A. 初中數學都講哪些知識
班級里邊總是有很多的聰明人,但是他們的數學卻是他們的黑洞,而那些學習好的學生我也沒見的他們比誰聰明多少了,那為什麼會有學習好和差呢?為什麼別人總是學習好的呢?那是因為他們用對了學習數學的方式方法了,所以提高分數會很快.那麼怎麼樣學初中數學就能超過那些比自己學習好的人了呢?
輔導數學作業
第四點:數學所學習的公式都是必須要記住的,因為會在題目中用到,而且很關鍵,所以每天都要背一遍,在睡前在背一遍,第二天早上醒來在背一遍,以此類推,永久就不會忘記了.
最後,要仔細的對待數學這門科目,這可是能決定你以後上哪所大學的關鍵呢!怎麼樣學初中數學的方式方法到這里就結束了,希望同學們可以按照上邊的方法做一遍,是會收獲到很打的驚喜哦!
B. 初中九年級數學下冊知識點
初中九年級數學下冊知識點1
1、二次根式成立的條件:被開方數是一個非負數。
2、二次根式的實質:是一個非負數的算術平方根。因此√a≥0。
3、兩個公式:(√a)2=a(a≥0);√a2=∣a∣.
4、二次根式的乘除:√a×√b=√ab(a≥0,b≥0);√a÷√b=√a/b(a≥0,b>0).
5、最簡二次根式:⑴被開方數不含分母;⑵被開方數中不含能開的盡方的因數或因式。
6、二次根式的加減:先將二次根式化成最簡二次根式,再將被開方數相同的二次根式進行合並。
7、利用公式:(a+b)(a-b)=a2-b2;(a±b)2=a2±2ab+b2.
第二十二章一元二次方程
1、定義:形如:ax2+bx+c=0(a≠0)的方程叫一元二次方程。
①是整式方程,②未知數的最高次數是二次,③只含有一個未知數,④二次項系數不為零。
2、化為一元二次方程的一般形式:按降冪排列,二次項系數通常為正,右端為零。
3、一元二次方程的根:代入使方程成立。
4、一元二次方程的解法:
①配方法:移項→二次項系數化為一→兩邊同時加上一次項系數的一半→配方→開方→寫出方程的解。
②公式法:x=(-b±√b2-4ac)/2a,
③因式分解法:右端為零,左端分解為兩個因式的乘積。
5、一元二次方程的根的判別式①當△>0時,方程有兩個不相等的實數根
②當△=0時,方程有兩個相等的實數根,③當△<0時,方程沒有實數根。
注意:應用的前提條件是:a≠0.
6、一元二次方程根與系數的關系:x1+x2=-b/a,x1*x2=c/a.
注意:應用的前提條件是:a≠0,△≥0.
7、列方程解應用題:審題設元→列代數式、列方程→整理成一般形式→解方程→檢驗作答。
第二十三章旋轉
1、旋轉的三要素:旋轉中心,旋轉方向,旋轉角。
2、旋轉的性質:①對應點到旋轉中心的距離相等,②對應點與旋轉中心所連線段的夾角等於旋轉角,③旋轉前、後的圖形全等。
關鍵:找好對應線段、對應角。
3、中心對稱:把一個圖形繞著某一點旋轉180°,如果它能夠與另一個圖形重合,那麼這兩個圖形關於這個點對稱或中心對稱。
4、中心對稱的性質:①關於中心對稱的兩個圖形,對應點所連線段都經過對稱中心,而且被對稱中心所平分。②關於中心對稱的兩個圖形是全等形。
5、中心對稱圖形:把一個圖形繞著某一個點旋轉180°,如果旋轉後的圖形能夠與原來的圖形重合,那麼這個圖形叫做中心對稱圖形。
6、對稱點的坐標規律:①關於x軸對稱:橫坐標不變,縱坐標互為相反數,②關於y軸對稱:橫坐標互為相反數,縱坐標不變,③關於原點對稱:橫坐標、縱坐標都互為相反數。
第二十四章圓
1、確定圓的條件:圓心→位置,半徑→大小。
2、和圓有關的概念:弦---直徑,弧—半圓、優弧、劣弧,圓心角,圓周角,弦心距。
3、圓的對稱性:圓既是軸對稱圖形,又是中心對稱圖形。
4、垂徑定理:垂直於弦的直徑平分弦,並且平分弦所對的兩條弧。
推論:平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧。
5、圓心角、弧、弦、弦心距之間的關系:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,弦的弦心距相等。
引申:在這四組量中,只要有一組量對應相等,其餘各組量都相等。
6、圓周角定理:①圓周角等於同弧所對的圓心角的一半,
②在同圓或等圓中,同弧或等弧所對的圓周角相等,都等於這條弧所對的圓心角的一半;相等的圓周角所對的弧相等,
③半圓(或直徑)所對的圓周角是直角,90°的圓周角所對的弦是直徑。
7、內心和外心:①內心是三角形內角平分線的交點,它到三角形三邊的距離相等。
②外心是三角形三邊垂直平分線的交點,它到三角形三個頂點的距離相等。
8、直線和圓的位置關系:相交→d
9、切線的判定:「有點連圓心」→證垂直。「無點做垂線」→證d=r。
切線的性質:圓的切線垂直於經過切點的半徑。
10、切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等,這一點和圓心的連線平分兩條切線的夾角。
11、圓內接四邊形的性質:圓內接四邊形的對角互補,每一個外角等於它的內對角。
12、圓外切四邊形的性質:圓外切四邊形的對邊之和相等。
13、圓和圓的位置關系:外離→d>R+r.外切→d=R+r.相交→R-r
14、正多邊形和圓:半徑→外接圓的半徑,中心角→每一邊所對的圓心角,邊心距→中心到一邊的距離。
15、弧長和扇形面積:L=n∏R/180.S扇形=n∏R2/360.
16、圓錐的側面積和全面積:圓錐的.母線長=扇形的半徑,圓錐底面圓周長=扇形弧長,圓錐的側面積=扇形面積,圓錐的全面積=扇形面積+底面圓面積。
第二十五章概率初步
1、三種事件:隨機事件、不可能事件、必然事件。
2、概率:P(A)=p.0≤P(A)≤1.
3、古典概率的求法:①列舉法(把所有可能結果都表示出來),②列表法,③樹形圖。
4、用頻率估計概率:根據一個隨機發生的事件發生的頻率所逐漸穩定到的常數,可以估計這個事件發生的概率。
第二十六章二次函數
1、定義:形如y=ax2+bx+c(a≠0,a、b、c是常數)的函數叫二次函數。
2、二次函數的分類:①y=ax2:頂點坐標:原點;對稱軸:y軸;
②y=ax2+c:頂點坐標:(0、c);對稱軸:y軸;
③y=a(x-h)2:頂點坐標:(h、0);對稱軸:直線x=h;
④y=a(x-h)2+k:頂點坐標:(h、k);對稱軸:直線x=h;
⑤y=ax2+bx+c:頂點坐標:(-b/2a,4ac-b2/4a);對稱軸:直線x=-b/2a
3、a、b、c符號的判定:a:開口方向向上→a>0;開口方向向下→a<0。
b:與a左同右異,對稱軸在y軸左側,a、b同號;對稱軸在y軸右側,a、b異號。
C:交與y軸正半軸,c>0;交與y軸負半軸,c<0
b2-4ac:與x軸交點的個數,△>0→兩個交點,△<0→無交點,△=0→一個交點。
3、平移規律:「正左負右」「正上負下」。
前提:配方成y=a(x-h)2+k的形式。
4、待定系數法確定函數關系式:①頂點在原點選y=ax2;
②頂點在y軸選y=ax2+c;
③通過坐標原點選y=ax2+bx;
④知道頂點在x軸上選y=a(x-h)2;
⑤知道頂點坐標選y=a(x-h)2+k;
⑥知道三點的坐標選y=ax2+bx+c。
5、其他應用:求與x軸的交點→解一元二次方程;與y軸交點為(0、c)。
6、對稱規律:
①兩拋物線關於x軸對稱:a、b、c都變為其相反數。
②兩拋物線關於y軸對稱:a、c不變,b變為其相反數。
7、實際問題:利潤=銷售額-總進價-其他費用,利潤=(售價-進價)*銷售量-其他費用。
初中九年級數學下冊知識點2
一、 銳角三角函數
1.正弦:在rt△abc中,銳角∠a的對邊a與斜邊的比叫做∠a的正弦,記作sina,即sina=∠a的對邊/斜邊=a/c;
2.餘弦:在rt△abc中,銳角∠a的鄰邊b與斜邊的比叫做∠a的餘弦,記作cosa,即cosa=∠a的鄰邊/斜邊=b/c;
3.正切:在rt△abc中,銳角∠a的對邊與鄰邊的比叫做∠a的正切,記作tana,即tana=∠a的對邊/∠a的鄰邊=a/b。
①tana是一個完整的符號,它表示∠a的正切,記號里習慣省去角的符號「∠」;
②tana沒有單位,它表示一個比值,即直角三角形中∠a的對邊與鄰邊的比;
③tana不表示「tan」乘以「a」;
④tana的值越大,梯子越陡,∠a越大;∠a越大,梯子越陡,tana的值越大。
4、餘切:定義:在rt△abc中,銳角∠a的鄰邊與對邊的比叫做∠a的餘切,記作cota,即cota=∠a的鄰邊/∠a的對邊=b/a;
5、一個銳角的正弦、餘弦、正切、餘切分別等於它的餘角的餘弦、正弦、餘切、正切。(通常我們稱正弦、餘弦互為余函數。同樣,也稱正切、餘切互為余函數,可以概括為:一個銳角的三角函數等於它的餘角的余函數)用等式表達:
若∠a為銳角,則①sina=cos(90°∠a)等等。
6、記住特殊角的三角函數值表0°,30°,45°,60°,90°。
7、當角度在0°~90°間變化時,正弦值、正切值隨著角度的增大(或減小)而增大(或減小);餘弦值、餘切值隨著角度的增大(或減小)而減小(或增大)。0≤sinα≤1,0≤cosα≤1。
同角的三角函數間的關系:
tanα·cotα=1,
tanα=sinα/cosα,
cotα=cosα/sinα,sin2α+cos2α=1
二、解直角三角形
1.解直角三角形:在直角三角形中,由已知元素求未知元素的過程。
2.在解直角三角形的過程中用到的關系:(在△abc中,∠c為直角,∠a、∠b、∠c所對的邊分別為a、b、c,)
(1)三邊之間的關系:a2+b2=c2;(勾股定理)
(2)兩銳角的關系:∠a+∠b=90°;
(3)邊與角之間的關系:
sina=a/c;
cosa=b/c;
tana=a/b。
sina=cosb
cosa=sinb
sina=cos(90°-a)
sin2α+cos2α=1
初中九年級數學下冊知識點3
一、投影
1.投影:一般地,用光線照射物體,在某個平面(地面、牆壁等)上得到的影子叫做物體的投影,照射光線叫做 投影線 ,投影所在的平面叫做 投影面 。
2.平行投影:由平行光線形成的投影是平行投影。(光源特別遠)
3.中心投影:由同一點(點光源發出的光線)形成的投影叫做中心投影
4.正投影:投影線垂直於投影面產生的投影叫做正投影。物體正投影的形狀、大小與它相對於投影面的位置有關。
5.當物體的某個面平行於投影面時,這個面的正投影與這個面的形狀、大小完全相同。當物體的某個面頂斜於投影面時,這個面的正投影變小。當物體的某個面垂直於投影面時,這個面的正投影成為一條直線。
二、三視圖
1.三視圖:是觀測者從三個不同位置(正面、水平面、側面)觀察同一個空間幾何體而畫出的圖形。三視圖就是主視圖、俯視圖、左視圖的總稱。另外還有如剖面圖、半剖面圖等做為輔助,基本能完整的表達物體的結構。
2.主視圖:在正面內得到的由前向後觀察物體的視圖。
3.俯視圖:在水平面內得到的由上向下觀察物體的視圖。
4.左視圖:在側面內得到的由左向右觀察物體的視圖。
5.三個視圖的位置關系:
①主視圖在上、俯視圖在下、左視圖在右;
②主視、俯視表示物體的長,主視、左視表示物體的高,左視、俯視表示物體的寬。
③主視、俯視長對正,主視、左視高平齊,左視、俯視寬相等。
6.畫法:看得見的部分的輪廓線畫成實線,因被其它部分遮檔而看不見的部分的輪廓線畫成虛線。
C. 初中數學學習哪些知識簡要概括,便於記憶
以下內容純手打,望採納,謝謝
初中數學分為兩部分:幾何、代數
一、幾何
線、角、多邊形(三角形、四邊形等)、圓、全等、相似
二、代數實數
數與式:
實數:有理數和無理數的統稱。
整式:單項式和多項式的統稱。
分式:整式A除以整式B,可以表示成A/B的形式.如果除式B中含有字母,那麼稱為分式。
二次根式:一般地,形如√a的代數式叫做二次根式。
方程:
一元一次方程:一元一次方程指只含有一個未知數、未知數的最高次數為1且兩邊都為整式的等式。
一元二次方程:只含有一個未知數(一元),並且未知數項的最高次數是2(二次)的整式方程叫做一元二次方程。
二元一次方程:二元一次方程是指含有兩個未知數(例如x和y),並且所含未知數的項的次數都是1的方程。
函數:
一次函數:一般形如y=kx+b(k,b是常數,k≠0)
二次函數:一般地,自變數x和因變數y之間存在如下關系:一般式:y=ax2+bx+c(a≠0,a、b、c為常數),則稱y為x的二次函數。
反比例函數:一般的,如果兩個變數x,y之間的關系可以表示成(k為常數,k≠0,x≠0)
望採納,謝謝
D. 概率初步都有哪些知識點
如果是初中九年級的「概率初步」,則有以下四個知識點:
(1)必然事件、不可能事件、隨機事件的辨別;
(2)概率(古典概率)的定義認知;
(3)用「列表法」或「樹狀圖」列舉出所有可能出現的結果,再求概率;
(4)用試驗中某一事件發生的「頻率」估計這一事件發生的概率。
E. 八年級數學必備知識點總結
沒有加倍的勤奮,就沒有才能,也沒有天才。天才其實就是可以持之以恆的人。勤能補拙是良訓,一分辛苦一分才,勤奮一直都是學習通向成功的最好捷徑。下面是我給大家整理的一些 八年級 數學的知識點,希望對大家有所幫助。
初二上學期數學知識點歸納
分式方程
一、理解定義
1、分式方程:含分式,並且分母中含未知數的方程——分式方程。
2、解分式方程的思路是:
(1)在方程的兩邊都乘以最簡公分母,約去分母,化成整式方程。
(2)解這個整式方程。
(3)把整式方程的根帶入最簡公分母,看結果是不是為零,使最簡公分母為零的根是原方程的增根,必須捨去。
(4)寫出原方程的根。
「一化二解三檢驗四 總結 」
3、增根:分式方程的增根必須滿足兩個條件:
(1)增根是最簡公分母為0;(2)增根是分式方程化成的整式方程的.根。
4、分式方程的解法:
(1)能化簡的先化簡(2)方程兩邊同乘以最簡公分母,化為整式方程;
(3)解整式方程;(4)驗根;
註:解分式方程時,方程兩邊同乘以最簡公分母時,最簡公分母有可能為0,這樣就產生了增根,因此分式方程一定要驗根。
分式方程檢驗 方法 :將整式方程的解帶入最簡公分母,如果最簡公分母的值不為0,則整式方程的解是原分式方程的解;否則,這個解不是原分式方程的解。
5、分式方程解實際問題
步驟:審題—設未知數—列方程—解方程—檢驗—寫出答案,檢驗時要注意從方程本身和實際問題兩個方面進行檢驗。
八年級上冊數學知識點
(一)運用公式法
我們知道整式乘法與因式分解互為逆變形。如果把乘法公式反過來就是把多項式分解因式。於是有:
a2-b2=(a+b)(a-b)
a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
如果把乘法公式反過來,就可以用來把某些多項式分解因式。這種分解因式的方法叫做運用公式法。
(二)平方差公式
平方差公式
(1)式子:a2-b2=(a+b)(a-b)
(2)語言:兩個數的平方差,等於這兩個數的和與這兩個數的差的積。這個公式就是平方差公式。
(三)因式分解
1.因式分解時,各項如果有公因式應先提公因式,再進一步分解。
2.因式分解,必須進行到每一個多項式因式不能再分解為止。
(四)完全平方公式
(1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反過來,就可以得到:
a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
這就是說,兩個數的平方和,加上(或者減去)這兩個數的積的2倍,等於這兩個數的和(或者差)的平方。
把a2+2ab+b2和a2-2ab+b2這樣的式子叫完全平方式。
上面兩個公式叫完全平方公式。
(2)完全平方式的形式和特點
①項數:三項
②有兩項是兩個數的的平方和,這兩項的符號相同。
③有一項是這兩個數的積的兩倍。
(3)當多項式中有公因式時,應該先提出公因式,再用公式分解。
(4)完全平方公式中的a、b可表示單項式,也可以表示多項式。這里只要將多項式看成一個整體就可以了。
(5)分解因式,必須分解到每一個多項式因式都不能再分解為止。
八年級數學重要知識點
【概率初步】
23.1確定事件和隨機事件
1.在一定條件下必定出現的現象叫做必然事件
2.在一定條件下必定不出現的現象叫做不可能事件
3.必然事件和不可能事件統稱為確定事件
4.那些在一定條件下可能出現也可能不出現的現象叫做隨機時間,也稱為不確定事件23.2事件發生的可能性
23.3時間的概率
1.用來表示某事件發生的可能性大小的數叫做這個事件的概率
2.規定用0作為不可能事件的概率;用1作為必然時間的概率
3.事件A的概率我們記作P(A);對於隨機事件A,可知0
4.如果一項可以反復進行的試驗具有以下特點:
(1)試驗的結果是有限個,各種結果可能出現的機會是均等的;
(2)任何兩個結果不可能同時出現
那麼這樣的試驗叫做等可能試驗
5.一般地,如果一個試驗共有n個等可能的結果,事件A包含其中的k個結果,那麼事件A的概率P(A)=事件A包含的可能結果數/所有的可能結果總數=k/n
6.列舉法、樹狀圖、列表
23.4概率計算舉例
八年級數學必備知識點總結相關 文章 :
★ 八年級數學知識點整理歸納
★ 人教版八年級數學上冊知識點總結
★ 初二數學知識點歸納整理
★ 八年級下冊數學知識點整理
★ 初中八年級數學知識點總結
★ 初二數學知識點歸納梳理
★ 初二數學基礎知識點歸納
★ 初二數學上冊知識點總結
★ 初二數學知識點整理歸納
★ 初二數學知識點整理
F. 初中數學學好要掌握哪些基礎知識點
有理數
整式的加減
一元一次方程
圖形初步認識
相交線與平行線
平面直角坐標系
三角形
二元一次方程
不等式與不等式組
數據的收集、整理與描述
全等三角形
軸對稱
實數
一次函數
整式的乘除與因式分解
分式
反比例函數
勾股弦定理
四邊形
數據的分析
二次根式
一元二次方程
旋轉
圓
概率初步
二次函數
相似
銳角三角函數
投影與視圖