① 九年級數學知識點總結歸納
這篇文章我將九年級數學重要知識點做了一個歸納整理,希望可以幫助同學們系統的復習初三數學的重要知識點。
垂直平分線
1.經過某一條線段的中點,並且垂直於這條線段的直線,叫做這條線段的垂直平分線。
2.垂直平分線的性質
(1)垂直平分線垂直且平分其所在線段。
(2)垂直平分線上任意一點,到線段兩端點的距離相等。
(3)如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線。
(4)線段垂直平分線上的點和這條線段兩個端點的距離相等。
逆定理:和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上。
(5)三角形三條邊的垂直平分線相交於一點,該點叫外心(circumcenter),並且這一點到三個頂點的距離相等。(此時以外心為圓心,外心到頂點的長度為半徑,所作的圓為此三角形的外接圓。)
3.垂直平分線的逆定理:到一條線段兩個端點距離相等的點,在這條線段的垂直平分線上。
二次根式
1.一般地,形如√a的代數式叫做二次根式,其中,a叫做被開方數。當a≥0時,√a表示a的算術平方根;當a小於0時,√a的值為純虛數。
2.最簡二次根式:若二次根式滿足:被開方數的因數是整數,因式是整式;被開方數中不含能開得盡方的因數或因式,這樣的二次根式叫做最簡二次根式。
3.化二次根式為最簡二次根式的方法和步驟:
(1)如果被開方數是分數(包括小數)或分式,先利用商的算數平方根的性質把它寫成分式的形式,然後利用分母有理化進行化簡。
(2)如果被開方數是整數或整式,先將他們分解因數或因式,然後把能開得盡方的因數或因式開出來。
有理數
(一)定義
有理數為整數(正整數、0、負整數)和分數的統稱,正整數和正分數合稱為正有理數,負整數和負分數合稱為負有理數。因而有理數集的數可分為正有理數、負有理數和零。
(二)有理數的性質
(1)順序性
(2)封閉性
(3)稠密性
(三)有理數的加法運演算法則
1.同號兩數相加,取與加數相同的符號,並把絕對值相加。
2.異號兩數相加,若絕對值相等則互為相反數的兩數和為0;若絕對值不相等,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值。
3.互為相反數的兩數相加得0。
4.一個數同0相加仍得這個數。
5.互為相反數的兩個數,可以先相加。
6.符號相同的數可以先相加。
7.分母相同的數可以先相加。
8.幾個數相加能得整數的可以先相加。
9.減去一個數,等於加上這個數的相反數,即把有理數的減法利用數的相反數變成加法進行運算。
2.一元二次方程的解法
(1)開平方法(2)配方法
(3)因式分解法(4)求根公式法
3.判別式
利用一元二次方程根的判別式(△=b²-4ac),可以判斷方程的根的情況。
(1)當△>0時,方程有兩個不相等的實數根;
(2)當△=0時,方程有兩個相等的實數根;
(3)當△<0時,方程無實數根,但有2個共軛復根。
② 九年級數學知識點總結歸納
九年級數學的知識點很多,也很雜,學生們一定要扎實掌握,我整理了一些重要的知識點。
圓
1、在一個平面內,一動點以一定點為中心,以一定長度為距離旋轉一周所形成的封閉曲線叫做圓。圓有無數條對稱軸。
2、圓的相關特點
(1)徑
連接圓心和圓上的任意一點的線段叫做半徑,字母表示為r
通過圓心並且兩端都在圓上的線段叫做直徑,字母表示為d
直徑所在的直線是圓的對稱軸。在同一個圓中,圓的直徑d=2r
(2)弦
連接圓上任意兩點的線段叫做弦.在同一個圓內最長的弦是直徑。直徑所在的直線是圓的對稱軸,因此,圓的對稱軸有無數條。
(3)弧
圓上任意兩點間的部分叫做圓弧,簡稱弧,以「⌒」表示。
分式
1、整式A除以整式B,如果除式B中含有分母,那麼這個就是分式,對於任何一個分式,分母不為0。
2、分式的分子與分母同乘以或除以同一個不等於0的整式,分式的值不變。
分式的運算
1、乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。
2、除法:除以一個分式等於乘以這個分式的倒數。
3、加減法:
(1)同分母的分式相加減,分母不變,把分子相加減。
(2)異分母的分式先通分,化為同分母的分式,再加減。
分式方程
1、分母中含有未知數的方程叫分式方程。
2、使方程的分母為0的解稱為原方程的增根。
一元二次方程
只有一個未知數,並且未知數的項的最高系數為2的方程。
1、一元二次方程的二次函數的關系
大家已經學過二次函數了,對他也有很深的了解,好像解法,在圖象中表示等等,其實一元二次方程也可以用二次函數來表示,其實一元二次方程也是二次函數的一個特殊情況,就是當Y的0的時候就構成了一元二次方程了。那如果在平面直角坐標系中表示出來,一元二次方程就是二次函數中,圖象與X軸的交點。也就是該方程的解了。
2、一元二次方程的解法
大家知道,二次函數有頂點式(-b/2a,4ac-b2/4a),這大家要記住,很重要,因為在上面已經說過了,一元二次方程也是二次函數的一部分,所以他也有自己的一個解法,利用他可以求出所有的一元一次方程的解。
(1)配方法
利用配方,使方程變為完全平方公式,在用直接開平方法去求出解。
(2)分解因式法
提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時候也一樣,利用這點,把方程化為幾個乘積的形式去解。
(3)公式法
這方法也可以是在解一元二次方程的萬能方法了,方程的根X1={-b+√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a。
以上是我整理的九年級數學的知識點,希望能幫到你。
③ 九年級上冊數學知識點歸納
學習中的困難莫過於一節一節的台階,雖然台階很陡,但只要一步一個腳印的踏,攀登一層一層的台階,才能實現學習的理想。下面就是我為大家梳理歸納的知識,希望能夠幫助到大家。
九年級上冊數學知識點歸納一
圓的定義
1、以定點為圓心,定長為半徑的點組成的圖形。
2、在同一平面內,到一個定點的距離都相等的點組成的圖形。
二、圓的各元素
1、半徑:圓上一點與圓心的連線段。
2、直徑:連接圓上兩點有經過圓心的線段。
3、弦:連接圓上兩點線段(直徑也是弦)。
4、弧:圓上兩點之間的曲線部分。半圓周也是弧。
(1)劣弧:小於半圓周的弧。
(2)優弧:大於半圓周的弧。
5、圓心角:以圓心為頂點,半徑為角的邊。
6、圓周角:頂點在圓周上,圓周角的兩邊是弦。
7、弦心距:圓心到弦的垂線段的長。
三、圓的基本性質
1、圓的對稱性
(1)圓是圖形,它的對稱軸是直徑所在的直線。
(2)圓是中心對稱圖形,它的對稱中心是圓心。
(3)圓是對稱圖形。
2、垂徑定理。
(1)垂直於弦的直徑平分這條弦,且平分這條弦所對的兩條弧。
(2)推論:
平分弦(非直徑)的直徑,垂直於弦且平分弦所對的兩條弧。
平分弧的直徑,垂直平分弧所對的弦。
3、圓心角的度數等於它所對弧的度數。圓周角的度數等於它所對弧度數的一半。
(1)同弧所對的圓周角相等。
(2)直徑所對的圓周角是直角;圓周角為直角,它所對的弦是直徑。
4、在同圓或等圓中,兩條弦、兩條弧、兩個圓周角、兩個圓心角、兩條弦心距五對量中只要有一對量相等,其餘四對量也分別相等。
5、夾在平行線間的兩條弧相等。
6、設⊙O的半徑為r,OP=d。
7、(1)過兩點的圓的圓心一定在兩點間連線段的中垂線上。
(2)不在同一直線上的三點確定一個圓,圓心是三邊中垂線的交點,它到三個點的距離相等。
(直角的外心就是斜邊的中點。)
8、直線與圓的位置關系。d表示圓心到直線的距離,r表示圓的半徑。
直線與圓有兩個交點,直線與圓相交;直線與圓只有一個交點,直線與圓相切;
直線與圓沒有交點,直線與圓相離。
9、中,A(x1,y1)、B(x2,y2)。
10、圓的切線判定。
(1)d=r時,直線是圓的切線。
切點不明確:畫垂直,證半徑。
(2)經過半徑的外端且與半徑垂直的直線是圓的切線。
切點明確:連半徑,證垂直。
11、圓的切線的性質(補充)。
(1)經過切點的直徑一定垂直於切線。
(2)經過切點並且垂直於這條切線的直線一定經過圓心。
12、切線長定理。
(1)切線長:從圓外一點引圓的兩條切線,切點與這點之間連線段的長叫這個點到圓的切線長。
(2)切線長定理。
∵PA、PB切⊙O於點A、B
∴PA=PB,∠1=∠2。
13、內切圓及有關計算。
(1)內切圓的圓心是三個內角平分線的交點,它到三邊的距離相等。
(2)如圖,△ABC中,AB=5,BC=6,AC=7,⊙O切△ABC三邊於點D、E、F。
求:AD、BE、CF的長。
分析:設AD=x,則AD=AF=x,BD=BE=5-x,CE=CF=7-x.
可得方程:5-x+7-x=6,解得x=3
(3)△ABC中,∠C=90°,AC=b,BC=a,AB=c。
求內切圓的半徑r。
分析:先證得正方形ODCE,
得CD=CE=r
AD=AF=b-r,BE=BF=a-r
b-r+a-r=c
14、(1)弦切角:角的頂點在圓周上,角的一邊是圓的切線,另一邊是圓的弦。
BC切⊙O於點B,AB為弦,∠ABC叫弦切角,∠ABC=∠D。
(2)相交弦定理。
圓的兩條弦AB與CD相交於點P,則PA?PB=PC?PD。
(3)切割線定理。
如圖,PA切⊙O於點A,PBC是⊙O的割線,則PA2=PB?PC。
(4)推論:如圖,PAB、PCD是⊙O的割線,則PA?PB=PC?PD。
15、圓與圓的位置關系。
(1)外離:d>r1+r2,交點有0個;
外切:d=r1+r2,交點有1個;
相交:r1-r2
內切:d=r1-r2,交點有1個;
內含:0≤d
(2)性質。
相交兩圓的連心線垂直平分公共弦。
相切兩圓的連心線必經過切點。
16、圓中有關量的計算。
(1)弧長有L表示,圓心角用n表示,圓的半徑用R表示。
(2)扇形的面積用S表示。
(3)圓錐的側面展開圖是扇形。
r為底面圓的半徑,a為母線長。
九年級上冊數學知識點歸納二
1二次根式:形如式子為二次根式;
性質:是一個非負數;
2二次根式的乘除:
3二次根式的加減:二次根式加減時,先將二次根式華為最簡二次根式,再將被開方數相同的二次根式進行合並.
4海倫-秦九韶公式:,S是的面積,p為.
1:等號兩邊都是整式,且只有一個未知數,未知數的次是2的方程.
2配 方法 :將方程的一邊配成完全平方式,然後兩邊開方;
因式分解法:左邊是兩個因式的乘積,右邊為零.
3一元二次方程在實際問題中的應用
4韋達定理:設是方程的兩個根,那麼有
1:一個圖形繞某一點轉動一個角度的圖形變換
性質:對應點到中心的距離相等;
對應點與旋轉中心所連的線段的夾角等於旋轉角
旋轉前後的圖形全等.
2中心對稱:一個圖形繞一個點旋轉180度,和另一個圖形重合,則兩個圖形關於這個點中心對稱;
中心對稱圖形:一個圖形繞某一點旋轉180度後得到的圖形能夠和原來的圖形重合,則說這個圖形是中心對稱圖形;
3關於原點對稱的點的坐標
1圓、圓心、半徑、直徑、圓弧、弦、半圓的定義
2垂直於弦的直徑
圓是圖形,任何一條直徑所在的直線都是它的對稱軸;
垂直於弦的直徑平分弦,並且平方弦所對的兩條弧;
平分弦的直徑垂直弦,並且平分弦所對的兩條弧.
3弧、弦、圓心角
在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦也相等.
4圓周角
在同圓或等圓中,同弧或等弧所對的圓周角相等,都等於這條弧所對的圓心角的一半;
半圓(或直徑)所對的圓周角是直角,90度的圓周角所對的弦是直徑.
5點和圓的位置關系
點在圓外d>r
點在圓上d=r
點在圓內dR+r
外切d=R+r
相交R-r
九年級上冊數學知識點歸納三
拋物線頂點坐標公式
y=ax2+bx+c(a=?0)的頂點坐標公式是(-b/2a,(4ac-b2)/4a)
y=ax2+bx的頂點坐標是(-b/2a,-b2/4a)
相關結論
過拋物線y^2=2px(p>0)焦點F作傾斜角為θ的直線L,L與拋物線相交於A(x1,y1),B(x2,y2),有
①x1 x2=p^2/4,y1 y2=—P^2,要在直線過焦點時才能成立;
②焦點弦長:|AB|=x1+x2+P=2P/[(sinθ)^2];
③(1/|FA|)+(1/|FB|)=2/P;
④若OA垂直OB則AB過定點M(2P,0);
⑤焦半徑:|FP|=x+p/2(拋物線上一點P到焦點F距離等於到准線L距離);
⑥弦長公式:AB=√(1+k^2) │x2-x1│;
⑦△=b^2-4ac;
⑧由拋物線焦點到其切線的垂線距離,是焦點到切點的距離,與到頂點距離的比例中項;
⑨標准形式的拋物線在x0,y0點的切線就是:yy0=p(x+x0)。
⑴△=b^2-4ac>0有兩個實數根;
⑵△=b^2-4ac=0有兩個一樣的實數根;
⑶△=b^2-4ac<0沒實數根。
九年級上冊數學知識點歸納相關 文章 :
★ 九年級數學上冊重要知識點總結
★ 九年級上冊數學知識點歸納整理
★ 人教版九年級數學知識點歸納
★ 初三上冊數學知識點歸納
★ 初三數學知識點上冊總結歸納
★ 初三數學知識點考點歸納總結
★ 初三九年級上冊數學知識點
★ 初中九年級數學知識點總結
★ 初中九年級數學知識點總結歸納
★ 初中數學必備知識點總結初三數學上冊一二章知識點
④ 九年級數學知識點歸納總結
只有學習精彩,生命才精彩,只有學習成功,事業才成功。每一門科目都有自己的 學習 方法 ,但其實都是萬變不離其中的,數學作為最燒腦的科目之一,也是要記、要背、要講練的。下面是我給大家整理的一些 九年級數學 的知識點,希望對大家有所幫助。
初三第一學期數學知識點
【角的度量與分類】
角的度量:度量角的大小,可用「度」作為度量單位。把一個圓周分成360等份,每一份叫做一度的角。1度=60分;1分=60秒。
角的分類:
(1)銳角:小於直角的角叫做銳角
(2)直角:平角的一半叫做直角
(3)鈍角:大於直角而小於平角的角
(4)平角:把一條射線,繞著它的端點順著一個方向旋轉,當終止位置和起始位置成一直線時,所成的角叫做平角。
(5)周角:把一條射線,繞著它的端點順著一個方向旋轉,當終邊和始邊重合時,所成的角叫做周角。
(6)周角、平角、直角的關系是:l周角=2平角=4直角=360°
【銳角三角函數定義】
銳角角A的正弦(sin),餘弦(cos)和正切(tan),餘切(cot)以及正割(sec),餘割(csc)都叫做角A的銳角三角函數。
正弦(sin)等於對邊比斜邊;sinA=a/c
餘弦(cos)等於鄰邊比斜邊;cosA=b/c
正切(tan)等於對邊比鄰邊;tanA=a/b
餘切(cot)等於鄰邊比對邊;cotA=b/a
正割(sec)等於斜邊比鄰邊;secA=c/b
餘割(csc)等於斜邊比對邊。cscA=c/a
互餘角的三角函數間的關系
sin(90°-α)=cosα,cos(90°-α)=sinα,
tan(90°-α)=cotα,cot(90°-α)=tanα。
平方關系:
sin^2(α)+cos^2(α)=1
tan^2(α)+1=sec^2(α)
cot^2(α)+1=csc^2(α)
初三數學知識點
1.有兩條邊相等的三角形是等腰三角形。
2.判定定理:如果一個三角形有兩個角相等,那麼這個三角形是等腰三角形(簡稱:等角對等邊)。
角平分線:把一個角平分的射線叫該角的角平分線。
定義中有幾個要點要注意一下的,學習方法,就是角的角平分線是一條射線,不是線段也不是直線,很多時,在題目中會出現直線,這是角平分線的對稱軸才會用直線的,這也涉及到軌跡的問題,一個角個角平分線就是到角兩邊距離相等的點
性質定理:角平分線上的點到該角兩邊的距離相等
判定定理:到角的兩邊距離相等的點在該角的角平分線上
標准差與方差
極差是什麼:一組數據中數據與最小數據的差叫做極差,即極差=值-最小值。
計算器——求標准差與方差的一般步驟:
1.打開計算器,按「ON」鍵,按「MODE」「2」進入統計(SD)狀態。
2.在開始數據輸入之前,請務必按「SHIFT」「CLR」「1」「=」鍵清除統計存儲器。
3.輸入數據:按數字鍵輸入數值,然後按「M+」鍵,就能完成一個數據的輸入。如果想對此輸入同樣的數據時,還可在步驟3後按「SHIET」「;」,後輸入該數據出現的頻數,再按「M+」鍵。
4.當所有的數據全部輸入結束後,按「SHIFT」「2」,選擇的是「標准差」,就可以得到所求數據的標准差;
5.標准差的平方就是方差。
數學初三上冊知識點歸納
分式的基本性質與應用:
(1)若分式的分子與分母都乘以(或除以)同一個不為零的整式,分式的值不變;
(2)注意:在分式中,分子、分母、分式本身的符號,改變其中任何兩個,分式的值不變;
(3)繁分式化簡時,採用分子分母同乘小分母的最小公倍數的方法,比較簡單.
分式的約分:把一個分式的分子與分母的公因式約去,叫做分式的約分;注意:分式約分前經常需要先因式分解.
最簡分式:一個分式的分子與分母沒有公因式,這個分式叫做最簡分式;注意:分式計算的最後結果要求化為最簡分式.
分式的乘除法法則:.
分式的乘方:.
負整指數計演算法則:
(1)公式:a0=1(a≠0),a-n=(a≠0);
(2)正整指數的運演算法則都可用於負整指數計算;
(3)公式:,;
(4)公式:(-1)-2=1,(-1)-3=-1.
九年級數學知識點歸納 總結 相關 文章 :
★ 初三數學知識點考點歸納總結
★ 九年級數學上冊重要知識點總結
★ 初三數學知識點歸納總結
★ 九年級上冊數學知識點歸納整理
★ 人教版九年級數學知識點歸納
★ 初三數學知識點歸納人教版
★ 初中九年級數學知識點總結歸納
★ 最新初三數學知識點總結大全
★ 初三中考數學知識點歸納總結
★ 九年級上冊數學知識點歸納
⑤ 九年級數學知識點歸納
各個科目都有自己的 學習 方法 ,但其實都是萬變不離其中的,基本離不開背、記,練,數學作為最燒腦的科目之一,也是一樣的。下面是我給大家整理的一些 九年級數學 知識點的學習資料,希望對大家有所幫助。
初三下冊數學知識點 總結
半徑與弦長計算,弦心距來中間站。圓上若有一切線,切點圓心半徑連。
切線長度的計算,勾股定理最方便。要想證明是切線,半徑垂線仔細辨。
是直徑,成半圓,想成直角徑連弦。弧有中點圓心連,垂徑定理要記全。
圓周角邊兩條弦,直徑和弦端點連。弦切角邊切線弦,同弧對角等找完。
要想作個外接圓,各邊作出中垂線。還要作個內接圓,內角平分線夢圓。
如果遇到相交圓,不要忘作公共弦。內外相切的兩圓,經過切點公切線。
若是添上連心線,切點肯定在上面。要作等角添個圓,證明題目少困難。
輔助線,是虛線,畫圖注意勿改變。假如圖形較分散,對稱旋轉去實驗。
基本作圖很關鍵,平時掌握要熟練。解題還要多心眼,經常總結方法顯。
切勿盲目亂添線,方法靈活應多變。分析綜合方法選,困難再多也會減。
虛心勤學加苦練,成績上升成直線。
九年級下冊數學知識點
知識點1.概念
把形狀相同的圖形叫做相似圖形。(即對應角相等、對應邊的比也相等的圖形)
解讀:(1)兩個圖形相似,其中一個圖形可以看做由另一個圖形放大或縮小得到.
(2)全等形可以看成是一種特殊的相似,即不僅形狀相同,大小也相同.
(3)判斷兩個圖形是否相似,就是看這兩個圖形是不是形狀相同,與其他因素無關.
知識點2.比例線段
對於四條線段a,b,c,d,如果其中兩條線段的長度的比與另兩條線段的長度的比相等,即(或a:b=c:d)那麼這四條線段叫做成比例線段,簡稱比例線段.
知識點3.相似多邊形的性質
相似多邊形的性質:相似多邊形的對應角相等,對應邊的比相等.
解讀:(1)正確理解相似多邊形的定義,明確「對應」關系.
(2)明確相似多邊形的「對應」來自於書寫,且要明確相似比具有順序性.
知識點4.相似三角形的概念
對應角相等,對應邊之比相等的三角形叫做相似三角形.
解讀:(1)相似三角形是相似多邊形中的一種;
(2)應結合相似多邊形的性質來理解相似三角形;
(3)相似三角形應滿足形狀一樣,但大小可以不同;
(4)相似用「∽」表示,讀作「相似於」;
(5)相似三角形的對應邊之比叫做相似比.
知識點5.相似三角的判定方法
(1)定義:對應角相等,對應邊成比例的兩個三角形相似;
(2)平行於三角形一邊的直線截其他兩邊(或其他兩邊的延長線)所構成的三角形與原三角形相似.
(3)如果一個三角形的兩個角分別與另一個三角形的兩個角對應相等,那麼這兩個三角形相似.
(4)如果一個三角的兩條邊與另一個三角形的兩條邊對應成比例,並且夾角相等,那麼這兩個三角形相似.
(5)如果一個三角形的三條邊分別與另一個三角形的三條邊對應成比例,那麼這兩個三角形相似.
(6)直角三角形被斜邊上的高分成的兩個直角三角形與原三角形都相似.
知識點6.相似三角形的性質
(1)對應角相等,對應邊的比相等;
(2)對應高的比,對應中線的比,對應角平分線的比都等於相似比;
(3)相似三角形周長之比等於相似比;面積之比等於相似比的平方.
(4)射影定理
蘇教版九年級上冊數學知識點歸納
1二次根式:形如式子為二次根式;
性質:是一個非負數;
2二次根式的乘除:
3二次根式的加減:二次根式加減時,先將二次根式華為最簡二次根式,再將被開方數相同的二次根式進行合並.
4海倫-秦九韶公式:,S是的面積,p為.
1:等號兩邊都是整式,且只有一個未知數,未知數的次是2的方程.
2配方法:將方程的一邊配成完全平方式,然後兩邊開方;
因式分解法:左邊是兩個因式的乘積,右邊為零.
3一元二次方程在實際問題中的應用
4韋達定理:設是方程的兩個根,那麼有
1:一個圖形繞某一點轉動一個角度的圖形變換
性質:對應點到中心的距離相等;
對應點與旋轉中心所連的線段的夾角等於旋轉角
旋轉前後的圖形全等.
2中心對稱:一個圖形繞一個點旋轉180度,和另一個圖形重合,則兩個圖形關於這個點中心對稱;
中心對稱圖形:一個圖形繞某一點旋轉180度後得到的圖形能夠和原來的圖形重合,則說這個圖形是中心對稱圖形;
九年級數學知識點歸納相關 文章 :
★ 初三數學知識點歸納總結
★ 九年級上冊數學知識點歸納整理
★ 初三數學知識點考點歸納總結
★ 初三數學知識點歸納人教版
★ 九年級數學上冊重要知識點總結
★ 九年級上冊數學知識點歸納
★ 初中九年級數學知識點總結歸納
★ 初三數學中考復習重點章節知識點歸納
★ 初三數學知識點整理
⑥ 初三上冊數學知識點總結
讀書,始讀,未知有疑;其次,則漸漸有疑;中則節節是疑。過了這一番,疑漸漸釋,以至融會貫通,都無所疑,方始是學。下面給大家分享一些初三上冊數學知識點,希望對大家有所幫助。
初三上冊數學知識點1
特殊平行四邊形
1、菱形的性質與判定
①菱形的定義:
一組鄰邊相等的平行四邊形叫做菱形。
②菱形的性質:
具有平行四邊形的性質,且四條邊都相等,兩條對角線互相垂直平分,每一條對角線平分一組對角。
菱形是軸對稱圖形,每條對角線所在的直線都是對稱軸。
③菱形的判別 方法 :
一組鄰邊相等的平行四邊形是菱形。
對角線互相垂直的平行四邊形是菱形。
四條邊都相等的四邊形是菱形。
2、矩形的性質與判定
①矩形的定義:
有一個角是直角的平行四邊形叫矩形。矩形是特殊的平行四邊形。
②矩形的性質:
具有平行四邊形的性質,且對角線相等,四個角都是直角。(矩形是軸對稱圖形,有兩條對稱軸)
③矩形的判定:
有一個內角是直角的平行四邊形叫矩形(根據定義)。
對角線相等的平行四邊形是矩形。
四個角都相等的四邊形是矩形。
④推論:直角三角形斜邊上的中線等於斜邊的一半。
3、正方形的性質與判定
①正方形的定義:
一組鄰邊相等的矩形叫做正方形。
②正方形的性質:
正方形具有平行四邊形、矩形、菱形的一切性質。(正方形是軸對稱圖形,有兩條對稱軸)
③正方形常用的判定:
有一個內角是直角的菱形是正方形;
鄰邊相等的矩形是正方形;
對角線相等的菱形是正方形;
對角線互相垂直的矩形是正方形。
④正方形、矩形、菱形和平行邊形四者之間的關系
⑤梯形定義:
一組對邊平行且另一組對邊不平行的四邊形叫做梯形。
兩條腰相等的梯形叫做等腰梯形。
一條腰和底垂直的梯形叫做直角梯形。
⑥等腰梯形的性質:
等腰梯形同一底上的兩個內角相等,對角線相等。
同一底上的兩個內角相等的梯形是等腰梯形。
三角形的中位線平行於第三邊,並且等於第三邊的一半。
夾在兩條平行線間的平行線段相等。
在直角三角形中,斜邊上的中線等於斜邊的一半
初三上冊數學知識點2
一元二次方程
1、認識一元二次方程
只含有一個未知數的整式方程,且都可以化為ax2+bx+c=0
(a、b、c為常數,a≠0)的形式,這樣的方程叫一元二次方程。
把ax2+bx+c=0(a、b、c為常數,a≠0)稱為一元二次方程的一般形式,a為二次項系數;b為一次項系數;c為常數項。
2、用配方法求解一元二次方程
①配方法 <即將其變為(x+m)2=0的形式>
配方法解一元二次方程的基本步驟:
把方程化成一元二次方程的一般形式;
將二次項系數化成1;
把常數項移到方程的右邊;
兩邊加上一次項系數的一半的平方;
把方程轉化成的形式;
兩邊開方求其根。
3、用公式法求解一元二次方程
②公式法 (注意在找abc時須先把方程化為一般形式)
4、用因式分解法求解一元二次方程
③分解因式法
把方程的一邊變成0,另一邊變成兩個一次因式的乘積來求解。(主要包括「提公因式」和「十字相乘」)
5、一元二次方程的根與系數的關系
①根與系數的關系:
當b2-4ac>0時,方程有兩個不等的實數根;
當b2-4ac=0時,方程有兩個相等的實數根;
當b2-4ac<0時,方程無實數根。
②如果一元二次方程 ax2+bx+c=0 的兩根分別為x1、x2,則有:
③一元二次方程的根與系數的關系的作用:
已知方程的一根,求另一根;
不解方程,求二次方程的根x1、x2的對稱式的值,特別注意以下公式:
已知方程的兩根x1、x2,可以構造一元二次方程:
x2-(x1+x2)x+x1x2=0
已知兩數x1、x2的和與積,求此兩數的問題,可以轉化為求一元二次方程x2-(x1+x2)x+x1x2=0的根
6、應用一元二次方程
①在利用方程來解應用題時,主要分為兩個步驟:
設未知數(在設未知數時,大多數情況只要設問題為x;但也有時也須根據已知條件及等量關系等諸多方面考慮);
尋找等量關系(一般地,題目中會含有一表述等量關系的 句子 ,只須找到此句話即可根據其列出方程)。
②處理問題的過程可以進一步概括為
初三上冊數學知識點3
圖形的相似
1、成比例線段
①線段的比
如果選用同一個長度單位量得兩條線段AB, CD的長度分別是m、n,那麼就說這兩條線段的比AB:CD=m:n,或寫成
四條線段a、b、c、d中,如果a與b的比等於c與d的比,即
那麼這四條線段a、b、c、d叫做成比例線段,簡稱比例線段.
②注意點:
a:b=k,說明a是b的k倍
由於線段 a、b的長度都是正數,所以k是正數
比與所選線段的長度單位無關,求出時兩條線段的長度單位要一致
除了a=b之外,a:b≠b:a
比例的基本性質:若
則ad=bc; 若ad=bc, 則
2、平行線分線段成比例
平行線分線段成比例定理:三條平行線截兩條直線,所得的對應線段成比例.如圖2, l1 // l2 // l3 ,則
3. 黃金分割
如圖1,點C把線段AB分成兩條線段AC和BC,如果
那麼稱線段AB被點C黃金分割,點C叫做線段AB的黃金分割點,AC與AB的比叫做黃金比.
黃金分割點是最優美、最令人賞心悅目的點.
4.相似多邊形
① 含義:
一般地,形狀相同的圖形稱為相似圖形.
對應角相等、對應邊成比例的兩個多邊形叫做相似多邊形.相似多邊形對應邊的比叫做相似比.
②注意點:
在相似多邊形中,最為簡單的就是相似三角形.
對應角相等、對應邊成比例的三角形叫做相似三角形.相似三角形對應邊的比叫做相似比.
全等三角形是相似三角的特例,這時相似比等於1.
注意:證兩個相似三角形,與證兩個全等三角形一樣,應把表示對應頂點的字母寫在對應的位置上.
相似三角形對應高的比,對應中線的比與對應角平分線的比都等於相似比.
相似三角形周長的比等於相似比.
相似三角形面積的比等於相似比的平方.
相似多邊形的周長等於相似比;面積比等於相似比的平方.
5、探索三角形相似的條件
①相似三角形的判定方法:
②平行於三角形一邊的直線與其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似。
③相似三角形的判定定理的證明
④利用相似三角形測高
⑤相似三角形的性質
⑥圖形的位似
初三上冊數學知識點 總結 相關 文章 :
★ 九年級數學上冊重要知識點總結
★ 初三數學知識點考點歸納總結
★ 九年級上冊數學知識點歸納整理
★ 初三數學知識點歸納總結
★ 初三數學知識點總結
★ 初三上冊數學知識點盤點與數學學習方法
★ 初三數學重要公式知識大全
★ 初三九年級上冊數學知識點
★ 初中數學必備知識點總結初三數學上冊一二章知識點
★ 人教版九年級數學知識點歸納
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();⑦ 初三九年級上冊數學的知識點歸納
初三九年級上冊數學的知識點歸納1
九年級上冊包括二次根式、一元二次方程、旋轉、圓、概率初步五章內容,學習內容涉及到了《課程標准》的四個領域。本冊書內容分析如下:
第21章 二次根式
學生已經學過整式與分式,知道用式子可以表示實際問題中的數量關系。解決與數量關系有關的問題還會遇到二次根式。二次根式 一章就來認識這種式子,探索它的性質,掌握它的運算。
在這一章,首先讓學生了解二次根式的概念,並掌握以下重要結論:
註:關於二次根式的運算,由於二次根式的乘除相對於二次根式的加減來說更易於掌握,教科書先安排二次根式的乘除,再安排二次根式的加減。二次根式的乘除一節的內容有兩條發展的線索。一條是用具體計算的例子體會二次根式乘除法則的合理性,並運用二次根式的乘除法則進行運算;一條是由二次根式的乘除法則得到並運用它們進行二次根式的化簡。
二次根式的加減一節先安排二次根式加減的內容,再安排二次根式加減乘除混合運算的內容。在本節中,注意類比整式運算的有關內容。例如,讓學生比較二次根式的加減與整式的加減,又如,通過例題說明在二次根式的運算中,多項式乘法法則和乘法公式仍然適用。這些處理有助於學生掌握本節內容。
第22章 一元二次方程
學生已經掌握了用一元一次方程解決實際問題的方法。在解決某些實際問題時還會遇到一種新方程 一元二次方程。一元二次方程一章就來認識這種方程,討論這種方程的解法,並運用這種方程解決一些實際問題。
本章首先通過雕像設計、製作方盒、排球比賽等問題引出一元二次方程的概念,給出一元二次方程的一般形式。然後讓學生通過數值代入的方法找出某些簡單的一元二次方程的解,對一元二次方程的解加以體會,並給出一元二次方程的根的概念,
22.2降次解一元二次方程一節介紹配方法、公式法、因式分解法三種解一元二次方程的方法。下面分別加以說明。
(1)在介紹配方法時,首先通過實際問題引出形如 的方程。這樣的方程可以化為更為簡單的形如 的方程,由平方根的概念,可以得到這個方程的解。進而舉例說明如何解形如 的方程。然後舉例說明一元二次方程可以化為形如 的方程,引出配方法。最後安排運用配方法解一元二次方程的例題。在例題中,涉及二次項系數不是1的一元二次方程,也涉及沒有實數根的一元二次方程。對於沒有實數根的一元二次方程,學了公式法以後,學生對這個內容會有進一步的理解。
(2)在介紹公式法時,首先藉助配方法討論方程 的解法,得到一元二次方程的求根公式。然後安排運用公式法解一元二次方程的例題。在例題中,涉及有兩個相等實數根的一元二次方程,也涉及沒有實數根的一元二次方程。由此引出一元二次方程的解的三種情況。
(3)在介紹因式分解法時,首先通過實際問題引出易於用因式分解法的一元二次方程,引出因式分解法。然後安排運用因式分解法解一元二次方程的例題。最後對配方法、公式法、因式分解法三種解一元二次方程的方法進行小結。
22.3實際問題與一元二次方程一節安排了四個探究欄目,分別探究傳播、成本下降率、面積、勻變速運動等問題,使學生進一步體會方程是刻畫現實世界的一個有效的數學模型。
第23章 旋轉
學生已經認識了平移、軸對稱,探索了它們的性質,並運用它們進行圖案設計。本書中圖形變換又增添了一名新成員――旋轉。旋轉一章就來認識這種變換,探索它的性質。在此基礎上,認識中心對稱和中心對稱圖形。
23.1旋轉一節首先通過實例介紹旋轉的概念。然後讓學生探究旋轉的性質。在此基礎上,通過例題說明作一個圖形旋轉後的圖形的方法。最後舉例說明用旋轉可以進行圖案設計。
23.2中心對稱一節首先通過實例介紹中心對稱的概念。然後讓學生探究中心對稱的性質。在此基礎上,通過例題說明作與一個圖形成中心對稱的圖形的方法。這些內容之後,通過線段、平行四邊形引出中心對稱圖形的概念。最後介紹關於原點對稱的點的坐標的關系,以及利用這一關系作與一個圖形成中心對稱的圖形的方法。
23.3課題學習 圖案設計一節讓學生探索圖形之間的變換關系(平移、軸對稱、旋轉及其組合),靈活運用平移、軸對稱、旋轉的組合進行圖案設計。
第24章 圓
圓是一種常見的圖形。在圓這一章,學生將進一步認識圓,探索它的性質,並用這些知識解決一些實際問題。通過這一章的學習,學生的解決圖形問題的能力將會進一步提高。
24.1圓一節首先介紹圓及其有關概念。然後讓學生探究與垂直於弦的直徑有關的結論,並運用這些結論解決問題。接下來,讓學生探究弧、弦、圓心角的關系,並運用上述關系解決問題。最後讓學生探究圓周角與圓心角的關系,並運用上述關系解決問題。
24.2與圓有關的位置關系一節首先介紹點和圓的三種位置關系、三角形的外心的概念,並通過證明在同一直線上的三點不能作圓引出了反證法。然後介紹直線和圓的三種位置關系、切線的概念以及與切線有關的結論。最後介紹圓和圓的位置關系。
24.3正多邊形和圓一節揭示了正多邊形和圓的關系,介紹了等分圓周得到正多邊形的方法。
24.4弧長和扇形面積一節首先介紹弧長公式。然後介紹扇形及其面積公式。最後介紹圓錐的側面積公式。
第25 章 概率初步
將一枚硬幣拋擲一次,可能出現正面也可能出現反面,出現正面的可能性大還是出現反面的可能性大呢?學了概率一章,學生就能更好地認識這個問題了。掌握了概率的初步知識,學生還會解決更多的實際問題。
25.1概率一節首先通過實例介紹隨機事件的概念,然後通過擲幣問題引出概率的概念。
25.2用列舉法求概率一節首先通過具體試驗引出用列舉法求概率的方法。然後安排運用這種方法求概率的例題。在例題中,涉及列表及畫樹形圖。
25.3利用頻率估計概率一節通過幼樹成活率和柑橘損壞率等問題介紹了用頻率估計概率的方法。
25.4課題學習 鍵盤上字母的排列規律一節讓學生通過這一課題的研究體會概率的廣泛應用。
初三九年級上冊數學的知識點歸納2
一、圓周角定理
在同圓或等圓中,同弧或等弧所對的圓周角相等,都等於這條弧所對的圓心角的一半。
①定理有三方面的意義:
a.圓心角和圓周角在同一個圓或等圓中;(相關知識點 如何證明四點共圓 )
b.它們對著同一條弧或者對的兩條弧是等弧
c.具備a、b兩個條件的圓周角都是相等的,且等於圓心角的一半.
②因為圓心角的度數與它所對的弧的度數相等,所以圓周角的度數等於它所對的弧的度數的一半.
二、圓周角定理的推論
推論1:同弧或等弧所對的圓周角相等,同圓或等圓中,相等的圓周角所對的弧也相等
推論2:半圓(或直徑)所對的圓周角等於90°;90°的圓周角所對的弦是直徑
推論3:如果三角形一邊的中線等於這邊的一半,那麼這個三角形是直角三角形
三、推論解釋說明
圓周角定理在九年級數學知識點中屬於幾何部分的重要內容。
①推論1是圓中證明角相等最常用的方法,若將推論1中的「同弧或等弧」改為「同弦或等弦」結論就不成立.因為一條弦所對的圓周角有兩個.
②推論2中「相等的圓周角所對的弧也相等」的前提條件是「在同圓或等圓中」
③圓周角定理的推論2的應用非常廣泛,要把直徑與90°圓周角聯系起來,一般來說,當條件中有直徑時,通常會作出直徑所對的圓周角,從而得到直角三角形,為進一步解題創造條件
④推論3實質是直角三角形的斜邊上的中線等於斜邊的一半的逆定理.
初三九年級上冊數學的知識點歸納3
知識點一: 二次根式的概念
形如a(a0)的式子叫做二次根式。
註:在二次根式中,被開放數可以是數,也可以是單項式、多項式、分式等代數式,但必須注意:因為負數沒有平方根,所以a0是a為二次根式的前提條件,如5,(x2+1),
(x-1) (x1)等是二次根式,而(-2),(-x2-7)等都不是二次根式。
知識點二:取值范圍
1. 二次根式有意義的條件:由二次根式的意義可知,當a0時a有意義,是二次根式,所以要使二次根式有意義,只要使被開方數大於或等於零即可。
2. 二次根式無意義的條件:因負數沒有算術平方根,所以當a﹤0時,a沒有意義。
知識點三:二次根式a(a0)的非負性
a(a0)表示a的算術平方根,也就是說,a(a0)是一個非負數,即0(a0)。
註:因為二次根式a表示a的算術平方根,而正數的算術平方根是正數,0的算術平方根是0,所以非負數(a0)的算術平方根是非負數,即0(a0),這個性質也就是非負數的算術平方根的性質,和絕對值、偶次方類似。這個性質在解答題目時應用較多,如若a+b=0,則a=0,b=0;若a+|b|=0,則a=0,b=0;若a+b2=0,則a=0,b=0。
知識點四:二次根式(a) 的性質
(a)2=a(a0)
文字語言敘述為:一個非負數的算術平方根的平方等於這個非負數。
註:二次根式的性質公式(a)2=a(a0)是逆用平方根的定義得出的結論。上面的公式也可以反過來應用:若a0,則
a=(a)2,如:2=(2)2,1/2=(1/2)2.
知識點五:二次根式的性質
a2=|a|
文字語言敘述為:一個數的平方的算術平方根等於這個數的絕對值。
註:
1、化簡a2時,一定要弄明白被開方數的底數a是正數還是負數,若是正數或0,則等於a本身,即a2=|a|=a (a若a是負數,則等於a的相反數-a,即a2=|a|=-a (a﹤0);
2、a2中的a的取值范圍可以是任意實數,即不論a取何值,a2一定有意義;
3、化簡a2時,先將它化成|a|,再根據絕對值的意義來進行化簡。
知識點六:(a)2與a2的異同點
1、不同點:(a)2與a2表示的意義是不同的,(a)2表示一個非負數a的算術平方根的平方,而a2表示一個實數a的平方的算術平方根;在(a)2中,而a2中a可以是正實數,0,負實數。但(a)2與a2都是非負數,即(a)20,a20。因而它的運算的結果是有差別的,(a)2=a(a0) ,而a2=|a|。
2、相同點:當被開方數都是非負數,即a0時,(a)2=a﹤0時,(a)2無意義,而a2=|a|=-a.
初三九年級上冊數學的知識點歸納4
單項式與多項式
僅含有一些數和字母的乘法包括乘方運算的式子叫做單項式單獨的一個數或字母也是單項式。
單項式中的數字因數叫做這個單項式或字母因數的數字系數,簡稱系數。
當一個單項式的系數是1或—1時,「1」通常省略不寫。
一個單項式中,所有字母的指數的和叫做這個單項式的次數。
如果在幾個單項式中,不管它們的系數是不是相同,只要他們所含的字母相同,並且相同字母的指數也分別相同,那麼,這幾個單項式就叫做同類單項式,簡稱同類項所有的常數都是同類項。
1、多項式
有有限個單項式的代數和組成的式子,叫做多項式。
多項式里每個單項式叫做多項式的項,不含字母的項,叫做常數項。
單項式可以看作是多項式的特例
把同類單項式的系數相加或相減,而單項式中的字母的乘方指數不變。
在多項式中,所含的不同未知數的個數,稱做這個多項式的元數經過合並同類項後,多項式所含單項式的個數,稱為這個多項式的項數所含個單項式中次項的次數,就稱為這個多項式的次數。
2、多項式的值
任何一個多項式,就是一個用加、減、乘、乘方運算把已知數和未知數連接起來的式子。
3、多項式的.恆等
對於兩個一元多項式fx、gx來說,當未知數x同取任一個數值a時,如果它們所得的值都是相等的,即fa=ga,那麼,這兩個多項式就稱為是恆等的記為fx==gx,或簡記為fx=gx。
性質1如果fx==gx,那麼,對於任一個數值a,都有fa=ga。
性質2如果fx==gx,那麼,這兩個多項式的個同類項系數就一定對應相等。
4、一元多項式的根
一般地,能夠使多項式fx的值等於0的未知數x的值,叫做多項式fx的根。
多項式的加、減法,乘法
1、多項式的加、減法
2、多項式的乘法
單項式相乘,用它們系數作為積的系數,對於相同的字母因式,則連同它的指數作為積的一個因式。
3、多項式的乘法
多項式與多項式相乘,先用一個多項式等每一項乘以另一個多項式的各項,再把所得的積相加。
常用乘法公式
公式I平方差公式
a+ba—b=a^2—b^2
兩個數的和與這兩個數的差的積等於這兩個數的平方差。
初三九年級上冊數學的知識點歸納5
一、等腰三角形
1、定義:有兩邊相等的三角形是等腰三角形。
2、性質:1.等腰三角形的兩個底角相等(簡寫成「等邊對等角」)
2.等腰三角形的頂角的平分線,底邊上的中線,底邊上的高的重合(「三線合一」)
3.等腰三角形的兩底角的平分線相等。(兩條腰上的中線相等,兩條腰上的高相等)
4.等腰三角形底邊上的垂直平分線上的點到兩條腰的距離相等。
5.等腰三角形的一腰上的高與底邊的夾角等於頂角的一半
6.等腰三角形底邊上任意一點到兩腰距離之和等於一腰上的高(可用等面積法證)
7.等腰三角形是軸對稱圖形,只有一條對稱軸,頂角平分線所在的直線是它的對稱軸
3、判定:在同一三角形中,有兩個角相等的三角形是等腰三角形(簡稱:等角對等邊)。
特殊的等腰三角形
等邊三角形
1、定義:三條邊都相等的三角形叫做等邊三角形,又叫做正三角形。
(注意:若三角形三條邊都相等則說這個三角形為等邊三角形,而一般不稱這個三角形為等腰三角形)。
2、性質:⑴等邊三角形的內角都相等,且均為60度。
⑵等邊三角形每一條邊上的中線、高線和每個角的角平分線互相重合。
⑶等邊三角形是軸對稱圖形,它有三條對稱軸,對稱軸是每條邊上的中線、高線或所對角的平分線所在直線。
3、判定:⑴三邊相等的三角形是等邊三角形。
⑵三個內角都相等的三角形是等邊三角形。
⑶有一個角是60度的等腰三角形是等邊三角形。
⑷有兩個角等於60度的三角形是等邊三角形。
二、直角三角形全等
1、直角三角形全等的判定有5種:
(1)、兩角及其夾邊對應相等的兩個三角形全等;(asa)
(2)、兩邊及其夾角對應相等的兩個三角形全等;(sas)
(3)、三邊對應相等的兩個三角形全等;(sss)
(4)、兩角及其中一角的對邊對應相等的兩個三角形全等;(aas)
(5)、斜邊及一條直角邊對應相等的兩個三角形全等;(hl)
2、在直角三角形中,如有一個內角等於30,那麼它所對的直角邊等於斜邊的一半
3、在直角三角形中,斜邊上的中線等於斜邊的一半
4垂直平分線:垂直於一條線段並且平分這條線段的直線。
性質:線段垂直平分線上的點到這一條線段兩個端點距離相等。
判定:到一條線段兩端點距離相等的點,在這條線段的垂直平分線上。
5、三角形的三邊的垂直平分線交於一點,並且這個點到三個頂點的距離相等,交點為三角形的外心。
6、角平分線上的點到角兩邊的距離相等。
7、在角內部的,如果一點到角兩邊的距離相等,則它在該角的平分線上。
8、角平分線是到角的兩邊距離相等的所有點的集合。
9、三角形三條角平分線交於一點,並且交點到三邊距離相等,交點即為三角形的內心。
10、三角形三條中線交於一點,交點為三角形的重心。
11、三角形三條高線交於一點,交點為三角形的垂心。
三、平行四邊的定義
1、定義:兩線對邊分別平行的四邊形叫做平行四邊形,
2、性質:(1)平行四邊形的對邊相等,(2)對角相等,(3)對角線互相平分。
3、判定:(1)一組對邊平行且相等的四邊形是平行四邊形。
(2)兩條對角線互相平分的四邊形是平行四邊形。
(3)兩組對邊分別相等的四邊形是平行四邊形。
(4)兩組對角分別相等的四邊形是平行四邊形。
(5)一組對邊平行,一組對角相等的四邊形是平行四邊形。
(6)一組對邊平行,一條對角線被另一條對角線平分的四邊形是平行四邊形。
兩個假命題:(1)一組對邊平行,另一組對邊相等的四邊形是平行四邊形。
(2)一組對邊相等,一組對角相等的四邊形是平行四邊形。
四、矩形
1、定義:有一個角是直角的平行四邊形叫矩形。矩形是特殊的平行四邊形。
2、性質:(1)具有平行四邊形的性質,(2)對角線相等,(3)四個角都是直角。
(4)矩形是軸對稱圖形,有兩條對稱軸。
3、判定:(1)有三個角是直角的四邊形是矩形。
(2)對角線相等的平行四邊形是矩形。
五、菱形
1、定義:一組鄰邊相等的平行四邊形叫做菱形。
2、性質:(1)具有平行四邊形的性質,(2)四條邊都相等,(3)兩條對角線互相垂直,每一條對角線平分一組對角。(4)菱形是軸對稱圖形,每條對角線所在的直線都是對稱軸。
3、判定:(1)四條邊都相等的四邊形是菱形。
(2)對角線互相垂直的平行四邊形是菱形。
(3)一條對角線平分一組對角的平行四邊形是菱形。
六、正方形
1、定義:一組鄰邊相等且有一個角是直角的平行四邊形叫做正方形。
2、性質:正方形具有平行四邊形、矩形、菱形的一切性質。
3、判定:(1)有一個內角是直角的菱形是正方形;
(2)有一組鄰邊相等的矩形是正方形;
(3)對角線相等的菱形是正方形;
(4)對角線互相垂直的矩形是正方形。
七、梯形定義:
一組對邊平行且另一組對邊不平行的四邊形叫做梯形。
八、等腰梯形
1、定義:兩條腰相等的梯形叫做等腰梯形。
2、性質:等腰梯形同一底上的兩個內角相等,對角線相等。
3、同一底上的兩個內角相等的梯形是等腰梯形。
九、三角形的中位線
定義:連接三角形兩邊中點的線段。
性質:平行於第三邊,並且等於第三邊的一半。
十、梯形的中位線
定義:連接梯形兩腰中點的線段。
性質:平行於兩底,並且等於兩底和的一半。
⑧ 初三數學知識點歸納整理
偉大的成績和辛勤勞動是成正比例的,有一分勞動就有一分收獲,積累,從少到多,奇跡就可以創造出來。學習也是一樣的,需要積累,從少變多。下面是我給大家整理的一些初三數學的知識點,希望對大家有所幫助。
初三數學知識點歸納
空間與圖形
圖形的認識:
1、點,線,面
點,線,面:
①圖形是由點,線,面構成的。
②面與 面相 交得線,線與線相交得點。
③點動成線,線動成面,面動成體。
展開與折疊:
①在稜柱中,任何相鄰的兩個面的交線叫做棱,側棱是相鄰兩個側面的交線,稜柱的所有側棱長相等,稜柱的上下底面的形狀相同,側面的形狀都是長方體。
②N稜柱就是底面圖形有N條邊的稜柱。
截一個幾何體:用一個平面去截一個圖形,截出的面叫做截面。
視圖:主視圖,左視圖,俯視圖。
多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。
弧,扇形:
①由一條弧和經過這條弧的端點的兩條半徑所組成的圖形叫扇形。
②圓可以分割成若干個扇形。
角
線:
①線段有兩個端點。
②將線段向一個方向無限延長就形成了射線。射線只有一個端點。
③將線段的兩端無限延長就形成了直線。直線沒有端點。
④經過兩點有且只有一條直線。
比較長短:
①兩點之間的所有連線中,線段最短。
②兩點之間線段的長度,叫做這兩點之間的距離。
角的度量與表示:
①角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點。
②一度的1/60是一分,一分的1/60是一秒。
角的比較:
①角也可以看成是由一條射線繞著他的端點旋轉而成的。
②一條射線繞著他的端點旋轉,當終邊和始邊成一條直線時,所成的角叫做平角。始邊繼續旋轉,當他又和始邊重合時,所成的角叫做周角。
③從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。
平行:
①同一平面內,不相交的兩條直線叫做平行線。
②經過直線外一點,有且只有一條直線與這條直線平行。
③如果兩條直線都與第3條直線平行,那麼這兩條直線互相平行。
九年級下冊數學知識點歸納
一、平行線分線段成比例定理及其推論:
1.定理:三條平行線截兩條直線,所得的對應線段成比例。
2.推論:平行於三角形一邊的直線截其他兩邊(或兩邊的延長線)所得的對應線段成比例。
3.推論的逆定理:如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那麼這條線段平行於三角形的第三邊。
二、相似預備定理:
平行於三角形的一邊,並且和其他兩邊相交的直線,截得的三角形的三邊與原三角形三邊對應成比例。
三、相似三角形:
1.定義:對應角相等,對應邊成比例的三角形叫做相似三角形。
2.性質:(1)相似三角形的對應角相等;
(2)相似三角形的對應線段(邊、高、中線、角平分線)成比例;
(3)相似三角形的周長比等於相似比,面積比等於相似比的平方。
說明:①等高三角形的面積比等於底之比,等底三角形的面積比等於高之比;②要注意兩個圖形元素的對應。
3.判定定理:
(1)兩角對應相等,兩三角形相似;
(2)兩邊對應成比例,且夾角相等,兩三角形相似;
(3)三邊對應成比例,兩三角形相似;
(4)如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角對應成比例,那麼這兩個直角三角形相似。
初三 數學 學習 方法
一、該記的記,該背的背,不要以為理解了就行
有的同學認為,數學不像英語、史地,要背單詞、背年代、背地名,數學靠的是智慧、技巧和推理。我說你只講對了一半。數學同樣也離不開記憶。試想一下,小學的加、減、乘、除運算要不是背熟了「乘法九九表」,你能順利地進行運算嗎?盡管你理解了乘法是相同加數的和的運算,但你在做9.9時用九個9去相加得出81就太不合算了。而用「九九八十一」得出就方便多了。同樣,是運用大家熟記的法則做出來的。同時,數學中還有大量的規定需要記憶,比如規定(a≠0)等等。因此,我覺得數學更像游戲,它有許多游戲規則(即數學中的定義、法則、公式、定理等),誰記住了這些游戲規則,誰就能順利地做游戲;誰違反了這些游戲規則,誰就被判錯,罰下。因此,數學的定義、法則、公式、定理等一定要記熟,有些能背誦,朗朗上口。比如大家熟悉的「整式乘法三個公式」,我看在座的有的背得出,有的就背不出。在這里,我向背不出的同學敲一敲警鍾,如果背不出這三個公式,將會對今後的學習造成很大的麻煩,因為今後的學習將會大量地用到這三個公式,特別是初二即將學的因式分解,其中相當重要的三個因式分解公式就是由這三個乘法公式推出來的,二者是相反方向的變形。
對數學的定義、法則、公式、定理等,理解了的要記住,暫時不理解的也要記住,在記憶的基礎上、在應用它們解決問題時再加深理解。打一個比方,數學的定義、法則、公式、定理就像木匠手中的斧頭、鋸子、墨斗、刨子等,沒有這些工具,木匠是打不出傢具的;有了這些工具,再加上嫻熟的手藝和智慧,就可以打出各式各樣精美的傢具。同樣,記不住數學的定義、法則、公式、定理就很難解數學題。而記住了這些再配以一定的方法、技巧和敏捷的思維,就能在解數學題,甚至是解數學難題中得心應手。
二、幾個重要的數學思想
1、「方程」的思想
數學是研究事物的空間形式和數量關系的,初中最重要的數量關系是等量關系,其次是不等量關系。最常見的等量關系就是「方程」。比如等速運動中,路程、速度和時間三者之間就有一種等量關系,可以建立一個相關等式:速度.時間=路程,在這樣的等式中,一般會有已知量,也有未知量,像這樣含有未知量的等式就是「方程」,而通過方程里的已知量求出未知量的過程就是解方程。我們在小學就已經接觸過簡易方程,而初一則比較系統地學習解一元一次方程,並 總結 出解一元一次方程的五個步驟。如果學會並掌握了這五個步驟,任何一個一元一次方程都能順利地解出來。初二、初三我們還將學習解一元二次方程、二元二次方程組、簡單的三角方程;到了高中我們還將學習指數方程、對數方程、線性方程組、、參數方程、極坐標方程等。解這些方程的思維幾乎一致,都是通過一定的方法將它們轉化成一元一次方程或一元二次方程的形式,然後用大家熟悉的解一元一次方程的五個步驟或者解一元二次方程的求根公式加以解決。物理中的能量守恆,化學中的化學平衡式,現實中的大量實際應用,都需要建立方程,通過解方程來求出結果。因此,同學們一定要將解一元一次方程和解一元二次方程學好,進而學好 其它 形式的方程。
所謂的「方程」思想就是對於數學問題,特別是現實當中碰到的未知量和已知量的錯綜復雜的關系,善於用「方程」的觀點去構建有關的方程,進而用解方程的方法去解決它。
初三數學知識點歸納整理相關 文章 :
★ 初三數學知識點考點歸納總結
★ 初三數學知識點歸納人教版
★ 初三數學知識點整理
★ 初三數學知識點歸納總結
★ 九年級上冊數學知識點歸納整理
★ 最新初三數學知識點總結大全
★ 初三數學中考復習重點章節知識點歸納
★ 初三數學知識點歸納
★ 初三數學復習知識點總結
★ 初三中考數學知識點歸納總結
⑨ 初三數學上冊課本知識點總結
課堂臨時報佛腳,不如 課前預習 好。其實任何學科都是一樣的,學習任何一門學科,勤奮都是最好的 學習 方法 ,沒有之一,書山有路勤為徑。下面是我給大家整理的一些初三數學的知識點,希望對大家有所幫助。
初三數學課本知識點
數學—函數
1、二次函數的三種表達式
一般式:y=ax^2+bx+c(a,b,c為常數,a≠0)
頂點式:y=a(x-h)^2+k[拋物線的頂點p(h,k)]
交點式:y=a(x-x?)(x-x?)[僅限於與x軸有交點a(x?,0)和b(x?,0)的拋物線]
註:在3種形式的互相轉化中,有如下關系:
h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2a
2、二次函數的圖像
在數學平面直角坐標系中作出二次函數y=x^2的圖像,可以看出,二次函數的圖像是一條拋物線。
iv.拋物線的性質
1.數學拋物線是軸對稱圖形。對稱軸為直線x=-b/2a。
數學對稱軸與拋物線唯一的交點為拋物線的頂點p。特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)
2.拋物線有一個頂點p,坐標為:p(-b/2a,(4ac-b^2)/4a)當-b/2a=0時,p在y軸上;當δ=b^2-4ac=0時,p在x軸上。
3.數學二次項系數a決定拋物線的開口方向和大小。
當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。|a|越大,則拋物線的開口越小。
4.一次項系數b和二次項系數a共同決定對稱軸的位置。
當a與b同號時(即ab>0),對稱軸在y軸左;
當a與b異號時(即ab<0),對稱軸在y軸右。
5.常數項c決定拋物線與y軸交點。
拋物線與y軸交於(0,c)
初三新學期數學知識點
一元一次方程:
①在一個方程中,只含有一個未知數,並且未知數的指數是
1、這樣的方程叫一元一次方程。
②等式兩邊同時加上或減去或乘以或除以(不為0)一個代數式,所得結果仍是等式。
解一元一次方程的步驟:
去分母,移項,合並同類項,未知數系數化為1。
二元一次方程:含有兩個未知數,並且所含未知數的項的次數都是1的方程叫做二元一次方程。
二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。適合一個二元一次方程的一組未知數的值,叫做這個二元一次方程的一個解。二元一次方程組中各個方程的公共解,叫做這個二元一次方程的解。
解二元一次方程組的方法:代入消元法/加減消元法。
2、不等式與不等式組
不等式:
①用符號」=「號連接的式子叫不等式。
②不等式的兩邊都加上或減去同一個整式,不等號的方向不變。
③不等式的兩邊都乘以或者除以一個正數,不等號方向不變。
④不等式的兩邊都乘以或除以同一個負數,不等號方向相反。
不等式的解集:
①能使不等式成立的未知數的值,叫做不等式的解。
②一個含有未知數的不等式的所有解,組成這個不等式的解集。
③求不等式解集的過程叫做解不等式。
一元一次不等式:左右兩邊都是整式,只含有一個未知數,且未知數的次數是1的不等式叫一元一次不等式。
一元一次不等式組:
①關於同一個未知數的幾個一元一次不等式合在一起,就組成了一元一次不等式組。
②一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。
③求不等式組解集的過程,叫做解不等式組。
九年級數學 知識點歸納
一、平行線分線段成比例定理及其推論:
1.定理:三條平行線截兩條直線,所得的對應線段成比例。
2.推論:平行於三角形一邊的直線截其他兩邊(或兩邊的延長線)所得的對應線段成比例。
3.推論的逆定理:如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那麼這條線段平行於三角形的第三邊。
二、相似預備定理:
平行於三角形的一邊,並且和其他兩邊相交的直線,截得的三角形的三邊與原三角形三邊對應成比例。
三、相似三角形:
1.定義:對應角相等,對應邊成比例的三角形叫做相似三角形。
2.性質:(1)相似三角形的對應角相等;
(2)相似三角形的對應線段(邊、高、中線、角平分線)成比例;
(3)相似三角形的周長比等於相似比,面積比等於相似比的平方。
說明:①等高三角形的面積比等於底之比,等底三角形的面積比等於高之比;②要注意兩個圖形元素的對應。
3.判定定理:
(1)兩角對應相等,兩三角形相似;
(2)兩邊對應成比例,且夾角相等,兩三角形相似;
(3)三邊對應成比例,兩三角形相似;
(4)如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角對應成比例,那麼這兩個直角三角形相似。
初三數學復習知識點
有理數、整式的加減、一元一次方程、圖形的初步認識。
(1)有理數:是初中數學的基礎內容,中考試題中分值約為3-6分,多以選擇題,填空題,計算題的形式出現,難易度屬於簡單。
【考察內容】復數以及混合運算(期中、期末必考計算)數軸、相反數、絕對值和倒數(選擇、填空)。
(2)整式的加減:中考試題中分值約為4分,題型以選擇和填空題為主,難易度屬於易。
【考察內容】
①整式的概念和簡單的運算,主要是同類項的概念和化簡求值
②完全平方公式,平方差公式的幾何意義
③利用提公因式法和公式法分解因式。
(3)一元一次方程:是初一學習重點內容,主要學習內容有(歸納、 總結 、延伸)應用題思維、步驟、文字題,根據已知條件求未知。中考分值約為1-3分,題型主要以選擇和填空題為主,極少出現簡答題,難易度為易。
【考察內容】
①方程及方程解的概念
②根據題意列一元一次方程
③解一元一次方程。題型:追擊、相遇、時間速度路程的關系、打折銷售、利潤公式。
(4)幾何:角和線段,為下冊學三角形打基礎
相交線和平行線、實數、平面直角坐標系、二元一次方程組、不等式和不等式組和資料庫的收集整理與描述。
(1)相交線和平行線:相交線和平行線是歷年中考中常見的考點。通常以填空,選擇題形式出現。分值為3-4分,難易度為易。
【考察內容】
①平行線的性質(公理)
②平行線的判別方法
③構造平行線,利用平行線的性質解決問題。
(2)平面直角坐標系:中考試題中分值約為3-4分,題型以選擇,填空為主,難易度屬於易。
【考察內容】
①考察平面直角坐標系內點的坐標特徵
②函數自變數的取值范圍和球函數的值
③考察結合圖像對簡單實際問題中的函數關系進行分析。
(3)二元一次方程組:中考分值約為3-6分,題型主要以選擇,解答為主,難易度為中。
【考察內容】
①方程組的解法,解方程組
②根據題意列二元一次方程組解經濟問題。
(4)不等式和不等式組:中考試題中分值約為3-8分,選擇,填空,解答題為主。
【考察內容:】
①一元一次不等式(組)的解法,不等式(組)解集的數軸表示,不等式(組)的整數解等,題型以選擇,填空為主。
②列不等式(組)解決經濟問題,調配問題等,主要以解答題為主。
③留意不等式(組)和函數圖像的結合問題。
(5)資料庫的收集整理與描述
分值一般在6-10分,題型近幾年主要以解答題出現,偶爾以選擇填空出現。難易度為中。
初三數學上冊課本知識點總結相關 文章 :
★ 九年級數學上冊重要知識點總結
★ 初三上冊數學知識點總結
★ 初三數學知識點上冊總結歸納
★ 九年級上冊數學知識點歸納整理
★ 初三上冊數學知識點歸納
★ 九年級上冊數學知識點歸納
★ 初中數學必備知識點總結初三數學上冊一二章知識點
★ 初三數學上學期學習總結
★ 九年級上冊數學知識點
★ 初三上冊數學知識點
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();⑩ 初三數學上冊重點知識點
偉大的成績和辛勤勞動是成正比例的,有一分勞動就有一分收獲,積累,從少到多,奇跡就可以創造出來。學習也是一樣的,需要積累,從少變多。下面是我給大家整理的一些初三數學的知識點,希望對大家有所幫助。
初三新學期數學知識點
一元一次方程:
①在一個方程中,只含有一個未知數,並且未知數的指數是
1、這樣的方程叫一元一次方程。
②等式兩邊同時加上或減去或乘以或除以(不為0)一個代數式,所得結果仍是等式。
解一元一次方程的步驟:
去分母,移項,合並同類項,未知數系數化為1。
二元一次方程:含有兩個未知數,並且所含未知數的項的次數都是1的方程叫做二元一次方程。
二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。適合一個二元一次方程的一組未知數的值,叫做這個二元一次方程的一個解。二元一次方程組中各個方程的公共解,叫做這個二元一次方程的解。
解二元一次方程組的 方法 :代入消元法/加減消元法。
2、不等式與不等式組
不等式:
①用符號」=「號連接的式子叫不等式。
②不等式的兩邊都加上或減去同一個整式,不等號的方向不變。
③不等式的兩邊都乘以或者除以一個正數,不等號方向不變。
④不等式的兩邊都乘以或除以同一個負數,不等號方向相反。
不等式的解集:
①能使不等式成立的未知數的值,叫做不等式的解。
②一個含有未知數的不等式的所有解,組成這個不等式的解集。
③求不等式解集的過程叫做解不等式。
一元一次不等式:左右兩邊都是整式,只含有一個未知數,且未知數的次數是1的不等式叫一元一次不等式。
一元一次不等式組:
①關於同一個未知數的幾個一元一次不等式合在一起,就組成了一元一次不等式組。
②一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。
③求不等式組解集的過程,叫做解不等式組。
初三數學上冊知識點歸納
二元一次方程組
1、定義:含有兩個未知數,並且未知項的次數是1的整式方程叫做二元一次方程。
2、二元一次方程組的解法
(1)代入法
由一個二次方程和一個一次方程所組成的方程組通常用代入法來解,這是基本的消元降次方法。
(2)因式分解法
在二元二次方程組中,至少有一個方程可以分解時,可採用因式分解法通過消元降次來解。
(3)配方法
將一個式子,或一個式子的某一部分通過恆等變形化為完全平方式或幾個完全平方式的和。
(4)韋達定理法
通過韋達定理的逆定理,可以利用兩數的和積關系構造一元二次方程。
(5)消常數項法
當方程組的兩個方程都缺一次項時,可用消去常數項的方法解。
解一元二次方程
解一元二次方程的基本思想方法是通過「降次」將它化為兩個一元一次方程。
1、直接開平方法:
用直接開平方法解形如(x-m)2=n(n≥0)的方程,其解為x=±m.
直接開平方法就是平方的逆運算.通常用根號表示其運算結果.
2、配方法
通過配成完全平方式的方法,得到一元二次方程的根的方法。這種解一元二次方程的方法稱為配方法,配方的依據是完全平方公式。
(1)轉化:將此一元二次方程化為ax^2+bx+c=0的形式(即一元二次方程的一般形式)
(2)系數化1:將二次項系數化為1
(3)移項:將常數項移到等號右側
(4)配方:等號左右兩邊同時加上一次項系數一半的平方
(5)變形:將等號左邊的代數式寫成完全平方形式
(6)開方:左右同時開平方
(7)求解:整理即可得到原方程的根
數學 學習方法 技巧
自學能力的培養是深化學習的必由之路
在學習新概念、新運算時,老師們總是通過已有知識自然而然過渡到新知識,水到渠成,亦即所謂「溫故而知新」。因此說,數學是一門能自學的學科,自學成才最典型的例子就是數學家華羅庚。
我們在課堂上聽老師講解,不光是學習新知識,更重要的是潛移默化老師的那種數學思維習慣,逐漸地培養起自己對數學的一種悟性。我去佛山一中開家長會時,一中校長的一番話使我感觸良多。他說:我是教物理的,學生物理學得好,不是我教出來的,而是他們自己悟出來的。當然,校長是謙虛的,但他說明了一個道理,學生不能被動地學習,而應主動地學習。一個班裡幾十個學生,同一個老師教,差異那麼大,這就是學習主動性問題了。
自學能力越強,悟性就越高。隨著年齡的增長,同學們的依賴性應不斷減弱,而自學能力則應不斷增強。因此,要養成預習的習慣。在老師講新課前,能不能運用自己所學過的已掌握的舊知識去預習新課,結合新課中的新規定去分析、理解新的學習內容。由於數學知識的無矛盾性,你所學過的數學知識永遠都是有用的,都是正確的,數學的進一步學習只是加深拓廣而已。因此,以前的數學學得扎實,就為以後的進取奠定了基礎,就不難自學新課。同時,在預習新課時,碰到什麼自己解決不了的問題,帶著問題去聽老師講解新課,收獲之大是不言而喻的。有些同學為什麼聽老師講新課時總有一種似懂非懂的感覺,或者是「一聽就懂、一做就錯」,就是因為沒有預習,沒有帶著問題學,沒有將「要我學」真正變為「我要學」,力求把知識變為自己的。學來學去,知識還是別人的。檢驗數學學得好不好的標准就是會不會解題。聽懂並記憶有關的定義、法則、公式、定理,只是學好數學的必要條件,能獨立解題、解對題才是學好數學的標志。
初三數學上冊重點知識點相關 文章 :
★ 初三數學知識點上冊總結歸納
★ 初三數學上冊知識點總結
★ 初三數學知識點考點歸納總結
★ 九年級上冊數學知識點歸納整理
★ 初三上冊數學知識點總結
★ 初三數學中考復習重點章節知識點歸納
★ 初三上冊數學知識點歸納
★ 初三上冊數學知識點
★ 初三數學復習知識點總結