① 高中數學向量知識點
1、向量的加法:
AB+BC=AC
設a=(x,y) b=(x',y')
則a+b=(x+x',y+y')
向量的加法滿足平行四邊形法則和三角形法則。
向量加法的性質:
交換律:
a+b=b+a
結合律:
(a+b)+c=a+(b+c)
a+0=0+a=a
2、向量的減法
AB-AC=CB
a-b=(x-x',y-y')
若a//b
則a=eb
則xy`-x`y=0·
若a垂直b
則a·b=0
則xx`+yy`=0
3、向量的乘法
設a=(x,y) b=(x',y')
用坐標計算向量的內積:a·b(點積)=x·x'+y·y'
a·b=|a|·|b|*cosθ
a·b=b·a
(a+b)·c=a·c+b·c
a·a=|a|的平方
向量的夾角記為<a,b>∈[0,π]
Ax+By+C=0的方向向量a=(-B,A)
(a·b)·c≠a·(b·c)
a·b=a·c不可推出b=c
設P1、P2是直線上的兩點,P是l上不同於P1、P2的任意一點。則存在一個實數 λ,使向量P1P=λ向量PP2,λ叫做點P分有向線段P1P2所成的比。
若P1(x1,y1),P2(x2,y2),P(x,y)
x=(x1+λx2)/(1+λ)
則有
y=(y1+λy2)/(1+λ)
我們把上面的式子叫做有向線段P1P2的定比分點公式
4、數乘向量
實數λ和向量a的乘積是一個向量,記作λa,且∣λa∣=∣λ∣*∣a∣,當λ>0時,與a同方向;當λ<0時,與a反方向。
實數λ叫做向量a的系數,乘數向量的幾何意義時把向量a沿著的方向或反方向放大或縮小。
② 數學必修4向量公式歸納
在數學中,向量(也稱為歐幾里得向量、幾何向量、矢量),指具有大小(magnitude)和方向的量,它可以形象化地表示為帶箭頭的線段。下面我給大家帶來數學必修4向量公式,希望對你有幫助。
目錄
高中數學必修4向量公式
高中數學必修4目錄
高中數學學習方法
1、向量的加法
向量的加法滿足平行四邊形法則和三角形法則。
AB+BC=AC。
a+b=(x+x',y+y')。
a+0=0+a=a。
向量加法的運算律:
交換律:a+b=b+a;
結合律:(a+b)+c=a+(b+c)。
2、向量的減法
如果a、b是互為相反的向量,那麼a=-b,b=-a,a+b=0. 0的反向量為0
AB-AC=CB. 即「共同起點,指向被減」
a=(x,y) b=(x',y') 則 a-b=(x-x',y-y').
3、向量的的數量積
定義:兩個非零向量的夾角記為〈a,b〉,且〈a,b〉∈[0,π]。
定義:兩個向量的數量積(內積、點積)是一個數量,記作a·b。若a、b不共線,則a·b=|a|·|b|·cos〈a,b〉;若a、b共線,則a·b=+-∣a∣∣b∣。
向量的數量積的坐標表示:a·b=x·x'+y·y'。
向量的數量積的運算率
a·b=b·a(交換率);
(a+b)·c=a·c+b·c(分配率);
向量的數量積的性質
a·a=|a|的平方。
a⊥b 〈=〉a·b=0。
|a·b|≤|a|·|b|。
向量的數量積與實數運算的主要不同點
1、向量的數量積不滿足結合律,即:(a·b)·c≠a·(b·c);例如:(a·b)^2≠a^2·b^2。
2、向量的數量積不滿足消去律,即:由 a·b=a·c (a≠0),推不出 b=c。
3、|a·b|≠|a|·|b|
4、由 |a|=|b| ,推不出 a=b或a=-b。
4、數乘向量
實數λ和向量a的乘積是一個向量,記作λa,且∣λa∣=∣λ∣·∣a∣。
當λ>0時,λa與a同方向;
當λ<0時,λa與a反方向;
當λ=0時,λa=0,方向任意。
當a=0時,對於任意實數λ,都有λa=0。
註:按定義知,如果λa=0,那麼λ=0或a=0。
實數λ叫做向量a的系數,乘數向量λa的幾何意義就是將表示向量a的有向線段伸長或壓縮。
當∣λ∣>1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上伸長為原來的∣λ∣倍;
當∣λ∣<1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上縮短為原來的∣λ∣倍。
數與向量的乘法滿足下面的運算律
結合律:(λa)·b=λ(a·b)=(a·λb)。
向量對於數的分配律(第一分配律):(λ+μ)a=λa+μa.
數對於向量的分配律(第二分配律):λ(a+b)=λa+λb.
數乘向量的消去律:① 如果實數λ≠0且λa=λb,那麼a=b。② 如果a≠0且λa=μa,那麼λ=μ。
<<<
第一章 三角函數
1.1 任意角和弧度制
1.2 任意角的三角函數
1.3 三角函數的誘導公式
1.4 三角函數的圖象與性質
1.5 函數y=Asin(ωx ψ)
1.6 三角函數模型的簡單應用
本章綜合
第二章 平面向量
2.1 平面向量的實際背景及基本概念
2.2 平面向量的線性運算
2.3 平面向量的基本定理及坐標表示
2.4 平面向量的數量積
2.5 平面向量應用舉例
本章綜合
第三章 三角恆等變換
3.1 兩角和與差的正弦、餘弦和正切公式
3.2 簡單的三角恆等變換
本章綜合
<<<
(1)記數學筆記,特別是對概念理解的不同側面和數學規律,教師在課堂中拓展的課外知識。記錄下來本章你覺得最有價值的思想方法或例題,以及你還存在的未解決的問題,以便今後將其補上。
(2)建立數學糾錯本。把平時容易出現錯誤的知識或推理記載下來,以防再犯。爭取做到:找錯、析錯、改錯、防錯。達到:能從反面入手深入理解正確東西;能由果朔因把錯誤原因弄個水落石出、以便對症下葯;解答問題完整、推理嚴密。
(3)熟記一些數學規律和數學小結論,使自己平時的運算技能達到了自動化或半自動化的熟練程度。
(4)經常對知識結構進行梳理,形成板塊結構,實行「整體集裝」,如表格化,使知識結構一目瞭然;經常對習題進行類化,由一例到一類,由一類到多類,由多類到統一;使幾類問題歸納於同一知識方法。
(5)閱讀數學課外書籍與報刊,參加數學學科課外活動與講座,多做數學課外題,加大自學力度,拓展自己的知識面。
(6)及時復習,強化對基本概念知識體系的理解與記憶,進行適當的反復鞏固,消滅前學後忘。
(7)學會從多角度、多層次地進行 總結 歸類。如:①從數學思想分類②從解題方法歸類③從知識應用上分類等,使所學的知識系統化、條理化、專題化、網路化。
(8)經常在做題後進行一定的「 反思 」,思考一下本題所用的基礎知識,數學思想方法是什麼,為什麼要這樣想,是否還有別的想法和解法,本題的分析方法與解法,在解 其它 問題時,是否也用到過。
(9)無論是作業還是測驗,都應把准確性放在第一位,通法放在第一位,而不是一味地去追求速度或技巧,這是學好數學的重要問題。
<<<
數學必修4向量公式歸納相關 文章 :
★ 數學必修4向量公式歸納
★ 數學必修4平面向量公式總結
★ 高中數學必修4平面向量知識點總結
★ 高一數學必修4平面向量知識點總結
★ 高中數學必修4平面向量知識點
★ 人教版高二數學上向量的三角形不等式歸納
★ 高二數學必修4向量模的計算知識點
★ 高一數學必修4第二章平面向量基本定理及坐標表示知識點
★ 高一數學必修4第二章平面向量基本定理及坐標表示知識點(2)
★ 高一數學必修4知識點總結(人教版)
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();③ 誰可以把有關高一數學向量那部分的知識點,易錯點,公式總結一下。
設a=(x,y),b=(x',y')。 1、向量的加法 向量的加法滿足平行四邊形法則和三角形法則。 AB+BC=AC。 a+b=(x+x',y+y')。 a+0=0+a=a。 向量加法的運算律: 交換律:a+b=b+a; 結合律:(a+b)+c=a+(b+c)。 2、向量的減法 如果a、b是互為相反的向量,那麼a=-b,b=-a,a+b=0. 0的反向量為0 AB-AC=CB. 即「共同起點,指向被減」 a=(x,y) b=(x',y') 則 a-b=(x-x',y-y'). 4、數乘向量 實數λ和向量a的乘積是一個向量,記作λa,且∣λa∣=∣λ∣•∣a∣。 當λ>0時,λa與a同方向; 當λ<0時,λa與a反方向; 當λ=0時,λa=0,方向任意。 當a=0時,對於任意實數λ,都有λa=0。 註:按定義知,如果λa=0,那麼λ=0或a=0。 實數λ叫做向量a的系數,乘數向量λa的幾何意義就是將表示向量a的有向線段伸長或壓縮。 當∣λ∣>1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上伸長為原來的∣λ∣倍; 當∣λ∣<1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上縮短為原來的∣λ∣倍。 數與向量的乘法滿足下面的運算律 結合律:(λa)•b=λ(a•b)=(a•λb)。 向量對於數的分配律(第一分配律):(λ+μ)a=λa+μa. 數對於向量的分配律(第二分配律):λ(a+b)=λa+λb. 數乘向量的消去律:① 如果實數λ≠0且λa=λb,那麼a=b。② 如果a≠0且λa=μa,那麼λ=μ。 3、向量的的數量積 定義:已知兩個非零向量a,b。作OA=a,OB=b,則角AOB稱作向量a和向量b的夾角,記作〈a,b〉並規定0≤〈a,b〉≤π 定義:兩個向量的數量積(內積、點積)是一個數量,記作a•b。若a、b不共線,則a•b=|a|•|b|•cos〈a,b〉;若a、b共線,則a•b=+-∣a∣∣b∣。 向量的數量積的坐標表示:a•b=x•x'+y•y'。 向量的數量積的運算律 a•b=b•a(交換律); (λa)•b=λ(a•b)(關於數乘法的結合律); (a+b)•c=a•c+b•c(分配律); 向量的數量積的性質 a•a=|a|的平方。 a⊥b 〈=〉a•b=0。 |a•b|≤|a|•|b|。 向量的數量積與實數運算的主要不同點 1、向量的數量積不滿足結合律,即:(a•b)•c≠a•(b•c);例如:(a•b)^2≠a^2•b^2。 2、向量的數量積不滿足消去律,即:由 a•b=a•c (a≠0),推不出 b=c。 3、|a•b|≠|a|•|b| 4、由 |a|=|b| ,推不出 a=b或a=-b。 4、向量的向量積 定義:兩個向量a和b的向量積(外積、叉積)是一個向量,記作a×b。若a、b不共線,則a×b的模是:∣a×b∣=|a|•|b|•sin〈a,b〉;a×b的方向是:垂直於a和b,且a、b和a×b按這個次序構成右手系。若a、b共線,則a×b=0。 向量的向量積性質: ∣a×b∣是以a和b為邊的平行四邊形面積。 a×a=0。 a‖b〈=〉a×b=0。 向量的向量積運算律 a×b=-b×a; (λa)×b=λ(a×b)=a×(λb); (a+b)×c=a×c+b×c. 註:向量沒有除法,「向量AB/向量CD」是沒有意義的。 向量的三角形不等式 1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣; ① 當且僅當a、b反向時,左邊取等號; ② 當且僅當a、b同向時,右邊取等號。 2、∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣。 ① 當且僅當a、b同向時,左邊取等號; ② 當且僅當a、b反向時,右邊取等號。 定比分點 定比分點公式(向量P1P=λ•向量PP2) 設P1、P2是直線上的兩點,P是l上不同於P1、P2的任意一點。則存在一個實數 λ,使 向量P1P=λ•向量PP2,λ叫做點P分有向線段P1P2所成的比。 若P1(x1,y1),P2(x2,y2),P(x,y),則有 OP=(OP1+λOP2)(1+λ);(定比分點向量公式) x=(x1+λx2)/(1+λ), y=(y1+λy2)/(1+λ)。(定比分點坐標公式) 我們把上面的式子叫做有向線段P1P2的定比分點公式 三點共線定理 若OC=λOA +μOB ,且λ+μ=1 ,則A、B、C三點共線 三角形重心判斷式 在△ABC中,若GA +GB +GC=O,則G為△ABC的重心 [編輯本段]向量共線的重要條件 若b≠0,則a//b的重要條件是存在唯一實數λ,使a=λb。 a//b的重要條件是 xy'-x'y=0。 零向量0平行於任何向量。 [編輯本段]向量垂直的充要條件 a⊥b的充要條件是 a•b=0。 a⊥b的充要條件是 xx'+yy'=0。 零向量0垂直於任何向量.
這些就是你要的
④ 數學必修四第二章平面向量知識點
1、平面向量基本概念
有向線段:具有方向的線段叫做有向線段,以A為起點,B為終點的有向線段記作或AB;
向量的模:有向線段AB的長度叫做向量的模,記作|AB|;
零向量:長度等於0的向量叫做零向量,記作或0。(注意粗體格式,實數「0」和向量「0」是有區別的,書寫時要在實數「0」上加箭頭,以免混淆);
相等向量:長度相等且方向相同的向量叫做相等向量;
平行向量(共線向量):兩個方向相同或相反的非零向量叫做平行向量或共線向量,零向量與任意向量平行,即0//a;
單位向量:模等於1個單位長度的向量叫做單位向量,通常用e表示,平行於坐標軸的單位向量習慣上分別用i、j表示。
相反向量:與a長度相等,方向相反的向量,叫做a的'相反向量,—(—a)=a,零向量的相反向量仍然是零向量。
2、平面向量運算
加法與減法的代數運算:
(1)若a=(x1,y1),b=(x2,y2)則a b=(x1+x2,y1+y2)。
向量加法與減法的幾何表示:平行四邊形法則、三角形法則。
向量加法有如下規律:+ = +(交換律);+(+c)=(+)+c(結合律);
實數與向量的積:實數與向量的積是一個向量。
(1)| |=| |·| |;
(2)當a>0時,與a的方向相同;當a<0時,與a的方向相反;當a=0時,a=0。
兩個向量共線的充要條件:
(1)向量b與非零向量共線的充要條件是有且僅有一個實數,使得b= 。
(2)若=(),b=()則‖b 。
3、平面向量基本定理
若e1、e2是同一平面內的兩個不共線向量,那麼對於這一平面內的任一向量,有且只有一對實數,,使得= e1+ e2。
4、平面向量有關推論
三角形ABC內一點O,OA·OB=OB·OC=OC·OA,則點O是三角形的垂心。
若O是三角形ABC的外心,點M滿足OA+OB+OC=OM,則M是三角形ABC的垂心。
若O和三角形ABC共面,且滿足OA+OB+OC=0,則O是三角形ABC的重心。
三點共線:三點A,B,C共線推出OA=μOB+aOC(μ+a=1)
⑤ 高二數學空間向量的公式及定理
科學是人類的共同財富,而真正科學家的任務就是豐富這個全人類都能受益的知識寶庫。下面是我為大家整理的高二數學空間向量的公式及定理,希望大家喜歡。
空間向量
一、空間向量知識點
1.空間向量的概念:
定義:空間向量的定義和平面向量一樣,那些具有大小和方向的量叫做向量,並且仍用有向線段表示空間向量,且方向相同、長度相等的有向線段表示相同向量或相等的向量。
具有大小和方向的量叫做向量註:
⑴空間的一個平移就是一個向量
⑵向量一般用有向線段表示同向等長的有向線段表示同一或相等的向量
⑶空間的兩個向量可用同一平面內的兩條有向線段來表示
ⅰ定理:如果三個向量 不共面,那麼對於空間任一向量 ,存在唯一的有序實數組x、y、z,使 。且把 叫做空間的一個基底, 都叫基向量。
ⅱ正交基底:如果空間一個基底的三個基向量是兩兩相互垂直,那麼這個基底叫正交基底。
ⅲ 單位正交基底:當一個正交基底的三個基向量都是單位向量時,稱為單位正交基底,通常用 表示。
ⅳ 空間四點共面:設O、A、B、C是不共面的四點,則對空間中任意一點P,都存在唯一的有序實數組x、y、z,使 。
2.空間向量的運算
二、復習點睛:
1、立體幾何初步是側重於定性研究,而空間向量則側重於定量研究。空間向量的引入,為解決三維空間中圖形的位置關系與度量問題提供了一個十分有效的工具。
2、根據空間向量的基本定理,出現了用基向量解決立體幾何問題的向量法,建立空間直角坐標系,形成了用空間坐標研究空間圖形的坐標法,它們的解答通常遵循「三步」:一化向量問題,二進行向量運算,三回到圖形問題。其實質是數形結合思想與等價轉化思想的運用。
3、實數的運算與向量的運算既有聯系又有區別,向量的數量積滿足交換律和分配律,但不滿足結合律,因此在進行數量積相關運算的過程中不可以隨意組合。值得一提的是:完全平方公式和平方差公式仍然適用,數量積的運算在許多方面和多項式的運算如出一轍,尤其去括弧就顯得更為突出,下面兩個公式較為常用,請務必記住並學會應用: 。
2、空間向量的坐標表示:
(1)空間直角坐標系:
①空間直角坐標系O-xyz,在空間選定一點O和一個單位正交基底 ,以點O為原點,分別以 的方向為正方向建立三條數軸:x軸、y軸、z軸,它們都叫做坐標軸,點O叫做原點,向量 叫做坐標向量,通過每兩個坐標軸的平面叫做坐標平面,分別稱為xOy平面,yOz平面,zOx平面。
②右手直角坐標系:右手握住z軸,當右手的四指從正向x軸以90°角度轉向正向y軸時,大拇指的指向就是z軸的正向;
③構成元素:點(原點)、線(x、y、z軸)、面(xOy平面,yOz平面,zOx平面);
④空間直角坐標系的畫法:作空間直角坐標系O-xyz時,一般使∠xOy=135°(或45°), ∠yOz=90°,z軸垂直於y軸,z軸、y軸的單位長度相同,x軸上的單位長度為y軸(或z軸)的一半;
(2)空間向量的坐標表示:
①已知空間直角坐標系和向量 ,且設 為坐標向量(如圖),
由空間向量基本定理知,存在唯一的有序實數組 叫做向量在此直角坐標系中的坐標,記作 。
②在空間直角坐標系O-xyz中,對於空間任一點A,對應一個向量 ,若 ,則有序數組(x,y,z)叫做點在此空間直角坐標系中的'坐標,記為A(x,y,z),其中x叫做點A的橫坐標, y叫做點A的縱坐標,z叫做點A的豎坐標,寫點的坐標時,三個坐標間的順序不能變。
③空間任一點的坐標的確定:過P分別作三個與坐標平面平行的平面(或垂面),分別交坐標軸於A、B、C三點,│x│=│OA│,│y│=│OB│,│z│=│OC│,當 與 的方向相同時,x>0,當 與 的方向相反時,x<0,同理可確y、z(如圖)。
④規定:一切空間向量的起點都是坐標系原點,於是,空間任意一個向量與它的終點坐標一一對應。
⑤一個向量在直角坐標系中的坐標等於表示這個向量的有向線段的終點的坐標減去起點的坐標。
(3)空間向量的直角坐標運算:
⑦空間兩點間距離: ;
⑧空間線段 的中點M(x,y,z)的坐標: ;
⑨球面方程:
4、過定點O,作三條互相垂直的數軸,它們都以O為原點且一般具有相同的長度單位。這三條軸分別叫做z軸(橫軸)、y軸(縱軸)、z軸(豎軸);統稱坐標軸。通常把x軸和y軸配置在水平面上,而z軸則是鉛垂線;它們的正方向要符合右手規則,即以這樣的三條坐標軸就組成了一個空間直角坐標系,點O叫做坐標原點。
5、空間直角坐標系中的特殊點:
(1)點(原點)的坐標:(0,0,0);
(2)線(坐標軸)上的點的坐標:x軸上的坐標為(x,0,0),y軸上的坐標為(0,y,0),z軸上的坐標為(0,0,z);
(3)面(xOy平面、yOz平面、zOx平面)內的點的坐標:平面上的坐標為(x,y,0)、平面上的坐標為(0,y,z)、平面上的坐標為(x,0,z)
6、要使向量 與z軸垂直,只要z=0即可。事實上,要使向量 與哪一個坐標軸垂直,只要向量 的相應坐標為0即可。
7、空間直角坐標系中,方程x=0表示yOz平面、方程y=0表示zOx平面、方程z=0表示xOy平面,方程x=a表示平行於平面yOz的平面、方程y=b表示平行於平面zOx的平面、方程z=c表示平行於平面xOy平面;
8、只要將 和 代入,即可證明空間向量的運演算法則與平面向量一樣;
9、由空間向量基本定理可知,空間任一向量均可以由空間不共面的三個向量生成.任意不共面的三個向量 都可以構成空間的一個基底,此定理是空間向量分解的基礎。
⑥ 2017年高考數學平面向量必考知識點
平面向量是在二維平面內既有方向又有大小的量,物理學中也稱作矢量,與之相對的是只有大小、沒有方向的數量。以下是我為您整理的關於2017年高考數學平面向量必考知識點的相關資料,希望對您有所幫助。
高考數學必考知識點平面向量概念:
(1)向量:既有大小又有方向的量。向量不能比較大小,但向量的模可以比較大小。
(2)零向量:長度為0的向量,記為0,其方向是任意的,0與任意向量平行。
(3)單位向量:模為1個單位長度的向量
(4)平行向量:方向相同或相反的非零向量
(5)相等向量:長度相等且方向相同的向量
高考數學必考知識點平面向量數量積解析
1、平面向量數量積:已知兩個非零向量a、b,那麼|a||b|cosθ(θ是a與b的夾角)叫做a與b的數量積或內積,記作a·b。零向量與任意向量的數量積為0。數量積a·b的幾何意義是:a的長度|a|與b在a的方向上的投影|b|cosθ的乘積。
兩個向量的數量積等於它們對應坐標的乘積的和。即:若a=(x1,y1),b=(x2,y2),則a·b=x1·x2+y1·y2
2、平面向量數量積具有以下性質:
1、a·a=|a|2≥0
2、a·b=b·a
3、k(a·b)=(ka)b=a(kb)
4、a·(b+c)=a·b+a·c
5、a·b=0<=>a⊥b
6、a=kb<=>a//b
7、e1·e2=|e1||e2|cosθ
高考數學必考知識點平面向量加法解析
已知向量AB、BC,再作向量AC,則向量AC叫做AB、BC的和,記作AB+BC,即有:AB+BC=AC。
註:向量的加法滿足所有的加法運算定律,如:交換律、結合律。
高考數學必考知識點平面向量減法解析
1、AB-AC=CB,這種計演算法則叫做向量減法的三角形法則,簡記為:共起點、指被減。
-(-a)=a;a+(-a)=(-a)+a=0;a-b=a+(-b)。
平面向量公式匯總
1、定比分點
定比分點公式(向量P1P=λ?向量PP2)
設P1、P2是直線上的兩點,P是l上不同於P1、P2的任意一點。則存在一個實數 λ,使 向量P1P=λ?向量PP2,λ叫做點P分有向線段P1P2所成的比。
若P1(x1,y1),P2(x2,y2),P(x,y),則有
OP=(OP1+λOP2)(1+λ);(定比分點向量公式)
x=(x1+λx2)/(1+λ),
y=(y1+λy2)/(1+λ)。(定比分點坐標公式)
我們把上面的式子叫做有向線段P1P2的定比分點公式
2、三點共線定理
若OC=λOA +μOB ,且λ+μ=1 ,則A、B、C三點共線
三角形重心判斷式
在△ABC中,若GA +GB +GC=O,則G為△ABC的重心
[編輯本段]向量共線的重要條件
若b≠0,則a//b的重要條件是存在唯一實數λ,使a=λb。
a//b的重要條件是 xy'-x'y=0。
零向量0平行於任何向量。
[編輯本段]向量垂直的充要條件
a⊥b的充要條件是 a?b=0。
a⊥b的充要條件是 xx'+yy'=0。
零向量0垂直於任何向量.
設a=(x,y),b=(x',y')。
3、向量的加法
向量的加法滿足平行四邊形法則和三角形法則。
AB+BC=AC。
a+b=(x+x',y+y')。
a+0=0+a=a。
向量加法的運算律:
交換律:a+b=b+a;
結合律:(a+b)+c=a+(b+c)。
4、向量的減法
如果a、b是互為相反的向量,那麼a=-b,b=-a,a+b=0. 0的反向量為0
AB-AC=CB. 即“共同起點,指向被減”
a=(x,y) b=(x',y') 則 a-b=(x-x',y-y').
5、數乘向量
實數λ和向量a的乘積是一個向量,記作λa,且∣λa∣=∣λ∣?∣a∣。
當λ>0時,λa與a同方向;
當λ<0時,λa與a反方向;
當λ=0時,λa=0,方向任意。
當a=0時,對於任意實數λ,都有λa=0。
註:按定義知,如果λa=0,那麼λ=0或a=0。
實數λ叫做向量a的系數,乘數向量λa的幾何意義就是將表示向量a的有向線段伸長或壓縮。
當∣λ∣>1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上伸長為原來的∣λ∣倍;
當∣λ∣<1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上縮短為原來的∣λ∣倍。
數與向量的乘法滿足下面的運算律
結合律:(λa)?b=λ(a?b)=(a?λb)。
向量對於數的分配律(第一分配律):(λ+μ)a=λa+μa.
數對於向量的分配律(第二分配律):λ(a+b)=λa+λb.
數乘向量的消去律:① 如果實數λ≠0且λa=λb,那麼a=b。② 如果a≠0且λa=μa,那麼λ=μ。
6、向量的的數量積
定義:已知兩個非零向量a,b。作OA=a,OB=b,則角AOB稱作向量a和向量b的夾角,記作〈a,b〉並規定0≤〈a,b〉≤π
定義:兩個向量的數量積(內積、點積)是一個數量,記作a?b。若a、b不共線,則a?b=|a|?|b|?cos〈a,b〉;若a、b共線,則a?b=+-∣a∣∣b∣。
向量的數量積的坐標表示:a?b=x?x'+y?y'。
向量的數量積的運算律
a?b=b?a(交換律);
(λa)?b=λ(a?b)(關於數乘法的結合律);
(a+b)?c=a?c+b?c(分配律);
向量的數量積的性質
a?a=|a|的平方。
a⊥b 〈=〉a?b=0。
|a?b|≤|a|?|b|。
7、向量的數量積與實數運算的主要不同點
(1)向量的數量積不滿足結合律,即:(a?b)?c≠a?(b?c);例如:(a?b)^2≠a^2?b^2。
(2)向量的數量積不滿足消去律,即:由 a?b=a?c (a≠0),推不出 b=c。
(3)|a?b|≠|a|?|b|
(4)由 |a|=|b| ,推不出 a=b或a=-b。
8、向量的向量積
定義:兩個向量a和b的向量積(外積、叉積)是一個向量,記作a×b。若a、b不共線,則a×b的模是:∣a×b∣=|a|?|b|?sin〈a,b〉;a×b的方向是:垂直於a和b,且a、b和a×b按這個次序構成右手系。若a、b共線,則a×b=0。
(1)向量的向量積性質:
∣a×b∣是以a和b為邊的平行四邊形面積。
a×a=0。
a‖b〈=〉a×b=0。
(2)向量的向量積運算律
a×b=-b×a;
(λa)×b=λ(a×b)=a×(λb);
(a+b)×c=a×c+b×c.
註:向量沒有除法,“向量AB/向量CD”是沒有意義的。
(3)向量的三角形不等式
∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣;
① 當且僅當a、b反向時,左邊取等號;
② 當且僅當a、b同向時,右邊取等號。
∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣。
① 當且僅當a、b同向時,左邊取等號;