A. 六年級數學的知識點梳理
學習從來無捷徑。每一門科目都有自己的 學習 方法 ,但其實都是萬變不離其中的,數學其實和語文英語一樣,也是要記、要背、要練的。下面是我給大家整理的一些 六年級數學 的知識點,希望對大家有所幫助。
人教版小學六年級數學下冊知識點
負數
1.在熟悉的生活情境中初步認識負數,能正確的讀、寫正數和負數,知道0既不是正數也不是負數。
2.初步學會用負數表示一些日常生活中的實際問題,體驗數學與生活的密切聯系。
3.能藉助數軸初步學會比較正數、0和負數之間的大小。
4.像-16、-500、-3/8、-0.4…這樣的數叫做負數。
-3/8讀作負八分之三。
16,200,3/8,6.3…這樣的數叫做正數。正數前面可以加「+」號,也可以省去「+」號。
+6.3讀作正六點三。
0既不是正數,也不是負數。
5.16℃讀作十六攝氏度,表示零上16℃;-16℃讀作負十六攝氏度,表示零下16℃
6.如果2000表示存入2000元,那麼-500表示支出了500元。向東走3m記作+3,向西4m記作-4。
7.在數軸上,從左到右的順序就是數從小到大的順序。
0是正數和負數的分界點,所有的負數都在0的左邊,也就是負數都比0小,而正數都比0大,負數都比正數小。
負號後面的數越大,這個數就越小。如:-8<-6。
小學6年級 畢業 考試數學重難知識點
行程問題
基本概念:
行程問題是研究物體運動的,它研究的是物體速度、時間、路程三者之間的關系.
基本公式:
路程=速度×時間;路程÷時間=速度;路程÷速度=時間
關鍵問題:
確定運動過程中的位置和方向。
相遇問題:速度和×相遇時間=相遇路程(請寫出其他公式)
追及問題:追及時間=路程差÷速度差(寫出其他公式)
流水問題:順水行程=(船速+水速)×順水時間
逆水行程=(船速-水速)×逆水時間
順水速度=船速+水速
逆水速度=船速-水速
靜水速度=(順水速度+逆水速度)÷2
水 速=(順水速度-逆水速度)÷2
流水問題:關鍵是確定物體所運動的速度,參照以上公式。
過橋問題:關鍵是確定物體所運動的路程,參照以上公式。
主要方法:畫線段圖法
基本題型:
已知路程(相遇路程、追及路程)、時間(相遇時間、追及時間)、速度(速度和、速度差)中任意兩個量,求第三個量。
小學六年級 數學學習方法
學生需要在課堂上做好筆記,用來記錄老師講課重點、補充難題、聽課心得等內容,方便日後復習與記憶。而小學數學筆記的記錄,很多孩子無法准確掌握,需要下點工夫,找到適合自己的方法。
一、為什麼要記筆記?
筆記可以方便日後有重點、不失真地復習。
奧數課堂通常包含大量的信息,涵蓋定義、公式、解題技巧等各個方面。大多數同學難以一堂課完全掌握全部內容。尤其我們的課堂還經常包含一些經典的難題、補充題,單憑一次性的記憶無法提供充分的反芻的素材。
二、記筆記要避免的誤區
然而,很多同學出於不自信或者對家長的敷衍,為了筆記而筆記——筆記完成就「大功告成」、束之高閣。殊不知:記在自己腦袋裡面的知識才是自己的知識,有筆記而無復習正是做筆記的錯誤。
三、記筆記的形式
你們的 筆記本 內容多嗎?平時書包裝滿的時候,你能夠方便的找到筆記本嗎?單獨閱讀筆記的時候,你覺得豐富嗎?如果這三個問題你都回答「否」,那麼請考慮一下將全部的筆記搬到講義上去。
筆記一定要方便日後查閱。書寫過程中,字跡不要求美觀,但是至少直觀。
關於某一題的延伸記錄在題目旁邊,關於一講的梳理可以放到章節前,補充的題目可以放到章節後,個人心得可以放在頁眉頁腳。如果有補充隨材還可以粘貼或者插入到講義當中。
簡而言之,筆記在形式上的要求就是:用最小的篇幅記錄最多的內容,同時分出清晰地層次。
四、記筆記的基本方法
記入筆記的內容一定要經過篩選。每一名學生都有自己獨特的筆記需求,相應的它也會有自己的篩選方法。拋開具體的科目、知識點,這里有一些參考標准。
1、內容本身不存在疑問。
我們經常發現部分同學在記錄解題方法時抄寫錯誤、或者照搬板書布局,最終他自己都無法清晰地讀出正確的解題過程。這樣的錯誤不僅會形成無用的筆記,還可能引導思維走入歧途。
2、重點記錄自己不熟悉的內容。
為了照顧大多數、防止遺漏,老師在 總結 的時候通常會往多了講,以至於同樣的幾何模型,五年級上學期提到一次、下學期再復習一次、到了六年級還會梳理兩次。如果學生不加甄別、反復記錄,費時費力不討好,還容易滋生厭惡。——如果你實在很熟悉,留下一個記號。
3、珍惜自己的心得。
黑板上或講義上的內容都是老師的知識,不論多麼優秀的老師,他無法直接將自己的思路完整的拷貝進入學生的大腦。所以知識的傳承需要學生的記錄、復習、練習等等。而真正掌握知識點的最重要表現就是產生自己的認識與歸納。
4、記錄經典題目。
不論小學、中學還是大學,很多時候學習終究脫離不了題目。如果在某一個角落、一本書當中真的有那麼一道題、一段話讓你受益匪淺,那麼勇敢的記錄下來。不要將筆記內容局限在老師所供、講義所言——它應當幫助記錄所有對你重要的內容。
除了這些內容上的篩選,熟練的同學還應該考慮下筆記當中布局與記號。比如,過去老師常使用「△」「.」或者「Ⅱ」來標記相對重要的內容,☆表示最重要的知識點,「→」標記自己的心得,「?」表示自己的疑問等等。這些符號,與紅色、黑色墨跡搭配能夠形成層次鮮明的內容體系,方便自己的不同的場合下復習想復習的內容。
六年級數學的知識點梳理相關 文章 :
★ 六年級數學知識點梳理
★ 六年級數學期末復習知識點匯總
★ 六年級數學知識點歸納
★ 六年級數學總復習知識點整理(完整版)
★ 六年級上冊數學知識點整理歸納
★ 六年級數學的重難點知識總結
★ 六年級數學上冊知識點總結
★ 六年級數學上冊知識點復習
★ 小學六年級數學知識點總結
★ 六年級下冊數學知識點歸納
B. 六年級下冊數學重點
小學六年級的數學是小學階段上的最後的數學課~!它是你進入中學學好數學的關鍵。
1、建立起「第幾列第幾行」的概念。
2、讓學生從習慣上先說「列」後說「行」的習慣。
3、用網格圖來表示位置,讓學生懂得從網格坐標上找到相應的位置。
1、分數乘整數的計演算法則:分數乘整數,用分數的的分子和整數相乘的積作分子,分母不變。
2、能約分的可以先約分,再計算。
1、一個數乘分數乘法的計演算法則:分數乘分數,應該分子和分子相乘,分數和分母相乘。
2、分數乘分數的簡便計算。
1、單位「1」的確定:找出分率句、確定單位「1」,畫出線段圖幫助理解題意。
2、分數乘法的法則的運用。
1、倒數概念:乘積是1的兩個數互為倒數。
2、0與任何數相乘都不等於1,所以0沒有倒數。
1、分數除法的意義與整數除法的意義相同,都是已知兩個因數的積與其中一個因數,求另一個因數的運算。
2、分數除法的計算方法:除以一個不等於0的數,等於乘這個數的倒數。
1、比的意義及各部分的名稱。
2、比的基本性質。
3、按比例分配的應用題的方法。
⒈認識圓的圓心O、半徑r、直徑d
⒉同一個圓內d=2r
⒈認識圓周率π及它的近似值
⒉知道圓周長公式
C=2πr或C=πd
⒈百分數的意義
⒉百分數的讀法和寫法
求一個數比另一個數多(或少)百分之幾的應用題
1、認識扇形統計圖
2、填寫扇形統計圖
3、根據扇形統計圖所提供的數據回答問題
體會條形、折線、扇形各種不同統計圖的特點。
小學六年級的數學是小學階段上的最後的數學課~!它是你進入中學學好數學的關鍵。
1、建立起「第幾列第幾行」的概念。
2、讓學生從習慣上先說「列」後說「行」的習慣。
3、用網格圖來表示位置,讓學生懂得從網格坐標上找到相應的位置。
1、分數乘整數的計演算法則:分數乘整數,用分數的的分子和整數相乘的積作分子,分母不變。
2、能約分的可以先約分,再計算。
1、一個數乘分數乘法的計演算法則:分數乘分數,應該分子和分子相乘,分數和分母相乘。
2、分數乘分數的簡便計算。
1、單位「1」的確定:找出分率句、確定單位「1」,畫出線段圖幫助理解題意。
2、分數乘法的法則的運用。
1、倒數概念:乘積是1的兩個數互為倒數。
2、0與任何數相乘都不等於1,所以0沒有倒數。
1、分數除法的意義與整數除法的意義相同,都是已知兩個因數的積與其中一個因數,求另一個因數的運算。
2、分數除法的計算方法:除以一個不等於0的數,等於乘這個數的倒數。
1、比的意義及各部分的名稱。
2、比的基本性質。
3、按比例分配的應用題的方法。
⒈認識圓的圓心O、半徑r、直徑d
⒉同一個圓內d=2r
⒈認識圓周率π及它的近似值
⒉知道圓周長公式
C=2πr或C=πd
⒈百分數的意義
⒉百分數的讀法和寫法
求一個數比另一個數多(或少)百分之幾的應用題
1、認識扇形統計圖
2、填寫扇形統計圖
3、根據扇形統計圖所提供的數據回答問題
體會條形、折線、扇形各種不同統計圖的特點。
求採納啊。。你有財富值那麼多。。給我一點不介意吧。。
C. 六年級數學下冊重要知識點有哪些
六年級數學下冊重要知識點有:
1、數的認識:在復習數的認識相關知識的時候,一定要幫助孩子構建一個完成的知識體系,在構建完成之後還需要幫助孩子理解運用。
2、整數和分數的意義和分類。我們需要了解並記住整數和分數的定義是什麼,他們表示的意義是什麼,分數整數又有哪些分類,比如整數有奇數偶數合數質數等等,還有自然數、負數等等。再比如分數有真分數、假分數、帶分數等等,還有負分數等等。
3、數位和計數單位。這一塊的內容考查的不算太多,但是需要掌握數位之間的進率和計數單位的分類。在考試中有時候會涉及到利用數位來解決問題。
4、數的讀寫和改寫。數包括整數分數小數和負數等等,我們必須掌握所有數的讀法和寫法,讀的時候需要注意什麼,寫的時候需要注意什麼。在進行改寫的時候,需要注意哪些方面,一定要看清楚後邊的單位再利用四捨五入進行改寫。
5、分數和小數的基本性質。分數的性質和小數的性質這是經常考查的內容,學生們首先需要知道這兩個性質分別是什麼,注意的是什麼。小數點後末尾的0可以去掉,為何前邊的不能去掉呢?同乘或者除以相同的數,分數大小不變,那麼同加或者同減會怎麼樣呢。另外還需要注意小數點的移動導致數的變化規律。
6、因數與倍數。因數與倍數是五年級下冊的內容,內容雖然不算很多,但是非常難理解,所以這一塊內容一定要多下功夫,畢竟這塊內容還是初中學習的基礎。利用最大公因數和最小公倍數做題,也是有一定難度和技巧的。
D. 六年級數學必背公式有哪些
六年級數學必背公式:
1、每份數×份數=總數。
總數÷每份數=份數。
總數÷份數=每份數。
2、單價×數量=總價。
總價÷單價=數量。
總價÷數量=單價。
3、速度×時間=路程。
路程÷速度=時間。
路程÷時間=速度。
4、工效×工時=工作總量。
工作總量÷工效=工時。
工作總量÷工時=工效。
5、加數+加數=和。
和-一個加數=另一個加數。
6、被減數-減數=差。
被減數-差=減數。
差+減數=被減數。
7、因數×因數=積。
積÷一個因數=另一個因數。
小學六年級下冊數學必背知識點:
負數必背知識點:
1、0既不是正數,也不是負數,它是正數和負數的分界,0大於所有負數,小於所有正數,負數比較大小,不考慮負號,數字大的數反而小。
2、「+」可以省略不寫,「-」不能省略。
3、數軸的要素:正方向(箭頭表示)、原點(0刻度)、單位長度(刻度),0左邊的數都是負數,0右邊的數都是正數
百分數知識點:
1、折扣:商品按原定價格的百分之幾出售,叫做折扣,幾折就表示十分之幾,也就是百分之幾十,例如八折就表示十分之八,就是按原價的80﹪出售。
2、成數:「幾成」就是十分之幾,也就是百分之幾十,三成五就是十分之三點五,也就是35%。
3、應納稅額 = 總收入×稅率,稅率=應納稅額÷總收入,總收入=應納稅額÷稅率。
4、利息=本金×利率×存期。
5、滿100元減50元,就是在總價中取整百元部分,每個100元減去50元,不滿100元的零頭部分不優惠。
圓、圓柱、圓柱必背公式:
1、在同圓或等圓內,直徑的長度是半徑的2倍,公式d=2r;半徑的長度是直徑的一半,公式r=d÷2。
2、已知直徑求周長:圓的周長=圓周率×直徑,公式C=πd,直徑=周長÷圓周率,公式d=C÷π。
3、已知半徑求周長:圓的周長=2×圓周率×半徑,公式C=2πr,半徑=周長÷圓周率的2倍,公式r=C÷2π。
4、已知半徑求面積:圓的面積=圓周率×半徑的平方,公式S圓=πr2。
5、已知直徑求面積:圓的面積=圓周率×(直徑÷2)的平方,公式S圓 =π(d÷2)2。
6、圓柱的側面積=底面的周長×高,公式S側=Ch;圓柱的底面周長=側面積÷高,公式C=s側÷h;圓柱的高=側面積÷底面周長,公式h=S側÷C。
7、圓柱的表面積=側面積+2×底面積,公式 S表= S側+2S底。
8、圓柱的體積等於底面積乘以高,公式 V圓柱=Sh,圓柱的高等於體積除以底面積,公式h=v÷s;圓柱的底面積等於體積除以高,公式s=v÷h。
9、一個圓錐的體積等於與它等底等高的圓柱體積的三分之一 ,圓錐體積公式:V=1 /3Sh。圓錐的高等於體積的3倍除以底面積,公式h=3v÷s;圓錐的底面積等於體積的3倍除以高,公式s=3v÷h。
10、環形的面積=大圓面積-小圓面積,S環 =πR -πr。
11、體積和高相等的圓錐與圓柱之間,圓錐的底面積是圓柱的三倍,即圓錐的底面積=圓柱底面積×3,圓柱底面積=圓錐底面積÷3。
E. 六年級下冊數學知識點總結
六年級下冊數學知識點總結
基礎數學的知識與運用是個人與團體生活中不可或缺的一部分.其基本概念的精煉早在古埃及、美索不達米亞及古印度內的古代數學文本內便可觀見。下面我整理了一些關於六年級下冊數學知識點總結,歡迎大家參考!
第一單元分數乘法
一、分數乘法
(一)分數乘法的意義:
1、分數乘整數與整數乘法的意義相同。都是求幾個相同加數的和的簡便運算。
例如:65×5表示求5個65的和是多少? 1/3×5表示求5個1/3的和是多少?
2、一個數乘分數的意義是求一個數的幾分之幾是多少。
例如:1/3×4/7表示求1/3的4/7是多少。
4×3/8表示求4的3/8是多少.
(二)、分數乘法的計演算法則:
1、分數與整數相乘:分子與整數相乘的積做分子,分母不變。(整數和分母約分)
2、分數與分數相乘:用分子相乘的積做分子,分母相乘的積做分母。注意:當帶分數進行乘法計算時,要先把帶分數化成假分數再進行計算。
3、為了計算簡便,能約分的要先約分,再計算。(盡量約分,不會約分的就不約,常考的質因數有11×11=121;13×13=169;17×17=289;19×19=361)
4、小數乘分數,可以先把小數化為分數,也可以把分數化成小數再計算(建議把小數化分數再計算)。
(三)、 乘法中比較大小的規律
一個數(0除外)乘大於1的數,積大於這個數。
一個數(0除外)乘小於1的數(0除外),積小於這個數。
一個數(0除外)乘1,積等於這個數。
(四)、分數混合運算的運算順序和整數的運算順序相同。整數乘法的交換律、結合律和分配律,對於分數乘法也同樣適用。
乘法交換律: a × b = b × a
乘法結合律: ( a × b )×c = a × ( b × c )
乘法分配律: ( a + b )×c = a c + b c
二、分數乘法的解決問題(已知單位“1”的量(用乘法),即求單位“1”的幾分之幾是多少)
1、畫線段圖:(1)兩個量的關系:畫兩條線段圖,先畫單位一的量,注意兩條線段的左邊要對齊。(2)部分和整體的關系:畫一條線段圖。
2、找單位“1”: 單位“1” 在分率句中分率的前面;
或在“占”、“是”、“比”“相當於”的後面。
3、寫數量關系式的技巧:
(1)“的” 相當於 “×” ,“占”、“相當於”“是”、“比”是 “ = ”
(2)分率前是“的”字:用單位“1”的量×分率=具體量
例如:甲數是20,甲數的1/3是多少?列式是:20×1/3
4、看分率前有沒有多或少的問題;分率前是“多或少”的關系式:
(比少):單位“1”的量×(1-分率)=具體量;
例如:甲數是50,乙數比甲數少1/2,乙數是多少?
列式是:50×(1-1/2)
(比多):單位“1”的量×(1+分率)=具體量
例如:小紅有30元錢,小明比小紅多3/5,小紅有多少錢?
列式是:50×(1+3/5)
3、求一個數的幾倍是多少:用 一個數×幾倍;
4、求一個數的幾分之幾是多少: 用一個數×幾分之幾。
5、求幾個幾分之幾是多少:用幾分之幾×個數
6、求已知一個部分量是總量的幾分之幾,求另一個部分量的方法:
(1)、單位“1”的量×(1-分率)=另一個部分量(建議用)
(2)、單位“1”的量-已知占單位“1”的幾分之幾的部分量=要求的部分量
例如:教材15頁做一做和16頁練習第七題(題目中有時候會有這種題的'關鍵字“其中”)
第二單元位置與方向(二)
一、確定物體位置的方法:1、先找觀測點;2、再定方向(看方向夾角的度數);3、最後確定距離(看比例尺)
二、描繪路線圖的關鍵是選好觀測點,建立方向標,確定方向和路程。
三、位置關系的相對性:1、兩地的位置具有相對性在敘述兩地的位置關系時,觀測點不同,敘述的方向正好相反,而度數和距離正好相等。
四、相對位置:東--西;南--北;南偏東--北偏西。
第三單元分數除法
三、倒數
1、倒數的意義: 乘積是1的兩個數互為倒數。
強調:互為倒數,即倒數是兩個數的關系,它們互相依存,倒數不能單獨存在。(要說清誰是誰的倒數)。
2、求倒數的方法:
(1)、求分數的倒數:交換分子分母的位置。
(2)、求整數的倒數:把整數看做分母是1的分數,再交換分子分母的位置。
(3)、求帶分數的倒數:把帶分數化為假分數,再求倒數。
(4)、求小數的倒數: 把小數化為分數,再求倒數。
3、 1的倒數是1; 因為1×1=1;0沒有倒數,因為0乘任何數都得0,(分母不能為0)
4、真分數的倒數大於1;假分數的倒數小於或等於1;帶分數的倒數小於1。
5、運用,a×2/3=b×1/4求a和b是多少。把a×2/3=b×1/4看成等於1,也就是求2/3的倒數和求1/4的倒數。
1、分數除法的意義:
乘法: 因數 × 因數 = 積
除法: 積 ÷ 一個因數 = 另一個因數
分數除法與整數除法的意義相同,表示已知兩個因數的積和其中一個因數,求另一個因數的運算。
例如:1/2÷3/5意義是:已知兩個因數的積是1/2與其中一個因數3/5,求另一個因數的運算。
2、分數除法的計演算法則:
除以一個不為0的數,等於乘這個數的倒數。
3、分數除法比較大小時的規律:
(1)當除數大於1,商小於被除數;
(2)當除數小於1(不等於0),商大於被除數;
(3)當除數等於1,商等於被除數。
“[ ]”叫做中括弧。一個算式里,如果既有小括弧,又有中括弧,要先算小括弧裡面的, 再算中括弧裡面的。
二、分數除法解決問題
1,解法:(1)方程: 根據數量關系式設未知量為X,用方程解答。
解:設未知量為X (一定要解設),再列方程 用 X×分率=具體量
例如:公雞有20隻,是母雞只數的1/3,母雞有多少只。(單位一是母雞只數,單位一未知.)解:設母雞有X只。列方程為:X×1/3=20
(2)算術(用除法):單位“1”的量未知用除法:
即已知單位“1”的幾分之幾是多少,求單位“1”的量。
分率對應量÷對應分率 = 單位“1”的量
例如:公雞有20隻,是母雞只數的1/3,母雞有多少只。(單位一是母雞只數,單位一未知,)用除法,列式是:20÷1/3
2、看分率前有沒有比多或比少的問題;
分率前是“多或少”的關系式:
(比少):具體量÷ (1-分率)= 單位“1”的量;
例如:桃樹有50棵,比蘋果樹少1/6,蘋果樹有多少棵。
列式是:50÷(1-1/6)
(比多):具體量÷ (1+分率)= 單位“1”的量
例如:一種商品現在是80元,比原價增加了1/7,原價多少?
列式是:80÷(1+1/7)
3、求一個數是另一個數的幾分之幾是多少: 用一個數除以另一個數,結果寫為分數形式。
例如:男生有20人,女生有15人,女生人數占男生人數的幾分之幾。
列式是:15÷20=15/20=3/4
4、求一個數比另一個數多幾分之幾的方法:
用兩個數的相差量÷單位“1”的量 =分數
即①求一個數比另一個數多幾分之幾:用(大數–小數) ÷另一個數(比那個數就除以那個數),結果寫為分數形式。
例如:5比3多幾分之幾?(5-3)÷3=2/3
②求一個數比另一個數少幾分之幾:用(大數–小數) ÷另一個數(比那個數就除以那個數),結果寫為分數形式。
例如:3比5少幾分之幾?(5-3)÷5=2/5
說明:多幾分之幾不等於少幾分之幾,因為單位一不同。
5、工程問題:把工作總量看作單位“1”,合做多長時間完成一項工程用1÷效率和,即1÷(1/時間+1/時間),(工作效率=1/時間)
例如:一項工程甲單獨做要5天完成,乙單獨做要10天完成,甲單獨做要3天完成,三人合做幾天可以完成?列式:1÷(1/5+1/10+1/3)
第四單元比
(一)、比的意義
1、比的意義:兩個數相除又叫做兩個數的比。
2、在兩個數的比中,比號前面的數叫做比的前項,比號後面的數叫做比的後項。比的前項除以後項所得的商,叫做比值。
例如 15 :10 = 15÷10=3/2(比值通常用分數表示,也可以用小數或整數表示)
15 ∶ 10 = 3/2
前項 比號 後項 比值
3、比可以表示兩個相同量的關系,即倍數關系。例:長是寬的幾倍。
也可以表示兩個不同量的比,得到一個新量。例: 路程÷速度=時間。
4、區分比和比值
比:表示兩個數的關系,可以寫成比的形式,也可以用分數表示。
比值:相當於商,是一個數,可以是整數,分數,也可以是小數。
5、根據分數與除法的關系,兩個數的比也可以寫成分數形式。
6、比和除法、分數的聯系:
比 前 項 比號“:” 後 項 比值
除 法 被除數 除號“÷” 除 數 商
分 數 分 子 分數線“—” 分 母 分數值
7、比和除法、分數的區別:除法是一種運算,分數是一個數,比表示兩個數的關系。
8、根據比與除法、分數的關系,可以理解比的後項不能為0。
9、體育比賽中出現兩隊的分是2:0等,這只是一種記分的形式,不表示兩個數相除的關系。
10、求比值:用前項除以後項,結果最好是寫為分數(不會約分的就不約分)
例如:15∶ 10=15÷10=15/10=3/2
(二)、比的基本性質
1、根據比、除法、分數的關系:
商不變的性質:被除數和除數同時乘或除以相同的數(0除外),商不變。
分數的基本性質:分數的分子和分母同時乘或除以相同的數時(0除外),分數值不變。
比的基本性質:比的前項和後項同時乘或除以相同的數(0除外),比值不變。
2、最簡整數比:比的前項和後項都是整數,並且是互質數,這樣的比就是最簡整數比。
3、根據比的基本性質,可以把比化成最簡單的整數比。
4.化簡比:
(2)用求比值的方法。注意: 最後結果要寫成比的形式。
例如: 15∶10 = 15÷10 =15/10= 3/2 = 3∶2
還可以15∶10 = 15÷10 = 3/2最簡整數比是3∶2
5、比中有單位的,化簡和求比值時要把單位化相同再化簡和求比值,結果沒有單位。
6.按比例分配:把一個數量按照一定的比來進行分配。這種方法通常叫做按比例分配。一般有兩種解題法
1,用分率解:按比例分配通常把總量看作單位一,即轉化成分率。要先求出總份數,再求出幾份占總份數的幾分之幾,最後再用總量分別乘幾分之幾。
例如:有糖水25克,糖和水的比為1:4,糖和水分別有幾克?
1+4=5 糖佔1/5 用 25×1/5得到糖的數量,水佔4/5 用 25×4/5得到水的數量。
2,用份數解:要先求出總份數,再求出每一份是多少,最後分別求出幾份是多少。
例如:有糖水25克,糖和水的比為1:4,糖和水分別有幾克?
糖和水的份數一共有1+4=5 一份就是25÷5=5糖有1份就是5×1水有4分就是5×4
第五單元圓的認識
一、認識圓形
1、圓的定義:圓是由曲線圍成的一種平面圖形。
2、圓心:將一張圓形紙片對折兩次,摺痕相交於圓中心的一點,這一點叫做圓心。一般用字母O表示。它到圓上任意一點的距離都相等.
3、半徑:連接圓心到圓上任意一點的線段叫做半徑。一般用字母r表示。把圓規兩腳分開,兩腳之間的距離就是圓的半徑。
4、直徑:通過圓心並且兩端都在圓上的線段叫做直徑。一般用字母d表示。直徑是一個圓內最長的線段。
5、圓心確定圓的位置,半徑確定圓的大小。
6、在同一個圓內或等圓內,有無數條半徑,有無數條直徑。所有的半徑都相等,所有的直徑都相等。
7.在同圓或等圓內,直徑的長度是半徑的2倍,半徑的長度是直徑的1/2。用字母表示為:d=2r或r=d/2
8、軸對稱圖形:如果一個圖形沿著一條直線對折,兩側的圖形能夠完全重合,這個圖形是軸對稱圖形。摺痕所在的這條直線叫做對稱軸。
9、長方形、正方形和圓都是對稱圖形,都有對稱軸。這些圖形都是軸對稱圖形。
10、只有1條對稱軸的圖形有: 角、等腰三角形、等腰梯形、扇形、半圓。只有2條對稱軸的圖形是: 長方形;只有3條對稱軸的圖形是: 等邊三角形;只有4條對稱軸的圖形是: 正方形;有無數條對稱軸的圖形是: 圓、圓環。
11、畫對稱軸要用鉛筆畫,同時要用尺子(三角板)畫出虛線,這條虛線兩端要超出圖形一點。
二、圓的周長
1、圓的周長:圍成圓的曲線的長度叫做圓的周長。用字母C表示。
2、圓周率實驗:(滾動法)在圓形紙片上做個記號,與直尺0刻度對齊,在直尺上滾動一周,得到圓的周長。或者用線圍繞圓形紙片一周量出線的長度就是圓的周長(測繩法)。
發現,圓周長與它直徑的比值(圓周長除以直徑)是一個固定數即3倍多一點,我們把它叫做圓周率用字母π表示。
3、圓周率:任意一個圓的周長與它的直徑的比值是一個固定的數,我們把它叫做圓周率。用字母π(pai) 表示。世界上第一個把圓周率算出來的人是我國的數學家祖沖之。
(1)、一個圓的周長總是它直徑的3倍多一些,這個比值是一個固定的數。圓周率π是一個無限不循環小數。在計算時,一般取π ≈ 3.14。
(2)、在判斷時,圓周長與它直徑的比值是π倍,而不是3.14倍。
4、圓的周長公式: 圓的周長等於圓周率乘直徑用字母表示C= πd
(1)、已知圓的周長求直徑用圓的周長除以圓周率,用字母表示
d = C ÷π或圓的周長等於2乘圓周率乘半徑,用字母表示C=2πr
(2)、已知圓的周長求半徑用圓的周長除以圓周率的2倍,
用字母表示 r = C ÷ 2π(r = C / 2π)
5、在一個正方形里畫一個最大的圓,圓的直徑等於正方形的邊長。在一個長方形里畫一個最大的圓,圓的直徑等於長方形的寬。
6、區分周長的一半和半圓的周長:
(1)、周長的一半:等於圓的周長÷2
計算方法:2π r ÷ 2 即C半= π r
(2)半圓的周長:等於圓的周長的一半加直徑。 計算方法:半圓的周長=5.14 r (推導過程C半=2π r ÷ 2+d=πr+d=πr+2r =5.14 r)
三、圓的面積
1、圓的面積:圓所佔平面的大小叫做圓的面積。 用字母S表示。
2、圓面積公式的推導:(1)把一個圓等分(偶數份)成的扇形份數越多,拼成的圖像越接近長方形。長方形的長相當於圓的周長的一半,長方形的寬相當於圓的半徑。
(2)拼出的圖形與圓的周長和半徑的關系。
圓的半徑 = 長方形的寬
圓的周長的一半 = 長方形的長
3、圓面積的計算方法:因為:長方形面積 = 長 ×寬
所以:圓的面積 = 圓周長的一半 × 圓的半徑
即S圓 = C÷2× r=πr × r=πr
圓的面積公式:S圓 =πr → r = S 圓÷ π
4、環形的面積:一個環形,外圓的半徑用字母R表示,內圓的半徑用字母r表示。(R=r+環的寬度.)
S環 = πR -πr 或環形的面積公式:S環 = π(R -r )(建議用這個公式)。
5、一個圓,半徑擴大或縮小多少倍,直徑和周長也擴大或縮小相同的倍數。而面積擴大或縮小的倍數是這倍數的平方倍。
例如:在同一個圓里,半徑擴大3倍,那麼直徑和周長就都擴大3倍,而面積擴大3的平方倍得到9倍。
6、兩個圓: 半徑比 = 直徑比 = 周長比;而面積比等於這比的平方。
例如:兩個圓的半徑比是2∶3,那麼這兩個圓的直徑比和周長比都是2∶3,而面積比是4∶9
7、任意一個正方形與它內切圓的面積之比都是一個固定值,即:4∶π
8、當長方形,正方形,圓的周長相等時,圓面積最大,正方形居中,長方形面積最小。反之,面積相同時,長方形的周長最長,正方形居中,圓的周長最短。
9、常用各π值結果:π = 3.14;2π = 6.28 ;5π=15.7
10、外方內圓(內切圓)公式S=0.86r 推導過程:S=S正-S圓=d -πr =2r×2r-πr =4r -πr =r ×(4-π)=0.86r
11、外圓內方(外切圓)公式S=1.14r 推導過程:S=S圓-S正=πr -dr/2×2=2r×r/2×r=πr -2r =r ×(π-2)=1.14r (把正方形看成兩個面積相等的三角形,三角形的底就是直徑,高是半徑)
12、一條弧和經過這條弧兩端的兩條半徑所圍成的圖形叫做扇形。頂點在圓心的角叫做圓心角。扇形的面積與圓心角大小和半徑長短有關。
13、S扇=S圓×n/360;S扇環=S環×n/360
14、扇形也是軸對稱圖形,有一條對稱軸。
15、常見半徑與直徑的周長和面積的結果。
半徑 半徑的平方 直徑 周長 面積
1 1 2 6.28 3.14
2 4 4 12.56 12.56
3 9 6 18.84 28.26
4 16 8 25.12 50.24
5 25 10 31.4 78.5
6 36 12 37.68 113.04
7 49 14 43.96 153.86
8 64 16 50.24 200.96
9 81 18 56.52 254.34
10 100 20 62.8 314
1.5 2.25 3 9.42 7.065
2.5 6.25 5 15.7 19.625
3.5 12.25 7 21.98 38.465
4.5 20.35 9 28.26 63.585
5.5 30.25 11 34.54 94.985
7.5 56.25 15 47.1 176.625
;F. 六年級下冊數學第三單元知識點
2022六年級下冊數學第三單元知識點
數學需要比日常用語更多的精確性,數學家將此對語言及邏輯精確性的要求稱為「嚴謹」。下面是小學部整理的關於數學第三單元,也就是圓柱與圓錐的知識點,歡迎大家參考!
六年級下冊數學第三單元知識點
【圓柱】
圓柱的形成:圓柱是以長方形的一邊為軸旋轉而得到的;圓柱也可以由長方形捲曲而得到。
一、圓柱:圓柱由3個面圍成。
(1)底面:圓柱的上、下兩個面;
(2)側面:圓柱周圍的面(上下底面除外);
(3)高:圓柱的兩個底面之間的距離。
二、圓柱的特徵:
(1)底面的特徵:圓柱的底面是完全相等的兩個圓。
(2)側面的特徵:圓柱的側面是一個曲面。
(3)高的特徵:圓柱有無數條高。
圓柱的側面展開圖: 沿著高展開,展開圖形是長方形。
長方形的長等於圓柱底面的周長,長方形的寬等於圓柱的高,
長方形的面積等於(圓柱的側面積),因為長方形面積=長×寬,所以圓柱的側面積=底面周長×高
圓柱的側面積:圓柱的側面積=底面的周長×高,
用字母表示為:S側=Ch h=S側÷C
C= S側÷h
S側=∏dh=2∏rh
註:(1)當底面周長和高相等時,沿高展開圖是正方形;
(2)不沿著高展開,展開圖形是平行四邊形或不規則圖形。
(3) 無論如何展開都得不到梯形.
四、圓柱的表面積:
圓柱的表面積=側面積+底面積×2。
即S表= S側+ S底×2=2∏rh+∏r×2
【解題方法】
一.圓柱的切割:
1.橫切:切面是圓,表面積增加2倍底面積,即S增=2πr2
2.豎切(過直徑):切面是長方形(如果h=2R,切面為正方形),該長方形的長是圓柱的高,寬是圓柱的底面直徑,表面積增加兩個長方形的面積,即S增=4rh
二、常見的圓柱解決問題:
側面積+兩個底面積:油桶、米桶、罐桶類
側面積+一個底面積:玻璃杯、水桶、筆筒、帽子、游泳池
只求側面積:煙囪、燈罩、排水管、漆柱、通風管、壓路機、衛生紙中軸、薯片盒包裝
底面周長:壓路機壓過路面長度
五、圓柱的體積:圓柱所佔空間的大小,叫做這個圓柱體的體積。
圓柱切拼成近似的長方體,分的份數越多,拼成的圖形越接近長方體。
長方體的底面積等於圓柱的底面積,長方體的高等於圓柱的高。長方體的體積=底面積×高
圓柱體積=底面積×高
V柱=S h =πr2 h
h =V柱÷S=V柱÷(πr2)
S=V柱÷h
註:把一個圓柱體切分成若干份拼成一個近似的長方體,在這個過程中,形狀發生了變化,體積沒有發生變化。表面積增加了2rh.
【圓錐】
圓錐的形成:圓錐是以直角三角形的一直角邊為軸旋轉而得到的。圓錐也可以由扇形捲曲而得到。
一、圓錐:以直角三角形的一條直角邊所在直線為旋轉軸,其餘兩邊旋轉形成的面所圍成的旋轉體叫做圓錐。
二、圓錐各部分的名稱:
圓錐只有一個底面,底面是個圓,圓錐的側面是個曲面,把圓錐的側面展開得到一個扇形。
圓錐的高:從圓錐的頂點到底面圓心的距離是圓錐的高。(只有一條)
測量圓錐的高:先把圓錐的底面放平,用一塊平板水平地放在圓錐的頂點上面,豎直地量出平板和底面之間的距離。
三、圓錐的特徵:
(1)底面的特徵:圓錐的底面一個圓。
(2)側面的特徵:圓錐的側面是一個曲面。
(3)高的特徵:圓錐有一條高。
四、圓錐的體積:
圓錐的體積等於與它等底等高的圓柱體積的三分之一
V錐=×底面積×高 =S h =πr2 h
圓錐的高=圓錐體積×3÷底面積
h =3 V錐÷S=3 V錐÷(πr2)
圓錐的'底面積=圓錐體積×3÷高
S=3 V錐÷h
五、圓柱與圓錐的關系:
1.圓柱的特徵:一個側面、兩個底面、無數條高且側面沿高展開圖是長方形。
2.圓錐的特徵:一個側面、一個底面、一個頂點、一條高且側面展開圖是扇形。
3.圓柱與圓錐等底等高,圓柱的體積是圓錐的3倍。
4.圓柱與圓錐等底等體積,圓錐的高是圓柱高的3倍。
5.圓柱與圓錐等高等體積,圓錐的底面積(注意:是底面積而不是底面半徑)是圓柱的3倍。
6.圓柱體積比等底等高圓錐體積多2倍
7.圓錐體積比等底等高圓柱體積少
(1)等底等高:V錐:V柱=1:3
(2)等底等體積:h錐:h柱=3:1
(3)等高等體積:S錐:S柱=3:1
【解題方法】
一.圓錐的切割:
a.橫切:切面是圓
b.豎切(過頂點和直徑):切面是等腰三角形,該等腰三角形的高是圓錐的高,底是圓錐的底面直徑,表面積增加兩個等腰三角形的面積,即S增=2Rh
二、題型總結:
1、高不變半徑擴大縮小n倍,直徑、底面周長、側面積擴大縮小n倍,底面積、體積擴大縮小n2倍。
2、半徑不變高擴大縮小n倍,側面積、體積擴大縮小n倍
3、削成最大體積的問題:
正方體里削出最大的圓柱圓錐 圓柱圓錐的高和底面直徑等於正方體棱長
長方體里削出最大的圓柱圓錐 圓柱圓錐底面直徑等於寬(寬﹥高)圓柱圓錐高等於長方體高
4、浸水體積問題:水面上升部分的體積就是浸入水中物品的體積,等於盛水容積的底面積乘以上升的高度。
5、等體積轉換問題:一圓柱融化後做成圓錐,或圓柱中的溶液倒入圓錐,都是體積不變的問題,注意不要乘以。
【拓展閱讀】
圓柱與圓錐的關系
1、如果是等底等高,則有圓柱的體積是圓錐體積的3倍,反之,圓錐體積是圓柱體積的1/3;
2、如果高相等,體積相等,則有圓錐底面積是圓柱底面積的3倍,反之,圓柱底面積是圓錐底面積的1/3;
3、如果底面積相等,體積相等,則圓錐的高是圓柱的高的3倍,反之圓柱的高是圓錐的高的1/3。
圓柱和圓錐有什麼區別
1、圓柱有兩面個底面,圓錐只有一個底面。
2、圓柱的側面展開圖是長方形,圓錐的側面展開圖是扇形。
3、在不同的底、高、底面積下,圓柱與圓錐面積和體積不同。
;G. 六年級數學知識點歸納
學習從來無捷徑。每一門科目都有自己的 學習 方法 ,但其實都是萬變不離其中的,數學其實和語文英語一樣,也是要記、要背、要練的。下面是我給大家整理的一些 六年級數學 的知識點,希望對大家有所幫助。
小學六年級上冊數學《位置與方向(二)》知識點
1.根據方向和距離可以確定物體在平面圖上的位置。
2.在平面圖上標出物體位置的方法:
先用量角器確定方向,再以選定的單位長度為基準用直尺確定圖上距離,最後找出物體的具體位置,並標上名稱。
3.描述路線圖時,要先按行走路線確定每一個參照點,然後以每一個參照點建立方向標,描述到下一個目標所行走的方向和路程,即每一步都要說清是從哪兒走,向什麼方向走了多遠到哪兒。
4.繪制路線圖的方法:
(1)確定方向標和單位長度。
(2)確定起點的位置。
(3)根據描述,從起點出發,找好方向和距離,一段一段地畫。除第一段(以起點為參照點)外,其餘每一段都要以前一段的終點為參照點。
(4)以誰為參照點,就以誰為中心畫出「十」字方向標,然後判斷下一地點的方向和距離。
小學六年級上冊數學《分數乘法》知識點
(一)分數乘法意義:
1、分數乘整數的意義與整數乘法的意義相同,就是求幾個相同加數的和的簡便運算。
「分數乘整數」指的是第二個因數必須是整數,不能是分數。
2、一個數乘分數的意義就是求一個數的幾分之幾是多少。
「一個數乘分數」指的是第二個因數必須是分數,不能是整數。(第一個因數是什麼都可以)
(二)分數乘法計演算法則:
1、分數乘整數的計算方法:用分子乘整數的積作分子,分母不變。能約分的可以先約分,再計算。
(1)為了計算簡便能約分的可先約分再計算。(整數和分母約分)
(2)約分是用整數和下面的分母約掉公因數。(整數千萬不能與分母相乘,計算結果必須是最簡分數)。
2、分數乘分數的計算方法是:用分子相乘的積做分子,用分母相乘的積作分母。(分子乘分子,分母乘分母)
(1)如果分數乘法算式中含有帶分數,要先把帶分數化成假分數再計算。
(2)分數化簡的方法是:分子、分母同時除以它們的公因數。
(3)在乘的過程中約分,是把分子、分母中,兩個可以約分的數先劃去,再分別在它們的上、下方寫出約分後的數。(約分後分子和分母必須不再含有公因數,這樣計算後的結果才是最簡單分數)。
(4)分數的基本性質:分子、分母同時乘或者除以一個相同的數(0除外),分數的大小不變。
(三)積與因數的關系:
一個數(0除外)乘大於1的數,積大於這個數。a×b=c,當b>1時,c>a。
一個數(0除外)乘小於1的數,積小於這個數。a×b=c,當b<1時,c
一個數(0除外)乘等於1的數,積等於這個數。a×b=c,當b=1時,c=a。
在進行因數與積的大小比較時,要注意因數為0時的特殊情況。
人教版小學六年級數學下冊知識點
比例
1.理解比例的意義和基本性質,會解比例。
2.理解正比例和反比例的意義,能找出生活中成正比例和成反比例量的實例,能運用比例知識解決簡單的實際問題。
3.認識正比例關系的圖像,能根據給出的有正比例關系的數據在有坐標系的方格紙上畫出圖像,會根據其中一個量在圖像中找出或估計出另一個量的值。
4.了解比例尺,會求平面圖的比例尺以及根據比例尺求圖上距離或實際距離。
5.認識放大與縮小現象,能利用方格紙等形式按一定的比例將簡單圖形放大或縮小,體會圖形的相似。
6.滲透函數思想,使學生受到辯證唯物主義觀點的啟蒙 教育 。
7.比例的意義:表示兩個比相等的式子叫做比例。如:2:1=6:
8.組成比例的四個數,叫做比例的項。兩端的兩項叫做外項,中間的兩項叫做內項。
9.比例的性質:在比例里,兩個外項的積等於兩個兩個內向的積。這叫做比例的基本性質。例如:由3:2=6:4可知3×4=2×6;或者由x×1。5=y×1。2可知x:y=1.2:1.5。
10.解比例:根據比例的基本性質,如果已知比例中的任何三項,就可以求出這個數比例中的另外一個未知項。
求比例中的未知項,叫做解比例。
例如:3:x=4:8,內項乘內項,外項乘外項,則:4x=3×8,解得x=6。
六年級數學知識點歸納相關 文章 :
★ 六年級上冊數學知識點整理歸納
★ 六年級數學總復習知識點整理(完整版)
★ 小學六年級數學學習方法和技巧大全
★ 小學六年級數學知識點總結
★ 六年級數學上冊知識點復習
★ 六年級數學上冊知識點總結
★ 六年級數學圓的知識點總結
★ 六年級數學小知識總結
★ 一至六年級數學知識點復習資料整合
H. 六年級數學的知識點總結
每一門科目都有自己的 學習 方法 ,但其實都是萬變不離其中的,數學其實和語文英語一樣,也是要記、要背、要講練的。下面是我給大家整理的一些 六年級數學 的知識點,希望對大家有所幫助。
人教版小學六年級數學下冊知識點
圓柱和圓錐
1.認識圓柱和圓錐,掌握它們的基本特徵。認識圓柱的底面、側面和高。認識圓錐的底面和高。
2.探索並掌握圓柱的側面積、表面積的計算方法,以及圓柱、圓錐體積的計算公式,會運用公式計算體積,解決有關的簡單實際問題。
3.通過觀察、設計和製作圓柱、圓錐模型等活動,了解平面圖形與立體圖形之間的聯系,發展學生的空間觀念。
4.圓柱的兩個圓面叫做底面,周圍的面叫做側面,底面是平面,側面是曲面。
5.圓柱的側面沿高展開後是長方形,長方形的長等於圓柱底面的周長,長方形的寬等於圓柱的高,當底面周長和高相等時,側面沿高展開後是一個正方形。
6.圓柱的表面積=圓柱的側面積+底面積×2即S表=S側+S底×2或2πr×h+2×π。
7.圓柱的側面積=底面周長×高即S側=Ch或2πr×。
8.圓柱的體積=圓柱的底面積×高,即V=sh或πr2×。
進一法:實際中,使用的材料都要比計算的結果多一些,因此,要保留數的時候,省略的位上的是4或者比4小,都要向前一位進1。這種取近似值的方法叫做進一法。
9.圓錐只有一個底面,底面是個圓。圓錐的側面是個曲面。
10.從圓錐的頂點到底面圓心的距離是圓錐的高。圓錐只有一條高。(測量圓錐的高:先把圓錐的底面放平,用一塊平板水平地放在圓錐的頂點上面,豎直地量出平板和底面之間的距離)
11.把圓錐的側面展開得到一個扇形。
12.圓錐的體積等於與它等底等高的圓柱體積的三分之一,即V錐=1/3Sh或πr2×h÷。
13.常見的圓柱圓錐解決問題:
①壓路機壓過路面面積(求側面積);
②壓路機壓過路面長度(求底面周長);
③水桶鐵皮(求側面積和一個底面積);
④廚師帽(求側面積和一個底面積);通風管(求側面積)。
小學6年級 畢業 考試數學重難知識點
比和比例
比:
兩個數相除又叫兩個數的比。比號前面的數叫比的前項,比號後面的數叫比的後項。
比值:
比的前項除以後項的商,叫做比值。
比的性質:
比的前項和後項同時乘以或除以相同的數(零除外),比值不變。
比例:
表示兩個比相等的式子叫做比例。a:b=c:d或
比例的性質:
小學六年級 數學學習方法
小學數學學習必須關注孩子創新意識的培養和創新能力的發展。從某種意義上講,養成創造性學習的習慣,比獲得了多少知識更重要。這需要從以下幾方面做起:
1.培養學生善於質疑的習慣。
在參與、經歷數學知識發現、形成的探究活動中,善於發現,提出有針對性、有價值的數學問題,質疑問難,是創造性學習習慣培養的一個重要方面。在數學學習過程中,要逐步培養學生自主探究、積極思考、主動質疑的學習習慣,讓他們想問、敢問、好問、會問。
質疑習慣的培養,也可從模仿開始,老師要注意質疑的「言傳身教」,教給學生可以在哪兒找疑點。一般來說,質疑可以發生在新舊知識的銜接處、學習過程的困惑處、法則規律的結論處、教學內容的重難點及關鍵點處,概念的形成過程中、解題思路的分析過程中、動手操作的實踐中;還要讓學生學會變換角度,提出問題。
2.培養學生手腦結合,注重實踐的習慣。
心理學研究告訴我們,小學生的思維正處在具體形象思維向 抽象思維 、 邏輯思維 發展的過渡階段,特別是低年級 兒童 ,他們的思維仍以具體形象思維為主要形式,他們的抽象思維需要在感性材料的支持下才能進行,因此小學數學 教育 必須重視培養學生動手、動腦、動口的良好習慣,使學生通過看一看、摸一摸、拼一拼、擺一擺、講一講來獲取新知。
例如在學習「角的初步認識」時,角的大小與兩邊的長短有沒有聯系?這個問題就可以通過操作自製的活動角,邊操作、邊觀察、邊討論,從而得出正確的結論。開展類似的教學活動,就能使學生養成手腦結合,勤於實踐的學習習慣。
3.培養學生的良好思維習慣。
培養學生多角度思考和解決問題的習慣,培養他們思維的多向性和靈活性。通過「你能想出不同的方法嗎?」「你還能想到什麼?」「你有獨特的見解嗎?」你能從另一個角度看問題嗎?「等言語,啟發和誘導,鼓勵學生敢想、敢說,不怕出錯、敢於發表不同的見解,培養學生的 創新思維 習慣。
兩個外項積等於兩個內項積(交叉相乘),ad=bc。
正比例:
若A擴大或縮小幾倍,B也擴大或縮小幾倍(AB的商不變時),則A與B成正比。
反比例:
若A擴大或縮小幾倍,B也縮小或擴大幾倍(AB的積不變時),則A與B成反比。
比例尺:
圖上距離與實際距離的比叫做比例尺。
按比例分配:
把幾個數按一定比例分成幾份,叫按比例分配。
六年級數學的知識點 總結 相關 文章 :
★ 六年級數學期末復習知識點匯總
★ 小學六年級數學知識點總結
★ 六年級數學上冊知識點總結
★ 六年級數學圓的知識點總結
★ 六年級數學知識點歸納
★ 六年級數學的重難點知識總結
★ 六年級數學知識點總結
★ 六年級上冊數學知識點整理歸納
★ 六年級上冊數學知識點總結
★ 六年級數學知識點梳理
I. 六年級數學下冊一、二單元知識點歸納整理
將懶散收起,背好書包,為人生的成功努力,對暑假說再見,奔赴課堂,為明日的輝煌讀書,開學日,整裝待發,帶好自信,沖向知識的海洋,開拓人生的輝煌!下面是我為大家整理的六年級數學下冊一、二單元知識點歸納,一起來看看吧。
六年級數學下冊一、二單元知識點歸納整理1
第一單元
負數
1.負數:在數軸線上,負數都在0的(左側),所有的負數都比自然數小。
正數:大於0的數叫正數(不包括0)
(0)既不是正數,也不是負數,它是正、負數的界限。 第二單元
圓柱和圓錐
1、圓柱的特徵:(1)底面的特徵:圓柱的底面是完全相等的兩個圓。
(2)側面的特徵:圓柱的側面是一個曲面。
(3)高的特徵:圓柱有無數條高。
2、圓柱的高:兩個底面之間的距離叫做高。
3、圓柱的側面展開圖: 當沿高展開時展開圖是(長方形); 這個長方形的長等於(圓柱的底面周長),長方形的寬等於(圓柱的高)。這個長方形的面積等於(圓柱的側面積),因
為長方形面積=長×寬,所以圓柱的側面積=底面周長×高 當底面周長和高相等時,沿高展開圖是(正方形);當不沿高展開時展開圖是平行四邊形。
4、圓柱的側面積:圓柱的側面積=底面的周長×高, 用字母表示為:S側=Ch。
h=S側÷C
C= S側÷h
S側=∏dh=2∏rh
5、圓柱的表面積:
圓柱的表面積=側面積+底面積×2。
即S表= S側+ S底×2 =Ch+∏(C÷∏÷2)×2 =∏dh+∏(d÷2) ×2 =2∏rh+∏r×2
(計算時最好分步使用公式,以免出現計算錯誤。)
6、圓柱表面積在實際中的應用: 無蓋水桶的表面積=側面積+一個底面積
油桶的表面積=側面積+兩個底面積
煙囪通風管的表面積=側面積
只求側面積:燈罩、排水管、漆柱、通風管、壓路機、衛生紙中軸、薯片盒包裝
側面積+一個底面積:玻璃杯、水桶、筆筒、帽子、游泳池 側面積+兩個底面積:油桶、米桶、罐桶類
7、圓柱的體積:V=Sh h=V÷S S=V÷h V=∏rh (已知r)
V=∏(d÷2) h (已知d)
V=∏(C÷∏÷2) h (已知C)
8、把一個圓柱體切分成若干份拼成一個近似的長方體,在這個過程中,形 狀發生了變化,
體積沒有發生變化。表面積增加了2rh.
9、圓錐的特徵:(1)底面的特徵:圓錐的底面一個圓。
(2)側面的特徵:圓錐的側面是一個曲面。
(3)高的特徵:圓錐有一條高。
10、圓錐的高:從圓錐的頂點到底面圓心的距離是圓錐的高。
11、圓錐的體積:圓柱的體積等於和它等底等高的圓錐體積的3倍,反之圓錐的
體積等於和它等底等高的圓柱體積的三分之一。V錐=1/3 V柱=1/3 Sh
V錐= 1/3 ∏rh V錐= 1/3 ∏(d÷2)h V錐= 1/3∏(C÷∏÷2)h
12、圓柱與圓錐的關系:
(1)與圓柱等底等高的圓錐體積是圓柱體積的三分之一。
(2)體積和高相等的圓錐與圓柱(等底等高)之間,圓錐的底面積是圓柱的三倍。
(3)體積和底面積相等的圓錐與圓柱(等低等高)之間,圓錐的高是圓柱的三倍。
13、生活中的圓錐:沙堆、漏斗、帽子。
典型題:
1、一個圓柱的側面展開是一個正方形,它的高是底面直徑的∏倍,
即h=C=∏d,它的側面積是S側=h
2、 圓柱的底面半徑擴大2倍,高不變,表面積擴大2倍,體積擴大4倍。
3、 圓柱的底面半徑擴大2倍,高也擴大2倍,表面積擴大4倍,體積擴大8倍。
4、圓柱的底面半徑擴大3倍,高縮小3倍,表面積不變,體積擴大3倍。
5、一個圓柱和它等底等高的圓錐體積之和是48立方厘米,這個圓柱的體積是
( )立方厘米,圓錐的體積是()立方厘米
列式為:48÷(3+1)或48÷(1+ 1/3)
6、一個圓柱和它等底等高的圓錐體積之差是24立方分米,這個圓柱的體積是()立方分米,圓錐的體積是()立方分米。
求圓錐體積列式為:24÷(3—1)或24÷(1— 1/3)
7、一個圓柱和一個圓錐,體積相等,底面積也相等,圓柱的高是2厘米,圓錐的高是()厘米。
V柱=V錐 Sh= 1/3Sh 2=1/3h h=2÷1/3 h=6
六年級數學下冊一、二單元知識點歸納整理2
1.1 整數和整除的意義
1.在數物體的時候,用來表示物體個數的數1,2,3,4,5,??,叫做整數
2.在正整數1,2,3,4,5,??,的前面添上「—」號,得到的數—1,—2,—3,—4,—5,??,叫做負整數
3. 零和正整數統稱為自然數
4.正整數、負整數和零統稱為整數
5.整數a除以整數b,如果除得的商正好是整數而沒有餘數,我們就說a能被b整除,或者說b能整除a。
1.2 因數和倍數
1.如果整數a能被整數b整除,a就叫做b倍數,b就叫做a的因數
3.一個數的因數的個數是有限的,其中最小的因數是1,最大的因數是它本身
4.一個數的倍數的個數是無限的,其中最小的倍數是它本身
1.3能被2,5整除的數
1.個位數字是0,2,4,6,8的數都能被2整除
2.在正整數中(除1外),與奇數相鄰的兩個數是偶數
3.在正整數中,與偶數相鄰的兩個數是奇數
4.個位數字是0,5的數都能被5整除
5. 0是偶數
1.4 素數、合數與分解素因數
1.只含有因數1及本身的整數叫做素數或質數
2.除了1及本身還有別的因數,這樣的數叫做合數
3. 1既不是素數也不是合數
4.奇數和偶數統稱為正整數,素數、合數和1統稱為正整數
5.每個合數都可以寫成幾個素數相乘的形式,這幾個素數都叫做這個合數的素因數
6.把一個合數用素因數相乘的形式表示出來,叫做分解素因數。
7.通常用什麼方法分解素因數: 樹枝分解法,短除法
1.5 公因數與最大公因數
1.幾個數公有的因數,叫做這幾個數的公因數,其最大的一個叫做這幾個數的最大公因數
2.如果兩個數中,較小數是較大數的因數,那麼這兩個數的最大公因數較小的數
3.如果兩個數是互素數,那麼這兩個數的最大公因數是
六年級數學下冊一、二單元知識點歸納整理3
一、負數:
1、在熟悉的生活情境中初步認識負數,能正確的讀、寫正數和負數,知道0既不是正數也不是負數。
2、初步學會用負數表示一些日常生活中的實際問題,體驗數學與生活的密切聯系。
3、能藉助數軸初步學會比較正數、0和負數之間的大小。
二、圓柱和圓錐
1、認識圓柱和圓錐,掌握它們的基本特徵。認識圓柱的底面、側面和高。認識圓錐的底面和高。
2、探索並掌握圓柱的側面積、表面積的計算方法,以及圓柱、圓錐體積的計算公式,會運用公式計算體積,解決有關的簡單實際問題。
3、通過觀察、設計和製作圓柱、圓錐模型等活動,了解平面圖形與立體圖形之間的聯系,發展學生的空間觀念。
三、比例
1、理解比例的意義和基本性質,會解比例。
2、理解正比例和反比例的意義,能找出生活中成正比例和成反比例量的實例,能運用比例知識解決簡單的實際問題。
3、認識正比例關系的圖像,能根據給出的有正比例關系的數據在有坐標系的方格紙上畫出圖像,會根據其中一個量在圖像中找出或估計出另一個量的值。
4、了解比例尺,會求平面圖的比例尺以及根據比例尺求圖上距離或實際距離。
5、認識放大與縮小現象,能利用方格紙等形式按一定的比例將簡單圖形放大或縮小,體會圖形的相似。
6、滲透函數思想,使學生受到辯證唯物主義觀點的啟蒙教育
四、統計
1、會綜合應用學過的統計知識,能從統計圖中准確提取統計信息,能夠正確解釋統計結果。
2、能根據統計圖提供的信息,做出正確的判斷或簡單預測。
五、數學廣角
1、經歷「抽屜原理」的探究過程,初步了解「抽屜原理」,會用「抽屜原理」解決簡單的實際問題。 2、通過「抽屜原理」的靈活應用感受數學的魅力。
六、整理和復習
1、比較系統地掌握有關整數、小數、分數和百分數、負數、比和比例、方程的基礎知識。能比較熟練地進行整數、小數、分數的四則運算,能進行整數、小數加、減、乘、除的估算,會使用學過的簡便演算法,合理、靈活地進行計算;會解學過的方程;養成檢查和驗算的習慣。
2、鞏固常用計量單位的表象,掌握所學單位間的進率,能夠進行簡單的改寫。
3、掌握所學幾何形體的特徵;能夠比較熟練地計算一些幾何形體的周長、面積和體積,並能應用;鞏固所學的簡單的畫圖、測量等技能;鞏固軸對稱圖形的認識,會畫一個圖形的對稱軸,鞏固圖形的平移、旋轉的認識;能用數對或根據方向和距離確定物體的位置,掌握有關比例尺的知識,並能應用。
4、掌握所學的統計初步知識,能夠看和繪制簡單的統計圖表,能夠根據數據做出簡單的判斷與預測,會求一些簡單事件的可能性,能夠解決一些計算平均數的實際問題。
5、進一步感受數學知識間的相互聯系,體會數學的作用;掌握所學的常見數量關系和解決問題的思考方法,能夠比較靈活地運用所學知識解決生活中一些簡單的實際問題。
(一)數的讀法和寫法
1、整數的讀法:從高位到低位,一級一級地讀。讀億級、萬級時,先按照個級的讀法去讀,再在後面加一個「億」或「萬」字。每一級末尾的0都不讀出來,其它數位連續有幾個0都只讀一個零。
2、整數的寫法:從高位到低位,一級一級地寫,哪一個數位上一個單位也沒有,就在那個數位上寫0。
3、小數的讀法:讀小數的時候,整數部分按照整數的讀法讀,小數點讀作「點」,小數部分從左向右順次讀出每一位數位上的數字。
4、小數的寫法:寫小數的時候,整數部分按照整數的寫法來寫,小數點寫在個位右下角,小數部分順次寫出每一個數位上的數字。
5、分數的讀法:讀分數時,先讀分母再讀「分之」然後讀分子,分子和分母按照整數的讀法來讀。
6、分數的寫法:先寫分數線,再寫分母,最後寫分子,按照整數的寫法來寫。
7、百分數的讀法:讀百分數時,先讀百分之,再讀百分號前面的數,讀數時按照整數的讀法來讀。
8、百分數的寫法:百分數通常不寫成分數形式,而在原來的分子後面加上百分號「%」來表示。
(二)數的改寫
一個較大的多位數,為了讀寫方便,常常把它改寫成用「萬」或「億」作單位的數。有時還可以根據需要,省略這個數某一位後面的數,寫成近似數。
1、准確數:在實際生活中,為了計數的簡便,可以把一個較大的數改寫成以萬或億為單位的數。改寫後的數是原數的准確數。例如把1254300000改寫成以萬做單位的數是125430萬;改寫成以億做單位的數12。543億。
2、近似數:根據實際需要,我們還可以把一個較大的數,省略某一位後面的尾數,用一個近似數來表示。例如:1302490015省略億後面的尾數是13億。
3、四捨五入法:要省略的尾數的最高位上的數是4或者比4小,就把尾數去掉;如果尾數的最高位上的數是5或者比5大,就把尾數捨去,並向它的`前一位進1。例如:省略345900萬後面的尾數約是35萬。省略4725097420億後面的尾數約是47億。
4、大小比較
(1)比較整數大小:比較整數的大小,位數多的那個數就大,如果位數相同,就看最高位,最高位上的數大,那個數就大;最高位上的數相同,就看下一位,哪一位上的數大那個數就大。
(2)比較小數的大小:先看它們的整數部分,,整數部分大的那個數就大;整數部分相同的,十分位上的數大的那個數就大;十分位上的數也相同的,百分位上的數大的那個數就大……
(3)比較分數的大小:分母相同的分數,分子大的分數比較大;分子相同的數,分母小的分數大。分數的分母和分子都不相同的,先通分,再比較兩個數的大小。
(三)數的互化
1、小數化成分數:原來有幾位小數,就在1的後面寫幾個零作分母,把原來的小數去掉小數點作分子,能約分的要約分。
2、分數化成小數:用分母去除分子。能除盡的就化成有限小數,有的不能除盡,不能化成有限小數的,一般保留三位小數。
3、一個最簡分數,如果分母中除了2和5以外,不含有其他的質因數,這個分數就能化成有限小數;如果分母中含有2和5以外的質因數,這個分數就不能化成有限小數。
4、小數化成百分數:只要把小數點向右移動兩位,同時在後面添上百分號。
5、百分數化成小數:把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。
6、分數化成百分數:通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。
7、百分數化成小數:先把百分數改寫成分數,能約分的要約成最簡分數。
(四)數的整除
1、把一個合數分解質因數,通常用短除法。先用能整除這個合數的質數去除,一直除到商是質數為止,再把除數和商寫成連乘的形式。
2、求幾個數的最大公約數的方法是:先用這幾個數的公約數連續去除,一直除到所得的商只有公約數1為止,然後把所有的除數連乘求積,這個積就是這幾個數的的最大公約數。
3、求幾個數的最小公倍數的方法是:先用這幾個數(或其中的部分數)的公約數去除,一直除到互質(或兩兩互質)為止,然後把所有的除數和商連乘求積,這個積就是這幾個數的最小公倍數。
4、成為互質關系的兩個數:1和任何自然數互質;相鄰的兩個自然數互質;當合數不是質數的倍數時,這個合數和這個質數互質;兩個合數的公約數只有1時,這兩個合數互質。
(五)約分和通分
約分的方法:用分子和分母的公約數(1除外)去除分子、分母;通常要除到得出最簡分數為止。
通分的方法:先求出原來的幾個分數分母的最小公倍數,然後把各分數化成用這個最小公倍數作分母的分數。
小數
1、小數的意義
把整數1平均分成10份、100份、1000份……得到的十分之幾、百分之幾、千分之幾……可以用小數表示。
一位小數表示十分之幾,兩位小數表示百分之幾,三位小數表示千分之幾……
一個小數由整數部分、小數部分和小數點部分組成。數中的圓點叫做小數點,小數點左邊的數叫做整數部分,小數點左邊的數叫做整數部分,小數點右邊的數叫做小數部分。
在小數里,每相鄰兩個計數單位之間的進率都是10。小數部分的最高分數單位「十分之一」和整數部分的最低單位「一」之間的進率也是10。
2、小數的分類
純小數:整數部分是零的小數,叫做純小數。例如:0.25 、 0.368都是純小數。帶小數:整數部分不是零的小數,叫做帶小數。例如:3.25 、5.26都是帶小數。
有限小數:小數部分的數位是有限的小數,叫做有限小數。例如:41.7 、 25.3 、 0.23都是有限小數。
無限小數:小數部分的數位是無限的小數,叫做無限小數。例如:4.33 …… 3.1415926 ……
無限不循環小數:一個數的小數部分,數字排列無規律且位數無限,這樣的小數叫做無限不循環小數。例如:∏
循環小數:一個數的小數部分,有一個數字或者幾個數字依次不斷重復出現,這個數叫做循環小數。例如:3.555 …… 0.0333 …… 12.109109 ……
一個循環小數的小數部分,依次不斷重復出現的數字叫做這個循環小數的循環節。例如:3.99 ……的循環節是「 9 」,0.5454 ……的循環節是「 54」 。純循環小數:循環節從小數部分第一位開始的,叫做純循環小數。例如:3.111 …… 0.5656 ……
混循環小數:循環節不是從小數部分第一位開始的,叫做混循環小數。 3.1222 …… 0.03333 ……
寫循環小數的時候,為了簡便,小數的循環部分只需寫出一個循環節,並在這個循環節的首、末位數字上各點一個圓點。如果循環節只有一個數字,就只在它的上面點一個點。例如:3.777 ……0.5302302 ……
分數
1、分數的意義
把單位「1」平均分成若干份,表示這樣的一份或者幾份的數叫做分數。
在分數里,中間的橫線叫做分數線;分數線下面的數,叫做分母,表示把單位「1」平均分成多少份;分數線下面的數叫做分子,表示有這樣的多少份。
把單位「1」平均分成若干份,表示其中的一份的數,叫做分數單位。
2、分數的分類
真分數:分子比分母小的分數叫做真分數。真分數小於1。
假分數:分子比分母大或者分子和分母相等的分數,叫做假分數。假分數大於或等於1。帶分數:假分數可以寫成整數與真分數合成的數,通常叫做帶分數。 3約分和通分
把一個分數化成同它相等但是分子、分母都比較小的分數,叫做約分。分子分母是互質數的分數,叫做最簡分數。
把異分母分數分別化成和原來分數相等的同分母分數,叫做通分。
(四)百分數
1、表示一個數是另一個數的百分之幾的數叫做百分數,也叫做百分率或百分比。百分數通常用"%"來表示。百分號是表示百分數的符號。
比例表示兩個相等的式子叫做比例。在比例里,兩個外項的積等於兩個內項。這叫做《比例的基本性質》
根據比例的基本性質,如果已知比例中的任何三項,就可以求出這個比例中的另一個未知項。求比例中的未知項,叫做解比例
如:x:320=1:10 10x =320×1 x =320÷10 x =32
六年級數學下冊的知識
第二單元百分數二
(一)、折扣和成數
1、折扣:用於商品,現價是原價的百分之幾,叫做折扣。
通稱「打折」。
幾折就是十分之幾,也就是百分之幾十。例如:八折=8/10=80﹪,
六折五=6。5/10=65/100=65﹪
解決打折的問題,關鍵是先將打的折數轉化為百分數或分數,然後按照求比一個數多(少)百分之幾(幾分之幾)的數的解題方法進行解答。
商品現在打八折:現在的售價是原價的80﹪
商品現在打六折五:現在的售價是原價的65﹪
2、成數:
幾成就是十分之幾,也就是百分之幾十。例如:一成=1/10=10﹪
八成五=8。5/10=85/100=80﹪
解決成數的問題,關鍵是先將成數轉化為百分數或分數,然後按照求比一個數多(少)百分之幾(幾分之幾)的數的解題方法進行解答。
這次衣服的進價增加一成:這次衣服的進價比原來的進價增加10﹪
今年小麥的收成是去年的八成五:今年小麥的收成是去年的85﹪
(二)、稅率和利率
1、稅率
(1)納稅:納稅是根據國家稅法的有關規定,按照一定的比率把集體或個人收入的一部分繳納給國家。
(2)納稅的意義:稅收是國家財政收入的主要來源之一。國家用收來的稅款發展經濟、科技、教育、文化和國防安全等事業。
(3)應納稅額:繳納的稅款叫做應納稅額。
(4)稅率:應納稅額與各種收入的比率叫做稅率。
(5)應納稅額的計算方法:
應納稅額=總收入×稅率
收入額=應納稅額÷稅率
2、利率
(1)存款分為活期、整存整取和零存整取等方法。
(2)儲蓄的意義:人們常常把暫時不用的錢存入銀行或信用社,儲蓄起來,這樣不僅可以支援國家建設,也使得個人用錢更加安全和有計劃,還可以增加一些收入。
(3)本金:存入銀行的錢叫做本金。
(4)利息:取款時銀行多支付的錢叫做利息。
(5)利率:利息與本金的比值叫做利率。
(6)利息的計算公式:
利息=本金×利率×時間
利率=利息÷時間÷本金×100%
(7)注意:如要上利息稅(國債和教育儲藏的利息不納稅),則:
稅後利息=利息—利息的應納稅額=利息—利息×利息稅率=利息×(1—利息稅率)
稅後利息=本金×利率×時間×(1—利息稅率)
購物策略:
估計費用:根據實際的問題,選擇合理的估算策略,進行估算。
購物策略:根據實際需要,對常見的幾種優惠策略加以分析和比較,並能夠最終選擇最為優惠的方案
學後反思:做事情運用策略的好處