當前位置:首頁 » 基礎知識 » 南通中考數學知識點
擴展閱讀
教育部綠牌專業有哪些 2024-11-18 23:38:00

南通中考數學知識點

發布時間: 2022-12-25 23:17:49

A. 中考數學最全考點分析主要知識點

備考中考數學的時候不免會遇到各種問題,甚至迷失方向,但是請不要害怕,只要努力堅持下去,終有一天我們會到達成功的彼岸。為了減輕各位同學的負擔,我給大家整理了中考數學最全考點分析主要知識點,方便大家學習。

↓↓↓點擊獲取更多"中考知識點 " ↓↓↓

★ 中考物理重點復習資料 ★

★ 中考語文必背文言文匯總 ★

★ 中考化學的實驗題知識 ★

★ 中考英語重難點語法詳解 ★

中考數學最全考點分析主要知識點

一、相似三角形(7個考點)

考點1:相似三角形的概念、相似比的意義、畫圖形的放大和縮小

考核要求:(1)理解相似形的概念;(2)掌握相似圖形的特點以及相似比的意義,能將已知圖形按照要求放大和縮小.

考點2:平行線分線段成比例定理、三角形一邊的平行線的有關定理

考核要求:理解並利用平行線分線段成比例定理解決一些幾何證明和幾何計算.

注意:被判定平行的一邊不可以作為條件中的對應線段成比例使用.

考點3:相似三角形的概念

考核要求:以相似三角形的概念為基礎,抓住相似三角形的特徵,理解相似三角形的定義.

考點4:相似三角形的判定和性質及其應用

考核要求:熟練掌握相似三角形的判定定理(包括預備定理、三個判定定理、直角三角形相似的判定定理)和性質,並能較好地應用.

考點5:三角形的重心

考核要求:知道重心的定義並初步應用.

考點6:向量的有關概念

考點7:向量的加法、減法、實數與向量相乘、向量的線性運算

考核要求:掌握實數與向量相乘、向量的線性運算

二、銳角三角比(2個考點)

考點8:銳角三角比(銳角的正弦、餘弦、正切、餘切)的概念,30度、45度、60度角的三角比值.

考點9:解直角三角形及其應用

考核要求:(1)理解解直角三角形的意義;(2)會用銳角互余、銳角三角比和勾股定理等解直角三角形和解決一些簡單的實際問題,尤其應當熟練運用特殊銳角的三角比的值解直角三角形.

三、二次函數(4個考點)

考點10:函數以及函數的定義域、函數值等有關概念,函數的表示法,常值函數

考核要求:(1)通過實例認識變數、自變數、因變數,知道函數以及函數的定義域、函數值等概念;(2)知道常值函數;(3)知道函數的表示 方法 ,知道符號的意義.

考點11:用待定系數法求二次函數的解析式

考核要求:(1)掌握求函數解析式的方法;(2)在求函數解析式中熟練運用待定系數法.

注意求函數解析式的步驟:一設、二代、三列、四還原.

考點12:畫二次函數的圖像

考核要求:(1)知道函數圖像的意義,會在平面直角坐標系中用描點法畫函數圖像;(2)理解二次函數的圖像,體會數形結合思想;(3)會畫二次函數的大致圖像.

考點13:二次函數的圖像及其基本性質

考核要求:(1)藉助圖像的直觀、認識和掌握一次函數的性質,建立一次函數、二元一次方程、直線之間的聯系;(2)會用配方法求二次函數的頂點坐標,並說出二次函數的有關性質.

注意:(1)解題時要數形結合;(2)二次函數的平移要化成頂點式.

四、圓的相關概念(6個考點)

考點14:圓心角、弦、弦心距的概念

考核要求:清楚地認識圓心角、弦、弦心距的概念,並會用這些概念作出正確的判斷.

考點15:圓心角、弧、弦、弦心距之間的關系

考核要求:認清圓心角、弧、弦、弦心距之間的關系,在理解有關圓心角、弧、弦、弦心距之間的關系的定理及其推論的基礎上,運用定理進行初步的幾何計算和幾何證明.

考點16:垂徑定理及其推論

垂徑定理及其推論是圓這一板塊中最重要的知識點之一.

考點17:直線與圓、圓與圓的位置關系及其相應的數量關系

直線與圓的位置關系可從 與 之間的關系和交點的個數這兩個側面來反映.在圓與圓的位置關系中,常需要分類討論求解.

考點18:正多邊形的有關概念和基本性質

考核要求:熟悉正多邊形的有關概念(如半徑、邊心距、中心角、外角和),並能熟練地運用正多邊形的基本性質進行推理和計算,在正多邊形的計算中,常常利用正多邊形的半徑、邊心距和邊長的一半構成的直角三角形,將正多邊形的計算問題轉化為直角三角形的計算問題.

考點19:畫正三、四、六邊形.

考核要求:能用基本作圖工具,正確作出正三、四、六邊形.

五、數據整理和概率統計(9個考點)

考點20:確定事件和隨機事件

考核要求:(1)理解必然事件、不可能事件、隨機事件的概念,知道確定事件與必然事件、不可能事件的關系;(2)能區分簡單生活事件中的必然事件、不可能事件、隨機事件.

考點21:事件發生的可能性大小,事件的概率

考核要求:(1)知道各種事件發生的可能性大小不同,能判斷一些隨機事件發生的可能事件的大小並排出大小順序;(2)知道概率的含義和表示符號,了解必然事件、不可能事件的概率和隨機事件概率的取值范圍;(3)理解隨機事件發生的頻率之間的區別和聯系,會根據大數次試驗所得頻率估計事件的概率.注意:(1)在給可能性的大小排序前可先用「一定發生」、「很有可能發生」、「可能發生」、「不太可能發生」、「一定不會發生」等詞語來表述事件發生的可能性的大小;(2)事件的概率是確定的常數,而概率是不確定的,可是近似值,與試驗的次數的多少有關,只有當試驗次數足夠大時才能更精確.

考點22:等可能試驗中事件的概率問題及概率計算

本考點的考核要求是(1)理解等可能試驗的概念,會用等可能試驗中事件概率計算公式來計算簡單事件的概率;(2)會用枚舉法或畫「樹形圖」方法求等可能事件的概率,會用區域面積之比解決簡單的概率問題;(3)形成對概率的初步認識,了解機會與風險、規則公平性與決策合理性等簡單概率問題.

在求解概率問題中要注意:(1)計算前要先確定是否為可能事件;(2)用枚舉法或畫「樹形圖」方法求等可能事件的概率過程中要將所有等可能情況考慮完整.

考點23:數據整理與統計圖表

本考點考核要求是:(1)知道數據整理分析的意義,知道普查和抽樣調查這兩種收集數據的方法及其區別;(2)結合有關代數、幾何的內容,掌握用折線圖、扇形圖、條形圖等整理數據的方法,並能通過圖表獲取有關信息.

考點24:統計的含義

本考點的考核要求是:(1)知道統計的意義和一般研究過程;(2)認識個體、總體和樣本的區別,了解樣本估計總體的思想方法.

考點25:平均數、加權平均數的概念和計算

本考點的考核要是:(1)理解平均數、加權平均數的概念;(2)掌握平均數、加權平均數的計算公式.注意:在計算平均數、加權平均數時要防止數據漏抄、重抄、錯抄等錯誤現象,提高運算準確率.

考點26:中位數、眾數、方差、標准差的概念和計算

考核要求:(1)知道中位數、眾數、方差、標准差的概念;(2)會求一組數據的中位數、眾數、方差、標准差,並能用於解決簡單的統計問題.

注意:當一組數據中出現極值時,中位數比平均數更能反映這組數據的平均水平;(2)求中位數之前必須先將數據排序.

考點27:頻數、頻率的意義,畫頻數分布直方圖和頻率分布直方圖

考核要求:(1)理解頻數、頻率的概念,掌握頻數、頻率和總量三者之間的關系式;(2)會畫頻數分布直方圖和頻率分布直方圖,並能用於解決有關的實際問題.解題時要注意:頻數、頻率能反映每個對象出現的頻繁程度,但也存在差別:在同一個問題中,頻數反映的是對象出現頻繁程度的絕對數據,所有頻數之和是試驗的總次數;頻率反映的是對象頻繁出現的相對數據,所有的頻率之和是1.

考點28:中位數、眾數、方差、標准差、頻數、頻率的應用

本考點的考核要是:(1)了解基本統計量(平均數、眾數、中位數、方差、標准差、頻數、頻率)的意計算及其應用,並掌握其概念和計算方法;(2)正確理解樣本數據的特徵和數據的代表,能根據計算結果作出判斷和預測;(3)能將多個圖表結合起來,綜合處理圖表提供的數據,會利用各種統計量來進行推理和分析,研究解決有關的實際生活中問題,然後作出合理的解決.


中考數學最全考點分析主要知識點相關 文章 :

★ 中考數學復習重要知識點大全

★ 中考數學知識點總結最全提綱

★ 中考數學重要考點內容

★ 中考數學知識點復習提綱

★ 初中數學考點大全

★ 中考數學復習39個知識點

★ 實數中考數學實數必備知識點

★ 中考數學提綱知識點

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

B. 數學中考必考知識點有哪些

數學中考必考知識點有如下:

1、三角形中位線定理:三角形的中位線平行於第三邊,並且等於它的一半。

2、圓的內接四邊形的對角互補,並且任何一個外角都等於它的內對角。

3、若一個三角形30°內角所對的邊是某一邊的一半,那麼這個三角形是以這條長邊為斜邊的直角三角形。

4、圓錐底面半徑 r=n°/360°L(L為母線長)(r為底面半徑)。

5、直線和圓有兩個公共點,稱相交,這條直線叫做圓的割線,AB與⊙O相交,d<r。

C. 初三數學的知識點梳理

對世界上的一切學問與知識的掌握也並非難事,只要持之以恆地學習,努力掌握規律,達到熟悉的境地,就能融會貫通,運用自如。學習需要持之以恆。下面是我給大家整理的一些初三數學的知識點,希望對大家有所幫助。

九年級下冊數學知識點歸納

★重點★①圓的重要性質;②直線與圓、圓與圓的位置關系;③與圓有關的角的定理;④與圓有關的比例線段定理。

☆內容提要☆

一、圓的基本性質

1.圓的定義(兩種)

2.有關概念:弦、直徑;弧、等弧、優弧、劣弧、半圓;弦心距;等圓、同圓、同心圓。

3.「三點定圓」定理

4.垂徑定理及其推論

5.「等對等」定理及其推論

6.與圓有關的角:⑴圓心角定義(等對等定理)

⑵圓周角定義(圓周角定理,與圓心角的關系)

⑶弦切角定義(弦切角定理)

二、直線和圓的位置關系

1.切線的性質(重點)

2.切線的判定定理(重點)

3.切線長定理

三、圓換圓的位置關系

1.五種位置關系及判定與性質:(重點:相切)

2.相切(交)兩圓連心線的性質定理

3.兩圓的公切線:⑴定義⑵性質

四、與圓有關的比例線段

1.相交弦定理

2.切割線定理

五、與和正多邊形

1.圓的內接、外切多邊形(三角形、四邊形)

2.三角形的外接圓、內切圓及性質

3.圓的外切四邊形、內接四邊形的性質

4.正多邊形及計算

中心角:初中數學復習提綱

內角的一半:初中數學復習提綱(右圖)

(解Rt△OAM可求出相關元素,初中數學復習提綱、初中數學復習提綱等)

六、一組計算公式

1.圓周長公式

2.圓面積公式

3.扇形面積公式

4.弧長公式

5.弓形面積的計算 方法

6.圓柱、圓錐的側面展開圖及相關計算

初三下冊數學知識點 總結

一、銳角三角函數

正弦等於對邊比斜邊

餘弦等於鄰邊比斜邊

正切等於對邊比鄰邊

餘切等於鄰邊比對邊

正割等於斜邊比鄰邊

二、三角函數的計算

冪級數

c0+c1x+c2x2+...+cnxn+...=∑cnxn(n=0..∞)

c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n(n=0..∞)

它們的各項都是正整數冪的冪函數,其中c0,c1,c2,...cn...及a都是常數,這種級數稱為冪級數.

泰勒展開式(冪級數展開法)

f(x)=f(a)+f'(a)/1!.(x-a)+f''(a)/2!.(x-a)2+...f(n)(a)/n!.(x-a)n+...

三、解直角三角形

1.直角三角形兩個銳角互余。

2.直角三角形的三條高交點在一個頂點上。

3.勾股定理:兩直角邊平方和等於斜邊平方

四、利用三角函數測高

1、解直角三角形的應用

(1)通過解直角三角形能解決實際問題中的很多有關測量問.

如:測不易直接測量的物體的高度、測河寬等,關鍵在於構造出直角三角形,通過測量角的度數和測量邊的長度,計算出所要求的物體的高度或長度.

(2)解直角三角形的一般過程是:

①將實際問題抽象為數學問題(畫出平面圖形,構造出直角三角形轉化為解直角三角形問題).

②根據題目已知特點選用適當銳角三角函數或邊角關系去解直角三角形,得到數學問題的答案,再轉化得到實際問題的答案.

初三數學學習技巧

重視構建知識網路——宏觀把握數學框架

要學會構建知識網路,數學概念是構建知識網路的出發點,也是數學中考[微博]考查的重點。因此,我們要掌握好代數中的數、式、不等式、方程、函數、三角比、統計和幾何中的平行線、三角形、四邊形、圓的概念、分類、定義、性質和判定,並會應用這些概念去解決一些問題。

重視夯實數學雙基——微觀掌握知識技能

在復習過程中夯實數學基礎,要注意知識的不斷深化,重視強化題組訓練——感悟數學思想方法

除了做基礎訓練題、平面幾何每日一題外,還可以做一些綜合題,並且養成解題後 反思 的習慣。反思自己的思維過程,反思知識點和解題技巧,反思多種解法的優劣,反思各種方法的縱橫聯系。而總結出它所用到的數學思想方法,並把思想方法相近的題目編成一組,不斷提煉、不斷深化,做到舉一反三、觸類旁通。逐步學會觀察、試驗、分析、猜想、歸納、類比、聯想等思想方法,主動地發現問題和提出問題。

重視建立「病例檔案」——做到萬無一失

准備一本數學學習「病例卡」,把平時犯的錯誤記下來,找出「病因」開出「處方」,並且經常地拿出來看看、想想錯在哪裡,為什麼會錯,怎麼改正,這樣到中考時你的數學就沒有什麼「病例」了。我們要在教師的指導下做一定數量的數學習題,積累解題 經驗 、總結解題思路、形成解題思想、催生解題靈感、掌握 學習方法 。


初三數學的知識點梳理相關 文章 :

★ 初三數學知識點歸納人教版

★ 初三數學知識點考點歸納總結

★ 初三數學知識點歸納總結

★ 九年級上冊數學知識點歸納整理

★ 初三數學中考復習重點章節知識點歸納

★ 初三數學知識點歸納

★ 最新初三數學知識點總結大全

★ 初三中考數學知識點歸納總結

★ 初三數學重點知識點歸納

D. 數學初中知識點整理總結

為了方便大家系統的復習初中數學知識,這篇文章我給大家總結歸納了中考數學的重要知識點,希望對同學們有幫助。

有理數

1.定義:由整數和分數組成的數。包括:正整數、0、負整數,正分數、負分數。可以寫成兩個整之比的形式。

2.數軸:在數學中,可以用一條直線上的點表示數,這條直線叫做數軸。

3.相反數:相反數是一個數學術語,指絕對值相等,正負號相反的兩個數互為相反數。

4.絕對值:絕對值是指一個數在數軸上所對應點到原點的距離。正數的絕對值是它本身,負數的絕對值是它的相反數;0的絕對值是0,兩個負數,絕對值大的反而小。

5.有理數的加減法

同號相加,到相同符號,並把絕對值相加。異號相加,取絕對值大的加數的符號,並用較大的絕對值減去較小的絕對值。

6.有理數的乘法

兩數相乘,同號得正,異號得負,並把絕對值相乘。

任何數與0相乘,積為0。例:0×1=0。

7.有理數的除法

除以一個不為0的數,等於乘這個數的倒數。

兩數相除,同號得正,異號得負,並把絕對值相除。0除

以任何一個不為0的數,都得0。

8.有理數的乘方

求n個相同因數乘積的運算,叫做乘方,乘方的結果叫做冪。其中,a叫做底數,n叫做指數。當aⁿ看作a的n次乘方的結果時,也可讀作「a的n次冪」或「a的n次方」。

一元一次方程

1.只含有一個未知數(元),未知數的指數都是1(次),這樣的方程叫做一元一次方程。

2.等式的性質

性質一:等式兩邊加(或減)同一個數(或式子),結果仍相等。

性質二:等式兩邊乘同一個數,或除以同一個不為0的數,結果仍相等。

3.解方程就是要求出其中的未知數(例如x),通過去分母、去括弧、移項、合並、系數化為1等步驟,就可以使一元一次方程逐步向著x=a的形式轉化,這個過程主要依據等式的性質和運算律等。

⑴具體做法:方程兩邊都乘各分母的最小公倍數。

⑵依據:等式性質2。

⑶注意事項:①分子打上括弧;②不含分母的項也要乘。

二元一次方程組

1.定義:含有兩個未知數,並且未知項的最高次數是1的整式方程叫做二元一次方程。

2.二元一次方程組的解法

(1)代入法

由一個二次方程和一個一次方程所組成的方程組通常用代入法來解,這是基本的消元降次方法。

(2)因式分解法

在二元二次方程組中,至少有一個方程可以分解時,可採用因式分解法通過消元降次來解。

(3)配方法

將一個式子,或一個式子的某一部分通過恆等變形化為完全平方式或幾個完全平方式的和。

(4)韋達定理法

通過韋達定理的逆定理,可以利用兩數的和積關系構造一元二次方程。

(5)消常數項法

當方程組的兩個方程都缺一次項時,可用消去常數項的方法解。

整式

1.整式:整式為單項式和多項式的統稱,是有理式的一部分,在有理式中可以包含加,減,乘,除、乘方五種運算,但在整式中除數不能含有字母。

2.乘法

(1)同底數冪相乘,底數不變,指數相加。

(2)冪的乘方,底數不變,指數相乘。

(3)積的乘方,先把積中的每一個因數分別乘方,再把所得的冪相乘。

3.整式的除法

(1)同底數冪相除,底數不變,指數相減。

(2)任何不等於零的數的零次冪為1。

因式分解

1.因式分解:把一個多項式化為幾個整式的積的形式,叫做把這個多項式因式分解;注意:因式分解與乘法是相反的兩個轉化。

2.因式分解的方法:常用「提取公因式法」、「公式法」、「分組分解法」、「十字相乘法」。

3.公因式的確定:系數的最大公約數·相同因式的最低次冪。

注意公式:a+b=b+a;a-b=-(b-a);(a-b)2=(b-a)2;(a-b)3=-(b-a)3。

4.因式分解的公式:

(1)平方差公式:a2-b2=(a+b)(a-b);

(2)完全平方公式:a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)2。

5.因式分解的注意事項:

(1)選擇因式分解方法的一般次序是:一提取、二公式、三分組、四十字;

(2)使用因式分解公式時要特別注意公式中的字母都具有整體性;

(3)因式分解的最後結果要求分解到每一個因式都不能分解為止;

(4)因式分解的最後結果要求每一個因式的首項符號為正;

(5)因式分解的最後結果要求加以整理;

(6)因式分解的最後結果要求相同因式寫成乘方的形式。

6.因式分解的解題技巧:

(1)換位整理,加括弧或去括弧整理;(2)提負號;

(3)全變號;(4)換元;(5)配方;

(6)把相同的式子看作整體;(7)靈活分組;

(8)提取分數系數;(9)展開部分括弧或全部括弧;

(10)拆項或補項。

E. 初三數學知識點總結歸納

只有學習精彩,生命才精彩,只有學習成功,事業才成功。每一門科目都有自己的 學習 方法 ,數學作為最燒腦的科目之一,需要不斷的練習。下面是我給大家整理的一些初三數學的知識點,希望對大家有所幫助。

目錄

初三新學期數學知識點

初三數學上冊知識點歸納

初三數學復習五大方法

初三新學期數學知識點

一、圓的定義

1、以定點為圓心,定長為半徑的點組成的圖形。

2、在同一平面內,到一個定點的距離都相等的點組成的圖形。

二、圓的各元素

1、半徑:圓上一點與圓心的連線段。

2、直徑:連接圓上兩點有經過圓心的線段。

3、弦:連接圓上兩點線段(直徑也是弦)。

4、弧:圓上兩點之間的曲線部分。半圓周也是弧。

(1)劣弧:小於半圓周的弧。

(2)優弧:大於半圓周的弧。

5、圓心角:以圓心為頂點,半徑為角的邊。

6、圓周角:頂點在圓周上,圓周角的兩邊是弦。

7、弦心距:圓心到弦的垂線段的長。

三、圓的基本性質

1、圓的對稱性

(1)圓是圖形,它的對稱軸是直徑所在的直線。

(2)圓是中心對稱圖形,它的對稱中心是圓心。

(3)圓是對稱圖形。

2、垂徑定理。

(1)垂直於弦的直徑平分這條弦,且平分這條弦所對的兩條弧。

(2)推論:

平分弦(非直徑)的直徑,垂直於弦且平分弦所對的兩條弧。

平分弧的直徑,垂直平分弧所對的弦。

3、圓心角的度數等於它所對弧的度數。圓周角的度數等於它所對弧度數的一半。

(1)同弧所對的圓周角相等。

(2)直徑所對的圓周角是直角;圓周角為直角,它所對的弦是直徑。

4、在同圓或等圓中,兩條弦、兩條弧、兩個圓周角、兩個圓心角、兩條弦心距五對量中只要有一對量相等,其餘四對量也分別相等。

5、夾在平行線間的兩條弧相等。

6、設⊙O的半徑為r,OP=d。


初三數學上冊知識點歸納

1.數的分類及概念數系表:

說明:分類的原則:1)相稱(不重、不漏)2)有標准

2.非負數:正實數與零的統稱。(表為:x0)

性質:若干個非負數的和為0,則每個非負數均為0。

3.倒數:

①定義及表示法

②性質:A.a1/a(a1);B.1/a中,aC.0

4.相反數:

①定義及表示法

②性質:A.a0時,aB.a與-a在數軸上的位置;C.和為0,商為-1。

5.數軸:

①定義(三要素)

②作用:A.直觀地比較實數的大小;B.明確體現絕對值意義;C.建立點與實數的一一對應關系。

6.奇數、偶數、質數、合數(正整數自然數)

定義及表示:

奇數:2n-1

偶數:2n(n為自然數)

7.絕對值:

①定義(兩種):

代數定義:

幾何定義:數a的絕對值頂的幾何意義是實數a在數軸上所對應的點到原點的距離。

②│a│0,符號││是非負數的標志;

③數a的絕對值只有一個;

④處理任何類型的題目,只要其中有││出現,其關鍵一步是去掉││符號。


初三數學復習五大方法

一、回歸課本,夯實基礎,做好預習。

數學的基本概念、定義、公式,數學知識點之間的內在聯系,基本的數學解題思路與方法,是復習的重中之重。回歸課本,要先對知識點進行梳理,把教材上的每一個例題、習題再做一遍,確保基本概念、公式等牢固掌握,要穩扎穩打,不要盲目攀高,欲速則不達。復習課的內容多、時間緊。要提高復習效率,必須使自己的思維與老師的思維同步。而預習則是達到這一目的的重要途徑。沒有預習,聽老師講課,會感到老師講的都重要,抓不住老師講的重點;而預習了之後,再聽老師講課,就會在記憶上對老師講的內容有所取捨,把重點放在自己還未掌握的內容上,提高學習效率。

二、抓住關鍵,突出重點,不以題量論英雄

學好數學要做大量的題,但反過來做了大量的題,數學不一定好。「不要以題量論英雄」,題海戰術,有時候往往起到事倍功半的效果,因此要提高解題的效率。做題的目的在於檢查你學的知識,方法是否掌握得很好。如果你掌握得不準,甚至有偏差,那麼多做題的結果,反而鞏固了你的缺欠,在准確地把握住基本知識和方法的基礎上做一定量的練習是必要的,但是要有針對性地做題,突出重點,抓住關鍵。

復習中,所謂突出重點,主要是指突出教材中的重點知識,突出不易理解或尚未理解深透的知識,突出數學思想與解題方法。數學思想與方法是數學的精髓,是聯系數學中各類知識的紐帶。要抓住教材中的重點內容,掌握分析方法,從不同角度出發思索問題,由此探索一題多解、一題多變和一題多用之法。培養正確地把日常語言轉化為代數、幾何語言。並逐步掌握聽、說、讀、寫譯的數學語言技能。

三、提高復習興趣,克服「高原現象」

高原現象在數學復習階段表現得十分明顯。平時授新課,新鮮有趣;搞復習,要重復已學的內容,有的同學會覺得單調、枯燥無味,致使成績提高緩慢,甚至下降。針對這種情況,提醒同學們,一方面要從思想上提高對復習的認識,主動進行復習;另一方面,要以「新」提高復習的積極性。諸如制訂新的復習計劃;採用靈活的 復習方法 ;抓住新穎有趣的內容和習題,把知識串連起來,使書「由厚變薄」。

四、提高課堂聽課效率,多動腦,勤動手

初三的課只有兩種形式:復習課和評講課,到初三所有課都進入復習階段,通過復習,學生要知道自己哪些知識點掌握的比較好,哪些知識點有待提高,因此在復習課之前一定要有自已的思考,這樣聽課的目的就明確了。現在學生手中都會有一些復習資料,在老師講課之前,要把例題做一遍,做題中發現的難點,就是聽課的重點;對預習中遇到的沒有掌握好的舊知識,可進行查漏補缺,以減少聽課過程中的困難,自己理解了的東西與老師的講解進行比較、分析即可提高自己的數學思維;體會分析問題的思路和解決問題的思想方法,堅持下去,就一定能舉一反三,事半功倍。此外對於老師講課中的難點,重點要作好筆記,筆記不是記錄而是將上述聽課中的要點,思維方法等作出簡單扼要的記錄,以便復習,消化,思考。

五、要養成良好的解題習慣

如仔細閱讀題目,看清數字,規范解題格式,部分同學(尤其是腦子比較好的同學),自己感覺很好,平時做題只是寫個答案,不注重解題過程,書寫不規范,在正規考試中即使答案對了,由於過程不完整被扣分較多。部分同學平時學習過程中自信心不足,做作業時免不了互相對答案,也不認真找出錯誤原因並加以改正。這些同學到了考場上常會出現心理性錯誤,導致「會而不對」,或是為了保證正確率,反復驗算,浪費很多時間,影響整體得分。這些問題都很難在短時間得以解決,必須在平時下功夫努力改正。「會而不對」是初三數學學習的大忌,常見的有審題失誤、計算錯誤等,平時都以為是粗心,其實這是一種不良的學習習慣,必須在第一輪復習中逐步克服,否則,後患無窮。


初三數學知識點 總結 歸納相關 文章 :

★ 初三數學知識點考點歸納總結

★ 初三數學知識點歸納總結

★ 初三數學知識點歸納人教版

★ 初三數學知識點上冊總結歸納

★ 最新初三數學知識點總結大全

★ 初三數學中考復習重點章節知識點歸納

★ 初三數學復習知識點總結

★ 初三中考數學知識點歸納總結

★ 中考數學知識點總結最全提綱

★ 初三數學知識點總結

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

F. 初三中考數學幾何知識點歸納

對初三學生來說,他們很快就要迎來中考了,而中考是人生道路上第一個轉折點。對每個初三學生來說,他們都希望自己能夠在中考中取得好成績,從而考上好高中。這次我給大家整理了初三中考數學幾何知識點歸納,供大家閱讀參考。

目錄

初三中考數學幾何知識點歸納

學好數學的幾條建議

數學八種思維方法

初三中考數學幾何知識點歸納

1.過兩點有且只有一條直線

2.兩點之間線段最短

3.同角或等角的補角相等

4.同角或等角的餘角相等

5.過一點有且只有一條直線和已知直線垂直

6.直線外一點與直線上各點連接的所有線段中,垂線段最短

7.平行公理經過直線外一點,有且只有一條直線與這條直線平行

8.如果兩條直線都和第三條直線平行,這兩條直線也互相平行

9.同位角相等,兩直線平行

10.內錯角相等,兩直線平行

11.同旁內角互補,兩直線平行

12.兩直線平行,同位角相等

13.兩直線平行,內錯角相等

14.兩直線平行,同旁內角互補

15.定理三角形兩邊的和大於第三邊

16.推論三角形兩邊的差小於第三邊

17.三角形內角和定理三角形三個內角的和等於180°

18.推論1直角三角形的兩個銳角互余

19.推論2三角形的一個外角等於和它不相鄰的兩個內角的和

20.推論3三角形的一個外角大於任何一個和它不相鄰的內角

21.全等三角形的對應邊、對應角相等

22.邊角邊公理有兩邊和它們的夾角對應相等的兩個三角形全等

23.角邊角公理有兩角和它們的夾邊對應相等的兩個三角形全等

24.推論有兩角和其中一角的對邊對應相等的兩個三角形全等

25邊邊邊公理有三邊對應相等的兩個三角形全等

26斜邊、直角邊公理有斜邊和一條直角邊對應相等的兩個直角三角形全等

27.定理1:在角的平分線上的點到這個角的兩邊的距離相等

28.定理2:到一個角的兩邊的距離相同的點,在這個角的平分線上

29.角的平分線是到角的兩邊距離相等的所有點的集合

30.等腰三角形的性質定理等腰三角形的兩個底角相等

31.推論1:等腰三角形頂角的平分線平分底邊並且垂直於底邊

32.等腰三角形的頂角平分線、底邊上的中線和高互相重合

33.推論3:等邊三角形的各角都相等,並且每一個角都等於60°34等腰三角形的判定定理如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)

35.推論1:三個角都相等的三角形是等邊三角形

36.推論2:有一個角等於60°的等腰三角形是等邊三角形

37.在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半

38.直角三角形斜邊上的中線等於斜邊上的一半

39.定理線段垂直平分線上的點和這條線段兩個端點的距離相等

40.逆定理和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上

41.線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合

42.定理1:關於某條直線對稱的兩個圖形是全等形

43.定理2:如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線

44.定理3:兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上

45.逆定理如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱

46.勾股定理直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a b=c

47.勾股定理的逆定理如果三角形的三邊長a、b、c有關系a b=c,那麼這個三角形是直角三角形

48.定理四邊形的內角和等於360°

49.四邊形的外角和等於360°

50.多邊形內角和定理n邊形的內角的和等於(n-2)×180°

51.推論任意多邊的外角和等於360°

52.平行四邊形性質定理1平行四邊形的對角相等

53.平行四邊形性質定理2平行四邊形的對邊相等

54.推論夾在兩條平行線間的平行線段相等

55.平行四邊形性質定理3平行四邊形的對角線互相平分56.平行四邊形判定定理1兩組對角分別相等的四邊形是平行四邊形

57.平行四邊形判定定理2兩組對邊分別相等的四邊形是平行四邊形

58.平行四邊形判定定理3對角線互相平分的四邊形是平行四邊形

59.平行四邊形判定定理4一組對邊平行相等的四邊形是平行四邊形

60.矩形性質定理1矩形的四個角都是直角

61.矩形性質定理2矩形的對角線相等

62.矩形判定定理1有三個角是直角的四邊形是矩形

63.矩形判定定理2對角線相等的平行四邊形是矩形

64.菱形性質定理1菱形的四條邊都相等

65.菱形性質定理2菱形的對角線互相垂直,並且每一條對角線平分一組對角

66.菱形面積=對角線乘積的一半,即S=(a×b)÷2

67.菱形判定定理1:四邊都相等的四邊形是菱形

68.菱形判定定理2:對角線互相垂直的平行四邊形是菱形

69.正方形性質定理1:正方形的四個角都是直角,四條邊都相等

70.正方形性質定理2:正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角

71.定理1關於中心對稱的兩個圖形是全等的

72.定理2關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分

73.逆定理如果兩個圖形的對應點連線都經過某一點,並且被這一點平分,那麼這兩個圖形關於這一點對稱

74.等腰梯形性質定理等腰梯形在同一底上的兩個角相等

75.等腰梯形的兩條對角線相等

76.等腰梯形判定定理在同一底上的兩個角相等的梯形是等腰梯形

77.對角線相等的梯形是等腰梯形

78.平行線等分線段定理如果一組平行線在一條直線上截得的線段相等,那麼在其他直線上截得的線段也相等

79.推論1:經過梯形一腰的中點與底平行的直線,必平分另一腰

80.推論2:經過三角形一邊的中點與另一邊平行的直線,必平分第三邊

81.三角形中位線定理三角形的中位線平行於第三邊,並且等於它的一半

82.梯形中位線定理梯形的中位線平行於兩底,並且等於兩底和的一半L=(a b)÷2S=L×h

83.(1)比例的基本性質如果a:b=c:d,那麼ad=bc, 如果ad=bc,那麼a:b=c:d

84.(2)合比性質如果a/b=c/d,那麼(a±b)/b=(c±d)/d

85.(3)等比性質如果a/b=c/d=…=m/n(b d … n≠0),那麼(a c … m)/(b d … n)=a/b

86.平行線分線段成比例定理三條平行線截兩條直線,所得的對應線段成比例

87.推論平行於三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例

88.定理如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那麼這條直線平行於三角形的第三邊

89.平行於三角形的一邊,並且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例

90.定理平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似

91.相似三角形判定定理1:兩角對應相等,兩三角形相似(ASA)

92.直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似

93.判定定理2:兩邊對應成比例且夾角相等,兩三角形相似(SAS)

94.判定定理3:三邊對應成比例,兩三角形相似(SSS)

95.定理如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那麼這兩個直角三角形相似

96.性質定理1:相似三角形對應高的比,對應中線的比與對應角平分線的比都等於相似比

97.性質定理2:相似三角形周長的比等於相似比

98.性質定理3:相似三角形面積的比等於相似比的平方

99.任意銳角的正弦值等於它的餘角的餘弦值,任意銳角的餘弦值等於它的餘角的正弦值

100.任意銳角的正切值等於它的餘角的餘切值,任意銳角的餘切值等於它的餘角的正切值

101.圓是定點的距離等於定長的點的集合

102.圓的內部可以看作是圓心的距離小於半徑的點的集合

103.圓的外部可以看作是圓心的距離大於半徑的點的集合

104.同圓或等圓的半徑相等

105.到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓

<<<

學好數學的幾條建議

1、要有學習數學的興趣。「興趣是最好的老師」。做任何事情,只要有興趣,就會積極、主動去做,就會想方設法把它做好。但培養數學興趣的關鍵是必須先掌握好數學基礎知識和基本技能。有的同學老想做難題,看到別人上數奧班,自己也要去。如果這些同學連課內的基礎知識都掌握不好,在裡面學習只能濫竽充數,對學習並沒有幫助,反而使自己失去學習數學的信心。我建議同學們可以看一些數學名人小 故事 、趣味數學等知識來增強學習的自信心。

2、要有端正的 學習態度 。首先,要明確學習是為了自己,而不是為了老師和父母。因此,上課要專心、積極思考並勇於發言。其次,回家後要認真完成作業,及時地把當天學習的知識進行復習,再把明天要學的內容做一下預習,這樣,學起來會輕松,理解得更加深刻些。

3、要有「持之以恆」的精神。要使學習成績提高,不能著急,要一步一步地進行,不要指望一夜之間什麼都學會了。即使進步慢一點,只要堅持不懈,也一定能在數學的學習道路上獲得成功!還要有「不恥下問」的精神,不要怕丟面子。其實無論知識難易,只要學會了,弄懂了,那才是最大的面子!

4、要注重學習的技巧和 方法 。不要死記硬背一些公式、定律,而是要靠分析、理解,做到靈活運用,舉一反三。特別要重視課堂上學習新知識和分析練習的時候,不能思想開小差,管自己做與學習無關的事情。注意力一定要高度集中,並積極思考,遇到不懂題目時要及時做好記錄,課後和同學進行探討,做好查漏補缺。

5、要有善於觀察、閱讀的好習慣。只要我們做數學的有心人,細心觀察、思考,我們就會發現生活中到處都有數學。除此之外,同學們還可以從多方面、多種 渠道 來學習數學。如:從電視、網路、《小學生數學報》、《數學小靈通》等報刊雜志上學習數學,不斷擴展知識面。

6、要有自己的觀點。現在,大部分同學遇到一些較難或不清楚的問題時,就不加思考,輕易放棄了,有的乾脆聽從老師、父母、書本的意見。即使是老師、長輩、書籍等權威,也不是沒有一點兒失誤的,我們要重視權威的意見,但絕不等於不加思考的認同。

7、要學會概括和積累。及時 總結 解題規律,特別是積累一些經典和特殊的題目。這樣既可以學得輕松,又可以提高學習的效率和質量。

8、要重視其他學科的學習。因為各個學科之間是有著密切的聯系,它對學習數學有促進的作用。如:學好語文對數學題目的理解有很大的幫助等等。

<<<

數學八種思維方法

1、代數思想這是基本的數學思想之一 ,小學階段的設未知數x,初中階段的一系列的用字母代表數,這都是代數思想,也是代數這門學科最基礎的根!

2、數形結合是數學中最重要的,也是最基本的思想方法之一,是解決許多數學問題的有效思想。「數缺形時少直觀,形無數時難入微」是我國著名數學家華羅庚教授的 名言 ,是對數形結合的作用進行了高度的概括。初高中階段有很多題都涉及到數形結合,比如說解題通過作幾何圖形標上數據,藉助於函數圖象等等都是數形給的體現。

3、轉化思想在整個初中數學中,轉化(化歸)思想一直貫穿其中。轉化思想是把一個未知(待解決)的問題化為已解決的或易於解決的問題來解決,如化繁為簡、化難為易,化未知為已知,化高次為低次等,它是解決問題的一種最基本的思想,它是數學基本思想方法之一。

4、對應思想方法對應是人們對兩個集合因素之間的聯系的一種思想方法,小學數學一般是一一對應的直觀圖表,並以此孕伏函數思想。如直線上的點(數軸)與表示具體的數是一一對應。

5、假設思想方法假設是先對題目中的已知條件或問題作出某種假設,然後按照題中的已知條件進行推算,根據數量出現的矛盾,加以適當調整,最後找到正確答案的一種思想方法。假設思想是一種有意義的想像思維,掌握之後可以使要解決的問題更形象、具體,從而豐富解題思路。

6、比較思想方法比較思想是數學中常見的思想方法之一,也是促進學生思維發展的手段。在教學分數應用題中,教師善於引導學生比較題中已知和未知數量變化前後的情況,可以幫助學生較快地找到解題途徑。

7、符號化思想方法用符號化的語言(包括字母、數字、圖形和各種特定的符號)來描述數學內容,這就是符號思想。如數學中各種數量關系,量的變化及量與量之間進行推導和演算,都是用小小的字母表示數,以符號的濃縮形式表達大量的信息。如定律、公式、等。

8、極限思想方法事物是從量變到質變的,極限方法的實質正是通過量變的無限過程達到質變。在講「圓的面積和周長」時,「化圓為方」「化曲為直」的極限分割思路,在觀察有限分割的基礎上想像它們的極限狀態,這樣不僅使學生掌握公式還能從曲與直的矛盾轉化中萌發了無限逼近的極限思想。

<<<


初三中考數學幾何知識點歸納相關 文章 :

★ 初三中考數學知識點歸納總結

★ 初三數學函數幾何知識點總結

★ 初三數學知識點考點歸納總結

★ 人教版初三數學知識點歸納整理

★ 初三數學知識點總結歸納

★ 初三數學知識點歸納人教版

★ 初三數學知識點歸納總結

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

G. 南通中考數學

2011年江蘇省南通市中考數學試題
一、選擇題(本大題共10小題,每小題3分,滿分30分)
1.如果60m表示「向北走60m」,那麼「向南走40m」可以表示為【 】
A.-20m B.-40m C.20m D.40m
【答案】B.
【考點】相反數。
【分析】向北與向南是相反方向兩個概念,向北為+,向南則為負。故根據相反數的定義,可直接得出結果
2.下面的圖形中,既是軸對稱圖形又是中心對稱圖形的是【 】

【答案】C.
【考點】軸對稱圖形,中心對稱圖形。
【分析】根據軸對稱圖形和中心對稱圖形的定義,可知A是中心對稱圖形而不是軸對稱圖形;B也是中心對稱圖形而不是軸對稱圖形;C既是軸對稱圖形又是中心對稱圖形,它有四條對稱軸,分別是連接三個小圓線段所在的水平和豎直直線,這水平和豎直直線之間的兩條角平分線;D既不是軸對稱圖形也不是中心對稱圖形。
3.計算的結果是【 】
A.±3 B.3 C.±3 D.3
【答案】D.
【考點】立方根。
【分析】根據立方根的定義,因為33=27,所以。
4.下列長度的三條線段,不能組成三角形的是【 】
A.3,8,4 B.4,9,6
C.15,20,8 D.9,15,8
【答案】A.
【考點】三角形的構成條件。
【分析】根據三角形任兩邊之和大於第三邊的構成條件,A中3+4<8,故A的三條線段不能組成三角形。
5.如圖,AB∥CD,∠DCE=80°,則∠BEF=【 】
A.120° B.110° C.100° D.80°
【答案】C.
【考點】平行線的性質。
【分析】根據同旁內角互補的平行線性質,由於AB∥CD,∠DCE和∠BEF是同旁內角,從而∠BEF=。

6.下列水平放置的幾何體中,俯視圖是矩形的為【 】

【答案】B.
【考點】幾何體的三視圖。
【分析】根據幾何體的俯視圖視圖規則,A和D的俯視圖是圓,B的俯視圖是矩形,C的
俯視圖是三角形。
7.若3是關於方程x2-5x+c=的一個根,則這個方程的另一個根是【 】
A.-2 B.2 C.-5 D.5
【答案】B.
【考點】一元二次方程根與系數的關系。
【分析】根據一元二次方程根與系數的關系:兩根之和等於一次項系數與二次項系數商的相反數,所以有。
8.如圖,⊙O的弦AB=8,M是AB的中點,且OM=3,則⊙O的半徑等於【 】
A.8 B.4 C.10 D.5
【答案】5.
【考點】圓的直徑垂直平分弦,勾股定理。
【分析】根據圓的直徑垂直平分弦的定理,∆OAM是直角三角形,在Rt∆OAM中運用勾股定理有,。
9.甲、乙兩人沿相同的路線由A地到B地勻速前進,A、B兩地間的路程為20km.他們前進的路程為s(km),甲出發後的時間為t(h),甲、乙前進的路程與時間的函數圖象如圖所示.根據圖象信息,下列說法正確的是【 】
A.甲的速度是4km/h B.乙的速度是10km/h
C.乙比甲晚出發1h D.甲比乙晚到B地3h
【答案】A.
【考點】一次函數。
【分析】根據所給的一次函數圖象有:A.甲的速度是;B. 乙的速度是;C.乙比甲晚出發; D.甲比乙晚到B地。
10.設m>n>0,m2+n2=4mn,則=【 】
A.2 B. C. D.3
【答案】A.
【考點】代數式變換,完全平方公式,平方差公式,根式計算。
【分析】由m2+n2=4mn有,因為m>n>0,所以,則。
二、填空題(本大題共8小題,每小題3分,滿分24分)
11.已知=20°,則的餘角等於 .
【答案】700.
【考點】餘角。
【分析】根據餘角的定義,直接得出結果:900-200=700。
12.計算:-= .
【答案】。
【考點】根式計算。
【分析】利用根式計演算法則,直接導出結果:。
13.函數y=中,自變數x的取值范圍是 .
【答案】。
【考點】分式定義。
【分析】根據分式定義,分母不能為0,從而得出結論。
14.七位女生的體重(單位:kg)分別為36、42、38、42、35、45、40,則這七位女生的體
重的中位數為 kg.
【答案】40。
【考點】中位數。
【分析】根據的中位數定義,中位數是指將數據按大小順序排列起來,形成一個數列,居
於數列中間位置的那個數據。故應先將七位女生的體重重新排列:35,36,38,40,42,42,
45,從而得到中位數為40。
15.如圖,在矩形紙片ABCD中,AB=2cm,點E在BC上,且AE
=CE.若將紙片沿AE折疊,點B恰好與AC上的點B1重合,則AC
= cm.
【答案】4。
【考點】矩形性質,折疊,等腰三角形性質,直角三角形性質,300角直角三角形的性質。
【分析】由矩形性質知,∠B=900,又由折疊知∠BAC=∠EAC。根據等腰三角形等邊對等
角的性質,由AE=CE得∠EAC=∠ECA。而根據直角三角形兩銳角互余的性質,可以得到
∠ECA=300。因此根據300角直角三角形中,300角所對直角邊是斜邊一半的性質有,Rt∆ABC
中AC=2AB=4。
16.分解因式:3m(2x―y)2―3mn2= .
【答案】。
【考點】提取公因式法和應用公式法因式分解。
【分析】。
17.如圖,為了測量河寬AB(假設河的兩岸平行),測得∠ACB=30°,
∠ADB=60°,CD=60m,則河寬AB為 m(結果保留根號).
【答案】A.
【考點】解直角三角形,特殊角三角函數,根式計算。
【分析】在Rt∆ABD和Rt∆ABC中

如圖,三個半圓依次相外切,它們的圓心都在x軸上,並與直線y=x相切.設三個半圓的半
徑依次為r1、r2、r3,則當r1=1時,r3= .
【答案】9。
【考點】一次函數,直角三角形的性質,相似三角形。【分析】設直線y=x與三個半圓分別切於A,
B,C,作AEX軸於E,則在Rt∆AEO1中,易得∠AOE=∠EAO1=300,由r1=1得EO=,
AE=,OE=,OO1=2。則。同理,。
三、解答題(本大題共10小題,滿分96分)
19.(10分)(1)計算:22+(-1)4+(-2)0-|-3|;
(2)先化簡,再求值:(4ab3-8a2b2)÷4ab+(2a+b)(2a-b),其中a=2,b=1.
【答案】解:(1)原式=4+1+1-3=1。
(2)原式=4ab(b2-2ab)÷4ab+4a2-b2=b2-2ab+4a2-b2=4a2-2ab
當a=2,b=1時,原式=4×22-2×2×1=16-4=12。
【考點】負數的偶次冪,0次冪,絕對值,代數式化簡,平方差公式。
【分析】(1)利用負數的偶次冪,0次冪和絕對值的定義,直接得出結果。
(2)利用提取公因式先把分式化簡,應用平方差公式把多項式乘多項式化簡,然後合並同類項,再代入。[來源:學科網]
20.(8分)求不等式組 的解集,並寫出它的整數解.
【答案】解:由①,得x1, 由②,得x<4。
所以不等式組的解集為。它的整數解1,2,3。
【考點】-元一次不等式組。
【分析】利用-元一次不等式組求解方法,直接得出結果,然後寫出它的整數解。
21.(9分)某中學學生為了解該校學生喜歡球類活動的情況,隨機抽取了若干名學生進行問卷調查(要求每位學生只能填寫一種自己喜歡的球類),並將調查的結果繪製成如下的兩幅不完整的統計圖.

請根據圖中提供的信息,解答下面的問題:
(1)參加調查的學生共有 人,在扇形圖中,表示「其他球類」的扇形的圓心角為 度;
(2)將條形圖補充完整;
(3)若該校有2000名學生,則估計喜歡「籃球」的學生共有 人.
【答案】解:(1)300,36。
(2)喜歡足球的有300-120-60-30=90人,所以據此將條形圖補充完整(如右圖)。
(3)在參加調查的學生中,喜歡籃球的有120人,占
120300=40%,所以該校2000名學生中,估計喜歡「籃球」的學生共有2000×40%=800(人)。
【考點】扇形統計圖,條形統計圖,頻率,頻數。
【分析】(1)從圖中知,喜歡乒乓球的有60人,佔20%,所以參加調查的學生共有6020%=300(人)
喜歡其他球類的有30人,佔30300=10%,所以表示「其他球類」的扇形的圓心角為3600×10%=360。
(2)由(1)參加調查學生的總數減去另外各項就可得喜歡足球的人數,將條形圖補充完整。
(3)先求出在參加調查的學生中,喜歡籃球的人,占參加調查的學生的百分比就能估計出全校喜歡「籃球」的學生人數。
22.(8分)如圖,AM切⊙O於點A,BD⊥AM於點D,BD交⊙O
於點C,OC平分∠AOB.求∠B的度數.
【答案】解:∵OC平分∠AOB,∴∠AOC=∠COB,
∵AM切⊙O於點A,即OA⊥AM,又BD⊥AM,
∴OA∥BD,∴∠AOC=∠OCB
又∵OC=OB,∴∠OCB=∠B,∴∠B=∠OCB=∠COB=600。
【考點】圓的切線,角平分線,直線平行,三角形的內角和。
【分析】要求∠B,由於OC=OB,根據等邊對等角可知∠OCB=∠B。由於OA,BD都垂直於同一條直線AM,從而OA∥BD,根據兩直線平行內錯角相等,有∠AOC=∠OCB。而
OC平分∠AOB,通過等量代換可得∠B=∠OCB=∠COB,因此由三角形的內角和1800可得∠B==600。
23.(8分)在社區全民健身活動中,父子倆參加跳繩比賽.相同時間內父親跳180個,兒子跳210個.已知兒子每分鍾比父親多跳20個,父親、兒子每分鍾各跳多少個?
【答案】解:設父親每分鍾跳x個,兒子每分鍾跳x+20個。
依題意有。解之,得x=120。
經檢驗,x=120是方程的根。
當x=120時,x+20=140。
答:父親每分鍾跳120個,兒子每分鍾跳140個。
【考點】列方程解應用題,分式方程。
【分析】列方程解應用題的關鍵是找出等量關系:相同時間內父親跳180個,兒子跳210個。即父親跳180個的時間=兒子跳210個的時間,而時間=運動量運動速度。
24.(8分)比較正五邊形與正六邊形,可以發現它們的相同點和不同點.例如:
它們的一個相同點:正五邊形的各邊相等,正六邊形的各邊也相等.
它們的一個不同點:正五邊形不是中心對稱圖形,正六邊形是中心對稱圖形.
請你再寫出它們的兩個相同點和不同點:
相同點:
① ;
② .
不同點:
① ;
② .
【答案】解:相同點:①正五邊形的和正六邊形都是軸對稱圖形。
②正五邊形的和正六邊形內角都相等。
不同點:①正五邊形的對角線都相等;正六邊形對角線不全等。
②正五邊形的對角線不交於同一點;正六邊形對角線過中心的三條交於同一點。
【考點】正五邊形的和正六邊形。
【分析】相同點:①正五邊形有五條對稱軸,分別是頂點和其對邊中點連線所在直線;正六邊形六條對稱軸,分別是對角頂點連線所在直線和對邊中點連線所在直線。
②正五邊形每個內角都是1080;正六邊形每個內角都是1200。
不同點:①正五邊形的對角線與兩條鄰邊構成的三角形
都是是全等的;正六邊形對角線中過中心的三條一樣長(圖中紅
線),不過中心的六條一樣長(圖中藍線)。
②圖中可見。
25.(9分)光明中學十分重視中學生的用眼衛生,並定期進行視力檢測.某次檢測設有A、B兩處檢測點,甲、乙、丙三名學生各自隨機選擇其中的一處檢測視力.
(1)求甲、乙、丙三名學生在同一處檢測視力的概率;
(2)求甲、乙、丙三名學生中至少有兩人在B處檢測視力的概率.
【答案】解:(1)列出甲、乙、丙三名學生各自隨機選擇其中的一處檢測視力的所有情況:
三人都不選A處,則三人都選B處,計1種情況。
三人中一人選A處,另二人選B處,計3種情況;甲選A處,乙、丙選B處;乙選A處,甲、丙選B處;丙選A處,甲、乙選B處。
三人中二人選A處,另一人選B處,計3種情況;甲、乙選A處,丙選B處;甲、丙選A處,乙選B處;乙、丙選A處,甲選B處。
三人都選A處,則三人都不選B處,計1種情況。
所有可能情況計8種情況,甲、乙、丙三名學生在同一處檢測視力的情況計2種情況:都選A處或都選B處。因此甲、乙、丙三名學生在同一處檢測視力的概率為

(2)甲、乙、丙三名學生中至少有兩人在B處檢測視力的情況計4種情況:三人中有二人選B處和三人都選B處。因此甲、乙、丙三名學生中至少有兩人在B處檢測視力的概率為。
【考點】概率。
【分析】列舉出所有情況,分析出符合條件的情況,求出概率。
26.(10分)如圖1,O為正方形ABCD的中心,
分別延長OA、OD到點F、E,使OF=2OA,
OE=2OD,連接EF.將△EOF繞點O逆時針
旋轉角得到△E1OF1(如圖2).
(1)探究AE1與BF1的數量關系,並給予證明;
(2)當=30°時,求證:△AOE1為直角三角形.
【答案】解:(1)AE1=BF1,證明如下:
∵O為正方形ABCD的中心,∴OA=OB=OD,∴OE=OF
∵△E1OF1是△EOF繞點O逆時針旋轉角得到,∴OE1=OF1。
∵ ∠AOB=∠EOF=900, ∴ ∠E1OA=900-∠F1OA=∠F1OB
OE1=OF1
在△E1OA和△F1OB中, ∠E1OA=∠F1OB,∴△E1OA≌△F1OB (SAS)
OA=OB
∴ AE1=BF1。
(2)取OE1中點G,連接AG。
∵∠AOD=900,=30° , ∴ ∠E1OA=900-=60°。
∵OE1=2OA,∴OA=OG,∴ ∠E1OA=∠AGO=∠OAG=60°。
∴ AG=GE1,∴∠GAE1=∠GE1A=30°。∴ ∠E1AO=90°。
∴△AOE1為直角三角形。
【考點】正方形的性質和判定,旋轉,全等三角形的判定和性質,直角三角形的判定。
【分析】(1)要證AE1=BF1,就要首先考慮它們是全等三角形的對應邊。考察△E1OA和△F1OB,由正方形對角線互相平分的性質有OA=OB;再看OE1和OF1,它們是OE和OF經過旋轉得到,由已知易得相等;最後看夾角∠E1OA和∠GE1A,由於它們都與∠F1OA互余。從而得證。
(2)要證△AOE1為直角三角形,就要考慮證∠E1AO=90°。考慮到OE1=2OA,作輔助線AG,得∠AGO=∠OAG,由於∠E1OA與互余,得到∠E1OA=60°,從而得到△AOG的三個角都相等,都等於600。又由AG=GE1得到∠GAE1=∠GE1A=30°。因此 ∠E1AO=90°,從而得證。
27.(12分)已知A(1,0)、B(0,-1)、C(-1,2)、D(2,-1)、E(4,2)五個點,拋物線y=a(x-1)2+k(a>0)經過其中的三個點.
(1)求證:C、E兩點不可能同時在拋物線y=a(x-1)2+k(a>0)上;
(2)點A在拋物線y=a(x-1)2+k(a>0)上嗎?為什麼?
(3)求a和k的值.
【答案】解:(1)證明:用反證法。假設C(-1,2)和E(4,2)都在拋物線y=a(x-1)2+k
(a>0)上,聯立方程 ,
解之得a=0,k=2。這與要求的a>0不符。
∴C、E兩點不可能同時在拋物線y=a(x-1)2+k(a>0)上。
(2)點A不在拋物線y=a(x-1)2+k(a>0)上。這是因為如果點A在拋物線上,則k=0。B(0,-1)在拋物線上,得到a=-1,D(2,-1)在拋物線上,得到a=-1,這與已知a>0不符;而由(1)知,C、E兩點不可能同時在拋物線上。
因此點A不在拋物線y=a(x-1)2+k(a>0)上。
(3)綜合(1)(2),分兩種情況討論:
①拋物線y=a(x-1)2+k(a>0)經過B(0,-1)、C(-1,2)、D(2,-1)三個點,
a(0-1)2+k=-1
聯立方程 a(-1-1)2+k=2,
a(2-1)2+k=-1
解之得a=1,k=-2。
②拋物線y=a(x-1)2+k(a>0)經過B(0,-1)、D(2,-1)、E(4,2)三個點,
a(0-1)2+k=-1
聯立方程 a(2-1)2+k=-1,
a(4-1)2+k=2
解之得a=,k=。
因此,拋物線經過B、C、D三個點時,a=1,k=-2。拋物線經過B、D、E三個點時,
a=,k=。
【考點】二次函數,二元一次方程組。
【分析】(1)用反證法證明只要先假設結論成立,得到與已知相矛盾的結論即可。
(2)要證點A不在拋物線上,只要證點A和其他任意兩點不在同一拋物線上即可。
(3)分別列出任意三點在拋物線上的所有情況,由(2)去掉點A,還有B、C、D、E四個點,可能情況有 ①B、C、D, ②B、C、E, ③B、D、E和④C、D、E。而由(1)去掉②B、C、E和④C、D、E兩種C、E兩點同時在拋物線上的情況。這樣只剩下①B、C、D
和③B、D、E兩種情況,分別聯立方程求解即可。
28.如圖,已知直線l經過點A(1,0),與雙曲線y=
(x>0)交於點B(2,1).過點P(p,p-1)(p>1)作x軸的平
行線分別交雙曲線y=(x>0)和y=-(x<0)於點M、N.
(1)求m的值和直線l的解析式;
(2)若點P在直線y=2上,求證:△PMB∽△PNA;?源自:中國<學考<頻道?
(3)是否存在實數p,使得S△AMN=4S△AMP?若存在,請求出所有滿足條件的p的值;若
不存在,請說明理由.
【答案】解:(1)由點B(2,1)在y=上,有2=,即m=2。
設直線l的解析式為,由點A(1,0),點B(2,1)在上,得
, ,解之,得
∴所求 直線l的解析式為 。
(2)點P(p,p-1)在直線y=2上,∴P在直線l上,是直線y=2和l的交點,見圖(1)。
∴根據條件得各點坐標為N(-1,2),M(1,2),P(3,2)。
∴NP=3-(-1)=4,MP=3-1=2,AP=,
BP=
∴在△PMB和△PNA中,∠MPB=∠NPA,。
∴△PMB∽△PNA。
(3)S△AMN=。下面分情況討論:
當1<p<3時,延長MP交X軸於Q,見圖(2)。設直線MP為則有
解得
則直線MP為
當y=0時,x=,即點Q的坐標為(,0)。
則,
由2=4有,解之,p=3(不合,捨去),p=。
當p=3時,見圖(1)S△AMP==S△AMN。不合題意。
當p>3時,延長PM交X軸於Q,見圖(3)。
此時,S△AMP大於情況當p=3時的三角形面積S△AMN。故不存在實數p,使得S△AMN=4S△AMP。
綜上,當p=時,S△AMN=4S△AMP。
【考點】反比例函數,一次函數,待定系數法,二元一次方程組,勾股定理,相似三角形一元二次方程。
【分析】(1)用點B(2,1)的坐標代入y=即可得m值,用待定系數法,求解二元一次方程組可得直線l的解析式。
(2)點P(p,p-1)在直線y=2上,實際上表示了點是直線y=2和l的交點,這樣要求證△PMB∽△PNA只要證出對應線段成比例即可。
(3)首先要考慮點P的位置。實際上,當p=3時,易求出這時S△AMP=S△AMN,當p>3時,注意到這時S△AMP大於p=3時的三角形面積,從而大於S△AMN,。所以只要主要研究當1<p<3時的情況。作出必要的輔助線後,先求直線MP的方程,再求出各點坐標(用p表示),然後求出面積表達式,代入S△AMN=4S△AMP後求出p值。

H. 初三數學知識點整理

初三數學知識點整理1

1.數軸

(1)數軸的概念:規定了原點、正方向、單位長度的直線叫做數軸.

數軸的三要素:原點,單位長度,正方向。

(2)數軸上的點:所有的有理數都可以用數軸上的點表示,但數軸上的點不都表示有理數.(一般取右方向為正方向,數軸上的點對應任意實數,包括無理數.)

(3)用數軸比較大小:一般來說,當數軸方向朝右時,右邊的數總比左邊的數大。

重點知識:

初中數學第一課,認識正數與負數!新初一的來~

2.相反數

(1)相反數的概念:只有符號不同的兩個數叫做互為相反數.

(2)相反數的意義:掌握相反數是成對出現的,不能單獨存在,從數軸上看,除0外,互為相反數的兩個數,它們分別在原點兩旁且到原點距離相等。

(3)多重符號的化簡:與「+」個數無關,有奇數個「﹣」號結果為負,有偶數個「﹣」號,結果為正。

(4)規律方法總結:求一個數的相反數的方法就是在這個數的前邊添加「﹣」,如a的相反數是﹣a,m+n的相反數是﹣(m+n),這時m+n是一個整體,在整體前面添負號時,要用小括弧。

3.絕對值

1.概念:數軸上某個數與原點的距離叫做這個數的絕對值。

①互為相反數的兩個數絕對值相等;

②絕對值等於一個正數的數有兩個,絕對值等於0的數有一個,沒有絕對值等於負數的數.

③有理數的絕對值都是非負數.

2.如果用字母a表示有理數,則數a 絕對值要由字母a本身的取值來確定:

①當a是正有理數時,a的絕對值是它本身a;

②當a是負有理數時,a的絕對值是它的相反數﹣a;

③當a是零時,a的絕對值是零.

即|a|={a(a>0)0(a=0)﹣a(a<0)

中考數學知識點

1、反比例函數的概念

一般地,函數(k是常數,k0)叫做反比例函數。反比例函數的解析式也可以寫成的形式。自變數x的取值范圍是x0的一切實數,函數的取值范圍也是一切非零實數。

2、反比例函數的圖像

反比例函數的圖像是雙曲線,它有兩個分支,這兩個分支分別位於第一、三象限,或第二、四象限,它們關於原點對稱。由於反比例函數中自變數x0,函數y0,所以,它的圖像與x軸、y軸都沒有交點,即雙曲線的兩個分支無限接近坐標軸,但永遠達不到坐標軸。

3、反比例函數的性質

反比例函數k的符號k>0k<0圖像yO xyO x性質①x的取值范圍是x0,

y的取值范圍是y0;

②當k>0時,函數圖像的兩個分支分別

在第一、三象限。在每個象限內,y

隨x 的增大而減小。

①x的取值范圍是x0,

y的取值范圍是y0;

②當k<0時,函數圖像的兩個分支分別

在第二、四象限。在每個象限內,y

隨x 的增大而增大。

4、反比例函數解析式的確定

確定及誒是的方法仍是待定系數法。由於在反比例函數中,只有一個待定系數,因此只需要一對對應值或圖像上的一個點的坐標,即可求出k的值,從而確定其解析式。

5、反比例函數的幾何意義

設是反比例函數圖象上任一點,過點P作軸、軸的垂線,垂足為A,則

(1)△OPA的面積.

(2)矩形OAPB的面積。這就是系數的幾何意義.並且無論P怎樣移動,△OPA的面積和矩形OAPB的面積都保持不變。

矩形PCEF面積=,平行四邊形PDEA面積=

二次函數中考數學知識點

二次函數的解析式有三種形式:

(1)一般式:

(2)頂點式:

(3)當拋物線與x軸有交點時,即對應二次好方程有實根和存在時,根據二次三項式的分解因式,二次函數可轉化為兩根式。如果沒有交點,則不能這樣表示。

注意:拋物線位置由決定.

(1)決定拋物線的開口方向

①開口向上.

②開口向下.

(2)決定拋物線與y軸交點的位置.

①圖象與y軸交點在x軸上方.

②圖象過原點.

③圖象與y軸交點在x軸下方.

(3)決定拋物線對稱軸的位置(對稱軸:)

①同號對稱軸在y軸左側.

②對稱軸是y軸.

③異號對稱軸在y軸右側.

(4)頂點坐標.

(5)決定拋物線與x軸的交點情況.、

①△>0拋物線與x軸有兩個不同交點.

②△=0拋物線與x軸有的公共點(相切).

③△<0拋物線與x軸無公共點.

(6)二次函數是否具有、最小值由a判斷.

①當a>0時,拋物線有最低點,函數有最小值.

②當a<0時,拋物線有點,函數有值.

(7)的符號的判定:

表達式,請代值,對應y值定正負;

對稱軸,用處多,三種式子相約;

軸兩側判,左同右異中為0;

1的兩側判,左同右異中為0;

-1兩側判,左異右同中為0.

(8)函數圖象的平移:左右平移變x,左+右-;上下平移變常數項,上+下-;平移結果先知道,反向平移是訣竅;平移方式不知道,通過頂點來尋找。

(9)對稱:關於x軸對稱的解析式為,關於y軸對稱的解析式為,關於原點軸對稱的解析式為,在頂點處翻折後的解析式為(a相反,定點坐標不變)。

(10)結論:①二次函數(與x軸只有一個交點二次函數的頂點在x軸上Δ=0;

②二次函數(的頂點在y軸上二次函數的圖象關於y軸對稱;

③二次函數(經過原點,則。

(11)二次函數的解析式:

①一般式:(,用於已知三點。

②頂點式:,用於已知頂點坐標或最值或對稱軸。

(3)交點式:,其中、是二次函數與x軸的兩個交點的橫坐標。若已知對稱軸和在x軸上的截距,也可用此式。

初三數學知識點整理2

知識點1。概念

把形狀相同的圖形叫做相似圖形。(即對應角相等、對應邊的比也相等的圖形)

解讀:(1)兩個圖形相似,其中一個圖形可以看做由另一個圖形放大或縮小得到。

(2)全等形可以看成是一種特殊的相似,即不僅形狀相同,大小也相同。

(3)判斷兩個圖形是否相似,就是看這兩個圖形是不是形狀相同,與其他因素無關。

知識點2。比例線段

對於四條線段a,b,c,d,如果其中兩條線段的長度的比與另兩條線段的長度的比相等,即(或a:b=c:d)那麼這四條線段叫做成比例線段,簡稱比例線段。

知識點3。相似多邊形的性質

相似多邊形的性質:相似多邊形的對應角相等,對應邊的比相等。

解讀:(1)正確理解相似多邊形的定義,明確「對應」關系。

(2)明確相似多邊形的「對應」來自於書寫,且要明確相似比具有順序性。

知識點4。相似三角形的概念

對應角相等,對應邊之比相等的三角形叫做相似三角形。

解讀:(1)相似三角形是相似多邊形中的一種;

(2)應結合相似多邊形的性質來理解相似三角形;

(3)相似三角形應滿足形狀一樣,但大小可以不同;

(4)相似用「∽」表示,讀作「相似於」;

(5)相似三角形的對應邊之比叫做相似比。

知識點5。相似三角的判定方法

(1)定義:對應角相等,對應邊成比例的兩個三角形相似;

(2)平行於三角形一邊的直線截其他兩邊(或其他兩邊的延長線)所構成的三角形與原三角形相似。

(3)如果一個三角形的兩個角分別與另一個三角形的兩個角對應相等,那麼這兩個三角形相似。

(4)如果一個三角的兩條邊與另一個三角形的兩條邊對應成比例,並且夾角相等,那麼這兩個三角形相似。

(5)如果一個三角形的三條邊分別與另一個三角形的三條邊對應成比例,那麼這兩個三角形相似。

(6)直角三角形被斜邊上的高分成的兩個直角三角形與原三角形都相似。

知識點6。相似三角形的性質

(1)對應角相等,對應邊的比相等;

(2)對應高的比,對應中線的比,對應角平分線的比都等於相似比;

(3)相似三角形周長之比等於相似比;面積之比等於相似比的平方。

(4)射影定理

初三數學知識點整理3

三角形

分類:⑴按邊分;

⑵按角分

1.定義(包括內、外角)

2.三角形的邊角關系:⑴角與角:①內角和及推論;②外角和;③n邊形內角和;④n邊形外角和。⑵邊與邊:三角形兩邊之和大於第三邊,兩邊之差小於第三邊。⑶角與邊:在同一三角形中,

3.三角形的主要線段

討論:①定義②線的交點三角形的心③性質

① 高線②中線③角平分線④中垂線⑤中位線

⑴一般三角形⑵特殊三角形:直角三角形、等腰三角形、等邊三角形

4.特殊三角形(直角三角形、等腰三角形、等邊三角形、等腰直角三角形)的判定與性質

5.全等三角形

⑴一般三角形全等的判定(SAS、ASA、AAS、SSS)

⑵特殊三角形全等的判定:①一般方法②專用方法

6.三角形的面積

⑴一般計算公式⑵性質:等底等高的三角形面積相等。

7.重要輔助線

⑴中點配中點構成中位線;⑵加倍中線;⑶添加輔助平行線

8.證明方法

⑴直接證法:綜合法、分析法

⑵間接證法反證法:①反設②歸謬③結論

⑶證線段相等、角相等常通過證三角形全等

⑷證線段倍分關系:加倍法、折半法

⑸證線段和差關系:延結法、截余法

⑹證面積關系:將面積表示出來

初三數學知識點整理4

一元一次方程:

①在一個方程中,只含有一個未知數,並且未知數的指數是

1、這樣的方程叫一元一次方程。

②等式兩邊同時加上或減去或乘以或除以(不為0)一個代數式,所得結果仍是等式。

解一元一次方程的步驟:

去分母,移項,合並同類項,未知數系數化為1。

二元一次方程:含有兩個未知數,並且所含未知數的項的次數都是1的方程叫做二元一次方程。

二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。適合一個二元一次方程的一組未知數的值,叫做這個二元一次方程的一個解。二元一次方程組中各個方程的公共解,叫做這個二元一次方程的解。

解二元一次方程組的方法:代入消元法/加減消元法。

2、不等式與不等式組

不等式:

①用符號」=「號連接的式子叫不等式。

②不等式的兩邊都加上或減去同一個整式,不等號的方向不變。

③不等式的兩邊都乘以或者除以一個正數,不等號方向不變。

④不等式的兩邊都乘以或除以同一個負數,不等號方向相反。

不等式的解集:

①能使不等式成立的未知數的值,叫做不等式的解。

②一個含有未知數的不等式的所有解,組成這個不等式的解集。

③求不等式解集的過程叫做解不等式。

一元一次不等式:左右兩邊都是整式,只含有一個未知數,且未知數的次數是1的不等式叫一元一次不等式。

一元一次不等式組:

①關於同一個未知數的幾個一元一次不等式合在一起,就組成了一元一次不等式組。

②一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。

③求不等式組解集的過程,叫做解不等式組。

3、函數

變數:因變數,自變數。在用圖象表示變數之間的關系時,通常用水平方向的數軸上的點自變數,用豎直方向的數軸上的點表示因變數。

一次函數:

①若兩個變數X,Y間的關系式可以表示成Y=KX+B(B為常數,K不等於0)的形式,則稱Y是X的一次函數。

②當B=0時,稱Y是X的正比例函數。

一次函數的圖象:

①把一個函數的自變數X與對應的因變數Y的值分別作為點的橫坐標與縱坐標,在直角坐標系內描出它的對應點,所有這些點組成的圖形叫做該函數的圖象。

②正比例函數Y=KX的圖象是經過原點的一條直線。

③在一次函數中,當K〈0,B〈O,則經234象限;當K〈0,B〉0時,則經124象限;當K〉0,B〈0時,則經134象限;當K〉0,B〉0時,則經123象限。

④當K〉0時,Y的值隨X值的增大而增大,當X〈0時,Y的值隨X值的'增大而減少。

空間與圖形

圖形的認識:

1、點,線,面

點,線,面:

①圖形是由點,線,面構成的。

②面與面相交得線,線與線相交得點。

③點動成線,線動成面,面動成體。

展開與折疊:

①在稜柱中,任何相鄰的兩個面的交線叫做棱,側棱是相鄰兩個側面的交線,稜柱的所有側棱長相等,稜柱的上下底面的形狀相同,側面的形狀都是長方體。

②N稜柱就是底面圖形有N條邊的稜柱。

截一個幾何體:用一個平面去截一個圖形,截出的面叫做截面。

視圖:主視圖,左視圖,俯視圖。

多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。

弧,扇形:

①由一條弧和經過這條弧的端點的兩條半徑所組成的圖形叫扇形。

②圓可以分割成若干個扇形。

線:

①線段有兩個端點。

②將線段向一個方向無限延長就形成了射線。射線只有一個端點。

③將線段的兩端無限延長就形成了直線。直線沒有端點。

④經過兩點有且只有一條直線。

比較長短:

①兩點之間的所有連線中,線段最短。

②兩點之間線段的長度,叫做這兩點之間的距離。

角的度量與表示:

①角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點。

②一度的1/60是一分,一分的1/60是一秒。

角的比較:

①角也可以看成是由一條射線繞著他的端點旋轉而成的。

②一條射線繞著他的端點旋轉,當終邊和始邊成一條直線時,所成的角叫做平角。始邊繼續旋轉,當他又和始邊重合時,所成的角叫做周角。

③從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。

平行:

①同一平面內,不相交的兩條直線叫做平行線。

②經過直線外一點,有且只有一條直線與這條直線平行。

③如果兩條直線都與第3條直線平行,那麼這兩條直線互相平行。

垂直:

①如果兩條直線相交成直角,那麼這兩條直線互相垂直。

②互相垂直的兩條直線的交點叫做垂足。

③平面內,過一點有且只有一條直線與已知直線垂直。

2、相交線與平行線

角:

①如果兩個角的和是直角,那麼稱和兩個角互為餘角;如果兩個角的和是平角,那麼稱這兩個角互為補角。

②同角或等角的餘角/補角相等。

③對頂角相等。

④同位角相等/內錯角相等/同旁內角互補,兩直線平行,反之亦然。

初三數學知識點整理5

重點代數式的有關概念及性質,代數式的運算

☆內容提要☆

一、重要概念

分類:

1.代數式與有理式

用運算符號把數或表示數的字母連結而成的式子,叫做代數式。單獨

的一個數或字母也是代數式。

整式和分式統稱為有理式。

2.整式和分式

含有加、減、乘、除、乘方運算的代數式叫做有理式。

沒有除法運算或雖有除法運算但除式中不含有字母的有理式叫做整式。

有除法運算並且除式中含有字母的有理式叫做分式。

3.單項式與多項式

沒有加減運算的整式叫做單項式。(數字與字母的積包括單獨的一個數或字母)

幾個單項式的和,叫做多項式。

說明:①根據除式中有否字母,將整式和分式區別開;根據整式中有否加減運算,把單項式、多項式區分開。②進行代數式分類時,是以所給的代數式為對象,而非以變形後的代數式為對象。劃分代數式類別時,是從外形來看。如,

=x,=│x│等。

4.系數與指數

區別與聯系:①從位置上看;②從表示的意義上看

5.同類項及其合並

條件:①字母相同;②相同字母的指數相同

合並依據:乘法分配律

6.根式

表示方根的代數式叫做根式。

含有關於字母開方運算的代數式叫做無理式。

注意:①從外形上判斷;②區別:、是根式,但不是無理式(是無理數)。

7.算術平方根

⑴正數a的正的平方根(0與平方根的區別]);

⑵算術平方根與絕對值

①聯系:都是非負數,=│a│

②區別:│a│中,a為一切實數;中,a為非負數。

8.同類二次根式、最簡二次根式、分母有理化

化為最簡二次根式以後,被開方數相同的二次根式叫做同類二次根式。

滿足條件:①被開方數的因數是整數,因式是整式;②被開方數中不含有開得盡方的因數或因式。

把分母中的根號劃去叫做分母有理化。

9.指數

⑴(冪,乘方運算)

①0時,②a0時,0(n是偶數),0(n是奇數)

⑵零指數:=1(a0)

負整指數:=1/0,p是正整數)

二、運算定律、性質、法則

1.分式的加、減、乘、除、乘方、開方法則

2.分式的性質

⑴基本性質:=0)

⑵符號法則:

⑶繁分式:①定義;②化簡方法(兩種)

3.整式運演算法則(去括弧、添括弧法則)

4.冪的運算性質:①=②=③=④=⑤

技巧:

5.乘法法則:⑴單⑵單⑶多多。

6.乘法公式:(正、逆用)

(a+b)(a-b)=

(ab)=

7.除法法則:⑴單⑵多單。

8.因式分解:⑴定義;⑵方法:A.提公因式法;B.公式法;C.十字相乘法;D.分組分解法;E.求根公式法。

9.算術根的性質:=0,b0,b0)(正用、逆用)

10.根式運演算法則:⑴加法法則(合並同類二次根式);⑵乘、除法法則;⑶分母有理化:A.B.C..

11.科學記數法:a10,n是整數=

三、應用舉例(略)

四、數式綜合運算(略)

初三數學知識點整理6

二元一次方程組

1、定義:含有兩個未知數,並且未知項的次數是1的整式方程叫做二元一次方程。

2、二元一次方程組的解法

(1)代入法

由一個二次方程和一個一次方程所組成的方程組通常用代入法來解,這是基本的消元降次方法。

(2)因式分解法

在二元二次方程組中,至少有一個方程可以分解時,可採用因式分解法通過消元降次來解。

(3)配方法

將一個式子,或一個式子的某一部分通過恆等變形化為完全平方式或幾個完全平方式的和。

(4)韋達定理法

通過韋達定理的逆定理,可以利用兩數的和積關系構造一元二次方程。

(5)消常數項法

當方程組的兩個方程都缺一次項時,可用消去常數項的方法解。

解一元二次方程

解一元二次方程的基本思想方法是通過「降次」將它化為兩個一元一次方程。

1、直接開平方法:

用直接開平方法解形如(x—m)2=n(n≥0)的方程,其解為x=±m。

直接開平方法就是平方的逆運算。通常用根號表示其運算結果。

2、配方法

通過配成完全平方式的方法,得到一元二次方程的根的方法。這種解一元二次方程的方法稱為配方法,配方的依據是完全平方公式。

(1)轉化:將此一元二次方程化為ax^2+bx+c=0的形式(即一元二次方程的一般形式)

(2)系數化1:將二次項系數化為1

(3)移項:將常數項移到等號右側

(4)配方:等號左右兩邊同時加上一次項系數一半的平方

(5)變形:將等號左邊的代數式寫成完全平方形式

(6)開方:左右同時開平方

(7)求解:整理即可得到原方程的根

3、公式法

公式法:把一元二次方程化成一般形式,然後計算判別式△=b2—4ac的值,當b2—4ac≥0時,把各項系數a,b,c的值代入求根公式x=(b2—4ac≥0)就可得到方程的根。

代數式

1、代數式與有理式

用運算符號把數或表示數的字母連結而成的式子,叫做代數式。單獨的一個數或字母也是代數式。

整式和分式統稱為有理式。

2、整式和分式

含有加、減、乘、除、乘方運算的代數式叫做有理式。

沒有除法運算或雖有除法運算但除式中不含有字母的有理式叫做整式。

有除法運算並且除式中含有字母的有理式叫做分式。

3、單項式與多項式

沒有加減運算的整式叫做單項式。(數字與字母的積—包括單獨的一個數或字母)

幾個單項式的和,叫做多項式。

說明:

①根據除式中有否字母,將整式和分式區別開;根據整式中有否加減運算,把單項式、多項式區分開。

②進行代數式分類時,是以所給的代數式為對象,而非以變形後的代數式為對象。

4、同類項及其合並

條件:①字母相同;②相同字母的指數相同

合並依據:乘法分配律。

I. 初二數學中考知識點歸納

學習需要制定詳細的計劃,計劃本身對大家有較強的約束和督促作用,計劃對學習既有指導作用,又有推動作用。制定好的 學習計劃 ,是提高工作效率的重要手段。下面是我給大家整理的一些初二數學的知識點,希望對大家有所幫助。

初二上學期數學知識點歸納

分式方程

一、理解定義

1、分式方程:含分式,並且分母中含未知數的方程——分式方程。

2、解分式方程的思路是:

(1)在方程的兩邊都乘以最簡公分母,約去分母,化成整式方程。

(2)解這個整式方程。

(3)把整式方程的根帶入最簡公分母,看結果是不是為零,使最簡公分母為零的根是原方程的增根,必須捨去。

(4)寫出原方程的根。

「一化二解三檢驗四 總結 」

3、增根:分式方程的增根必須滿足兩個條件:

(1)增根是最簡公分母為0;(2)增根是分式方程化成的整式方程的.根。

4、分式方程的解法:

(1)能化簡的先化簡(2)方程兩邊同乘以最簡公分母,化為整式方程;

(3)解整式方程;(4)驗根;

註:解分式方程時,方程兩邊同乘以最簡公分母時,最簡公分母有可能為0,這樣就產生了增根,因此分式方程一定要驗根。

分式方程檢驗 方法 :將整式方程的解帶入最簡公分母,如果最簡公分母的值不為0,則整式方程的解是原分式方程的解;否則,這個解不是原分式方程的解。

5、分式方程解實際問題

步驟:審題—設未知數—列方程—解方程—檢驗—寫出答案,檢驗時要注意從方程本身和實際問題兩個方面進行檢驗。

二、軸對稱圖形:

一個圖形沿一條直線對折,直線兩旁的部分能夠完全重合。這條直線叫做對稱軸。互相重合的點叫做對應點。

1、軸對稱:

兩個圖形沿一條直線對折,其中一個圖形能夠與另一個圖形完全重合。這條直線叫做對稱軸。互相重合的點叫做對應點。

2、軸對稱圖形與軸對稱的區別與聯系:

(1)區別。軸對稱圖形討論的是「一個圖形與一條直線的對稱關系」;軸對稱討論的是「兩個圖形與一條直線的對稱關系」。

(2)聯系。把軸對稱圖形中「對稱軸兩旁的部分看作兩個圖形」便是軸對稱;把軸對稱的「兩個圖形看作一個整體」便是軸對稱圖形。

3、軸對稱的性質:

(1)成軸對稱的兩個圖形全等。

(2)對稱軸與連結「對應點的線段」垂直。

(3)對應點到對稱軸的距離相等。

(4)對應點的連線互相平行。

三、用坐標表示軸對稱

1、點(x,y)關於x軸對稱的點的坐標為(x,-y);

2、點(x,y)關於y軸對稱的點的坐標為(-x,y);

3、點(x,y)關於原點對稱的點的坐標為(-x,-y)。

四、關於坐標軸夾角平分線對稱

點P(x,y)關於第一、三象限坐標軸夾角平分線y=x對稱的點的坐標是(y,x)

點P(x,y)關於第二、四象限坐標軸夾角平分線y=-x對稱的點的坐標是(-y,-x)

八年級 上冊數學知識點

一、在平面內,確定物體的位置一般需要兩個數據。

二、平面直角坐標系及有關概念

1、平面直角坐標系

在平面內,兩條互相垂直且有公共原點的數軸,組成平面直角坐標系。其中,水平的數軸叫做x軸或橫軸,取向右為正方向;鉛直的數軸叫做y軸或縱軸,取向上為正方向;x軸和y軸統稱坐標軸。它們的公共原點O稱為直角坐標系的原點;建立了直角坐標系的平面,叫做坐標平面。

2、為了便於描述坐標平面內點的位置,把坐標平面被x軸和y軸分割而成的四個部分,分別叫做第一象限、第二象限、第三象限、第四象限。

注意:x軸和y軸上的點(坐標軸上的點),不屬於任何一個象限。

3、點的坐標的概念

對於平面內任意一點P,過點P分別x軸、y軸向作垂線,垂足在上x軸、y軸對應的數a,b分別叫做點P的橫坐標、縱坐標,有序數對(a,b)叫做點P的坐標。

點的坐標用(a,b)表示,其順序是橫坐標在前,縱坐標在後,中間有「,」分開,橫、縱坐標的位置不能顛倒。平面內點的坐標是有序實數對,當時,(a,b)和(b,a)是兩個不同點的坐標。

平面內點的與有序實數對是一一對應的。

4、不同位置的點的坐標的特徵

(1)、各象限內點的坐標的特徵

點P(x,y)在第一象限:x;0,y;0

點P(x,y)在第二象限:x;0,y;0

點P(x,y)在第三象限:x;0,y;0

點P(x,y)在第四象限:x;0,y;0

(2)、坐標軸上的點的特徵

點P(x,y)在x軸上,y=0,x為任意實數

點P(x,y)在y軸上,x=0,y為任意實數

點P(x,y)既在x軸上,又在y軸上,x,y同時為零,即點P坐標為(0,0)即原點

(3)、兩條坐標軸夾角平分線上點的坐標的特徵

點P(x,y)在第一、三象限夾角平分線(直線y=x)上,x與y相等

點P(x,y)在第二、四象限夾角平分線上,x與y互為相反數

(4)、和坐標軸平行的直線上點的坐標的特徵

位於平行於x軸的直線上的各點的縱坐標相同。

位於平行於y軸的直線上的各點的橫坐標相同。

(5)、關於x軸、y軸或原點對稱的點的坐標的特徵

點P與點p』關於x軸對稱橫坐標相等,縱坐標互為相反數,即點P(x,y)關於x軸的對稱點為P』(x,-y)

點P與點p』關於y軸對稱縱坐標相等,橫坐標互為相反數,即點P(x,y)關於y軸的對稱點為P』(-x,y)

點P與點p』關於原點對稱橫、縱坐標均互為相反數,即點P(x,y)關於原點的對稱點為P』(-x,-y)

初二數學 復習方法

按部就班

數學是環環相扣的一門學科,哪一個環節脫節都會影響整個學習的進程。所以,平時學習不應貪快,要一章一章過關,不要輕易留下自己不明白或者理解不深刻的問題。

強調理解

概念、定理、公式要在理解的基礎上記憶。每新學一個定理,嘗試先不看答案,做一次例題,看是否能正確運用新定理;若不行,則對照答案,加深對定理的理解。

基本訓練

學習數學是不能缺少訓練的,平時多做一些難度適中的練習,當然莫要陷入死鑽難題的誤區,要熟悉高考的題型,訓練要做到有的放矢。

重視錯誤

訂一個錯題本,專門搜集自己的錯題,這些往往就是自己的薄弱之處。復習時,這個錯題本也就成了寶貴的復習資料。

數學的學習有一個循序漸進的過程,妄想一步登天是不現實的。熟記書本內容後將書後習題認真寫好,有些同學可能認為書後習題太簡單不值得做,這種想法是極不可取的,書後習題的作用不僅幫助你將書本內容記牢,還輔助你將書寫格式規范化,從而使自己的解題結構緊密而又嚴整,公式定理能夠運用的恰如其分,以減少考試中無謂的失分。

平時的數學學習:

○1課前認真預習.預習的目的是為了能更好得聽老師講課,通過預習,掌握度要達到百分之八十.帶著預習中不明白的問題去聽老師講課,來解答這類的問題.預習還可以使聽課的整體效率提高.具體的預習方法:將書上的題目做完,畫出知識點,整個過程大約持續15-20分鍾.在時間允許的情況下,還可以將練習冊做完.

○2讓數學課學與練結合.在數學課上,光聽是沒用的.當老師讓同學去黑板上演算時,自己也要在草稿紙上練.如果遇到不懂的難題,一定要提出來,不能不求甚解.否則考試遇到類似的題目就可能不會做.聽老師講課時一定要全神貫注,要注意細節問題,否則「千里之堤,毀於蟻穴」.

○3課後及時復習.寫完作業後對當天老師講的內容進行梳理,可以適當地做25分鍾左右的課外題.可以根據自己的需要選擇適合自己的課外書.其課外題內容大概就是今天上的課.

○4單元測驗是為了檢測近期的學習情況.其實分數代表的是你的過去,關鍵的是對於每次考試的總結和吸取教訓,是為了讓你在期中、期末考得更好.老師經常會在沒通知的情況下進行考試,所以要及時做到「課後復習」.


初二數學中考知識點歸納相關 文章 :

★ 初中數學知識點整理:

★ 初中數學基礎知識整理歸納

★ 中考數學知識點總結最全提綱

★ 初中數學知識點總結大全

★ 初中數學知識點總結梳理

★ 初三數學知識點考點歸納總結

★ 初中數學基礎知識點歸納總結

★ 初中數學知識點總結大全

★ 初中數學知識點總結歸納

J. 初中數學知識點最全總結 沖刺中考必背核心考點!

初中生學習數學要注意知識點的總結,下面我為大家總結了初中數學知識點,僅供大家參考。

圓的基本性質
1.半圓或直徑所對的圓周角是直角。

2.任意一個三角形一定有一個外接圓。

3.在同一平面內,到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓。

4.在同圓或等圓中,相等的圓心角所對的弧相等。

5.同弧所對的圓周角等於圓心角的一半。

6.同圓或等圓的半徑相等。

7.過三個點一定可以作一個圓。

8.長度相等的兩條弧是等弧。

9.在同圓或等圓中,相等的圓心角所對的弧相等。

10.經過圓心平分弦的直徑垂直於弦。

直線與圓的位置關系

1.直線與圓有唯一公共點時,叫做直線與圓相切。

2.三角形的外接圓的圓心叫做三角形的外心。

3.弦切角等於所夾的弧所對的圓心角。

4.三角形的內切圓的圓心叫做三角形的內心。

5.垂直於半徑的直線必為圓的切線。

6.過半徑的外端點並且垂直於半徑的直線是圓的切線。

7.垂直於半徑的直線是圓的切線。

8.圓的切線垂直於過切點的半徑。
平行線的兩條判定定理
(1)兩條直線被第三條直線所截,如果內錯角相等,那麼兩直線平行。簡稱:內錯角相等,兩直線平行。

(2)兩條直線被第三條直線所截,如果同旁內角互補,那麼兩直線平行。簡稱:同旁內角互補,兩直線平行。

補充平行線的判定方法:

(1)平行於同一條直線的兩直線平行。

(2)垂直於同一條直線的兩直線平行。

(3)平行線的定義。
投影
投影的定義:用光線照射物體,在地面上或牆壁上得到的影子,叫做物體的投影。

平行投影:由平行光線(如太陽光線)形成的投影稱為平行投影。

中心投影:由同一點發出的光線所形成的投影稱為中心投影。

24、視圖

當我們從某一角度觀察一個實物時,所看到的圖像叫做物體的一個視圖。物體的三視圖特指主視圖、俯視圖、左視圖。

主視圖:在正面內得到的由前向後觀察物體的視圖,叫做主視圖。

俯視圖:在水平面內得到的由上向下觀察物體的視圖,叫做俯視圖。

左視圖:在側面內得到的由左向右觀察物體的視圖,叫做左視圖,有時也叫做側視圖。

以上就是我為大家總結的初中 數學 知識點,僅供參考,希望對大家有所幫助。