,一定要讀出正字;省略+號的,這個正字也要省略不讀。
②寫負數時,一定要寫出一號,讀時也一定要讀出負字。
(2)0既不是正數,也不是負數,它是正數與負數的分界點。
2.能表示出正數、0、負數的直線,我們把它叫做數軸。
3.(1)數軸的概念:規定了原點、正方向和單位長度的直線叫做數軸。
(2)溫度計也可以看作是一數軸。
4.(1)在數軸上,從左到右的順序就是數從小到大的順序。
(2)所有的負數都在0的左邊,即負數都比0小;所有的正數都在0的右邊,即正數都比0大。因此,負數都比正數小。
(3)比較兩個負數的大小,可以先比較與其對應的兩個正數的大小,對應的正數大的那個負數反而小。
5.溫馨提示:水結冰時的溫度是0攝氏度,0在這里的意義不是表示沒有,而是一個具體的數。
6.溫馨提示:在用正負數表示具有相反意義的量時,要先規定哪個量為正(或負)。如果上升用正數表示,那麼下降一定用負數表示。
第二單元:圓柱與圓錐
1.圓柱是由兩個底面和一個側面三部分組成的。
2.(1)圓柱的兩個圓面叫做底面。
(2)底面各部分的名稱:圓柱的底面圓的圓心、半徑、直徑和周長分別叫做圓柱的底面圓心、底面半徑、底面直徑和底面周長。
(3)底面的特徵:圓柱底面是完全相同的兩個圓。
3.(1)圓柱周圍的面叫做側面。
(2)特徵:圓柱的側面是曲面。
4.(1)圓柱兩個底面之間的距離叫做圓柱的高。
(2)一個圓柱有無數條高。
5.把圓柱平行於底面進行切割,切面是和底面大小相同的兩個圓;把圓柱沿底面直徑垂直於底面進行切割,切面是兩個完全相同的長方形。
6.圓柱的側面展開圖是一個長方形,這個長方形的長等於圓柱底面的周長,寬等於圓柱的高。
7.在圓柱的上下底面周長上任取一點分別為A、B,連接AB(使AB不是圓柱的高),沿著AB將圓柱的側面剪開,圓柱展開後是一個平行四邊形。
8.溫馨提示:圓柱的底面是圓形,面不是橢圓。
9.溫馨提示:沿高剪開時,圓柱的側面展開圖是一個長方形。
10.從圓柱的上下兩個底面觀察會得到圓;從圓柱的正面或側面觀察會得到長方形(或正方形)。
11.如果圓柱的側面展開圖是個長方形,那麼該圓柱的底面周長大約是其底面直徑長度的3倍。如果圓柱的側面展開圖是個正方形,那麼該圓柱的高大約是其底面直徑長度的3倍。
12.圓柱的側面積=底面周長×高。如果用字母S表示圓柱的側面積,用C表示底面周長,用h表示高,則圓柱的側面積的計算公式是S=Ch
13.(1)已知圓柱的底面直徑和高,可以根據公式:S=πdh直接求出圓柱的側面積。
(2)已知圓柱的底面半徑和高,可以根據公式:S=2πrh直接求出圓柱的側面積。
14.圓柱的表面積是指圓柱的側面積和兩個底面的面積之和。
15.圓柱的表面積=圓柱的側面積+底面積×2,用字母表示為S表=S側+2S底。
16.(1)已知圓柱的底面半徑和高,可以根據公式:S表=2πrh+2πr2直接求出圓柱的表面積。
(2)已知圓柱的底面直徑和高,求圓柱的表面積時,可以根據公式:S表=πdh+π(d÷2)2直接求出圓柱的表面積。
(3)已知圓柱的底面周長和高,求圓柱的表面積,可以根據公式: S表=Ch+π(C/2π)2=Ch+C2/4π求出圓柱的表面積。
17.溫馨提示:求通風管、煙囪、油管等圓柱形物體的表面積其實就是求它們的側面積。
18.溫馨提示:把一個圓柱截成n段後,其表面積增加了2(n-1)個底面積。
19.一個圓柱占空間的大小,叫做這個圓柱的體積。
20.圓柱的體積=底面積×高,字母公式:V=Sh或V=πr^2h
21.溫馨提示:容積的計算方法和體積的計算方法相同,只是計算容積的數據要從裡面測量。
22.在計算過程中,如果已知圓柱的底面半徑、直徑或周長,那麼要先求出底面積,再求體積。計算公式是:V=πr^2h,V=π(d÷2)^2h,V=π[C÷(2π)]^2h
23.溫馨提示:圓柱的高不變,底面半徑、直徑或周長擴大到原來的n倍,則體積擴大到原來的n^2倍,若底面半徑、直徑或周長縮小到原來的1/n,則體積縮小到原來的1/(n^2)。
24.溫馨提示:在圓柱的立體圖形中,兩個底面圓心之間的距離是圓柱的高,但在圓柱的平面展開圖中,長方形的寬(或正方形的邊長)才是圓柱的高。
25.兩個圓柱的半徑比是1:a(a>0),高的比是a:1,則它們的體積之比是1:a。
26.圓錐是由一個底面和一個側面兩部分組成。
(1)底面:圓錐的圓面就是它的底面,它有一個底面。圓錐底面的圓心、半徑、直徑和周長分別叫做圓錐的底面圓心、底面半徑、底面直徑和底面周長,分別用字母O、r、d和C表示。
(2)側面:圓錐周圍的曲面就是它的側面。
(3)高:從圓錐的頂點到底面圓心的距離是圓錐的高。高用字母h表示。
(4)圓錐只有一條高。
(5)轉動直角三角形可以形成圓錐。
27.溫馨提示:
(1)從圓錐的頂點到底面圓周上任意一點的線段是圓錐的母線,圓錐母線的長度大於圓錐的高。
(2)任意畫一條母線,把圓錐的側面展開,得到一個扇形,因此圓錐的側面展開圖是一個扇形。
(3)把圓錐平行於底面切割,切面是兩個完全相同的圓,該圓要比圓錐的底面圓小;把圓錐沿高垂直於底面進行切割,切面則是兩個完全相同的等腰三角形。
28.溫馨提示:半圓能圍成圓錐,但整圓不能圍成圓錐。
29.圓錐的體積=底面積×高÷3,用字母表示:V圓錐=V圓柱÷3=Sh÷3
30.圓柱和圓錐的關系:
(1)等底等高的圓柱和圓錐:圓柱的體積比圓錐的體積多2倍;圓錐的體積比圓柱的體積少2/3。
(2)等底等高的圓柱和圓錐:圓錐的高是圓柱的高的3倍,或者說圓錐的高比圓柱的高多2倍;圓柱的高是圓錐的高的1/3,或者說圓柱的高比圓錐的高少2/3。
(3)等高等體積的圓柱和圓錐:圓錐的底面積是圓柱的底面積的3倍,或者說圓錐的底面積比圓柱的底面積多2倍;圓柱的底面積是圓錐的底面積的1/3,或者說圓柱的底面積比圓錐的底面積少2/3。
31.溫馨提示:
(1)已知圓錐的底面半徑和高,可以直接利用公式:V=πr^2h÷3來求圓錐的體積。
(2)已知圓錐的底面直徑和高,可以直接利用公式:V=π(d÷2)^2h÷3來求圓錐的體積。
(3)已知圓錐的底面周長和高,可以直接利用公式:V=π(C÷2÷π)^2h÷3求出圓錐的體積。
32.利用V=Sh÷3計算圓錐的體積時不要忘記除以3或乘1/3。
33.溫馨提示:圓柱體積是圓錐體積的3倍或者說圓錐體積是圓柱體積的1/3,必須以圓柱和圓錐等底等高為前提。
34.在以直角三角形的直角邊為軸旋轉而成的兩個圓錐中,以較短直角邊為軸旋轉而成的圓錐的體積比較大。
❻ 小學六年級數學都學有哪些知識詳細一點
小學六年級數學學的知識有:
上冊:長方體和正方體、分數乘法、分數除法、解決問題的策略(假設法)、分數四則混合運算、百分數
下冊:圓柱和圓錐、扇形統計圖、正反比例
❼ 六年級下冊數學知識點歸納
知識是人生旅途中的資糧。從而,只要我們有了更多的知識,哪怕是最可怕,最艱難的任何事,我們多有了力量去克服,有了知識我們就有了向前走的勇氣,勇往直前。下面我給大家分享一些六年級下冊數學知識點,希望能夠幫助大家,歡迎閱讀!
六年級下冊數學知識點1
第一單元 負數
1、負數的由來:
為了表示相反意義的兩個量(如盈利虧損、收入支出……),光有學過的0 1 3.4 2/5……是遠遠不夠的。所以出現了負數,以盈利為正、虧損為負;以收入為正、支出為負
2、負數:小於0的數叫負數(不包括0),數軸上0左邊的數叫做負數。
若一個數小於0,則稱它是一個負數。
負數有無數個,其中有(負整數,負分數和負小數)
負數的寫法:
數字前面加負號「-」號,不可以省略
例如:-2,-5.33,-45,-2/5
正數:
大於0的數叫正數(不包括0),數軸上0右邊的數叫做正數
若一個數大於0,則稱它是一個正數。正數有無數個,其中有(正整數,正分數和正小數)
正數的寫法:數字前面可以加正號「+」號,也可以省略不寫。
例如:+2,5.33,+45,2/5
4、0 既不是正數,也不是負數,它是正、負數的分界限
6、比較兩數的大小:
①利用數軸:
負數<0<正數 或 左邊<右邊
②利用正負數含義:正數之間比較大小,數字大的就大,數字小的就小。負數之間比較大小,數字大的反而小,數字小的反而大
六年級下冊數學知識點2
第二單元 百分數二
(一)、折扣和成數
1、折扣:用於商品,現價是原價的百分之幾,叫做折扣。通稱「打折」。
幾折就是十分之幾,也就是百分之幾十。
解決打折的問題,關鍵是先將打的折數轉化為百分數或分數,然後按照求比一個數多(少)百分之幾(幾分之幾)的數的解題 方法 進行解答。
商品現在打八折:現在的售價是原價的80﹪
商品現在打六折五:現在的售價是原價的65﹪
2、成數:
幾成就是十分之幾,也就是百分之幾十。
解決成數的問題,關鍵是先將成數轉化為百分數或分數,然後按照求比一個數多(少)百分之幾(幾分之幾)的數的解題方法進行解答。
這次衣服的進價增加一成:這次衣服的進價比原來的進價增加10﹪
今年小麥的收成是去年的八成五:今年小麥的收成是去年的85﹪
(二)、稅率和利率
1、稅率
(1)納稅:納稅是根據國家稅法的有關規定,按照一定的比率把集體或個人收入的一部分繳納給國家。
(2)納稅的意義:稅收是國家財政收入的主要來源之一。國家用收來的稅款發展經濟、科技、 教育 、 文化 和國防安全等事業。
(3)應納稅額:繳納的稅款叫做應納稅額。
(4)稅率:應納稅額與各種收入的比率叫做稅率。
(5)應納稅額的計算方法:
應納稅額=總收入×稅率
收入額=應納稅額÷稅率
2、利率
(1)存款分為活期、整存整取和零存整取等方法。
(2)儲蓄的意義:人們常常把暫時不用的錢存入銀行或信用社,儲蓄起來,這樣不僅可以支援國家建設,也使得個人用錢更加安全和有計劃,還可以增加一些收入。
(3)本金:存入銀行的錢叫做本金。
(4)利息:取款時銀行多支付的錢叫做利息。
(5)利率:利息與本金的比值叫做利率。
(6)利息的計算公式:
利息=本金×利率×時間
利率=利息÷時間÷本金×100%
(7)注意:如要上利息稅(國債和教育儲藏的利息不納稅),則:
稅後利息=利息-利息的應納稅額=利息-利息×利息稅率=利息×(1-利息稅率)
稅後利息=本金×利率×時間×(1-利息稅率)
購物策略:
估計費用:根據實際的問題,選擇合理的估算策略,進行估算。
購物策略:根據實際需要,對常見的幾種優惠策略加以分析和比較,並能夠最終選擇最為優惠的方案
學後 反思 :做事情運用策略的好處
六年級下冊數學知識點3
第三單元 圓柱和圓錐
一、圓柱
1、圓柱的形成:圓柱是以長方形的一邊為軸旋轉而得的。
圓柱也可以由長方形捲曲而得到。
兩種方式:
1.以長方形的長為底面周長,寬為高;
2.以長方形的寬為底面周長,長為高。
其中,第一種方式得到的圓柱體體積較大。
2、圓柱的高是兩個底面之間的距離,一個圓柱有無數條高,他們的數值是相等的
3、圓柱的特徵:
(1)底面的特徵:圓柱的底面是完全相等的兩個圓。
(2)側面的特徵:圓柱的側面是一個曲面。
(3)高的特徵 :圓柱有無數條高
4、圓柱的切割:
①橫切:切面是圓,表面積增加2倍底面積,即S 增 =2πr?
②豎切(過直徑):切面是長方形(如果h=2R,切面為正方形),該長方形的長是圓柱的高,寬是圓柱的底面直徑,表面積增加兩個長方形的面積,即S增=4rh
5、圓柱的側面展開圖:
①沿著高展開,展開圖形是長方形,如果h=2πr,則展開圖形為正方形
②不沿著高展開,展開圖形是平行四邊形或不規則圖形
③無論怎麼展開都得不到梯形
6、圓柱的相關計算公式:
底面積 :S底=πr?
底面周長:C底=πd=2πr
側面積 :S側=2πrh
表面積 :S表=2S底+S側=2πr?+2πrh
體積 :V柱=πr?h
考試常見題型:
①已知圓柱的底面積和高,求圓柱的側面積,表面積,體積,底面周長
②已知圓柱的底面周長和高,求圓柱的側面積,表面積,體積,底面積
③已知圓柱的底面周長和體積,求圓柱的側面積,表面積,高,底面積
④已知圓柱的底面面積和高,求圓柱的側面積,表面積,體積
⑤已知圓柱的側面積和高,求圓柱的底面半徑,表面積,體積,底面積
以上幾種常見題型的解題方法,通常是求出圓柱的底面半徑和高,再根據圓柱的相關計算公式進行計算
無蓋水桶的表面積=側面積+一個底面積油桶的表面積=側面積+兩個底面積
煙囪通風管的表面積=側面積
只求側面積:燈罩、排水管、漆柱、通風管、壓路機、衛生紙中軸、薯片盒包裝
側面積+一個底面積:玻璃杯、水桶、筆筒、帽子、 游泳 池
側面積+兩個底面積:油桶、米桶、罐桶類
二、圓錐
1、圓錐的形成:圓錐是以直角三角形的一直角邊為軸旋轉而得到的。圓錐也可以由扇形捲曲而得到。
2、圓錐的高是兩個頂點與底面之間的距離,與圓柱不同,圓錐只有一條高
3、圓錐的特徵:
(1)底面的特徵:圓錐的底面一個圓。
(2)側面的特徵:圓錐的側面是一個曲面。
(3)高的特徵:圓錐有一條高。
4、圓錐的切割:
①橫切:切面是圓
②豎切(過頂點和直徑直徑):切面是等腰三角形,該等腰三角形的高是圓錐的高,底是圓錐的底面直徑,面積增加兩個等腰三角形的面積,
即S增=2rh
5、圓錐的相關計算公式:
底面積:S底=πr?
底面周長:C底=πd=2πr
體積:V錐=1/3πr?h
考試常見題型:
①已知圓錐的底面積和高,求體積,底面周長
②已知圓錐的底面周長和高,求圓錐的體積,底面積
③已知圓錐的底面周長和體積,求圓錐的高,底面積
以上幾種常見題型的解題方法,通常是求出圓錐的底面半徑和高,再根據圓柱的相關計算公式進行計算
三、圓柱和圓錐的關系
1、圓柱與圓錐等底等高,圓柱的體積是圓錐的3倍。
2、圓柱與圓錐等底等體積,圓錐的高是圓柱的3倍。
3、圓柱與圓錐等高等體積,圓錐的底面積(注意:是底面積而不是底面半徑)是圓柱的3倍。
4、圓柱與圓錐等底等高 ,體積相差2/3Sh
題型 總結
①直接利用公式:分析清楚求的的是表面積,側面積、底面積、體積
分析清楚半徑變化導致底面周長、側面積、底面積、體積的變化
分析清楚兩個圓柱(或兩個圓錐)半徑、底面積、底面周長、側面積、表面積、體積之比
②圓柱與圓錐關系的轉換:包括削成最大體積的問題(正方體,長方體與圓柱圓錐之間)
③橫截面的問題
④浸水體積問題:(水面上升部分的體積就是浸入水中物品的體積,等於盛水容積的底面積乘以上升的高度)容積是圓柱或長方體,正方體
⑤等體積轉換問題:一個圓柱融化後做成圓錐,或圓柱中的溶液倒入圓錐,都是體積不變的 問題,注意不要乘以1/3
六年級下冊數學知識點4
第四單元 比例
1、比的意義(1)兩個數相除又叫做兩個數的比
(2)「:」是比號,讀作「比」。比號前面的數叫做比的前項,比號後面的數叫做比的後項。比的前項除以後項所得的商,叫做比值。
(3)同除法比較,比的前項相當於被除數,後項相當於除數,比值相當於商。
(4)比值通常用分數表示,也可以用小數表示,有時也可能是整數。
(5)比的後項不能是零。
(6)根據分數與除法的關系,可知比的前項相當於分子,後項相當於分母,比值相當於分數值。
2、比的基本性質:比的前項和後項同時乘或者除以相同的數(0除外),比值不變,這叫做比的基本性質。
3、求比值和化簡比:
求比值的方法:用比的前項除以後項,它的結果是一個數值可以是整數,也可以是小數或分數。
根據比的基本性質可以把比化成最簡單的整數比。它的結果必須是一個最簡比,即前、後項是互質的數。
4、按比例分配:
在農業生產和日常生活中,常常需要把一個數量按照一定的比來進行分配。這種分配的方法通常叫做按比例分配。
方法:首先求出各部分佔總量的幾分之幾,然後求出總數的幾分之幾是多少。
5、比例的意義:表示兩個比相等的式子叫做比例。
組成比例的四個數,叫做比例的項。
兩端的兩項叫做外項,中間的兩項叫做內項。
6、比例的基本性質:在比例里,兩個外項的積等於兩個兩個內項的積。這叫做比例的基本性質。
7、比和比例的區別
(1)比表示兩個量相除的關系,它有兩項(即前、後項);比例表示兩個比相等的式子,它有四項(即兩個內項和兩個外項)。
(2)比有基本性質,它是化簡比的依據;比例也有基本性質,它是解比例的依據。
8、成正比例的量:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的比值(也就是商)一定,這兩種量就叫做成正比例的量,他們的關系叫做正比例關系。
用字母表示x/y=k(一定)
9、成反比例的量:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,他們的關系叫做反比例關系。
用字母表示x×y=k(一定)
10、判斷兩種量成正比例還是成反比例的方法:
關鍵是看這兩個相關聯的量中相對就的兩個數的商一定還是積一定,如果商一定,就成正比例;如果積一定,就成反比例。
11、比例尺:一幅圖的圖上距離和實際距離的比,叫做這幅圖的比例尺。
12、比例尺的分類
(1)數值比例尺和線段比例尺 (2)縮小比例尺和放大比例尺
13、圖上距離:
圖上距離/實際距離=比例尺
實際距離×比例尺=圖上距離
圖上距離÷比例尺=實際距離
14、應用比例尺畫圖的步驟:
(1)寫出圖的名稱、
(2)確定比例尺;
(3)根據比例尺求出圖上距離;
(4)畫圖(畫出單位長度)
(5)標出實際距離,寫清地點名稱
(6)標出比例尺
15、圖形的放大與縮小:形狀相同,大小不同。
16、用比例解決問題:
根據問題中的不變數找出兩種相關聯的量,並正確判斷這兩種相關聯的量成什麼比例關系,並根據正、反比例關系式列出相應的方程並求解。
17、常見的數量關系式:(成正比例或成反比例)
單價×數量=總價
單產量×數量=總產量
速度×時間=路程
工效×工作時間=工作總量
18、
已知圖上距離和實際距離可以求比例尺。
已知比例尺和圖上距離可以求實際距離。
已知比例尺和實際距離可以求圖上距離。
計算時圖距和實距單位必須統一。
19、播種的總公頃數一定,每天播種的公頃數和要用的天數是不是成反比例?
答:每天播種的公頃數×天數=播種的總公頃數
已知播種的總公頃數一定,就是每天播種的公頃數和要用的天數的積是一定的,所以每天播種的公頃數和要用的天數成反比例。
六年級下冊數學知識點5
第五單元 數學廣角-鴿巢問題
1、鴿巣原理是一個重要而又基本的組合原理, 在解決數學問題時有非常重要的作用
②利用公式進行解題:
物體個數÷鴿巣個數=商……余數
至少個數=商+1
2、摸2個同色球計算方法。
①要保證摸出兩個同色的球,摸出的球的數量至少要比顏色數多1。
物體數=顏色數×(至少數-1)+1
②極端思想: 用最不利的摸法先摸出兩個不同顏色的球,再無論摸出一個什麼顏色的球,都能保證一定有兩個球是同色的。
③公式:
兩種顏色:2+1=3(個)
三種顏色:3+1=4(個)
四種顏色:4+1=5(個)
六年級下冊數學知識點歸納相關 文章 :
★ 六年級數學期末復習知識點匯總
★ 人教版六年級數學(下冊)期末知識要點
★ 六年級數學下冊必背知識點總結
★ 六年級上冊數學知識點整理歸納
★ 六年級數學幾何的初步知識知識點總結
★ 小學六年級數學知識點總結
★ 小升初考試必備數學一到六年級的知識點
★ 小升初一至六年級數學知識點整理
★ 小學六年級數學學習方法和技巧大全
★ 小學六年級數學知識點盤點
❽ 六年級下冊數學書內容有哪些
六年級下冊數學書內容有:負數、百分數(二)、圓柱與圓錐、比例、數學廣角——鴿巢問題。除此之外,和以往的人教版教材一樣,本冊教材編排了整理與復習。
對小學階段涉及到的數學概念、原理、性質、應用以及相關的數學思想、方法進行整理和復習。這一部分內容既是對小學階段數學學習的總結,也是為學生升入初中奠定知識與方法的基礎。
數學書特點
從總體框架上看,與實驗教材相比,修訂後的教材主要有兩大變化:第一,把實驗教材六年級上冊「百分數」的內容分成兩段,其中百分數的特殊應用(如折扣、成數、稅率、利率等)移至六年級下冊。第二,由於統計內容的整體調整,實驗教材六年級下冊的統計內容不再單獨編寫。
除此之外,還有一些結構性的微調。例如,把實驗教材六年級上冊的實踐與綜合應用「合理存款」改編為「生活與百分數」,移至本冊。
同時,把實驗教材六年級下冊的「節約用水」移至六年級上冊。再如,為了突出對數學思想與方法的整理與復習,教材在「整理與復習」中把「數學思考」從「數與代數」中分離出來,單獨設立小節。
在「綜合與實踐」的整理和復習中,保留了實驗教材的「有趣的平衡」「郵票中的數學問題」,刪去了「設計運動場」,新增了「綠色出行」和「北京五日游」。
❾ 六年級下冊數學知識點總結
六年級下冊數學知識點總結
基礎數學的知識與運用是個人與團體生活中不可或缺的一部分.其基本概念的精煉早在古埃及、美索不達米亞及古印度內的古代數學文本內便可觀見。下面我整理了一些關於六年級下冊數學知識點總結,歡迎大家參考!
第一單元分數乘法
一、分數乘法
(一)分數乘法的意義:
1、分數乘整數與整數乘法的意義相同。都是求幾個相同加數的和的簡便運算。
例如:65×5表示求5個65的和是多少? 1/3×5表示求5個1/3的和是多少?
2、一個數乘分數的意義是求一個數的幾分之幾是多少。
例如:1/3×4/7表示求1/3的4/7是多少。
4×3/8表示求4的3/8是多少.
(二)、分數乘法的計演算法則:
1、分數與整數相乘:分子與整數相乘的積做分子,分母不變。(整數和分母約分)
2、分數與分數相乘:用分子相乘的積做分子,分母相乘的積做分母。注意:當帶分數進行乘法計算時,要先把帶分數化成假分數再進行計算。
3、為了計算簡便,能約分的要先約分,再計算。(盡量約分,不會約分的就不約,常考的質因數有11×11=121;13×13=169;17×17=289;19×19=361)
4、小數乘分數,可以先把小數化為分數,也可以把分數化成小數再計算(建議把小數化分數再計算)。
(三)、 乘法中比較大小的規律
一個數(0除外)乘大於1的數,積大於這個數。
一個數(0除外)乘小於1的數(0除外),積小於這個數。
一個數(0除外)乘1,積等於這個數。
(四)、分數混合運算的運算順序和整數的運算順序相同。整數乘法的交換律、結合律和分配律,對於分數乘法也同樣適用。
乘法交換律: a × b = b × a
乘法結合律: ( a × b )×c = a × ( b × c )
乘法分配律: ( a + b )×c = a c + b c
二、分數乘法的解決問題(已知單位“1”的量(用乘法),即求單位“1”的幾分之幾是多少)
1、畫線段圖:(1)兩個量的關系:畫兩條線段圖,先畫單位一的量,注意兩條線段的左邊要對齊。(2)部分和整體的關系:畫一條線段圖。
2、找單位“1”: 單位“1” 在分率句中分率的前面;
或在“占”、“是”、“比”“相當於”的後面。
3、寫數量關系式的技巧:
(1)“的” 相當於 “×” ,“占”、“相當於”“是”、“比”是 “ = ”
(2)分率前是“的”字:用單位“1”的量×分率=具體量
例如:甲數是20,甲數的1/3是多少?列式是:20×1/3
4、看分率前有沒有多或少的問題;分率前是“多或少”的關系式:
(比少):單位“1”的量×(1-分率)=具體量;
例如:甲數是50,乙數比甲數少1/2,乙數是多少?
列式是:50×(1-1/2)
(比多):單位“1”的量×(1+分率)=具體量
例如:小紅有30元錢,小明比小紅多3/5,小紅有多少錢?
列式是:50×(1+3/5)
3、求一個數的幾倍是多少:用 一個數×幾倍;
4、求一個數的幾分之幾是多少: 用一個數×幾分之幾。
5、求幾個幾分之幾是多少:用幾分之幾×個數
6、求已知一個部分量是總量的幾分之幾,求另一個部分量的方法:
(1)、單位“1”的量×(1-分率)=另一個部分量(建議用)
(2)、單位“1”的量-已知占單位“1”的幾分之幾的部分量=要求的部分量
例如:教材15頁做一做和16頁練習第七題(題目中有時候會有這種題的'關鍵字“其中”)
第二單元位置與方向(二)
一、確定物體位置的方法:1、先找觀測點;2、再定方向(看方向夾角的度數);3、最後確定距離(看比例尺)
二、描繪路線圖的關鍵是選好觀測點,建立方向標,確定方向和路程。
三、位置關系的相對性:1、兩地的位置具有相對性在敘述兩地的位置關系時,觀測點不同,敘述的方向正好相反,而度數和距離正好相等。
四、相對位置:東--西;南--北;南偏東--北偏西。
第三單元分數除法
三、倒數
1、倒數的意義: 乘積是1的兩個數互為倒數。
強調:互為倒數,即倒數是兩個數的關系,它們互相依存,倒數不能單獨存在。(要說清誰是誰的倒數)。
2、求倒數的方法:
(1)、求分數的倒數:交換分子分母的位置。
(2)、求整數的倒數:把整數看做分母是1的分數,再交換分子分母的位置。
(3)、求帶分數的倒數:把帶分數化為假分數,再求倒數。
(4)、求小數的倒數: 把小數化為分數,再求倒數。
3、 1的倒數是1; 因為1×1=1;0沒有倒數,因為0乘任何數都得0,(分母不能為0)
4、真分數的倒數大於1;假分數的倒數小於或等於1;帶分數的倒數小於1。
5、運用,a×2/3=b×1/4求a和b是多少。把a×2/3=b×1/4看成等於1,也就是求2/3的倒數和求1/4的倒數。
1、分數除法的意義:
乘法: 因數 × 因數 = 積
除法: 積 ÷ 一個因數 = 另一個因數
分數除法與整數除法的意義相同,表示已知兩個因數的積和其中一個因數,求另一個因數的運算。
例如:1/2÷3/5意義是:已知兩個因數的積是1/2與其中一個因數3/5,求另一個因數的運算。
2、分數除法的計演算法則:
除以一個不為0的數,等於乘這個數的倒數。
3、分數除法比較大小時的規律:
(1)當除數大於1,商小於被除數;
(2)當除數小於1(不等於0),商大於被除數;
(3)當除數等於1,商等於被除數。
“[ ]”叫做中括弧。一個算式里,如果既有小括弧,又有中括弧,要先算小括弧裡面的, 再算中括弧裡面的。
二、分數除法解決問題
1,解法:(1)方程: 根據數量關系式設未知量為X,用方程解答。
解:設未知量為X (一定要解設),再列方程 用 X×分率=具體量
例如:公雞有20隻,是母雞只數的1/3,母雞有多少只。(單位一是母雞只數,單位一未知.)解:設母雞有X只。列方程為:X×1/3=20
(2)算術(用除法):單位“1”的量未知用除法:
即已知單位“1”的幾分之幾是多少,求單位“1”的量。
分率對應量÷對應分率 = 單位“1”的量
例如:公雞有20隻,是母雞只數的1/3,母雞有多少只。(單位一是母雞只數,單位一未知,)用除法,列式是:20÷1/3
2、看分率前有沒有比多或比少的問題;
分率前是“多或少”的關系式:
(比少):具體量÷ (1-分率)= 單位“1”的量;
例如:桃樹有50棵,比蘋果樹少1/6,蘋果樹有多少棵。
列式是:50÷(1-1/6)
(比多):具體量÷ (1+分率)= 單位“1”的量
例如:一種商品現在是80元,比原價增加了1/7,原價多少?
列式是:80÷(1+1/7)
3、求一個數是另一個數的幾分之幾是多少: 用一個數除以另一個數,結果寫為分數形式。
例如:男生有20人,女生有15人,女生人數占男生人數的幾分之幾。
列式是:15÷20=15/20=3/4
4、求一個數比另一個數多幾分之幾的方法:
用兩個數的相差量÷單位“1”的量 =分數
即①求一個數比另一個數多幾分之幾:用(大數–小數) ÷另一個數(比那個數就除以那個數),結果寫為分數形式。
例如:5比3多幾分之幾?(5-3)÷3=2/3
②求一個數比另一個數少幾分之幾:用(大數–小數) ÷另一個數(比那個數就除以那個數),結果寫為分數形式。
例如:3比5少幾分之幾?(5-3)÷5=2/5
說明:多幾分之幾不等於少幾分之幾,因為單位一不同。
5、工程問題:把工作總量看作單位“1”,合做多長時間完成一項工程用1÷效率和,即1÷(1/時間+1/時間),(工作效率=1/時間)
例如:一項工程甲單獨做要5天完成,乙單獨做要10天完成,甲單獨做要3天完成,三人合做幾天可以完成?列式:1÷(1/5+1/10+1/3)
第四單元比
(一)、比的意義
1、比的意義:兩個數相除又叫做兩個數的比。
2、在兩個數的比中,比號前面的數叫做比的前項,比號後面的數叫做比的後項。比的前項除以後項所得的商,叫做比值。
例如 15 :10 = 15÷10=3/2(比值通常用分數表示,也可以用小數或整數表示)
15 ∶ 10 = 3/2
前項 比號 後項 比值
3、比可以表示兩個相同量的關系,即倍數關系。例:長是寬的幾倍。
也可以表示兩個不同量的比,得到一個新量。例: 路程÷速度=時間。
4、區分比和比值
比:表示兩個數的關系,可以寫成比的形式,也可以用分數表示。
比值:相當於商,是一個數,可以是整數,分數,也可以是小數。
5、根據分數與除法的關系,兩個數的比也可以寫成分數形式。
6、比和除法、分數的聯系:
比 前 項 比號“:” 後 項 比值
除 法 被除數 除號“÷” 除 數 商
分 數 分 子 分數線“—” 分 母 分數值
7、比和除法、分數的區別:除法是一種運算,分數是一個數,比表示兩個數的關系。
8、根據比與除法、分數的關系,可以理解比的後項不能為0。
9、體育比賽中出現兩隊的分是2:0等,這只是一種記分的形式,不表示兩個數相除的關系。
10、求比值:用前項除以後項,結果最好是寫為分數(不會約分的就不約分)
例如:15∶ 10=15÷10=15/10=3/2
(二)、比的基本性質
1、根據比、除法、分數的關系:
商不變的性質:被除數和除數同時乘或除以相同的數(0除外),商不變。
分數的基本性質:分數的分子和分母同時乘或除以相同的數時(0除外),分數值不變。
比的基本性質:比的前項和後項同時乘或除以相同的數(0除外),比值不變。
2、最簡整數比:比的前項和後項都是整數,並且是互質數,這樣的比就是最簡整數比。
3、根據比的基本性質,可以把比化成最簡單的整數比。
4.化簡比:
(2)用求比值的方法。注意: 最後結果要寫成比的形式。
例如: 15∶10 = 15÷10 =15/10= 3/2 = 3∶2
還可以15∶10 = 15÷10 = 3/2最簡整數比是3∶2
5、比中有單位的,化簡和求比值時要把單位化相同再化簡和求比值,結果沒有單位。
6.按比例分配:把一個數量按照一定的比來進行分配。這種方法通常叫做按比例分配。一般有兩種解題法
1,用分率解:按比例分配通常把總量看作單位一,即轉化成分率。要先求出總份數,再求出幾份占總份數的幾分之幾,最後再用總量分別乘幾分之幾。
例如:有糖水25克,糖和水的比為1:4,糖和水分別有幾克?
1+4=5 糖佔1/5 用 25×1/5得到糖的數量,水佔4/5 用 25×4/5得到水的數量。
2,用份數解:要先求出總份數,再求出每一份是多少,最後分別求出幾份是多少。
例如:有糖水25克,糖和水的比為1:4,糖和水分別有幾克?
糖和水的份數一共有1+4=5 一份就是25÷5=5糖有1份就是5×1水有4分就是5×4
第五單元圓的認識
一、認識圓形
1、圓的定義:圓是由曲線圍成的一種平面圖形。
2、圓心:將一張圓形紙片對折兩次,摺痕相交於圓中心的一點,這一點叫做圓心。一般用字母O表示。它到圓上任意一點的距離都相等.
3、半徑:連接圓心到圓上任意一點的線段叫做半徑。一般用字母r表示。把圓規兩腳分開,兩腳之間的距離就是圓的半徑。
4、直徑:通過圓心並且兩端都在圓上的線段叫做直徑。一般用字母d表示。直徑是一個圓內最長的線段。
5、圓心確定圓的位置,半徑確定圓的大小。
6、在同一個圓內或等圓內,有無數條半徑,有無數條直徑。所有的半徑都相等,所有的直徑都相等。
7.在同圓或等圓內,直徑的長度是半徑的2倍,半徑的長度是直徑的1/2。用字母表示為:d=2r或r=d/2
8、軸對稱圖形:如果一個圖形沿著一條直線對折,兩側的圖形能夠完全重合,這個圖形是軸對稱圖形。摺痕所在的這條直線叫做對稱軸。
9、長方形、正方形和圓都是對稱圖形,都有對稱軸。這些圖形都是軸對稱圖形。
10、只有1條對稱軸的圖形有: 角、等腰三角形、等腰梯形、扇形、半圓。只有2條對稱軸的圖形是: 長方形;只有3條對稱軸的圖形是: 等邊三角形;只有4條對稱軸的圖形是: 正方形;有無數條對稱軸的圖形是: 圓、圓環。
11、畫對稱軸要用鉛筆畫,同時要用尺子(三角板)畫出虛線,這條虛線兩端要超出圖形一點。
二、圓的周長
1、圓的周長:圍成圓的曲線的長度叫做圓的周長。用字母C表示。
2、圓周率實驗:(滾動法)在圓形紙片上做個記號,與直尺0刻度對齊,在直尺上滾動一周,得到圓的周長。或者用線圍繞圓形紙片一周量出線的長度就是圓的周長(測繩法)。
發現,圓周長與它直徑的比值(圓周長除以直徑)是一個固定數即3倍多一點,我們把它叫做圓周率用字母π表示。
3、圓周率:任意一個圓的周長與它的直徑的比值是一個固定的數,我們把它叫做圓周率。用字母π(pai) 表示。世界上第一個把圓周率算出來的人是我國的數學家祖沖之。
(1)、一個圓的周長總是它直徑的3倍多一些,這個比值是一個固定的數。圓周率π是一個無限不循環小數。在計算時,一般取π ≈ 3.14。
(2)、在判斷時,圓周長與它直徑的比值是π倍,而不是3.14倍。
4、圓的周長公式: 圓的周長等於圓周率乘直徑用字母表示C= πd
(1)、已知圓的周長求直徑用圓的周長除以圓周率,用字母表示
d = C ÷π或圓的周長等於2乘圓周率乘半徑,用字母表示C=2πr
(2)、已知圓的周長求半徑用圓的周長除以圓周率的2倍,
用字母表示 r = C ÷ 2π(r = C / 2π)
5、在一個正方形里畫一個最大的圓,圓的直徑等於正方形的邊長。在一個長方形里畫一個最大的圓,圓的直徑等於長方形的寬。
6、區分周長的一半和半圓的周長:
(1)、周長的一半:等於圓的周長÷2
計算方法:2π r ÷ 2 即C半= π r
(2)半圓的周長:等於圓的周長的一半加直徑。 計算方法:半圓的周長=5.14 r (推導過程C半=2π r ÷ 2+d=πr+d=πr+2r =5.14 r)
三、圓的面積
1、圓的面積:圓所佔平面的大小叫做圓的面積。 用字母S表示。
2、圓面積公式的推導:(1)把一個圓等分(偶數份)成的扇形份數越多,拼成的圖像越接近長方形。長方形的長相當於圓的周長的一半,長方形的寬相當於圓的半徑。
(2)拼出的圖形與圓的周長和半徑的關系。
圓的半徑 = 長方形的寬
圓的周長的一半 = 長方形的長
3、圓面積的計算方法:因為:長方形面積 = 長 ×寬
所以:圓的面積 = 圓周長的一半 × 圓的半徑
即S圓 = C÷2× r=πr × r=πr
圓的面積公式:S圓 =πr → r = S 圓÷ π
4、環形的面積:一個環形,外圓的半徑用字母R表示,內圓的半徑用字母r表示。(R=r+環的寬度.)
S環 = πR -πr 或環形的面積公式:S環 = π(R -r )(建議用這個公式)。
5、一個圓,半徑擴大或縮小多少倍,直徑和周長也擴大或縮小相同的倍數。而面積擴大或縮小的倍數是這倍數的平方倍。
例如:在同一個圓里,半徑擴大3倍,那麼直徑和周長就都擴大3倍,而面積擴大3的平方倍得到9倍。
6、兩個圓: 半徑比 = 直徑比 = 周長比;而面積比等於這比的平方。
例如:兩個圓的半徑比是2∶3,那麼這兩個圓的直徑比和周長比都是2∶3,而面積比是4∶9
7、任意一個正方形與它內切圓的面積之比都是一個固定值,即:4∶π
8、當長方形,正方形,圓的周長相等時,圓面積最大,正方形居中,長方形面積最小。反之,面積相同時,長方形的周長最長,正方形居中,圓的周長最短。
9、常用各π值結果:π = 3.14;2π = 6.28 ;5π=15.7
10、外方內圓(內切圓)公式S=0.86r 推導過程:S=S正-S圓=d -πr =2r×2r-πr =4r -πr =r ×(4-π)=0.86r
11、外圓內方(外切圓)公式S=1.14r 推導過程:S=S圓-S正=πr -dr/2×2=2r×r/2×r=πr -2r =r ×(π-2)=1.14r (把正方形看成兩個面積相等的三角形,三角形的底就是直徑,高是半徑)
12、一條弧和經過這條弧兩端的兩條半徑所圍成的圖形叫做扇形。頂點在圓心的角叫做圓心角。扇形的面積與圓心角大小和半徑長短有關。
13、S扇=S圓×n/360;S扇環=S環×n/360
14、扇形也是軸對稱圖形,有一條對稱軸。
15、常見半徑與直徑的周長和面積的結果。
半徑 半徑的平方 直徑 周長 面積
1 1 2 6.28 3.14
2 4 4 12.56 12.56
3 9 6 18.84 28.26
4 16 8 25.12 50.24
5 25 10 31.4 78.5
6 36 12 37.68 113.04
7 49 14 43.96 153.86
8 64 16 50.24 200.96
9 81 18 56.52 254.34
10 100 20 62.8 314
1.5 2.25 3 9.42 7.065
2.5 6.25 5 15.7 19.625
3.5 12.25 7 21.98 38.465
4.5 20.35 9 28.26 63.585
5.5 30.25 11 34.54 94.985
7.5 56.25 15 47.1 176.625
;❿ 六年級下冊數學第三單元知識點
2022六年級下冊數學第三單元知識點
數學需要比日常用語更多的精確性,數學家將此對語言及邏輯精確性的要求稱為「嚴謹」。下面是小學部整理的關於數學第三單元,也就是圓柱與圓錐的知識點,歡迎大家參考!
六年級下冊數學第三單元知識點
【圓柱】
圓柱的形成:圓柱是以長方形的一邊為軸旋轉而得到的;圓柱也可以由長方形捲曲而得到。
一、圓柱:圓柱由3個面圍成。
(1)底面:圓柱的上、下兩個面;
(2)側面:圓柱周圍的面(上下底面除外);
(3)高:圓柱的兩個底面之間的距離。
二、圓柱的特徵:
(1)底面的特徵:圓柱的底面是完全相等的兩個圓。
(2)側面的特徵:圓柱的側面是一個曲面。
(3)高的特徵:圓柱有無數條高。
圓柱的側面展開圖: 沿著高展開,展開圖形是長方形。
長方形的長等於圓柱底面的周長,長方形的寬等於圓柱的高,
長方形的面積等於(圓柱的側面積),因為長方形面積=長×寬,所以圓柱的側面積=底面周長×高
圓柱的側面積:圓柱的側面積=底面的周長×高,
用字母表示為:S側=Ch h=S側÷C
C= S側÷h
S側=∏dh=2∏rh
註:(1)當底面周長和高相等時,沿高展開圖是正方形;
(2)不沿著高展開,展開圖形是平行四邊形或不規則圖形。
(3) 無論如何展開都得不到梯形.
四、圓柱的表面積:
圓柱的表面積=側面積+底面積×2。
即S表= S側+ S底×2=2∏rh+∏r×2
【解題方法】
一.圓柱的切割:
1.橫切:切面是圓,表面積增加2倍底面積,即S增=2πr2
2.豎切(過直徑):切面是長方形(如果h=2R,切面為正方形),該長方形的長是圓柱的高,寬是圓柱的底面直徑,表面積增加兩個長方形的面積,即S增=4rh
二、常見的圓柱解決問題:
側面積+兩個底面積:油桶、米桶、罐桶類
側面積+一個底面積:玻璃杯、水桶、筆筒、帽子、游泳池
只求側面積:煙囪、燈罩、排水管、漆柱、通風管、壓路機、衛生紙中軸、薯片盒包裝
底面周長:壓路機壓過路面長度
五、圓柱的體積:圓柱所佔空間的大小,叫做這個圓柱體的體積。
圓柱切拼成近似的長方體,分的份數越多,拼成的圖形越接近長方體。
長方體的底面積等於圓柱的底面積,長方體的高等於圓柱的高。長方體的體積=底面積×高
圓柱體積=底面積×高
V柱=S h =πr2 h
h =V柱÷S=V柱÷(πr2)
S=V柱÷h
註:把一個圓柱體切分成若干份拼成一個近似的長方體,在這個過程中,形狀發生了變化,體積沒有發生變化。表面積增加了2rh.
【圓錐】
圓錐的形成:圓錐是以直角三角形的一直角邊為軸旋轉而得到的。圓錐也可以由扇形捲曲而得到。
一、圓錐:以直角三角形的一條直角邊所在直線為旋轉軸,其餘兩邊旋轉形成的面所圍成的旋轉體叫做圓錐。
二、圓錐各部分的名稱:
圓錐只有一個底面,底面是個圓,圓錐的側面是個曲面,把圓錐的側面展開得到一個扇形。
圓錐的高:從圓錐的頂點到底面圓心的距離是圓錐的高。(只有一條)
測量圓錐的高:先把圓錐的底面放平,用一塊平板水平地放在圓錐的頂點上面,豎直地量出平板和底面之間的距離。
三、圓錐的特徵:
(1)底面的特徵:圓錐的底面一個圓。
(2)側面的特徵:圓錐的側面是一個曲面。
(3)高的特徵:圓錐有一條高。
四、圓錐的體積:
圓錐的體積等於與它等底等高的圓柱體積的三分之一
V錐=×底面積×高 =S h =πr2 h
圓錐的高=圓錐體積×3÷底面積
h =3 V錐÷S=3 V錐÷(πr2)
圓錐的'底面積=圓錐體積×3÷高
S=3 V錐÷h
五、圓柱與圓錐的關系:
1.圓柱的特徵:一個側面、兩個底面、無數條高且側面沿高展開圖是長方形。
2.圓錐的特徵:一個側面、一個底面、一個頂點、一條高且側面展開圖是扇形。
3.圓柱與圓錐等底等高,圓柱的體積是圓錐的3倍。
4.圓柱與圓錐等底等體積,圓錐的高是圓柱高的3倍。
5.圓柱與圓錐等高等體積,圓錐的底面積(注意:是底面積而不是底面半徑)是圓柱的3倍。
6.圓柱體積比等底等高圓錐體積多2倍
7.圓錐體積比等底等高圓柱體積少
(1)等底等高:V錐:V柱=1:3
(2)等底等體積:h錐:h柱=3:1
(3)等高等體積:S錐:S柱=3:1
【解題方法】
一.圓錐的切割:
a.橫切:切面是圓
b.豎切(過頂點和直徑):切面是等腰三角形,該等腰三角形的高是圓錐的高,底是圓錐的底面直徑,表面積增加兩個等腰三角形的面積,即S增=2Rh
二、題型總結:
1、高不變半徑擴大縮小n倍,直徑、底面周長、側面積擴大縮小n倍,底面積、體積擴大縮小n2倍。
2、半徑不變高擴大縮小n倍,側面積、體積擴大縮小n倍
3、削成最大體積的問題:
正方體里削出最大的圓柱圓錐 圓柱圓錐的高和底面直徑等於正方體棱長
長方體里削出最大的圓柱圓錐 圓柱圓錐底面直徑等於寬(寬﹥高)圓柱圓錐高等於長方體高
4、浸水體積問題:水面上升部分的體積就是浸入水中物品的體積,等於盛水容積的底面積乘以上升的高度。
5、等體積轉換問題:一圓柱融化後做成圓錐,或圓柱中的溶液倒入圓錐,都是體積不變的問題,注意不要乘以。
【拓展閱讀】
圓柱與圓錐的關系
1、如果是等底等高,則有圓柱的體積是圓錐體積的3倍,反之,圓錐體積是圓柱體積的1/3;
2、如果高相等,體積相等,則有圓錐底面積是圓柱底面積的3倍,反之,圓柱底面積是圓錐底面積的1/3;
3、如果底面積相等,體積相等,則圓錐的高是圓柱的高的3倍,反之圓柱的高是圓錐的高的1/3。
圓柱和圓錐有什麼區別
1、圓柱有兩面個底面,圓錐只有一個底面。
2、圓柱的側面展開圖是長方形,圓錐的側面展開圖是扇形。
3、在不同的底、高、底面積下,圓柱與圓錐面積和體積不同。
;