A. 除數為兩位數的除法手抄報
除數為兩位數的除法教學過程中旨在教會學生掌握用一位數除兩位數和用整十數除的口算方法,能夠比較熟練地進行口算。下面是我收集整理的除數為兩位數的.除法手抄報,希望對您有所幫助!
除數為兩位數的除法手抄報
除法速算小技巧
某數除以5、25、125時
1、 被除數 ÷ 5
= 被除數 ÷ (10 ÷ 2)
= 被除數 ÷ 10 × 2
= 被除數 × 2 ÷ 10
2、 被除數 ÷ 25
= 被除數 × 4 ÷100
= 被除數 × 2 × 2 ÷100
3、 被除數 ÷ 125
= 被除數 × 8 ÷100
= 被除數 × 2 × 2 × 2 ÷100
在加、減、乘、除四則運算中除法是最麻煩的一項,即使使用速演算法很多時候也要加上筆算才能更快更准地算出答案。
B. 數學手抄報6年級內容
從小學、初中、高中到大學乃至工作,大家或多或少都接觸過一些經典的手抄報吧,手抄報能有效激發我們的創新意識和求知慾望。你知道什麼樣的手抄報才能算得上是好的手抄報嗎?以下是我精心整理的數學手抄報6年級內容,希望能夠幫助到大家。
數學手抄報6年級內容 篇1
一、什麼是數學:
數學(mathematics或maths),是研究數量、結構、變化、空間以及信息等概念的一門學科,從某種角度看屬於形式科學的一種。
而在人類歷史發展和社會生活中,數學也發揮著不可替代的作用,也是學習和研究現代科學技術必不可少的基本工具。
二、關於數學的名人名言手抄報內容大全:
1、一個國家只有數學蓬勃的發展,才能展現它國立的強大。數學的發展和至善和國家繁榮昌盛密切相關。——拿破崙
2、不管數學的任一分支是多麼抽象,總有一天會應用在這實際世界上。——羅巴切夫斯基
3、二分之一個證明等於0。——高斯
4、以我一生最好的時光追尋那個目標……書已經寫成了。現代人讀或後代讀都無關緊要,也許要等一百年才有一個讀者。——開普勒
5、歷史使人賢明,詩造成氣質高雅的人,數學使人高尚,自然哲學使人深沉,道德使人穩重,而倫理學和修辭學則使人善於爭論。——培根
6、哲學家也要學數學,因為他必須跳出浩如煙海的萬變現象而抓住真正的實質。……又因為這是使靈魂過渡到真理和永存的捷徑。——柏拉圖
7、在數學中最令我欣喜的,是那些能夠被證明的東西。——羅素
8、在數學中,我們發現真理的主要工具是歸納和模擬。——拉普拉斯
9、在數學里,分辨何是重要,何事不重要,知所選擇是很重要的。——廣中平佑
10、寧可少些,但要好些。——高斯
11、宇宙之大,粒子之微,火箭之速,化工之巧,地球之變,生物之謎,日用之繁,無處不用數學。——華羅庚
12、當我聽別人講解某些數學問題時,常覺得很難理解,甚至不可能理解。這時便想,是否可以將問題化簡些呢t往往,在終於弄清楚之後,實際上,它只是一個更簡單的問題。——希爾伯特
13、當數學家導出方程式和公式,如同看到雕像、美麗的風景,聽到優美的曲調等等一樣而得到充分的快樂。——柯普寧
14、我總是盡我的精力和才能來擺脫那種繁重而單調的計算。——納皮爾
15、數學中的一些美麗定理具有這樣的特性:它們極易從事實中歸納出來,但證明卻隱藏的極深。——高斯
16、數學主要的目標是公眾的利益和自然現象的解釋。——傅立葉
17、數學之所以有高聲譽,另一個理由就是數學使得自然科學實現定理化,給予自然科學某種程度的可靠性。——愛因斯坦
18、數學之所以比一切其它科學受到尊重,一個理由是因為他的命題是絕對可靠和無可爭辯的,而其它的科學經常處於被新發現的事實推翻的危險。——愛因斯坦
19、數學家本質上是個著迷者,不迷就沒有數學。——努瓦列斯
20、數學對觀察自然做出重要的貢獻,它解釋了規律結構中簡單的原始元素,而天體就是用這些原始元素建立起來的`。——開普勒
21、數學方法滲透並支配著一切自然科學的理論分支。它愈來愈成為衡量科學成就的主要標志了。——馮紐曼
22、數學是一切知識中的最高形式。——柏拉圖
23、數學是一種會不斷進化的文化。——魏爾德
24、數學是一種別具匠心的藝術。——哈爾莫斯
數學手抄報6年級內容 篇2
下午放學回家時,爸爸給我布置了一道家庭作業,要求我想辦法測算出一次性筷子的體積大約是多少。我靜靜地坐在書桌前思考這個問題。我思來想去,一會兒抓耳撓腮,一會兒搖搖頭……
終於,有了一點眉目。我可以將一次性筷子放入一個裝有水的容器中,再測量出水上升的高度,然後用底面積×上升的高度,不就是筷子的體積嗎?可是筷子比水輕,會浮在水面上,又該怎麼辦呢……這些辦法測定起來又都太麻煩了,要是有更簡便的方法該多好啊!經過冥思苦想,我終於自豪的笑了。
「我們不正學過計算圓柱的體積的方法嗎?而筷子不就可以近似看作是圓柱嗎?」我立馬拿出尺子量出了筷子的長度與底面直徑,長度是20cm,底面直徑是0·2cm。寫下運用數學公式:r×3·14×h。我先算出半徑0。2÷2=0·1,再運用公式0·1×3·14×20=0·628cm
這樣就簡單又不麻煩的算出了一次性筷子的體積。
數學手抄報6年級內容 篇3
對數的真數取值范圍
真數式子沒根號就只要求真數式大於零,如果有根號,要求真數大於零還要保證根號里的式子大於等於零(若為負數,則值為虛數)。底數要求大於0且不等於1。
對數函數真數為大於0,底數為大於零且不為1,但是對數的應為實數大於零真數大於0,底數大於0且不等於1大於0。
對數函數的一般形式為y=㏒(a)x,實際上就是指數函數的反函數(圖象關於直線y=x對稱的兩函數互為反函數),可表示為x=a^y,因此指數函數里對於a的規定(a>0且a≠1),同樣適用於對數函數。
定義域求解:對數函數y=logax的定義域是{x丨x>0},但如果遇到對數型復合函數的定義域的求解,除了要注意大於0以外,還應注意底數大於0且不等於1,如求函數y=logx(2x-1)的定義域,需同時滿足x>0且x≠1。
和2x-1>0,得到x>1/2且x≠1,即其定義域為{x丨x>1/2且x≠1}。
值域:實數集R,顯然對數函數無界。
定點:對數函數的函數圖像恆過定點(1,0)。
互不相容和互斥的區別
1、互斥事件定義中事件A與事件B不可能同時發生是指若事件A發生,事件B就不發生或者事件B發生,事件A就不發生。如,粉筆盒裡有3支紅粉筆,2支綠粉筆,1支黃粉筆,現從中任取1支,記事件A為取得紅粉筆,記事件B為取得綠粉筆,則A與B不能同時發生,即A與B是互斥事件。
2、對立事件的定義中的事件A與B不能同時發生,且事件A與B中「必有一個發生」是指事件A不發生,事件B就一定發生或者事件A發生,事件B就不發生。如,投擲一枚硬幣,事件A為正面向上,事件B為反面向上,則事件A與事件B必有一個發生且只有一個發生。所以,事件A與B是對立事件,但1中的事件A與B就不是對立事件,因為事件A與B可能都不發生。事件A的對立事件通常記作A。
3、如果事件A與B互斥,那麼事件A+B發生(即A、B中恰有一個發生)的概率,等於事件A、B分別發生的概率的和,即P(A+B)=P(A)+P(B),此公式可以由特殊情形中的既是互斥事件又是等可能性事件推導得到。一般地,如果事件A1、A2、…、An彼此互斥,那麼事件A1+A2+…+An發生(即A1、A2、…、An中有一個發生)的概率,等於這n個事件分別發生的概率的和,即P(A1+A2+…+An)=P(A1)+P(A2)+…+P(An)。
三角函數只能用於直角三角形嗎
三角函數公式不是只能用於直角三角形,三角函數公式對於任意角度,都有其值;相對應的函數值。只是對於直角三角形,三角函數有一個明顯的推理工程,便於理解。
三角函數一般用於計算三角形中未知長度的邊和未知的角度,在導航、工程學以及物理學方面都有廣泛的用途。另外,以三角函數為模版,可以定義一類相似的函數,叫做雙曲函數。常見的雙曲函數也被稱為雙曲正弦函數、雙曲餘弦函數等等。
三角函數(也叫做圓函數)是角的函數;它們在研究三角形和建模周期現象和許多其他應用中是很重要的。三角函數通常定義為包含這個角的直角三角形的兩個邊的比率,也可以等價的定義為單位圓上的各種線段的長度。
更現代的定義把它們表達為無窮級數或特定微分方程的解,允許它們擴展到任意正數和負數值,甚至是復數值。
數學手抄報6年級內容 篇4
【數學公式】
數量關系計算公式
1、單價×數量=總價
2、單產量×數量=總產量
3、速度×時間=路程
4、工效×時間=工作總量
5、加數+加數=和
6、一個加數=和—另一個加數
7、被減數—減數=差
8、減數=被減數—差
9、被減數=減數+差
10、因數×因數=積
11、一個因數=積÷另一個因數
12、被除數÷除數=商
13、除數=被除數÷商
14、被除數=商×除數
15、有餘數的除法:被除數=商×除數+余數
一個數連續用兩個數除,可以先把後兩個數相乘,再用它們的積去除這個數,結果不變。例:90÷5÷6=90÷(5×6)
1公里=1千米
1千米=1000米
1米=10分米
1分米=10厘米
1厘米=10毫米
1平方米=100平方分米
1平方分米=100平方厘米
【珠算讀寫數】
小小珠算真神奇,讀數寫數最容易。
四位一級是關鍵,讀寫都從高位起。
級前中0讀一個,級末有0不讀起。
億級萬級仿個級,讀完後面加單位。
一級一級往下寫,珠不靠梁0佔位。
【多位數的大小比較】
多位數大小看位數,位數多的數就大。
位數相同看高位,高位數大數就大。
【分數大小的比較】
分數大小的比較,分子、分母要記好。
分母相同看分子,分子大的分數大。
分子相同看分母,分母大的分數小。
【列方程解應用題】
列方程解應用題,抓住關鍵去分析。
已知條件換成數,未知條件換字母。
找齊相關代數式,連接起來讀一讀。
【計量單位對口歌】
小朋友,快排隊,手拉手對單位。看誰說得快又對。
人民幣單位元、角、分,進率是10要牢記。
1元得10角,1角得10分,1元等於100分。
米、分米、厘米和毫米。
單位是千米。
1米=10分米,1分米=10厘米,1厘米=10毫米。
米和千米也相臨,進率1000是特例。
噸與千克還有克,進率1000要牢記。
形體單位更容易,相臨100是面積,相臨1000是體積。
大單位,小單位,大小換算有規律。
從大到小乘進率,小數點向右移;從小到大除以進率,小數點向左移。
進率是10移一位,進率100移兩位,進率1000移三位。以此類推。
【分解質因數】
分解質因數,方法是短除。
除數是質數,商也是質數。
表示的形式很簡單:合數=質數×質數
公約數、公倍數與互質數
公約數,公倍數,關鍵要把「公」記住。
公有的約數叫做公約數,公約數中的,就叫公約數。
如果公約數只有1,它們就叫互質數。
公有的倍數叫做公倍數。公倍數中最小的,就叫最小公倍數。
求法有區別,千萬別失誤。
短除只把除數乘,是求公約數。
除數和商要連乘,是求最小公倍數。
【 垂直平分線定理 】
性質定理:在垂直平分線上的點到該線段兩端點的距離相等;
判定定理:到線段2端點距離相等的點在這線段的垂直平分線上
角平分線:把一個角平分的射線叫該角的角平分線。
定義中有幾個要點要注意一下的,就是角的角平分線是一條射線,不是線段也不是直線,很多時,在題目中會出現直線,這是角平分線的對稱軸才會用直線的,這也涉及到軌跡的問題,一個角個角平分線就是到角兩邊距離相等的點
性質定理:角平分線上的點到該角兩邊的距離相等
判定定理:到角的兩邊距離相等的點在該角的角平分線上
【 基本函數有哪些 】
正弦:sine餘弦:cosine(簡寫cos)
正切:tangent(簡寫tan)
餘切:cotangent(簡寫cot)
正割:secant(簡寫sec)
餘割:cosecant(簡寫csc)
數學手抄報6年級內容 篇5
時分秒
1、鍾面上有3根針,它們是(時針)、(分針)、(秒針),其中走得快的是(秒針),走得慢的是(時針)。
2、鍾面上有(12)個數字,(12)個大格,(60)個小格;每兩個數間是(1)個大格,也就是(5)個小格。
3、時針走1大格是(1)小時;分針走1大格是(5)分鍾,走1小格是(1)分鍾;秒針走1大格是(5)秒鍾,走1小格是(1)秒鍾。
4、時針走1大格,分針正好走(1)圈,分針走1圈是(60)分,也就是(1)小時。時針走1圈,分針要走(12)圈。
5、分針走1小格,秒針正好走(1)圈,秒針走1圈是(60)秒,也就是(1)分鍾。
6、時針從一個數走到下一個數是(1小時)。分針從一個數走到下一個數是(5分鍾)。秒針從一個數走到下一個數是(5秒鍾)。
7、鍾面上時針和分針正好成直角的時間有:(3點整)、(9點整)。
8、公式。(每兩個相鄰的時間單位之間的進率是60)
1時=60分1分=60秒
半時=30分60分=1時
60秒=1分30分=半時
測量
1、在生活中,量比較短的物品,可以用(毫米、厘米、分米)做單位;量比較長的物體,常用(米)做單位;測量比較長的路程一般用(千米)做單位,千米也叫(公里)。
2、1厘米的長度里有(10)小格,每小格的長度(相等),都是(1)毫米。
3、1枚1分的硬幣、尺子、磁卡、小紐扣、鑰匙的厚度大約是1毫米。
4、在計算長度時,只有相同的長度單位才能相加減。
小技巧:換算長度單位時,把大單位換成小單位就在數字的末尾添加0(關系式中有幾個0,就添幾個0);把小單位換成大單位就在數字的末尾去掉0(關系式中有幾個0,就去掉幾個0)。
5、長度單位的關系式有:(每兩個相鄰的長度單位之間的進率是10)
①進率是10:
1米=10分米,1分米=10厘米,
1厘米=10毫米,10分米=1米,
10厘米=1分米,10毫米=1厘米,
②進率是100:
1米=100厘米,1分米=100毫米,
100厘米=1米,100毫米=1分米
③進率是1000:
1千米=1000米,1公里==1000米,
1000米=1千米,1000米=1公里
6、當我們表示物體有多重時,通常要用到(質量單位)。在生活中,稱比較輕的物品的質量,可以用(克)做單位;稱一般物品的質量,常用(千克)做單位;計量較重的或大宗物品的質量,通常用(噸)做單位。
小技巧:在「噸」與「千克」的換算中,把噸換算成千克,是在數字的末尾加上3個0;
把千克換算成噸,是在數字的末尾去掉3個0。
7、相鄰兩個質量單位進率是1000。
1噸=1000千克1千克=1000克
1000千克=1噸1000克=1千克
倍的認識
1、求一個數是另一個數的幾倍用除法:一個數÷另一個數=倍數
2、求一個數的幾倍是多少用乘法:這個數×倍數=這個數的幾倍
多位數乘一位數
1、估算。(先求出多位數的近似數,再進行計算。如497×7≈3500)
2、①0和任何數相乘都得0;②1和任何不是0的數相乘還得原來的數。
3、因數末尾有幾個0,就在積的末尾添上幾個0。
4、三位數乘一位數:積有可能是三位數,也有可能是四位數。
公式:速度×時間=路程
每節車廂的人數×車廂的數量=全車的人數
5、(關於「大約)應用題:
①條件中出現「大約」,而問題中沒有「大約」,求准確數。→(=)
②條件中沒有,而問題中出現「大約」。求近似數,用估算。→(≈)
③條件和問題中都有「大約」,求近似數,用估算。→(≈)
四邊形
1、有4條直的邊和4個角封閉圖形我們叫它四邊形。
2、四邊形的特點:有四條直的邊,有四個角。
3、長方形的特點:長方形有兩條長,兩條寬,四個直角,對邊相等。
4、正方形的特點:有4個直角,4條邊相等。
5、長方形和正方形是特殊的平行四邊形。
6、平行四邊形的特點:
①對邊相等、對角相等。
②平行四邊形容易變形。(三角形不容易變形)
7、封閉圖形一周的長度,就是它的周長。
8、公式。
正方形的周長=邊長×4
正方形的邊長=周長÷4,
長方形的周長=(長+寬)×2
長方形的長=周長÷2-寬,
長方形的寬=周長÷2-長
分數的初步認識
1、把一個物體或一個圖形平均分成幾份,取其中的幾份,就是這個物體或圖形的幾分之幾。
2、把一個整體平均分得的份數越多,它的每一份所表示的數就越小。
3、①分子相同,分母小的分數反而大,分母大的分數反而小。
②分母相同,分子大的分數就大,分子小的分數就小。
4、①相同分母的分數相加、減:分母不變,只和分子相加、減。
②1與分數相減:1可以看作是與減數分母相同的,同分子分母的分數
C. 小學數學手抄報的知識。
師大版小學數學五年級(下冊)知識點
一單元:《分數乘法》
分數乘法(一)
知識點:1、理解分數乘整數的意義。分數乘整數的意義同整數乘法的意義相同,就是求幾個相同加數的和的簡便運算。
2、分數乘整數的計算方法。分母不變,分子和整數相乘的積作分子。能約分的要約成最簡分數。
3、計算時,可以先約分在計算。
分數乘法(二)
知識點:1、結合具體情境,進一步探索並理解分數乘整數的意義,並能正確進行計算。
2、能夠求一個數的幾分之幾是多少。
3、理解打折的含義。例如:九折,是指現價是原價的十分之九。
分數乘法(三)
知識點:1、分數乘分數的計算方法,並能正確進行計算。
分子相乘做分子,分母相乘做分母,能約分的可以先約分。計算結果要求是最簡分數。
2、比較分數相乘的積與每一個乘數的大小。
真分數相乘積小於任何一個乘數;真分數與假分數相乘積大於真分數小於假分數。
二單元:《長方體(一)》
長方體的認識
知識點:1、認識長方體、正方體,了解各部分的名稱。
2、長方體、正方體各自的特點。
頂 點 面 棱
個 數 個 數 形 狀 大小關系 條數 長度關系
8 6 都是長方形,特殊的有兩個相對的面是正方形,其餘四個面是完全一樣的長方形。 相對的面是完全一樣的長方形。 12 可以分為三組,相對的棱平行且相等。
8 6 都是正方形。 每個面都是正方形。 12 長度都相等。
3、知道正方體是特殊的長方體。
4、能計算長方體、正方體的棱長總和。
長方體的棱長總和=(長+寬+高)*4或者是長*4+寬*4+高*4
正方體的棱長總和=棱長*12
靈活運用公式,能求出長方體的長、寬、高或是正方體的棱長。
展開與折疊
知識點:1、認識並了解長方體和正方體的平面展開圖。
2、了解正方體平面展開圖的幾種形式,並以此來判斷。
長方體的表面積
知識點:1、理解表面積的意義。是指六個面的面積之和。
2、長方體和正方體表面積的計算方法。
3、能結合生活中的實際情況,計算圖形的表面積。
露在外面的面
知識點:1、在觀察中,通過不同的觀察策略進行觀察。
如:一種是看每個紙箱露在外面的面,再加到一起;另一種是分別從正面、上面、側面進行不同角度的觀察,看每個角度都能看到多少個面,再加到一起。
2、發現並找出堆放的正方體的個數與露在外面的面的面數的變化規律。
三單元:《分數除法》
倒數
知識點:1、發現倒數的特徵並理解倒數的意義。
如果兩個數的乘積是1,那麼我們稱其中一個數是另一個數的倒數。倒數是對兩個數來說的,並不是孤立存在的。
2、求倒數的方法。
把這個數的分子和分母調換位置。
3、1的倒數仍是1;0沒有倒數。
0沒有倒數,是因為在分數中,0不能做分母。
分數除法(一)
知識點:1、分數除以整數的意義及計算方法。
分數除以整數,就是求這個數的幾分之幾是多少。
分數除以整數(0除外)等於乘這個數的倒數。
分數除法(二)
知識點:1、一個數除以分數的意義和基本算理。
一個數除以分數的意義與整數除法的意義相同;一個數除以分數等於乘這個數的倒數。
2、掌握一個數除以分數的計算方法。
除以一個數(0除外)等於乘這個數的倒數。
3、比較商與被除數的大小。
除數小於1,商大於被除數;
除數等於1。商等於被除數;
除數大於1,商小於被除數。
分數除法(三)
知識點:1、列方程「求一個數的幾分之幾是多少」。
2、利用等式的性質解方程。
3、理解打折的含義。
如:打8折就是指現價是原價的十分之八。
數學與生活
粉刷牆壁
知識點:1、明確我們在粉刷教室牆壁時必須知道的條件。
2、根據實際情況進行計算相應的面積。
折疊:
知識點:1、體會立體圖形與展開圖形之間的關系,發展空間觀念。
2、能正確判斷平面展開圖所對應的簡單立體圖形。
四單元:《長方體(二)》
體積與容積
知識點:1、體積與容積的概念。
體積:物體所佔空間的大小叫作物體的體積。
容積:容器所能容納入體的體積叫做物體的容積。
體積單位
知識點:1、認識體積、容積單位。
常用的體積單位有:立方厘米、立方分米、立方米。
2、感受1立方米、1立方分米、1立方厘米以及1升、1毫升的實際意義。
補充知識點:冰箱的容積用「升」作單位;我們飲用的自來水用「立方米」作單位。
長方體的體積
知識點:1、結合具體情境和實踐活動,探索並掌握長方體、正方體體積的計算方法。
長方體的體積=長*寬*高
正方體的體積=棱長*棱長*棱長
長方體(正方體)的體積=底面積*高
2、能利用長方體(正方體)的體積及其他兩個條件求出問題。如:長方體的高=體積/長/寬
補充知識點:長方體的體積=橫截面面積*長
體積單位的換算
知識點:1、體積、容積單位之間的進率。
相鄰兩個體積單位、容積單位之間的進率是1000。
有趣的測量
知識點:1、不規則物體體積的測量方法。
2、不規則物體體積的計算方法。
五單元:《分數混合運算》
分數混合運算(一)
知識點:1、體會分數混合運算的運算順序和整數是一樣的。
分數混合運算(二)
知識點:整數的運算律在分數運算中同樣適用。
分數混合運算(三)
知識點:1、利用方程解決與分數運算有關的實際問題。
2、分數中的估算。
3、利用線段圖來分析題中的數量關系。
4、對最後結果的檢驗。
六單元:《百分數》
百分數的意義
知識點:1、百分數的意義。
百分數表示一個數另一個數的百分之幾。百分數也叫百分比、百分率。
2、能正確讀寫百分數。
3、結合生活中具體的例子理解百分數的意義。
合格率(百分數的應用一)
知識點:1、解決一個數是另一個數的百分之幾的實際問題。
這部分知識同分數除法中求一個數是另一個數的幾分之幾相同。
2、能正確地將小數、分數化成百分數。
小數化成百分數的方法:把小數化成百分數,只要把小數點向右移動兩位,同時在後面添上百分號;把分數化成百分數,可以先把分數化成小數(除不盡時,通常保留三位小數),再寫成百分數;也可以把分子分母同時乘一個數將其化成一百分之幾的數,再寫成百分數。
蛋白質含量(百分數的應用二)
知識點:1、求一個數的百分之幾是多少。方法同求一個數的幾分之幾是多少。
2、百分數化成小數、分數的方法。
百分數化成分數,先把百分數改寫成分數,能約分的要約成最簡分數。百分數化成小數時,要把百分號去掉,同時把小數點向左移動兩位。
這個月我當家(百分數應用三)
知識點:1、用方程解決「已知一個數的百分之幾多少,求這個數」的實際問題。
2、體會百分數與統計的關系。
數學與購物
估計費用
知識點:根據實際的問題,選擇合理的估算策略,進行估算。
購物策略
知識點:根據實際需要,對常見的幾種優惠策略加以分析和比較,並能夠最終選擇最為優惠的方案。
包裝的學問
知識點:1、探索多個相同長方體疊放後使其表面積最小的最有策略。
2、掌握解決問題的基本方法和過程。
七單元:《統計》
扇形統計圖
知識點:1、認識扇形統計圖,了解扇形統計圖的特點與作用。
2、能讀懂扇形統計圖,並能從中獲得相應的數學信息。
奧運會(統計圖的選擇)
知識點:1、了解條形統計圖、扇形統計圖、折線統計圖的特點。
條形統計圖便於看出數據的多少;扇形統計圖能清楚地看出整體與部分之間的關系;折線統計圖能看出數據的變化趨勢。
2、能夠根據需要選擇最為直觀、有效地統計圖表示數據。
中位數和眾數
知識點:1、中位數和眾數的意義。
將一組數據從小到大(或從大到小)排列,中間的數稱為這組數據的中位數。
一組數據中出現次數最多的數稱為這組數據的眾數。
2、中位數和眾數的求法。
將一組數據按大小的順序排列,如果是奇數個數據,中間的數就為這組數據的中位數,如果是偶數個數據,中間兩個數的平均數為這組數據的中位數。
眾數,就是一組數據中出現次數最多的,有可能是多個眾數。
3、能根據具體的問題,選擇合適的統計兩表示數據的不同特徵。
了解同學
知識點:綜合運用所學的統計知識,發展學生的統計觀念。
數學北師大版五年級下冊知識點羅列匯總表
單元 各單元目錄 對 應 知 識 點
第一單元
分數乘法 分數乘法(一) 1、分數乘整數「幾個幾分之幾是多少」的意義
2、分數乘整數的計算方法
3、解決相應的分數乘整數的實際問題
分數乘法(二) 1、分數乘整數「一個數的幾分之幾是多少」的意義
2、解決相應的分數乘整數的實際問題
分數乘法(三) 1、分數乘分數的意義
2、分數乘分數的計算方法
3、解決相應分數乘分數的實際問題
第二單元
長方體(一) 長方體的認識 1、長方體、正方體各部分名稱
2、長方體和正方體特點
3、解決運用長方體和正方體特點的相應問題
展開與折疊 1、長方體、正方體的展開圖,
2、對長方體、正方體特點的再認識
長方體的表面積 1、長方體、正方體的表面積
2、長方體、正方體表面積的計算方法
3、解決運用長方體和正方體表面積的相應問題
露在外面的面 1.解決有關物體外露面的個數及面積的問題
第三單元
分數除法 倒數 1.倒數的意義
2.求一個數的倒數
分數除法(一) 1、分數除以整數的意義
2、分數除以整數的計算方法
3、解決相應分數除以整數的的實際問題
分數除法(二) 1、整數除以分數的意義
2、一個數除以分數的計算方法
3、解決相應一個數除以分數的的實際問題
分數除法(三) 1、解簡單的分數方程:ax=b
2、用方程解決簡單的有關分數的實際問題
數學
與生活 分刷牆壁 1、綜合應用圖形的面積、計算解決生活中的問題
折疊 1、立體圖和平面展開圖之間的關系
2、判斷平面展開圖所對應的簡單立體圖形
第四單元
長方體(二) 體積和容積 1、體積的含義
2、容積的含義
體積單位 1、體積單位:立方米、立方分米、立方厘米
2、容積單位:升、毫升
1、長方體、正方體的計算方法
長方體的體積 2、解決長方體正方體的體積的實際問題
體積單位的換算 1、體積、容積單位之間的進率
2、體積、容積單位之間換算。
有趣的測量 1、不規則物體體積的測量方法
第五單元
分數混合運算 分數混合運算(一) 1、分數混合運算順序
2、「求一個數是另一個數的幾分之幾」的混合實際運用
分數混合運算(二) 1、分數混合運算律
2、「求一個數比另一個數多(少)幾分之幾」的混合實際運用
分數混合運算(三) 1、解稍復雜的分數方程:ax±b=c,ax±bx=c,
2、利用方程解決與分數運算有關的實際問題
百分數 百分數的認識 1、百分數的意義
2、正確讀寫百分數
合格率 1、小數、分數化成百分數
2、合格率、成活率、出勤率等的意義
3、求「一個數是另一個數的百分之幾」的實際運用
蛋白質含量 1、百分數化成小數、分數
2、求「一個數的百分之幾是多少」的實際運用
這月我當家 1、百分數與統計的聯系
2、「已知一個數的百分之幾是多少,求這個數」的實際運用
3、用方程解決有關百分數的簡單實際問題
數學
與購物 估計費用 1、選擇合理的估算策略
購物策略 1、根據實際需要,比較常見的幾種優惠策略
包裝的學問 1、多個相同長方體疊放後使其表面積最小的最優策略
這些是知識點,你抄上吧。花邊可以畫的好看、簡單一點
D. 數學手抄報圖
數學手抄報圖
數學,作為人類思維的表達形式,反映了人們積極進取的意志、縝密周詳的邏輯推理及對完美境界的追求。下面我為大家帶來了數學手抄報,一起來看看吧。
數學手抄報1
數學手抄報2
數學手抄報3
數學手抄報4
數學手抄報5
數學手抄報6
數學手抄報7
數學手抄報8
數學手抄報9
數學手抄報10
數學手抄報11
數學手抄報12
數學手抄報13
數學手抄報14
數學手抄報15
數學手抄報內容1:小學數學公式大全
1,加法交換律:兩數相加交換加數的位置,和不變。
2,加法結合律:三個數相加, 先把前兩個數相加,或先把後兩個數相加,再同第三個數相加,和不變。
3,乘法交換律:兩數相乘,交換因數的位置,積不變。
4,乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。
5,乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。
6,除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。 0除以任何不是0的數都得0。
簡便乘法:被乘數,乘數末尾有0的乘法,可以先把0前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。
7,什麼叫等式 等號左邊的數值與等號右邊的數值相等的式子叫做等式。
等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,等式仍然成立。
8,什麼叫方程式 答:含有未知數的等式叫方程式。
9, 什麼叫一元一次方程式 答:含有一個未知數,並且未知數的次 數是一次的等式叫做一元一次方程式。
學會一元一次方程式的例法及計算。即例出代有χ的算式並計算。
10,分數:把單位「1」平均分成若干份,表示這樣的一份或幾分的數,叫做分數。
11,分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
12,分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。
異分母的分數相比較,先通分然後再比較;若分子相同,分母大的反而小。
13,分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。
14,分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。
15,分數除以整數(0除外),等於分數乘以這個整數的倒數。
16,真分數:分子比分母小的.分數叫做真分數。
17,假分數:分子比分母大或分子和分母相等的分數叫做假分數。假分數大於或等於1。
18,帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。
19,分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小不變。
20,一個數除以分數,等於這個數乘以分數的倒數。
數學手抄報內容2:數學的小故事
數學名人小故事-康托爾
由於研究無窮時往往推出一些合乎邏輯的但又荒謬的結果(稱為「悖論」),許多大數學家唯恐陷進去而採取退避三舍的態度。在1874—1876年期間,不到30歲的年輕德國數學家康托爾向神秘的無窮宣戰。他靠著辛勤的汗水,成功地證明了一條直線上的點能夠和一個平面上的點一一對應,也能和空間中的點一一對應。這樣看起來,1厘米長的線段內的點與太平洋面上的點,以及整個地球內部的點都「一樣多」,後來幾年,康托爾對這類「無窮集合」問題發表了一系列文章,通過嚴格證明得出了許多驚人的結論。康托爾的創造性工作與傳統的數學觀念發生了尖銳沖突,遭到一些人的反對、攻擊甚至謾罵。有人說,康托爾的集合論是一種「疾病」,康托爾的概念是「霧中之霧」,甚至說康托爾是「瘋子」。來自數學權威們的巨大精神壓力終於摧垮了康托爾,使他心力交瘁,患了精神分裂症,被送進精神病醫院。
真金不怕火煉,康托爾的思想終於大放光彩。1897年舉行的第一次國際數學家會議上,他的成就得到承認,偉大的哲學家、數學家羅素稱贊康托爾的工作「可能是這個時代所能誇耀的最巨大的工作。」可是這時康托爾仍然神志恍惚,不能從人們的崇敬中得到安慰和喜悅。1918年1月6日,康托爾在一家精神病院去世。
數學手抄報內容3:數學符號的起源
數學除了記數以外,還需要一套數學符號來表示數和數、數和形的相互關系。數學符號的發明和使用比數字晚,但是數量多得多。現在常用的有200多個,初中數學書里就不下20多種。它們都有一段有趣的經歷。
例如加號曾經有好幾種,現在通用"+"號。
"+"號是由拉丁文"et"("和"的意思)演變而來的。十六世紀,義大利科學家塔塔里亞用義大利文"più"(加的意思)的第一個字母表示加,草為"μ"最後都變成了"+"號。
"-"號是從拉丁文"minus"("減"的意思)演變來的,簡寫m,再省略掉字母,就成了"-"了。
到了十五世紀,德國數學家魏德美正式確定:"+"用作加號,"-"用作減號。
乘號曾經用過十幾種,現在通用兩種。一個是"×",最早是英國數學家奧屈特1631年提出的;一個是"· ",最早是英國數學家赫銳奧特首創的。德國數學家萊布尼茨認為:"×"號象拉丁字母"X",加以反對,而贊成用"· "號。他自己還提出用"п"表示相乘。可是這個符號現在應用到集合論中去了。
數學手抄報內容4:數學的笑話
小明小學數學考試,回來後他媽問他考得怎麼樣.小明說:"我基本上會做,但有一題3乘7,我怎麼也想不出來.最後打鈴了,我不管三七二十一就寫了個18."
奶奶:「1+2等於幾?」
孫子:「等於3。」
奶奶:「答對了,因此你會得到3塊糖。」
孫子:「早知道是這樣,我就說是等於5就好啦!」
數學手抄報內容5:動物中的數學家
蜜蜂蜂房是嚴格的六角柱狀體,它的一端是平整的六角形開口,另一端是封閉的六角菱錐形的底,由三個相同的菱形組成,組成底盤的菱形的鈍角為109度28分,所有的銳角為70度32分,這樣既堅固又省料,蜂房的巢壁厚0.073毫米,誤差極少。
丹頂鶴總是成群結隊遷飛,而且排成「人」字開。「人」字形的角度是110度,更精確地計算還表明「人」字形夾角的一半——即每邊與鶴群前進方向的夾角為54度44分8秒!而金剛石結晶體的角度正好也是54度44分8秒!是巧合還是某種大自然的「默契?」
蜘蛛結的「八卦」形網,是既復雜又美麗的八角形幾何圖案,人們即使用直尺和圓規也很難畫出像蜘蛛那樣勻稱的圖案。
冬天,貓睡覺時總是把身體抱成一個球形,這其間也有數學,因為球形使身體的表面積最小,從而散發的熱量也最少。
真正的數學「天才」是珊瑚蟲。珊瑚蟲在自己的身上記下「日歷」,它們每年在自己的體壁上「刻畫」出365條斑紋,顯然是一天「畫」一條。奇怪的是,古生物學業家發現3億5千萬年前的珊瑚蟲每年「畫」出400幅「水彩畫」。天文學家告訴我們,當時地球一天僅21.9小時,一年不是365天,而是400天。
數學手抄報內容6:數學腦筋急轉彎
船主年齡
你有一艘船,船上有十五位船員,六十位乘客,三百噸貨物。你能根據上面的提
示,算出船主的年齡嗎?
三位女神
三位女神坐在一個古老的印度寺廟里。
她們的名字叫真理,謊言,和智慧。她們有以下的對話
左邊那個問:「誰坐在你旁邊
「真理」她回答說。中間那個問:「你是誰
「智慧,」她回答。
現在清楚誰是誰了。
數學手抄報內容7:數學的名言
羅素說:「數學是符號加邏輯」
畢達哥拉斯說:「數支配著宇宙」
哈爾莫斯說:「數學是一種別具匠心的藝術」
米斯拉說:「數學是人類的思考中最高的成就」
培根(英國哲學家)說:「數學是打開科學大門的鑰匙」
布爾巴基學派(法國數學研究團體)認為:「數學是研究抽象結構的理論」
黑格爾說:「數學是上帝描述自然的符號」
魏爾德(美國數學學會主席)說:「數學是一種會不斷進化的文化」
柏拉圖說:「數學是一切知識中的最高形式」
考特說:「數學是人類智慧皇冠上最燦爛的明珠」
;E. 四年級數學除數是兩位數的除法手抄報內容
做題就能考100
F. 簡單五年級數學手抄報內容
如果除到被除數的末尾仍有餘數,就在余數後面添「0」,再繼續除。
5.除數是小數的除法計演算法則:先移動除數的小數點,使它變成整數,除數的小數點也向右移動幾位
(位數不夠的補「0」),然後按照除數是整數的除法法則進行計算。
6.積的近似數:四捨五入是一種精確度的計數保留法,與其他方法本質相同。但特殊之處在於,採用四
舍五入,能使被保留部分的與實際值差值不超過最後一位數量級的二分之一:假如0~9等概率出現的話,
對大量的被保留數據,這種保留法的誤差總和是最小的。
7.數的互化:
(1)小數化成分數
原來有幾位小數,就在1的後面寫幾個零作分母,把原來的小數去掉小數點作分子,能約分的要約分。
(2)分數化成小數
用分母去除分子。能除盡的就化成有限小數,有的不能除盡,不能化成有限小數的,一般保留三位小
數。
(3)化有限小數
一個最簡分數,如果分母中除了2和5以外,不含有其他的質因數,這個分數就能化成有限小數;如果分
母中含有2和5以外的質因數,這個分數就不能化成有限小數。
(4)小數化成百分數
只要把小數點向右移動兩位,同時在後面添上百分號。
(5)百分數化成小數
把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。
(6)分數化成百分數
通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。
(7)百分數化成小數
先把百分數改寫成分數,能約分的要約成最簡分數。
8.小數的分類:
(1)有限小數:小數部分的數位是有限的小數,叫做有限小數。例如:41.7、25.3、0.23都是有限小
數。
(2)無限小數:小數部分的數位是無限的小數,叫做無限小數。例如:4.33……3.1415926……
(3)無限不循環小數:一個數的小數部分,數字排列無規律且位數無限,這樣的小數叫做無限不循環小
數。
(4)循環小數:一個數的小數部分,有一個數字或者幾個數字依次不斷重復出現,這個數叫做循環小
數。例如:3.555……0.0333……12.109109……;一個循環小數的小數部分,依次不斷重復出現的數字叫做這
個循環小數的循環節。例如:3.99……的循環節是「9」,0.5454……的循環節是「54」。
9.循環節:如果無限小數的小數點後,從某一位起向右進行到某一位止的一節數字循環出現,首尾銜
接,稱這種小數為循環小數,這一節數字稱為循環節。把循環小數寫成個別項與一個無窮等比數列的和的形
式後可以化成一個分數。
10.簡易方程:方程ax±b=c(a,b,c是常數)叫做簡易方程。
11.方程:含有未知數的等式叫做方程。(注意方程是等式,又含有未知數,兩者缺一
G. 五年級數學手抄報 小數除法
……看了孩子們的復習計劃,我心裡有了底。教學時,我採用了這樣的教學程序:第一部分:小報交流。說說你認為本單元中難理解,掌握得不太好的知識點分別是什麼?你准備採用什麼方法進行復習。
第二部分:練習與運用。事先將學生手抄報上呈現的典型練習題抄寫在卡片上,一起觀察,說說這類習題解答時要注意什麼。如:單位之間的換算。學生都說最容易搞錯。於是,我把書上第五題的6小題寫在黑板上:
480米=( )千米 0.2 平方米=( )平方分米
78克=( )千克 3.46噸=( )千克
150厘米=( )米 0.07 升=( )毫升
先讓學生觀察這六題,再讓他們分成兩大類。每一類用的是什麼方法。選擇一個習題跟同桌說說「我是這樣想的」。等同桌交流後,我再指名幾個學生說說。要求學生思考:哪幾題要特別注意。有的說150厘米容易看作1.5米,0.2 平方米容易看作2平方分米。我再啟發他們思考:解決這類填空題要用到哪些相關的知識。學生明白了:除了要知道從什麼單位化成什麼單位外,還要了解相關單位之間的進率,考慮小數點往哪裡移動,移了幾位等等。學生之間相互啟發,我這個數學老師自然就退居 「二線」。
第三部分:走進作業「超市」。通過這節課的復習,學生自己設計一份作業練習,針對自己平時掌握得不太好的知識點再次進行復習。你看:一位同學設計的作業還比較有層次。直接寫出答數:
A組 :3.1×10 = 0.09×100= 1.36×10= 0.8×1000=
0.007×1000 = 3.1÷10 = 0.9÷100= 60÷1000=
B組:54. 2×( )=5 42 102. 2÷( )=0 .1022
2. 17 ×( )=217 10÷( )=0 .1
0.048×( )=48 540. 2÷( )= 54.02
C組:在○里填上「×」或者「÷」,在( )里填上合適的數。
4.58○( )=45.8 4.58○( )=0.458
4.58○( )=458 4.58○( )=0.0458
4.58○( )=4580 4.58○( )=0.00458
批改著學生設計的一份份富有個性的作業,我感到這個單元的復習課挺有新意,效果也比較好。於是,引起了我的幾點思考。
教學反思
1、單元復習課怎麼上?
翻開五年級新教材,每一單元的「整理與復習課」思路都很清晰。象小數乘除法這一單元,教材也是按照了「回顧與整理」、「練習與應用」、「探索與實踐」 、「評價與反思」四大部分。聯系前面幾個單元的整理與復習,我都是從教材出發,先與學生進行知識的梳理,然後進行針對性的練習。如果我一直用那樣的方法來上,自己感覺形式比較單一。尤其我感到復習課上知識掌握好的同學沒有興趣,覺得老師在炒冷飯,平時知識掌握有缺漏的同學,復習課上也不是十分投入,總覺得老師要上復習課,自己未必有內心需求。於是,我在台上「津津有味」地講著,學生索然無味地聽著,我要強調這個知識點,強調那個計演算法則,學生仍「我行我素」,課堂作業上照樣錯,我照樣生氣。於是,作為老師的我們開始抱怨,學生在題海中「流連忘返」,一個一個單元就這樣過去,老師開始自我安慰:「任務完成就好」。
所以,我一直思考,復習課究竟怎麼上?以什麼形式上好一些?今天我大膽進行了嘗試,上面的復習形式,既節約了時間,效果似乎要好一些。
2、問題緣自哪裡?
特級教師華應龍老師在其講座《課堂應差錯而精彩》中說到:要正確利用學生的錯誤資源。我想:基於這樣的思考,課前讓學生把自己認為最混淆的概念,掌握得不太好的內容先整理出來。上課前,我可以進行篩選重點復習什麼內容。同學們認為單位之間的進率最容易做錯,解決問題做得不是很好,我就多化點時間進行復習。作業中學生乘除法計算的正確率不是很高,平時我就要求學生加強口算訓練,注意驗算習慣的培養,並在班內開展一周作業無差錯競賽,每周一宣布獲獎同學名單,獎勵優點卡。今天課堂上的問題均有學生提供,這樣就引起了學生的學習興趣,讓枯燥的復習內容變得生動些。
3、注意在復習中反思
上好復習課,我認為有兩點不能忽視:復習課前,教師要加強自我反思,這一單元的教學重點、難點是什麼,平時課堂上學生的表現怎樣,作業情況中問題最大的是什麼?而學生呢,學完一個單元後,也要進行反思。所以,在手抄報的背後,我讀懂了學生對學習的反思,這種反思其實就是一種重要的學習資源,也是我的教學資源,這也為學生搭建了一個進步的台階。它提醒我以後在上復習課前,應該調整自己的教學狀態,應該注意復習內容的安排,創新復習形式,多多反思,讓復習課真正起到「溫故而知新」的作用。
H. 三年級數學知識點手抄報內容
I. 三年級數學手抄報簡單又漂亮
一、除法
(一)口算除法
1、整+數除整十數或幾百幾十的數的口算方法。
(1)算除法,想乘法;比如60÷30=()就可以想(2)*30=60
(2)利用表內除法計算。利用除法運算的性質:將被除數和除數同時擴大或縮小相同的倍數,商不變。如:200÷50想20÷5=4,所以200÷50=4。
2、兩位數除兩位數或三位數的估算方法:除法估算一般是把算式中不是整十數或幾百幾十的數用「四捨五入」法估算成整十數或幾百幾十的數,再進行口算。注意結果用「≈」號。
(二)筆算除法
1、除數是兩位數的筆算除法計算方法:從被除數的高位除起,先用除數試除被除數的前兩位,如果前兩位數比除數小,就看前三位。除到被除數的哪一位,商就寫在那一位的上面。每次除後餘下的數必須比除數小。
2、除數不是整十數的兩位數的除法的試商方法:如果除數是一個接近整一數的兩位數,就用「四捨五入」法把除數看作與它接近的整十數試商,也可以把除數看作與它接近的幾十五,再利用一位數的乘法直接確定商。
二、除法的應用
有一天,數字卡片在一齊吃午飯的時候,最小的一位說起話來了。0弟弟說:「我們大傢伙兒,一齊拍幾張合影吧,你們覺得怎樣樣?」0的兄弟姐妹們一口齊聲的說:「好啊。」8哥哥說:「0弟弟的主意可真不錯,我就做一回好人吧,我老8供應照相機和膠卷,好吧?」老4說話了:「8哥,好是好,就是太麻煩了一點,到不如用我的數碼照相機,就這么定了吧。"干是,它們變忙了起來,最後+號幫它們拍好了,就立刻把數碼照相機送往沖洗店,沖是沖好了,電腦姐姐身手想它們要錢,可它們到底誰付錢呢?它們一個個獃獃的望著對方,這是電腦姐姐說:「一共5元錢,你們一共十一個兄弟姐妹,平均一人付多少元錢?」在它們十一個人中,就數老六最聰明,這回它還是第一個算出了結果,你明白它是怎樣算出來的嗎?
解析:一共需要支付5元,分別有11個兄弟姐妹,所以運用到除法的概念,得出5÷11≈0.454545...... 發現根本除不盡,所以我們用「四捨五入」法估算為0.45,即每個兄弟姐妹分別給0.45元。
J. 數學的手抄報圖片
關於數學的手抄報圖片集錦
數學,就像一座高峰,直插雲霄,剛剛開始攀登時,感覺很輕松,但我們爬得越高,山峰就變得越陡,讓人感到恐懼,這時候,只有真正喜愛數學的人才會有勇氣繼續攀登下去,所以,站在數學的高峰上的人,都是發自內心喜歡數學的。下面是我為大家准備的關於數學的手抄報圖片,希望大家喜歡。
關於數學的手抄報圖片1
關於數學的手抄報圖片2
關於數學的手抄報圖片3
關於數學的手抄報圖片4
關於數學的手抄報圖片5
關於數學的手抄報圖片6
關於數學的手抄報圖片7
關於數學的手抄報圖片8
關於數學的手抄報圖片9
關於數學的手抄報圖片10
關於數學的手抄報圖片11
關於數學的手抄報圖片12
關於數學的手抄報圖片13
關於數學的手抄報內容1:
1、數學支配著宇宙。
2、數學是科學之王。
3、從最簡單的做起。
4、數學是無窮的科學。
5、問題是數學的心臟。
6、上帝是一位算術家。
7、想像比知識更重要。
8、數學不僅僅是解題。
9、數學是符號加邏輯。
10、寧可少些,但要好些。
11、哪裡有數,哪裡就有美。
12、思維自疑問和驚奇開始。
13、一個數學家越超脫越好。
14、美包含在體積和秩序中。
15、數學是鍛煉思想的體操。
16、數學的本質在於它的自由。
17、數學是打開科學大門的鑰匙。
18、數學是各式各樣的證明技巧。
19、純數學是魔術家真正的魔杖。
20、請把書上的例題親自做一遍。
21、天才?請你看看我的臂肘吧。
22、數學是一種別具匠心的藝術。
23、數學是研究抽象結構的理論。
24、數學是上帝描述自然的符號。
25、學習數學的惟一方法是做數學。
26、聰明出於勤奮,天才在於積累。
27、數學是一切知識中的最高形式。
28、學數學,絕不會有過份的努力。
29、數學是最寶貴的研究精神之一。
30、數學是一種會不斷進化的文化。
31、數學是人類的思考中最高的成就。
32、數學之美是很自然明白地擺著的。
關於數學的手抄報內容2:
數學是科學大門的鑰匙,忽視數學必將傷害所有的知識,因為忽視數學的人是無法了解任何其他科學乃至世界上任何其他事物的。下面是為大家收集的數學文化之詩歌中的數字,供大家參考。
詩詞與數字:中國古代的詩詞不乏數字美的佳句。李白的「朝辭白帝彩雲間, 千里江陵一日還。 兩岸猿聲啼不住, 輕舟已過萬重山」 , 是公認的長江漂流的名篇, 展示了一幅輕快飄逸的畫卷。 藉助數字達到了高度的藝術誇張。
杜甫的「兩個黃鸝鳴翠柳, 一行白鷺上青天。 窗含西嶺千秋雪, 門泊東吳萬里船」 , 同樣膾炙人口, 數字深化了時空意境。
他還有「霜皮溜雨四十圍, 黛色參天二千尺」 , 「青松恨不高千尺, 惡竹應須斬萬竿」 等, 表現出強烈的誇張和愛憎。
岳飛的「三十功名塵與土, 八千里路雲和月」 , 陸游的「三萬里河東入海, 五千仞岳上摩天」 , 同樣是壯懷激烈的。
還有一些狀似打油詩之作, 也含有一定的哲理。如唐詩《題百鳥歸巢圖》 : 「一隻一隻復一隻, 五六七八九十隻, 鳳凰何少鳥何多? 食盡人間千萬石。 」
傳說鄭板橋見人賞雪吟詩, 戲作: 「一片二片三四片, 五六七八九十片, 千片萬片無數片, 飛入梅花總不見。 」 讀來妙題橫生。
關於數學的手抄報內容3:
一、數學技能的含義及作用
技能是順利完成某種任務的一種動作或心智活動方式。它是一種接近自動化的、復雜而較為完善的動作系統,是通過有目的、有計劃的練習而形成的。數學技能是順利完成某種數學任務的動作或心智活動方式。它通常表現為完成某一數學任務時所必需的一系列動作的協調和活動方式的自動化。這種協調的動作和自動化的活動方式是在已有數學知識經驗基礎上經過反復練習而形成的。如學習有關乘數是兩位數的乘法計算技能,就是在掌握其運演算法則的基礎上通過多次的實際計算而形成的。數學技能與數學知識和數學能力既有密切的聯系,又有本質上的區別。它們的區別主要表現為:技能是對動作和動作方式的概括,它反映的是動作本身和活動方式的熟練程度;知識是對經驗的概括,它反映的是人們對事物和事物之間相互聯系的規律性的認識;能力是對保證活動順利完成的某些穩定的心理特徵的概括,它所體現的是學習者在數學學習活動中反映出來的個體特徵。三者之間的聯系,能比較清楚地從數學技能的作用中反映出來。
數學技能在數學學習中的作用可概括為以下幾個方面:
第一,數學技能的形成有助於數學知識的理解和掌握;
第二,數學技能的形成能進一步鞏固數學知識;
第三,數學技能的形成有助於數學問題的解決;
第四,數學技能的形成能促進數學能力的發展;
第五,數學技能的形成有助於激發學生的學習興趣;
第六,調動他們的學習積極性。
二、數學技能的分類
小學生的數學技能,按照其本身的性質和特點,能分為操作技能(又叫做動作技能)和心智技能(也叫做智力技能)兩種類型。
l.數學操作技能。操作技能是指實現數學任務活動方式的動作主要是通過外部機體運動或操作去完成的技能。它是一種由各個局部動作按照一定的程序連貫而成的外部操作活動方式。如學生在利用測量工具測量角的度數、測量物體的長度,用作圖工具畫幾何圖形等活動中所形成的技能就是這種外部操作技能。操作技能具有有別於心智技能的一些比較明顯的特點:一是外顯性,即操作技能是一種外顯的活動方式;二是客觀性,是指操作技能活動的對象是物質性的客體或肌肉;王是非簡約性,就動作的結構而言,操作技能的每個動作都必須實施,不能省略和合並,是一種展開性的活動程序。如用圓規畫圓,確定半徑、確定圓心、圓規一腳繞圓心旋轉一周等步驟,既不能省略也不能合並,必須詳盡地展開才能完成圓圓的任務。
2.數學心智技能。數學心智技能是指順利完成數學任務的心智活動方式。它是一種藉助於內部言語進行的認知活動,包括感知、記憶、思維和想像等心理成分,並且以思維為其主要活動成分。如小學生在口算、筆算、解方程和解答應用題等活動中形成的技能更多地是一些數學心智技能。數學心智技能同樣是經過後天的學習和訓練而形成的,它不同於人的本能。另外,數學心智技能是一種合乎法則的心智活動方式,「所謂合乎法則的活動方式是指活動的動作構成要素及其次序應體現活動本身的客觀法則的要求,而不是任意的」。這些特性,反映了數學心智技能和數學操作技能的共性。數學心智技能作為一種以思維為主要活動成分的認知活動方式,它也有著區別於數學操作技能的個性特徵,這些特徵主要反映在以下三個方面。
第一,動作對象的觀念性。數學心智技能的直接對象不是具有物質形式的客體本身,而是這種客體在人們頭腦里的主觀映象。如20以內退位減法的口算,其心智活動的直接對象是「想加法算減法」或其他計算方法的觀念,而非某種物質化的客體。
第二,動作實施過程的內隱性。數學心智技能的動作是藉助內部言語完成的,其動作的執行是在頭腦內部進行的,主體的變化具有很強的內隱性,很難從外部直接觀測到。如口算,我們能夠直接了解到的是通過學生的外部語言所反映出來的計算結果,學生計算時的內部心智活動動作是無法看到的。
第三,動作結構的簡縮性。數學心智技能的動作不像操作活動那樣必須把每一個動作都完整地做出來,也不像外部言語那樣對每一個動作都完整地說出來,它的活動過程是一種高度壓縮和簡化的自動化過程。因此,數學心智技能中的動作成分是能合並、省略和簡化的。如20以內進位加法的口算,學生熟練以後計算時根本沒有去意識「看大數」、「想湊數」、「分小數」、「湊十」等動作,整個計算過程被壓縮成一種脫口而出的簡略性過程。
三、數學技能的形成過程
1.數學操作技能的形成過程。
數學操作技能作為一種外顯的操作活動方式,它的形成大致要經過以下四個基本階段。
(1)動作的定向階段。這是操作技能形成的起始階段,主要是學習者在頭腦里建立起完成某項數學任務的操作活動的定向映象。包括明確學習目標,激起學習動機,了解與數學技能有關的知識,知道技能的操作程序和動作要領以及活動的最後結果等內容。概括起來講,這一階段主要是了解「做什麼」和「怎樣做」兩方面的內容。如畫角,這一階段主要是了解需畫一個多少度的角(即知道做什麼)和畫角的步驟(即怎麼做),以此給畫角的操作活動作出具體的定向。動作定向的'作用是在頭腦里初步建立起操作的自我調節機制;通過對「做什麼」和「怎麼做」的了解而明確實施數學活動的程序與步驟,從而保證在操作中更好地掌握其動作的活動方式。
(2)動作的分解階段。這是操作技能進入實際學習的最初階段,其作法是把某項數學技能的全套動作分解成若干個單項動作,在老師的示範下學生依次模仿練習,從而掌握局部動作的活動方式。如用圓規按照給定的半徑畫圓,在這一階段就可把整個操作程序分解成三個局部動作:①把圓規的兩腳張開,按照給定的半徑定好兩腳間的距離;②把有針尖的一腳固定在一點上,確定出圓心;③將有鉛筆尖的一腳繞圓心旋轉一周,畫出圓。通過對這三個具有連續性的局部動作的依次練習,即可掌握畫圓的要領。學生在這一階段學習的方式主要是模仿,一方面根據老師的示範進行模仿;另一方面也能根據有關操作規則的文字描述進行模仿,如根據幾何作圖規則對各個動作活動方式的表述進行模仿。模仿不一定都是被動的和機械的,「模仿能是有意的和無意的;能是再造性的,也能是創造性的。」②模仿是數學操作技能形成的一個不可缺少的條件。
(3)動作的整合階段。在這一階段,把前面所掌握的各個局部動作按照一定的順序連接起來,使其形成一個連貫而協調的操作程序,並固定下來。如畫圓,在這一階段就可將三個步驟綜合起來形成一體化的操作系統。這時由於局部動作之間尚處在銜接階段,所以動作還難以維持穩定性和精確性,動作系統中的某些環節在銜接時甚至還會出現停頓現象。不過,總的來講這一階段動作之間的相互干擾逐步得到排除,操作過程中的多餘動作也明顯減少,已形成完整而有序的動作系統。
(4)動作的熟練階段。這是操作技能形成的最後階段,在這一階段通過練習而形成的數學活動方式能適應各種變化情況,其操作表現出高度完善化的特點。動作之間相互干擾和不協調的現象完全消除,動作具有高度的正確性和穩定性,並且不管在什麼條件下全套動作都能流暢地完成。如這時的畫圓,不需要意志控制就能順利地完成全套動作,並且能充分保證其正確性。上述分析表明,數學操作技能的形成要經過「定向→分解→整合→熟練」的發展過程。在這一過程中每一個發展階段都有自己的任務:定向階段的主要任務是掌握操作的結構系統和每一個步驟操作的要領;分解階段的主要任務是對活動的操作系列進行分解,並逐一模仿練習;整合階段的主要任務是在動作之間建立聯系,使活動協調一體化;熟練階段的任務則主要是使整個操作過程高度完善化和自動化。
2.數學心智技能的形成過程。
關於數學心智技能形成過程的研究,人們比較普遍地採用了原蘇聯心理學家加里培林的研究成果。加里培林認為,心智活動是一個從外部的物質活動到內部心智活動的轉化過程,既內化的過程。據此,在這里我們把小學生數學心智技能的形成過程概括為以下四個階段。
(1)活動的認知階段。這是數學心智活動的認知准備階段,主要是讓學生了解並記住與活動任務有關的知識,明確活動的過程和結果,在頭腦里形成活動本身及其結果的表象。如學習除數是小數的除法計算技能,在這一步就是讓學生回憶並記住除法商不變性質和除數是整數的小數除法法則等知識,在此基礎上明確計算的程序和每一步計算的具體方法,以此在頭腦里形成除數是小數除法計算過程的表象。認知階段實際上也是一種心智活動的定向階段,通過這一階段,學習者能建立起進行數學心智活動的初步自我調節機制,為後面順利進行認知活動提供內部控制條件。這一階段的主要任務是在頭腦里確定心智技能的活動程序,並讓這種程序的動作結構在頭腦里得到清晰的反映。
(2)示範模仿階段。這是數學心智活動方式進入具體執行過程的開始,這一階段學生把在頭腦里已初步建立起來的活動程序計劃以外顯的操作方式付諸執行。不過,這種執行通常是在老師指導示範下進行的,老師的示範通常是採用語言指導和操作提示相結合的方式進行的,即在言語指導的同時呈現活動過程中的某些步驟。如計算乘數是兩位數的乘法時,一方面根據運演算法則指導運算步驟;另一方面在表述運算規定的同時重點示範用乘數十位上的數去乘被乘數所得的部分積的對位,以此讓學生在老師的幫助、指導下順利地掌握兩位數乘多位數計算的活動方式。在這一階段,學生活動的執行水平還比較低,通常停留在物質活動和物質化活動的水平上。「所謂物質活動是指動作的客體是實際事物,所謂物質化活動是指活動不是藉助於實際事物本身,而是以它的代替物如模擬的教具、學具,乃至圖畫、圖解、言語等進行的」。③如解答復合應用題,在這一步學生通常就是藉助線段圖進行分析題中數量關系的智力活動的。
(3)有意識的言語階段。這一階段的智力活動離開了活動的物質和物質化的客體而逐步轉向頭腦內部,學生通過自己的言語指導而進行智力活動,通常表現為一邊操作一邊口中念念有詞。如兩位數加兩位數的筆算,在這一步學生往往是一邊計算,口中一邊念:相同數位對位,從個位加起,個位滿十向十位進1。很明顯,這時的計算過程是伴隨著對法則運算規定的復述進行的。在這一階段,學生出聲的外部言語活動還會逐步向不出聲的外部言語活動過渡,如兩位數加兩位數的筆算,在本階段的後期學生往往是通過默想法則規定的運算步驟進行計算的。這一活動水平的出現,標志著學生的活動已開始向智力活動水平轉化。
(4)無意識的內部言語階段。這是數學心智技能形成的最後的一個階段,在這一階段學生的智力活動過程有了高度的壓縮和簡化,整個活動過程達到了完全自動化的水平,無需去注意活動的操作規則就能比較流暢地完成其操作程序。如用簡便方法計算45+99×99+54,在這一階段學生無需去回憶加法交換律和結合律、乘法分配律等運算定律,就能直接先合並45和54兩個加數,然後利用乘法分配律進行計算,即原式=(45+54)+99×99=99×(1+99)=99×100=9900,整個計算過程完全是一種流暢的自動化演算過程。在這一階段,學生的活動完全是根據自己的內部言語進行思考的,並且總是用非常簡縮的形式進行思考的,活動的中間過程往往簡約得連自己也察覺不到了,整個活動過程基本上是一種自動化的過程。
四、數學技能的學習方法
1.數學操作技能的學習方法。學習數學操作技能的基本方法是模仿練習法和程序練習法。前者是指學生在學習中根據老師的示範動作或教材中的示意圖進行模仿練習,以掌握操作的基本要領,在頭腦里形成操作過程的動作表象的一種學習方法。用工具度量角的大小、測量物體的長短、幾何圖形的作圖、幾何圖形面積和體積計算公式推導過程中的圖形轉化等技能一般都能通過模仿練習法去掌握。如推導平行四邊形面積計算公式時,把平行四邊形轉化成長方形的操作技能就可模仿(人教版)教材插圖(如圖所示)的操作過程去練習和掌握。小學生的學習更多的是模仿老師的示範動作,所以老師的示範對小學生數學動作技能的形成尤為重要。教師要充分運用示範與講解相結合、整體示範與分步示範相結合等措施,讓學生准確無誤地掌握操作要領,形成正確的動作表象。所謂程序練習法,就是運用程序教學的原理將所要學習的數學動作技能按活動程序分解成若干局部的動作先逐一練習,最後將這些局部的動作綜合成整體形成程序化的活動過程。如用量角器量角的度數、用三角板畫垂線和平行線、畫長方形等技能的學習都能採用這種方法。用這種方法學習數學動作技能,分解動作時注意突出重點,重點解決那些難以掌握的局部動作,這樣能有效地提高學習效率。
2.數學心智技能的學習方法。學生的心智技能主要是通過範例學習法和嘗試學習法去獲得的。範例學習法是指學習時按照課本提供的範例,將數學技能的思維操作程序一步一步地展現出來,然後根據這種程序逐步掌握技能的心智活動方式。整數、小數、分數的四則計算,課本幾乎都提供了計算的範例,學習時只需要根據範例有序地進行計算即可掌握計算方法。如被除數和除數末尾都有0的除法的簡便演算法,課本安排了如下範例,學習時只需要明確範例所反映的計算程序和方法,並按照這種程序和方法進行計算即可掌握被除數和除數末尾都有0的除法簡便計算的技能。嘗試學習法是指在學習中主要由學生自己去嘗試探索問題解決的方法和途徑,並在不斷修正錯誤的過程中找出解決問題的操作程序,進而獲得數學技能。這是一種探究式的發現學習法,總結運算規律和性質並運用它們進行簡便計算、解答復合應用題、求某些比較復雜的組合圖形的面積或體積等技能都能運用這種學習方法去掌握。這種方法較多地運用於題目本身具有較強探究性的變式問題解決的學習,如用簡便方法計算1001÷12.5,由於學生在前面已經掌握除法商不變性質,練習時就可通過將除數和被除數部乘以8使除數變成100的途徑去實現計算的簡便。嘗試學習法雖然有利於培養學生的探索精神和解決問題的能力,但耗時太多,學習時最好是將它和範例學習法結合起來,兩種學習方法互為補充,這樣數學技能的學習就會更加富有成效。
;