❶ 初二數學上冊知識點總結歸納
因為有知識,我們上了太空,我們延長了人均壽命。更因為有知識,我們超出生死,不再疑惑。下面給大家分享一些關於初二數學上冊知識點 總結 歸納,希望對大家有所幫助。
初二數學上冊知識點總結:二元一次方程組
1、認識二元一次方程組
①含有兩個未知數,並且所含有未知數的項的次數都是1的方程叫做二元一次方程
②共含有兩個未知數的兩個一次方程所組成的一組方程,叫做二元一次方程組
③二元一次方程組中各個方程的公共解,叫做這個二元一次方程組的解
2、求解二元一次方程組
①將其中一個方程中的某個未知數用含有另一個未知數的代數式表示出來,並代入另個方程中,從而消去一個未知數,化二元一次方程組為一元一次方程,這種解方程組的 方法 稱為代入消元法,簡稱代入法
②通過兩式子加減,消去其中一個未知數,這種解二元一次方程組的方法叫做加減消元法,簡稱加減法
3、應用二元一次方程組
①雞兔同籠
4、應用二元一次方程組
①增減收支
5、應用二元一次方程組
①里程碑上的數
6、二元一次方程組與一次函數
①一般地,以一個二元一次方程的解為坐標的點組成的圖像與相應的一次函數的圖像相同,是一條直線
②一般地,從圖形的角度看,確定兩條直線相交點的坐標,相當於求相應的二元一次方程組的解,解一個二元一次方程組相當於確定相應兩條直線交點的坐標
7、用二元一次方程組確定一次函數表達式
①先設出函數表達式,再根據所給條件確定表達式中未知的系數,從而得到函數表達式的方法,叫做待定系數法。
8、三元一次方程組
①在一個方程組中,各個式子都含有三個未知數,並且所含有未知數的項的次數都是1,這樣的方程叫做三元一次方程
②像這樣,共含有三個未知數的三個一次方程所組成的一組方程,叫做三元一次方程組
③三元一次方程組中各個方程的公共解,叫做這個三元一次方程組的解.
初二數學上冊知識點總結:數據的分析
1、平均數
①一般地,對於n個數x1x2...xn,我們把(x1+x2+···+xn)叫做這n個數的算數平均數,簡稱平均數記為。
②在實際問題中,一組數據里的各個數據的「重要程度」未必相同,因而在計算,這組數據的平均數時,往往給每個數據一個權,叫做加權平均數
2、中位數與眾數
①中位數:一般地,n個數據按大小順序排列,處於最中間位置的一個數據(或最中間兩個數據的平均數)叫做這組數據的中位數
②一組數據中出現次數最多的那個數據叫做這組數據的眾數
③平均數、中位數和眾數都是描述數據集中趨勢的統計量
④計算平均數時,所有數據都參加運算,它能充分地利用數據所提供的信息,因此在現實生活中較為常用,但他容易受極端值影響。
⑤中位數的優點是計算簡單,受極端值影響較小,但不能充分利用所有數據的信息
⑥各個數據重復次數大致相等時,眾數往往沒有特別意義
3、從統計圖分析數據的集中趨勢
4、數據的離散程度
①實際生活中,除了關心數據的集中趨勢外,人們還關注數據的離散程度,即它們相對於集中趨勢的偏離情況。一組數據中最大數據與最小數據的差,(稱為極差),就是刻畫數據離散程度的一個統計量
②數學上,數據的離散程度還可以用方差或標准差刻畫
③方差是各個數據與平均數差的平方的平均數
④其中是x1 ,x2.....xn平均數,s2是方差,而標准差就是方差的算術平方根
⑤一般而言,一組數據的極差、方差或標准差越小,這組數據就越穩定。
初二數學上冊知識點總結:平行線的證明
1、為什麼要證明
①實驗、觀察、歸納得到的結論可能正確,也可能不正確,因此,要判斷一個數學結論是否正確,僅僅依靠實驗、觀察、歸納是不夠的,必須進行有根有據的證明
2、定義與命題
①證明時,為了交流方便,必須對某些名稱和術語形成共同的認識,為此,就要對名稱和術語的含義加以描述,做出明確的規定,也就是給它們的定義
②判斷一件事情的 句子 ,叫做命題
③一般地,每個命題都由條件和結論兩部分組成。條件是已知的選項,結論是已知選項推出的事項。命題通常可以寫成「如果....那麼.....」的形式,其中「如果」引出的部分是條件,「那麼」引出的部分是結論
④正確的命題稱為真命題,不正確的命題稱為假命題
⑤要說明一個命題是假命題,常常可以舉出一個例子,使它具備命題的條件,而不具有命題的結論,這種例子稱為反例
⑥歐幾里得在編寫《原本》時,挑選了一部分數學名詞和一部分公認的真命題作為證實其他命題的出發點和依據。其中數學名詞稱為原名,公認的真命題稱為公理,除了公理外,其他命題的真假都需要通過演繹推理的方法進行判斷
⑦演繹推理的過程稱為證明,經過證明的真命題稱為定理,每個定理都只能用公理、定義和已經證明為真的命題來證明
a. 本套教科書選用九條基本事實作為證明的出發點和依據,其中八條是:兩點確定一條直線
b. 兩點之間線段最短
c. 同一平面內,過一點有且只有一條直線與已知直線垂直
d. 兩條直線被第三條直線所截,如果同位角相等,那麼這兩條直線平行(簡述為:同位角相等,兩直線平行)
e. 過直線外一點有且只有一條直線與這條直線平行
f. 兩邊及其夾角分別相等的兩個三角形全等
g. 兩角及其夾邊分別相等的兩個三角形全等
h. 三邊分別相等的兩個三角形全等
⑧此外,數與式的運算律和運演算法則、等式的有關性質,以及反映大小關系的有關性質都可以作為證明的依據
⑨定理:同角(等角)的補角相等
同角(等角)的餘角相等
三角形的任意兩邊之和大於第三邊
對頂角相等
3、平行線的判定
①定理:兩條直線被第三條直線所截,如果內錯角相等,那麼這兩條直線平行,簡述為:內錯角相等,兩直線平行
②定理:兩條直線被第三條直線所截,如果同旁內角互補,那麼這兩條直線平行,簡述為:同旁內角互補,兩直線平行。
4、平行線的性質
①定理:兩條平行直線被第三條直線所截,同位角相等。簡述為:兩直線平行,同位角相等
②定理:兩條平行直線被第三條直線所截,內錯角相等。簡述為:兩直線平行,內錯角相等
③定理:兩條平行直線被第三條直線所截,同旁內角互補。簡述為:兩直線平行,同旁內角互補
④定理:平行於同一條直線的兩條直線平行
5、三角形內角和定理
①三角形內角和定理:三角形的內角和等於180°
②定理:三角形的一個外角等於和它不相鄰的兩個內角的和
定理:三角形的一個外角大於任何一個和它不相鄰的內角
③我們通過三角形的內角和定理直接推導出兩個新定理。像這樣,由一個基本事實或定理直接推出的定理,叫做這個基本事實或定理的推論,推論可以當定理使用。
初二數學上冊知識點總結歸納相關 文章 :
★ 初二數學上冊知識點總結
★ 人教版八年級數學上冊知識點總結
★ 人教版八年級數學上冊知識點總結
★ 初二上冊數學知識點總結
★ 八年級上冊數學的知識點歸納
★ 初二上冊數學知識點總結與學習方法
★ 八年級上冊數學知識點總結
★ 八年級上冊數學知識點總結與八年級數學學習技巧
★ 初二數學上冊知識點的測試題匯總
★ 初二數學上冊三角形及四邊形重點知識歸納
❷ 八年級上冊數學知識點歸納總結
八年級必備數學知識
約分與通分:
1.約分:把一個分式的分子和分母的公因式約去,這種變形稱為分式的約分;
分式約分:將分子、分母中的公因式約去,叫做分式的約分。分式約分的根據是分式的基本性質,即分式的分子、分母都除以同一個不等於零的整式,分式的值不變。 約分的方法和步驟包括:
(1)當分子、分母是單項式時,公因式是相同因式的最低次冪與系數的最大公約數的積;
(2)當分子、分母是多項式時,應先將多項式分解因式,約去公因式。
2.通分:根據分式的基本性質,異分母的分式可以化為同分母的分式,這一過程稱為分式的通。 分式通分:將幾個異分母的分式化成同分母的分式,這種變形叫分式的通分。
(1)當幾個分式的'分母是單項式時,各分式的最簡公分母是系數的最小公倍數、相同字母的最高次冪的所有不同字母的積;
(2)如果各分母都是多項式,應先把各個分母按某一字母降冪或升冪排列,再分解因式,找出最簡公分母;
(3)通分後的各分式的分母相同,通分後的各分式分別與原來的分式相等;
(4)通分和約分是兩種截然不同的變形.約分是針對一個分式而言,通分是針對多個分式而言;約分是將一個分式化簡,而通分是將一個分式化繁。 注意:
(1)分式的約分和通分都是依據分式的基本性質;
(2)分式的變號法則:分式的分子、分母和分式本身的符號,改變其中的任何兩個,分式的值不變。
(3)約分時,分子與分母不是乘積形式,不能約分.
八年級數學知識重點
分式的運算: 1.分式的加減法法則:
(1)同分母的分式相加減,分母不變,把分子相加;
(2)異分母的分式相加減,先通分,化為同分母的分式,然後再按同分母分式的加減法則進行計算。
2.分式的乘除法法則:兩個分式相乘,把分子相乘的積作為積的分子,把分母相乘的積作為積的分母;兩個分式相除,把除式的分子和分母顛倒位置後再與被除式相乘。
4.分式的混合運算順序,先算乘方,再算乘除,最後算加減,有括弧先算括弧裡面的。
5.對於分式化簡求值的題型要注意解題格式,要先化簡,再代人字母的值求值。
常見考法
分式的運算通常是綜合考查分式的加減、乘除、約分及分解因式等知識,是中考的重點。特別是化簡求值已經成近兩年中考的熱點。題型既有選擇、填空題,也有計算題。
誤區提醒
(1)互為相反數的因式約分時漏掉負號;
(2)通分時漏乘而出錯;
(3)把通分與去分母混淆,本是通分,卻把分式中的分母丟掉;
(4)計算順序搞亂而出錯。
八年級數學知識
列分式方程解應用題的步驟:
列分式方程解應用題的一般步驟為:
(1)設未知數:若把題目中要求的未知數直接用字母表示出來,則稱為直接設未知數,否則稱間接設未知數;
(2)列代數式:用含未知數的代數式把題目中有關的量表示出來,必要時作出示意圖或列成表格,幫助理順各個量之間的關系;
(3)列出方程:根據題目中明顯的或者隱含的相等關系列出方程;
(4)解方程並檢驗;
(5)寫出答案。
二.列分式方程解應用題的注意事項:
由於列方程解應用題是對實際問題的解答,所以檢驗時除從數學方面進行檢驗外,還應考慮題目中的實際情況,凡不符合實際的,應捨去。
常見考法
列分式方程解應用題是中考命題的熱點,命題廣泛聯系實際,題型新穎開放,但只要把握列分式方程解應用題的幾個步驟,解決起來仍不困難。
誤區提醒
(1)單位不統一;
(2)解完分式方程後忽略「雙檢」。
❸ 初二數學上冊知識點總結
初二數學上冊知識點總結
數學是研究數量、結構、變化、空間以及信息等概念的一門學科,從某種角度看屬於形式科學的一種。以下是我整理的關於初二數學上冊知識點總結,希望大家認真閱讀!
第十一章 三角形
一、知識結構圖
邊
與三角形有關的線段 高
中線
角平分線
三角形的內角和 多邊形的內角和
三角形的外角和 多邊形的外角和
二、知識定義
三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
三邊關系:三角形任意兩邊的和大於第三邊,任意兩邊的差小於第三邊。
高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。
中線:在三角形中,連接一個頂點和它的對邊中點的線段叫做三角形的中線。
角平分線:三角形的一個內角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。
三角形的穩定性:三角形的形狀是固定的,三角形的這個性質叫三角形的穩定性。
多邊形:在平面內,由一些線段首尾順次相接組成的圖形叫做多邊形。
多邊形的內角:多邊形相鄰兩邊組成的角叫做它的內角。
多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角。
多邊形的對角線:連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線。
正多邊形:在平面內,各個角都相等,各條邊都相等的多邊形叫做正多邊形。
平面鑲嵌:用一些不重疊擺放的多邊形把平面的`一部分完全覆蓋,叫做用多邊形覆蓋平面。
三、公式與性質
三角形的內角和:三角形的內角和為180°
三角形外角的性質:
性質1:三角形的一個外角等於和它不相鄰的兩個內角的和。
性質2:三角形的一個外角大於任何一個和它不相鄰的內角。
多邊形內角和公式:n邊形的內角和等於(n-2)·180°
多邊形的角和:多邊形的外角和為360°。
多邊形對角線的條數:(1)從n邊形的一個頂點出發可以引(n-3)條對角線,把多邊形分詞(n-2)個三角形。
(2)n邊形共有條對角線。
第十二章 全等三角形
一、全等三角形
1.定義:能夠完全重合的兩個三角形叫做全等三角形。
2.全等三角形的性質
①全等三角形的對應邊相等、對應角相等。
②全等三角形的周長相等、面積相等。
③全等三角形的對應邊上的對應中線、角平分線、高線分別相等。
3.全等三角形的判定
邊邊邊:三邊對應相等的兩個三角形全等(可簡寫成「SSS」)
邊角邊:兩邊和它們的夾角對應相等兩個三角形全等(可簡寫成「SAS」)
角邊角:兩角和它們的夾邊對應相等的兩個三角形全等(可簡寫成「ASA」)
角角邊:兩角和其中一角的對邊對應相等的兩個三角形全等(可簡寫成「AAS」)
斜邊、直角邊:斜邊和一條直角邊對應相等的兩個直角三角形全等(可簡寫成「HL」)
4.證明兩個三角形全等的基本思路:
二、角的平分線:
1.(性質)角的平分線上的點到角的兩邊的距離相等
2.(判定)角的內部到角的兩邊的距離相等的點在角的平分線上
三、學習全等三角形應注意以下幾個問題:
1.要正確區分「對應邊」與「對邊」,「對應角」與「對角」的不同含義;
2.表示兩個三角形全等時,表示對應頂點的字母要寫在對應的位置上;
3.有三個角對應相等或有兩邊及其中一邊的對角對應相等的兩個三角形不一定全等;
4.時刻注意圖形中的隱含條件,如 「公共角」 、「公共邊」、「對頂角」
;❹ 初二數學上學期知識點歸納
數學是一門基礎學科,對於廣大八年級學生來說,數學水平的高低,直接影響到物理、化學等學科的學習成績,數學的重要地位由此可見。這是我整理的初二上學期數學知識點歸納,希望你能從中得到感悟!
初二數學上學期知識點歸納1-40
1 全等三角形的對應邊、對應角相等 ¬
2邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等 ¬
3 角邊角公理( ASA)有兩角和它們的夾邊對應相等的兩個三角形全等 ¬
4 推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等 ¬
5 邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等 ¬
6 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等 ¬
7 定理1 在角的平分線上的點到這個角的兩邊的距離相等 ¬
8 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上 ¬
9 角的平分線是到角的兩邊距離相等的所有點的集合 ¬
10 等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角) ¬
21 推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊 ¬
22 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合 ¬
23 推論3 等邊三角形的各角都相等,並且每一個角都等於60° ¬
24 等腰三角形的判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊) ¬
25 推論1 三個角都相等的三角形是等邊三角形 ¬
26 推論 2 有一個角等於60°的等腰三角形是等邊三角形 ¬
27 在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半 ¬
28 直角三角形斜邊上的中線等於斜邊上的一半 ¬
29 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等 ¬
30 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上 ¬
31 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合 ¬
32 定理1 關於某條直線對稱的兩個圖形是全等形 ¬
33 定理 2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線 ¬
34定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上 ¬
35逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱 ¬
36勾股定理 直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a^2+b^2=c^2 ¬
37勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a^2+b^2=c^2 ,那麼這個三角形是直角三角形 ¬
38定理 四邊形的內角和等於360° ¬
39四邊形的外角和等於360° ¬
40多邊形內角和定理 n邊形的內角的和等於(n-2)×180° ¬
初二數學上學期知識點歸納41-80
41推論 任意多邊的外角和等於360° ¬
42平行四邊形性質定理1 平行四邊形的對角相等 ¬
43平行四邊形性質定理2 平行四邊形的對邊相等 ¬
44推論 夾在兩條平行線間的平行線段相等 ¬
45平行四邊形性質定理3 平行四邊形的對角線互相平分 ¬
46平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形 ¬
47平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形 ¬
48平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形 ¬
49平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形 ¬
50矩形性質定理1 矩形的四個角都是直角 ¬
51矩形性質定理2 矩形的對角線相等 ¬
52矩形判定定理1 有三個角是直角的四邊形是矩形 ¬
53矩形判定定理2 對角線相等的平行四邊形是矩形 ¬
54菱形性質定理1 菱形的四條邊都相等 ¬
55菱形性質定理2 菱形的對角線互相垂直,並且每一條對角線平分一組對角 ¬
56菱形面積=對角線乘積的一半,即S=(a×b)÷2 ¬
57菱形判定定理1 四邊都相等的四邊形是菱形 ¬
58菱形判定定理2 對角線互相垂直的平行四邊形是菱形 ¬
59正方形性質定理1 正方形的四個角都是直角,四條邊都相等 ¬
60正方形性質定理2正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角 ¬
61定理1 關於中心對稱的兩個圖形是全等的 ¬
62定理2 關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分 ¬
63逆定理 如果兩個圖形的對應點連線都經過某一點,並且被這一 ¬
點平分,那麼這兩個圖形關於這一點對稱 ¬
64等腰梯形性質定理 等腰梯形在同一底上的兩個角相等 ¬
65等腰梯形的兩條對角線相等 ¬
66等腰梯形判定定理 在同一底上的兩個角相等的梯形是等腰梯形 ¬
67對角線相等的梯形是等腰梯形 ¬
68平行線等分線段定理 如果一組平行線在一條直線上截得的線段 ¬
相等,那麼在其他直線上截得的線段也相等 ¬
69 推論1 經過梯形一腰的中點與底平行的直線,必平分另一腰 ¬
70 推論2 經過三角形一邊的中點與另一邊平行的直線,必平分第 ¬
三邊 ¬
71 三角形中位線定理 三角形的中位線平行於第三邊,並且等於它 ¬
的一半 ¬
72 梯形中位線定理 梯形的中位線平行於兩底,並且等於兩底和的 ¬
一半 L=(a+b)÷2 S=L×h ¬
73 (1)比例的基本性質 如果a:b=c:d,那麼ad=bc ¬
如果ad=bc,那麼a:b=c:d ¬
74 (2)合比性質 如果a/b=c/d,那麼(a±b)/b=(c±d)/d ¬
75 (3)等比性質 如果a/b=c/d=…=m/n(b+d+…+n≠0),那麼 ¬
(a+c+…+m)/(b+d+…+n)=a/b ¬
76 平行線分線段成比例定理 三條平行線截兩條直線,所得的對應 ¬
線段成比例 ¬
77 推論 平行於三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例 ¬
78 定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那麼這條直線平行於三角形的第三邊 ¬
79 平行於三角形的一邊,並且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例 ¬
80 定理 平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似 ¬
初二數學上學期知識點歸納81-136
81 相似三角形判定定理1 兩角對應相等,兩三角形相似(ASA) ¬
82 直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似 ¬
83 判定定理2 兩邊對應成比例且夾角相等,兩三角形相似(SAS) ¬
84 判定定理3 三邊對應成比例,兩三角形相似(SSS) ¬
85 定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三 ¬
角形的斜邊和一條直角邊對應成比例,那麼這兩個直角三角形相似 ¬
86 性質定理1 相似三角形對應高的比,對應中線的比與對應角平 ¬
分線的比都等於相似比 ¬
87 性質定理2 相似三角形周長的比等於相似比 ¬
88 性質定理3 相似三角形面積的比等於相似比的平方 ¬
89 任意銳角的正弦值等於它的餘角的餘弦值,任意銳角的餘弦值等 ¬
於它的餘角的正弦值 ¬
90任意銳角的正切值等於它的餘角的餘切值,任意銳角的餘切值等 ¬
於它的餘角的正切值 ¬
91圓是定點的距離等於定長的點的集合 ¬
92圓的內部可以看作是圓心的距離小於半徑的點的集合 ¬
93圓的外部可以看作是圓心的距離大於半徑的點的集合 ¬
94同圓或等圓的半徑相等 ¬
95到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半 ¬
徑的圓 ¬
96和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直 ¬
平分線 ¬
97到已知角的兩邊距離相等的點的軌跡,是這個角的平分線 ¬
98到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距 ¬
離相等的一條直線 ¬
99定理 不在同一直線上的三點確定一個圓. ¬
100垂徑定理 垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧 ¬
101推論1 ①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧 ¬
②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧 ¬
③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧 ¬
102推論2 圓的兩條平行弦所夾的弧相等 ¬
103圓是以圓心為對稱中心的中心對稱圖形 ¬
104定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦 ¬
相等,所對的弦的弦心距相等 ¬
105推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩 ¬
弦的弦心距中有一組量相等那麼它們所對應的其餘各組量都相等 ¬
106定理 一條弧所對的圓周角等於它所對的圓心角的一半 ¬
107推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等 ¬
108推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所 ¬
對的弦是直徑 ¬
109推論3 如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形 ¬
110定理 圓的內接四邊形的對角互補,並且任何一個外角都等於它 ¬
的內對角 ¬
111①直線L和⊙O相交 d
②直線L和⊙O相切 d=r ¬
③直線L和⊙O相離 d>r ¬
112切線的判定定理 經過半徑的外端並且垂直於這條半徑的直線是圓的切線 ¬
113切線的性質定理 圓的切線垂直於經過切點的半徑 ¬
114推論1 經過圓心且垂直於切線的直線必經過切點 ¬
115推論2 經過切點且垂直於切線的直線必經過圓心 ¬
116切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等, ¬
圓心和這一點的連線平分兩條切線的夾角 ¬
117圓的外切四邊形的兩組對邊的和相等 ¬
118弦切角定理 弦切角等於它所夾的弧對的圓周角 ¬
119推論 如果兩個弦切角所夾的弧相等,那麼這兩個弦切角也相等 ¬
120相交弦定理 圓內的兩條相交弦,被交點分成的兩條線段長的積 ¬
相等 ¬
121推論 如果弦與直徑垂直相交,那麼弦的一半是它分直徑所成的 ¬
兩條線段的比例中項 ¬
122切割線定理 從圓外一點引圓的切線和割線,切線長是這點到割 ¬
線與圓交點的兩條線段長的比例中項 ¬
123推論 從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等 ¬
124如果兩個圓相切,那麼切點一定在連心線上 ¬
125①兩圓外離 d>R+r ②兩圓外切 d=R+r ¬
③兩圓相交 R-r<d r) ¬</d
④兩圓內切 d=R-r(R>r) ⑤兩圓內含d r) ¬
126定理 相交兩圓的連心線垂直平分兩圓的公共弦 ¬
127定理 把圓分成n(n≥3): ¬
⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形 ¬
⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形 ¬
128定理 任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓 ¬
129正n邊形的每個內角都等於(n-2)×180°/n ¬
130定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形 ¬
131正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長 ¬
132正三角形面積√3a/4 a表示邊長 ¬
133如果在一個頂點周圍有k個正n邊形的角,由於這些角的和應為 ¬
360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4 ¬
134弧長計算公式:L=n兀R/180 ¬
135扇形面積公式:S扇形=n兀R^2/360=LR/2 ¬
136內公切線長= d-(R-r) 外公切線長= d-(R+r)¬
❺ 初二數學上冊書知識點總結
學習八年級數學知識點的時間不多。學習會使你獲得許多你成長所必需的“能源”,以下是我為大家整理的初二數學上冊書知識點總結,希望你們喜歡。
初二數學上冊書知識點總結1-40
1 全等三角形的對應邊、對應角相等 ¬
2邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等 ¬
3 角邊角公理( ASA)有兩角和它們的夾邊對應相等的兩個三角形全等 ¬
4 推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等 ¬
5 邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等 ¬
6 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等 ¬
7 定理1 在角的平分線上的點到這個角的兩邊的距離相等 ¬
8 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上 ¬
9 角的平分線是到角的兩邊距離相等的所有點的集合 ¬
10 等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角) ¬
21 推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊 ¬
22 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合 ¬
23 推論3 等邊三角形的各角都相等,並且每一個角都等於60° ¬
24 等腰三角形的判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊) ¬
25 推論1 三個角都相等的三角形是等邊三角形 ¬
26 推論 2 有一個角等於60°的等腰三角形是等邊三角形 ¬
27 在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半 ¬
28 直角三角形斜邊上的中線等於斜邊上的一半 ¬
29 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等 ¬
30 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上 ¬
31 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合 ¬
32 定理1 關於某條直線對稱的兩個圖形是全等形 ¬
33 定理 2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線 ¬
34定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上 ¬
35逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱 ¬
36勾股定理 直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a^2+b^2=c^2 ¬
37勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a^2+b^2=c^2 ,那麼這個三角形是直角三角形 ¬
38定理 四邊形的內角和等於360° ¬
39四邊形的外角和等於360° ¬
40多邊形內角和定理 n邊形的內角的和等於(n-2)×180° ¬
初二數學上冊書知識點總結41-80
41推論 任意多邊的外角和等於360° ¬
42平行四邊形性質定理1 平行四邊形的對角相等 ¬
43平行四邊形性質定理2 平行四邊形的對邊相等 ¬
44推論 夾在兩條平行線間的平行線段相等 ¬
45平行四邊形性質定理3 平行四邊形的對角線互相平分 ¬
46平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形 ¬
47平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形 ¬
48平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形 ¬
49平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形 ¬
50矩形性質定理1 矩形的四個角都是直角 ¬
51矩形性質定理2 矩形的對角線相等 ¬
52矩形判定定理1 有三個角是直角的四邊形是矩形 ¬
53矩形判定定理2 對角線相等的平行四邊形是矩形 ¬
54菱形性質定理1 菱形的四條邊都相等 ¬
55菱形性質定理2 菱形的對角線互相垂直,並且每一條對角線平分一組對角 ¬
56菱形面積=對角線乘積的一半,即S=(a×b)÷2 ¬
57菱形判定定理1 四邊都相等的四邊形是菱形 ¬
58菱形判定定理2 對角線互相垂直的平行四邊形是菱形 ¬
59正方形性質定理1 正方形的四個角都是直角,四條邊都相等 ¬
60正方形性質定理2正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角 ¬
61定理1 關於中心對稱的兩個圖形是全等的 ¬
62定理2 關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分 ¬
63逆定理 如果兩個圖形的對應點連線都經過某一點,並且被這一 ¬
點平分,那麼這兩個圖形關於這一點對稱 ¬
64等腰梯形性質定理 等腰梯形在同一底上的兩個角相等 ¬
65等腰梯形的兩條對角線相等 ¬
66等腰梯形判定定理 在同一底上的兩個角相等的梯形是等腰梯形 ¬
67對角線相等的梯形是等腰梯形 ¬
68平行線等分線段定理 如果一組平行線在一條直線上截得的線段 ¬
相等,那麼在其他直線上截得的線段也相等 ¬
69 推論1 經過梯形一腰的中點與底平行的直線,必平分另一腰 ¬
70 推論2 經過三角形一邊的中點與另一邊平行的直線,必平分第 ¬
三邊 ¬
71 三角形中位線定理 三角形的中位線平行於第三邊,並且等於它 ¬
的一半 ¬
72 梯形中位線定理 梯形的中位線平行於兩底,並且等於兩底和的 ¬
一半 L=(a+b)÷2 S=L×h ¬
73 (1)比例的基本性質 如果a:b=c:d,那麼ad=bc ¬
如果ad=bc,那麼a:b=c:d ¬
74 (2)合比性質 如果a/b=c/d,那麼(a±b)/b=(c±d)/d ¬
75 (3)等比性質 如果a/b=c/d=…=m/n(b+d+…+n≠0),那麼 ¬
(a+c+…+m)/(b+d+…+n)=a/b ¬
76 平行線分線段成比例定理 三條平行線截兩條直線,所得的對應 ¬
線段成比例 ¬
77 推論 平行於三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例 ¬
78 定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那麼這條直線平行於三角形的第三邊 ¬
79 平行於三角形的一邊,並且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例 ¬
80 定理 平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似 ¬
初二數學上冊書知識點總結81-136
81 相似三角形判定定理1 兩角對應相等,兩三角形相似(ASA) ¬
82 直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似 ¬
83 判定定理2 兩邊對應成比例且夾角相等,兩三角形相似(SAS) ¬
84 判定定理3 三邊對應成比例,兩三角形相似(SSS) ¬
85 定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三 ¬
角形的斜邊和一條直角邊對應成比例,那麼這兩個直角三角形相似 ¬
86 性質定理1 相似三角形對應高的比,對應中線的比與對應角平 ¬
分線的比都等於相似比 ¬
87 性質定理2 相似三角形周長的比等於相似比 ¬
88 性質定理3 相似三角形面積的比等於相似比的平方 ¬
89 任意銳角的正弦值等於它的餘角的餘弦值,任意銳角的餘弦值等 ¬
於它的餘角的正弦值 ¬
90任意銳角的正切值等於它的餘角的餘切值,任意銳角的餘切值等 ¬
於它的餘角的正切值 ¬
91圓是定點的距離等於定長的點的集合 ¬
92圓的內部可以看作是圓心的距離小於半徑的點的集合 ¬
93圓的外部可以看作是圓心的距離大於半徑的點的集合 ¬
94同圓或等圓的半徑相等 ¬
95到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半 ¬
徑的圓 ¬
96和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直 ¬
平分線 ¬
97到已知角的兩邊距離相等的點的軌跡,是這個角的平分線 ¬
98到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距 ¬
離相等的一條直線 ¬
99定理 不在同一直線上的三點確定一個圓. ¬
100垂徑定理 垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧 ¬
101推論1 ①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧 ¬
②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧 ¬
③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧 ¬
102推論2 圓的兩條平行弦所夾的弧相等 ¬
103圓是以圓心為對稱中心的中心對稱圖形 ¬
104定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦 ¬
相等,所對的弦的弦心距相等 ¬
105推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩 ¬
弦的弦心距中有一組量相等那麼它們所對應的其餘各組量都相等 ¬
106定理 一條弧所對的圓周角等於它所對的圓心角的一半 ¬
107推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等 ¬
108推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所 ¬
對的弦是直徑 ¬
109推論3 如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形 ¬
110定理 圓的內接四邊形的對角互補,並且任何一個外角都等於它 ¬
的內對角 ¬
111①直線L和⊙O相交 d
②直線L和⊙O相切 d=r ¬
③直線L和⊙O相離 d>r ¬
112切線的判定定理 經過半徑的外端並且垂直於這條半徑的直線是圓的切線 ¬
113切線的性質定理 圓的切線垂直於經過切點的半徑 ¬
114推論1 經過圓心且垂直於切線的直線必經過切點 ¬
115推論2 經過切點且垂直於切線的直線必經過圓心 ¬
116切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等, ¬
圓心和這一點的連線平分兩條切線的夾角 ¬
117圓的外切四邊形的兩組對邊的和相等 ¬
118弦切角定理 弦切角等於它所夾的弧對的圓周角 ¬
119推論 如果兩個弦切角所夾的弧相等,那麼這兩個弦切角也相等 ¬
120相交弦定理 圓內的兩條相交弦,被交點分成的兩條線段長的積 ¬
相等 ¬
121推論 如果弦與直徑垂直相交,那麼弦的一半是它分直徑所成的 ¬
兩條線段的比例中項 ¬
122切割線定理 從圓外一點引圓的切線和割線,切線長是這點到割 ¬
線與圓交點的兩條線段長的比例中項 ¬
123推論 從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等 ¬
124如果兩個圓相切,那麼切點一定在連心線上 ¬
125①兩圓外離 d>R+r ②兩圓外切 d=R+r ¬
③兩圓相交 R-r<d r) ¬</d
④兩圓內切 d=R-r(R>r) ⑤兩圓內含d r) ¬
126定理 相交兩圓的連心線垂直平分兩圓的公共弦 ¬
127定理 把圓分成n(n≥3): ¬
⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形 ¬
⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形 ¬
128定理 任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓 ¬
129正n邊形的每個內角都等於(n-2)×180°/n ¬
130定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形 ¬
131正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長 ¬
132正三角形面積√3a/4 a表示邊長 ¬
133如果在一個頂點周圍有k個正n邊形的角,由於這些角的和應為 ¬
360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4 ¬
134弧長計算公式:L=n兀R/180 ¬
135扇形面積公式:S扇形=n兀R^2/360=LR/2 ¬
136內公切線長= d-(R-r) 外公切線長= d-(R+r)¬
❻ 八年級數學上冊知識點總結
失敗乃成功之母,重復是學習之母。學習,需要不斷的重復重復,重復學過的知識,加深印象,其實任何科目的 學習 方法 都是不斷重復學習。下面是我給大家整理的一些 八年級 數學的知識點,希望對大家有所幫助。
初二上學期數學知識點歸納
一、勾股定理
1、勾股定理
直角三角形兩直角邊a,b的平方和等於斜邊c的平方,即a2+b2=c2。
2、勾股定理的逆定理
如果三角形的三邊長a,b,c有這種關系,那麼這個三角形是直角三角形。
3、勾股數
滿足的三個正整數,稱為勾股數。
常見的勾股數組有:(3,4,5);(5,12,13);(8,15,17);(7,24,25);(20,21,29);(9,40,41);……(這些勾股數組的倍數仍是勾股數)。
二、證明
1、對事情作出判斷的 句子 ,就叫做命題。即:命題是判斷一件事情的句子。
2、三角形內角和定理:三角形三個內角的和等於180度。
(1)證明三角形內角和定理的思路是將原三角形中的三個角湊到一起組成一個平角。一般需要作輔助。
(2)三角形的外角與它相鄰的內角是互為補角。
3、三角形的外角與它不相鄰的內角關系
(1)三角形的一個外角等於和它不相鄰的兩個內角的和。
(2)三角形的一個外角大於任何一個和它不相鄰的內角。
4、證明一個命題是真命題的基本步驟
(1)根據題意,畫出圖形。
(2)根據條件、結論,結合圖形,寫出已知、求證。
(3)經過分析,找出由已知推出求證的途徑,寫出證明過程。在證明時需注意:①在一般情況下,分析的過程不要求寫出來。②證明中的每一步推理都要有根據。如果兩條直線都和第三條直線平行,那麼這兩條直線也相互平行。
八年級上冊數學知識點
(一)運用公式法
我們知道整式乘法與因式分解互為逆變形。如果把乘法公式反過來就是把多項式分解因式。於是有:
a2-b2=(a+b)(a-b)
a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
如果把乘法公式反過來,就可以用來把某些多項式分解因式。這種分解因式的方法叫做運用公式法。
(二)平方差公式
平方差公式
(1)式子:a2-b2=(a+b)(a-b)
(2)語言:兩個數的平方差,等於這兩個數的和與這兩個數的差的積。這個公式就是平方差公式。
(三)因式分解
1.因式分解時,各項如果有公因式應先提公因式,再進一步分解。
2.因式分解,必須進行到每一個多項式因式不能再分解為止。
(四)完全平方公式
(1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反過來,就可以得到:
a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
這就是說,兩個數的平方和,加上(或者減去)這兩個數的積的2倍,等於這兩個數的和(或者差)的平方。
把a2+2ab+b2和a2-2ab+b2這樣的式子叫完全平方式。
上面兩個公式叫完全平方公式。
(2)完全平方式的形式和特點
①項數:三項
②有兩項是兩個數的的平方和,這兩項的符號相同。
③有一項是這兩個數的積的兩倍。
(3)當多項式中有公因式時,應該先提出公因式,再用公式分解。
(4)完全平方公式中的a、b可表示單項式,也可以表示多項式。這里只要將多項式看成一個整體就可以了。
(5)分解因式,必須分解到每一個多項式因式都不能再分解為止。
初二數學知識點歸納
第一章分式
1分式及其基本性質分式的分子和分母同時乘以(或除以)一個不等於零的整式,分式的只不變
2分式的運算
(1)分式的乘除乘法法則:分式乘以分式,用分子的積作為積的分子,分母的積作為積的分母除法法則:分式除以分式,把除式的分子、分母顛倒位置後,與被除式相乘。
(2)分式的加減加減法法則:同分母分式相加減,分母不變,把分子相加減;異分母分式相加減,先通分,變為同分母的分式,再加減
3整數指數冪的加減乘除法
4分式方程及其解法
第二章反比例函數
1反比例函數的表達式、圖像、性質
圖像:雙曲線
表達式:y=k/x(k不為0)
性質:兩支的增減性相同;
2反比例函數在實際問題中的應用
八年級數學上冊知識點 總結 相關 文章 :
★ 人教版八年級數學上冊知識點總結
★ 初二數學上冊知識點總結
★ 八年級數學知識點整理歸納
★ 八年級數學上冊知識點歸納
★ 初二上冊數學知識點歸納總結
★ 初二數學上冊知識點
★ 八年級上冊數學的知識點歸納
★ 初二數學上冊知識點總結
★ 初二數學上冊知識點總結人教版
★ 初二數學知識點歸納上冊人教版
❼ 八年級上冊數學知識點總結
學習 八年級 數學知識點的來源於勤奮好學,只有好學者,才能在無邊的知識海洋里獵取到真智才學,為大家整理了八年級上冊數學知識點 總結 人教版,歡迎大家閱讀!
八年級上冊數學知識點總結人教版第11-12章
第十一章 全等三角形
知識概念
1.全等三角形:兩個三角形的形狀、大小、都一樣時,其中一個可以經過平移、旋轉、對稱等運動(或稱變換)使之與另一個重合,這兩個三角形稱為全等三角形。
2.全等三角形的性質: 全等三角形的對應角相等、對應邊相等。
3.三角形全等的判定公理及推論有:
(1)「邊角邊」簡稱「SAS」
(2)「角邊角」簡稱「ASA」
(3)「邊邊邊」簡稱「SSS」
(4)「角角邊」簡稱「AAS」
(5)斜邊和直角邊相等的兩直角三角形(HL)。
4.角平分線推論:角的內部到角的兩邊的距離相等的點在叫的平分線上。
5.證明兩三角形全等或利用它證明線段或角的相等的基本 方法 步驟:①、確定已知條件(包括隱含條件,如公共邊、公共角、對頂角、角平分線、中線、高、等腰三角形、等所隱含的邊角關系),②、回顧三角形判定,搞清我們還需要什麼,③、正確地書寫證明格式(順序和對應關系從已知推導出要證明的問題).
在學習三角形的全等時,教師應該從實際生活中的圖形出發,引出全等圖形進而引出全等三角形。通過直觀的理解和比較發現全等三角形的奧妙之處。在經歷三角形的角平分線、中線等探索中激發學生的集合思維,啟發他們的靈感,使學生體會到集合的真正魅力。
第十二章 軸對稱
知識概念
1.對稱軸:如果一個圖形沿某條直線折疊後,直線兩旁的部分能夠互相重合,那麼這個圖形叫做軸對稱圖形;這條直線叫做對稱軸。
2.性質: (1)軸對稱圖形的對稱軸,是任何一對對應點所連線段的垂直平分線。
(2)角平分線上的點到角兩邊距離相等。
(3)線段垂直平分線上的任意一點到線段兩個端點的距離相等。
(4)與一條線段兩個端點距離相等的點,在這條線段的垂直平分線上。
(5)軸對稱圖形上對應線段相等、對應角相等。
3.等腰三角形的性質:等腰三角形的兩個底角相等,(等邊對等角)
4.等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合,簡稱為「三線合一」。
5.等腰三角形的判定:等角對等邊。
6.等邊三角形角的特點:三個內角相等,等於60°,
7.等邊三角形的判定: 三個角都相等的三角形是等腰三角形。
有一個角是60°的等腰三角形是等邊三角形
有兩個角是60°的三角形是等邊三角形。
8.直角三角形中,30°角所對的直角邊等於斜邊的一半。
9.直角三角形斜邊上的中線等於斜邊的一半。
本章內容要求學生在建立在軸對稱概念的基礎上,能夠對生活中的圖形進行分析鑒賞,親身經歷數學美,正確理解等腰三角形、等邊三角形等的性質和判定,並利用這些性質來解決一些數學問題。
八年級上冊數學知識點總結人教版第13-14章
第十三章 實數
1.算術平方根:一般地,如果一個正數x的平方等於a,即x2=a,那麼正數x叫做a的算術平方根,記作。0的算術平方根為0;從定義可知,只有當a≥0時,a才有算術平方根。
2.平方根:一般地,如果一個數x的平方根等於a,即x2=a,那麼數x就叫做a的平方根。
3.正數有兩個平方根(一正一負)它們互為相反數;0隻有一個平方根,就是它本身;負數沒有平方根。
4.正數的立方根是正數;0的立方根是0;負數的立方根是負數。
5.數a的相反數是-a,一個正實數的絕對值是它本身,一個負數的絕對值是它的相反數,0的絕對值是0
實數部分主要要求學生了解無理數和實數的概念,知道實數和數軸上的點一一對應,能估算無理數的大小;了解實數的運演算法則及運算律,會進行實數的運算。重點是實數的意義和實數的分類;實數的運演算法則及運算律。
第十四章 一次函數
知識概念
1.一次函數:若兩個變數x,y間的關系式可以表示成y=kx+b(k≠0)的形式,則稱y是x的一次函數(x為自變數,y為因變數)。特別地,當b=0時,稱y是x的正比例函數。
2.正比例函數一般式:y=kx(k≠0),其圖象是經過原點(0,0)的一條直線。
3.正比例函數y=kx(k≠0)的圖象是一條經過原點的直線,當k>0時,直線y=kx經過第一、三象限,y隨x的增大而增大,當k<0時,直線y=kx經過第二、四象限,y隨x的增大而減小,在一次函數y=kx+b中:當k>0時,y隨x的增大而增大; 當k<0時,y隨x的增大而減小。
4.已知兩點坐標求函數解析式:待定系數法
一次函數是初中學生學習函數的開始,也是今後學習 其它 函數知識的基石。在學習本章內容時,教師應該多從實際問題出發,引出變數,從具體到抽象的認識事物。培養學生良好的變化與對應意識,體會數形結合的思想。在教學過程中,應更加側重於理解和運用,在解決實際問題的同時,讓學習體會到數學的實用價值和樂趣。
八年級上冊數學知識點總結人教版第15章
第十五章 整式的乘除與分解因式
1.同底數冪的乘法法則: (m,n都是正數)
2.. 冪的乘方法則:(m,n都是正數)
3. 整式的乘法
(1) 單項式乘法法則:單項式相乘,把它們的系數、相同字母分別相乘,對於只在一個單項式里含有的字母,連同它的指數作為積的一個因式。
(2)單項式與多項式相乘:單項式乘以多項式,是通過乘法對加法的分配律,把它轉化為單項式乘以單項式,即單項式與多項式相乘,就是用單項式去乘多項式的每一項,再把所得的積相加。
(3).多項式與多項式相乘
多項式與多項式相乘,先用一個多項式中的每一項乘以另一個多項式的每一項,再把所得的積相加。
4.平方差公式:
5.完全平方公式:
6. 同底數冪的除法法則:同底數冪相除,底數不變,指數相減,即 (a≠0,m、n都是正數,且m>n).
在應用時需要注意以下幾點:
①法則使用的前提條件是「同底數冪相除」而且0不能做除數,所以法則中a≠0.
②任何不等於0的數的0次冪等於1,即,如,(-2.50=1),則00無意義.
③任何不等於0的數的-p次冪(p是正整數),等於這個數的p的次冪的倒數,即( a≠0,p是正整數), 而0-1,0-3都是無意義的;當a>0時,a-p的值一定是正的; 當a<0時,a-p的值可能是正也可能是負的.
④運算要注意運算順序.
7.整式的除法
單項式除法單項式:單項式相除,把系數、同底數冪分別相除,作為商的因式,對於只在被除式里含有的字母,則連同它的指數作為商的一個因式;
多項式除以單項式: 多項式除以單項式,先把這個多項式的每一項除以單項式,再把所得的商相加.
8.分解因式:把一個多項式化成幾個整式的積的形式,這種變形叫做把這個多項式分解因式.
分解因式的一般方法:1. 提公共因式法2. 運用公式法3.十字相乘法
分解因式的步驟:(1)先看各項有沒有公因式,若有,則先提取公因式;
(2)再看能否使用公式法;
(3)用分組分解法,即通過分組後提取各組公因式或運用公式法來達到分解的目的;
(4)因式分解的最後結果必須是幾個整式的乘積,否則不是因式分解;
(5)因式分解的結果必須進行到每個因式在有理數范圍內不能再分解為止.
整式的乘除與分解因式這章內容知識點較多,表面看來零碎的概念和性質也較多,但實際上是密不可分的整體。在學習本章內容時,應多准備些小組合作與交流活動,培養學生推理能力、計算能力。在做題中體驗數學法則、公式的簡潔美、和諧美,提高做題效率。
八年級上冊數學知識點總結相關 文章 :
1. 人教版八年級數學上冊知識點總結
2. 初二數學上冊知識點總結
3. 人教版八年級數學上冊知識點總結
4. 八年級數學上冊知識點歸納
5. 八年級上冊數學知識點總結
6. 新人教版八年級數學上冊知識點歸納
7. 八年級上冊數學知識點總結與八年級數學學習技巧
8. 八年級數學知識點整理歸納
9. 八年級數學知識點總結
10. 2017人教版八年級上冊數學知識點總結
❽ 初二數學上冊重點知識點總結
初中生在學習數學的過程中應該注意知識點的總結,下面總結了初二數學上冊知識點,供大家參考。
位置與坐標
1.確定位置
在平面內,確定一個物體的位置一般需要兩個數據。
2.平面直角坐標系
①含義:在平面內,兩條互相垂直且有公共原點的數軸組成平面直角坐標系。
②通常地,兩條數軸分別置於水平位置與豎直位置,取向右與向上的方向分別為兩條數軸的正方向。水平的數軸叫做x軸或者橫軸,豎直的數軸叫y軸和縱軸,二者統稱為坐標軸,它們的公共原點o被稱為直角坐標系的原點。
③建立了平面直角坐標系,平面內的點就可以用一組有序實數對來表示。
④在平面直角坐標系中,兩條坐標軸將坐標平面分成了四部分,右上方的部分叫第一象限,其他三部分按逆時針方向叫做第二象限,第三象限,第四象限,坐標軸上的點不在任何一個象限。
⑤在直角坐標系中,對於平面上任意一點,都有唯一的一個有序實數對(即點的坐標)與它對應;反過來,對於任意一個有序實數對,都有平面上唯一的一點與它對應。
3.軸對稱與坐標變化
關於x軸對稱的兩個點的坐標,橫坐標相同,縱坐標互為相反數;關於y軸對稱的兩個點的坐標,縱坐標相同,橫坐標互為相反數。
一次函數
(一)一次函數是函數中的一種,一般形如y=kx+b(k,b是常數,k≠0),其中x是自變數,y是因變數。特別地,當b=0時,y=kx+b(k為常數,k≠0),y叫做x的正比例函數。
(二)函數三要素
1.定義域:設x、y是兩個變數,變數x的變化范圍為D,如果對於每一個數x∈D,變數y遵照一定的法則總有確定的數值與之對應,則稱y是x的函數,記作y=f(x),x∈D,x稱為自變數,y稱為因變數,數集D稱為這個函數的定義域。
2.在函數經典定義中,因變數改變而改變的取值范圍叫做這個函數的值域,在函數現代定義中是指定義域中所有元素在某個對應法則下對應的所有的象所組成的集合。如:f(x)=x,那麼f(x)的取值范圍就是函數f(x)的值域。
3.對應法則:一般地說,在函數記號y=f(x)中,「f」即表示對應法則,等式y=f(x)表明,對於定義域中的任意的x值,在對應法則「f」的作用下,即可得到值域中唯一y值。
(三)一次函數的表示方法
1.解析式法:用含自變數x的式子表示函數的方法叫做解析式法。
2.列表法:把一系列x的值對應的函數值y列成一個表來表示的函數關系的方法叫做列表法。
3.圖像法:用圖象來表示函數關系的方法叫做圖象法。
(四)一次函數的性質
1.y的變化值與對應的x的變化值成正比例,比值為k。即:y=kx+b(k≠0)(k不等於0,且k,b為常數)。
2.當x=0時,b為函數在y軸上的交點,坐標為(0,b)。當y=0時,該函數圖象在x軸上的交點坐標為(-b/k,0)。
3.k為一次函數y=kx+b的斜率,k=tanθ(角θ為一次函數圖象與x軸正方向夾角,θ≠90°)。
4.當b=0時(即y=kx),一次函數圖象變為正比例函數,正比例函數是特殊的一次函數。
5.函數圖象性質:當k相同,且b不相等,圖像平行;當k不同,且b相等,圖象相交於Y軸;當k互為負倒數時,兩直線垂直。
6.平移時:上加下減在末尾,左加右減在中間。
全等三角形
1.經過翻轉、平移後,能夠完全重合的兩個三角形叫做全等三角形,而該兩個三角形的三條邊及三個角都對應相等。
2.三角形全等的判定
(1)SSS(邊邊邊)
三邊對應相等的三角形是全等三角形。
(2)SAS(邊角邊)
兩邊及其夾角對應相等的三角形是全等三角形。
(3)ASA(角邊角)
兩角及其夾邊對應相等的三角形全等。
(4)AAS(角角邊)
兩角及其一角的對邊對應相等的三角形全等。
(5)RHS(直角、斜邊、邊)
在一對直角三角形中,斜邊及另一條直角邊相等。
3.角平分線
(1)從一個角的頂點引出一條射線,把這個角分成兩個完全相同的角,這條射線叫做這個角的角平分線。
(2)性質
①角平分線分得的兩個角相等,都等於該角的一半。
②角平分線上的點到角的兩邊的距離相等。
分式
(一)分式的運算
分式四則運算,順序乘除加減,
乘除同級運算,除法符號須變(乘),
乘法進行化簡,因式分解在先,
分子分母相約,然後再行運算,
加減分母需同,分母化積關鍵,
找出最簡公分母,通分不是很難,
變號必須兩處,結果要求最簡。
(二)分式的運演算法則
(1)約分
①如果分式的分子和分母都是單項式或者是幾個因式乘積的形式,將它們的公因式約去。
②分式的分子和分母都是多項式,將分子和分母分別分解因式,再將公因式約去。
(2)公因式的提取方法
系數取分子和分母系數的最大公約數,字母取分子和分母共有的字母,指數取公共字母的最小指數,即為它們的公因式。
(3)除法
兩個分式相除,把除式的分子和分母顛倒位置後再與被除式相乘。
(4)乘方
分子乘方做分子,分母乘方做分母,可以約分的約分,最後化成最簡。
圖形的平移與旋轉
1.平移,是指在同一平面內,將一個圖形上的所有點都按照某個直線方向做相同距離的移動,這樣的圖形運動叫做圖形的平移運動,簡稱平移。
2.平移性質
(1)圖形平移前後的形狀和大小沒有變化,只是位置發生變化。
(2)圖形平移後,對應點連成的線段平行(或在同一直線上)且相等。
❾ 八年級數學上冊知識點
只有學習精彩,生命才精彩,只有學習成功,事業才成功。每一門科目都有自己的 學習 方法 ,數學作為最燒腦的科目之一,需要不斷的練習。下面是我給大家整理的一些 八年級 數學的知識點,希望對大家有所幫助。
初二上學期數學知識點歸納
三角形知識概念
1、三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
2、三邊關系:三角形任意兩邊的和大於第三邊,任意兩邊的差小於第三邊。
3、高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。
4、中線:在三角形中,連接一個頂點和它對邊中點的線段叫做三角形的中線。
5、角平分線:三角形的一個內角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。
6、三角形的穩定性:三角形的形狀是固定的,三角形的這個性質叫三角形的穩定性。
7、多邊形:在平面內,由一些線段首尾順次相接組成的圖形叫做多邊形。
8、多邊形的內角:多邊形相鄰兩邊組成的角叫做它的內角。
9、多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角。
10、多邊形的對角線:連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線。
11、正多邊形:在平面內,各個角都相等,各條邊都相等的多邊形叫正多邊形。
12、平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面。
13、公式與性質:
(1)三角形的內角和:三角形的內角和為180°
(2)三角形外角的性質:
性質1:三角形的一個外角等於和它不相鄰的兩個內角的和。
性質2:三角形的一個外角大於任何一個和它不相鄰的內角。
(3)多邊形內角和公式:邊形的內角和等於?180°
(4)多邊形的外角和:多邊形的外角和為360°
(5)多邊形對角線的條數:①從邊形的一個頂點出發可以引條對角線,把多邊形分成個三角形。②邊形共有條對角線。
八年級上冊數學知識
一、在平面內,確定物體的位置一般需要兩個數據。
二、平面直角坐標系及有關概念
1、平面直角坐標系
在平面內,兩條互相垂直且有公共原點的數軸,組成平面直角坐標系。其中,水平的數軸叫做x軸或橫軸,取向右為正方向;鉛直的數軸叫做y軸或縱軸,取向上為正方向;x軸和y軸統稱坐標軸。它們的公共原點O稱為直角坐標系的原點;建立了直角坐標系的平面,叫做坐標平面。
2、為了便於描述坐標平面內點的位置,把坐標平面被x軸和y軸分割而成的四個部分,分別叫做第一象限、第二象限、第三象限、第四象限。
注意:x軸和y軸上的點(坐標軸上的點),不屬於任何一個象限。
3、點的坐標的概念
對於平面內任意一點P,過點P分別x軸、y軸向作垂線,垂足在上x軸、y軸對應的數a,b分別叫做點P的橫坐標、縱坐標,有序數對(a,b)叫做點P的坐標。
點的坐標用(a,b)表示,其順序是橫坐標在前,縱坐標在後,中間有「,」分開,橫、縱坐標的位置不能顛倒。平面內點的坐標是有序實數對,當時,(a,b)和(b,a)是兩個不同點的坐標。
平面內點的與有序實數對是一一對應的。
4、不同位置的點的坐標的特徵
(1)、各象限內點的坐標的特徵
點P(x,y)在第一象限:x;0,y;0
點P(x,y)在第二象限:x;0,y;0
點P(x,y)在第三象限:x;0,y;0
點P(x,y)在第四象限:x;0,y;0
(2)、坐標軸上的點的特徵
點P(x,y)在x軸上,y=0,x為任意實數
點P(x,y)在y軸上,x=0,y為任意實數
點P(x,y)既在x軸上,又在y軸上,x,y同時為零,即點P坐標為(0,0)即原點
(3)、兩條坐標軸夾角平分線上點的坐標的特徵
點P(x,y)在第一、三象限夾角平分線(直線y=x)上,x與y相等
點P(x,y)在第二、四象限夾角平分線上,x與y互為相反數
(4)、和坐標軸平行的直線上點的坐標的特徵
位於平行於x軸的直線上的各點的縱坐標相同。
位於平行於y軸的直線上的各點的橫坐標相同。
初二數學 復習方法
一、復習內容:
第一章:勾股定理
第二章:實數第三章:位置與坐標
第四章:一次函數
第五章:二元一次方程組
第六章:數據的分析
第七章:平行線的證明
二、復習目標:
八年級數學本學期知識點多,復習時間又比較短,只有三周的時間。
根據實際情況,應該完成如下目標:
(一)、整理本學期學過的知識與方法:1.第一、七章是幾何部分。這三章的重點是勾股定理的應用以及平行線的性質與判別還有三角形內角和定理及其應用。所以記住性質是關鍵,學會判定是重點,靈活應用是目的。要學會判定方法的選擇,不同圖形之間的區別和聯系要非常熟悉,形成一個有機整體。對常見的證明題要多練多 總結 。2.第四五六章主要是概念的教學,對這幾章的考試題型學生可能都不熟悉,所以要以與課本同步的訓練題型為主,要列表或作圖的,讓學生積極動手操作,並得出結論,課堂上教師講評,盡量是精講多練,該動手的要多動手,盡可能的讓學生自己總結出論證幾何問題的常用分析方法。3.第二章主要是計算,教師提前先把概念、性質、方法綜合復習,加入適當的練習,在練習計算。課堂上逐一對易錯題的講解,多強調解題方法的針對性。最後針對平時練習中存在的問題,查漏補缺。
(二)、在自己經歷過的解決問題活動中,選擇一個有挑戰問題性的問題,寫下解決它的過程:包括遇到的困難、克服困難的方法與過程及所獲得的體會,並選擇這個問題的原因。
(三)、通過本學期的數學學習,讓同學們總結自己有哪些收獲;有哪些需要改進的地方。
三、復習方法:
1、強化訓練,這個學期計算類和證明類的題目較多,在復習中要加強這方面的訓練。特別是一次函數,在復習過程中要分類型練習,重點是解題方法的正確選擇同時使學生養成檢查計算結果的習慣。還有幾何證明題,要通過針對性練習力爭達到少失分,達到證明簡練又嚴謹的效果。
2、加強管理嚴格要求,根據每個學生自身情況、學習水平嚴格要求,對應知應會的內容要反復講解、練習,必須做到學一點會一點,對接受能力差的學生課後要加強輔導,及時糾正出現的錯誤,平時多小測多檢查。對能力較強的學生要引導他們多做課外習題,適當提高做題難度。
3、加強證明題的訓練,通過近階段的學習,我發現學生對證明題掌握不牢,不會找合適的分析方法,部分學生看不懂題意,沒有思路。在今後的復習中我准備拿出一定的時間來專項練習證明題,引導學生如何弄懂題意、怎樣分析、怎樣寫證明過程。力爭讓學生把各種類型題做全並抓住其特點。
4、加強成績不理想學生的輔導,制定詳細的復習計劃,對他們要多表揚多鼓勵,調動他們學習的積極性,利用課余時間對他們進行輔導,輔導時要有耐心,要心平氣和,對不會的知識要多講幾遍,不怕麻煩,直至弄懂弄會。
四、課時安排:
本次復習共三周時間,具體安排如下:第一章1課時第二章2課時第三章1課時第四章2課時第五章2課時第六章1課時第七章2課時模擬測試4課時
五、復習階段採取的 措施 :
1.精心備課上課,針對班級學生出現的錯題及所涉及到的重點問題認真挑選試題。2.對於復習階段作業的布置,少而精,有針對性,並且很抓訂正及改錯。3.在試題的選擇上作到面面俱到,重點難點突出,不重不漏。4.面向全體學生。由於學生在知識、技能方面的發展和興趣、特長等不盡相同,所以要因材施教。在組織教學時,應從大多數學生的實際出發,並兼顧學習有困難的和學有餘力的學生。對學習有困難的學生,要特別予以關心,及時採取有效措施,激發他們學習數學的興趣,指導他們改進學習方法。減緩他們學習中的坡度,使他們經過努力,能夠達到大綱中規定的基本要求。對學有餘力的學生,要通過講授選學內容和組織課外活動等多種形式,滿足他們的學習願望,發展他們的數學才能。5.重視改進 教學方法 ,堅持啟發式,反對注入式。教師在課前先布置學生預習,同時要指導學生預習,提出預習要求,並布置與課本內容相關、難度適中的嘗試題材由學生課前完成,教學中教師應幫助學生梳理學習的知識,指出重點和易錯點,解答學生復習時遇到的問題,使學生在學習中體會成功,調動學習積極性。6.改革作業結構減輕學生負擔。將學生按學習能力分成幾個層次,分別布置難、中、易三檔作業,使每類學生都能在原有基礎上提高。
八年級數學上冊知識點相關 文章 :
★ 人教版八年級數學上冊知識點總結
★ 初二數學上冊知識點總結
★ 八年級數學上冊知識點歸納
★ 八年級數學知識點整理歸納
★ 數學八年級上冊知識點整理
★ 八年級數學上冊知識點北師大版
★ 初二數學上冊知識點總結歸納
★ 初二數學知識點歸納上冊人教版
★ 數學八年級上冊知識點
★ 初二數學上冊知識點
❿ 八年級上冊數學期末考試考點知識點整理
八年級上冊數學期末考試考點知識點整理1
第十二章 平面直角坐標系小結
平面內點的坐標特徵
1.各象限內點P(a,b)的坐標特徵:
第一象限:a>0,b>0;第二象限:a<0,b>0;第三象限:a<0,b<0;第四象限:a>0,b<0.(說明:一.三象限,橫.縱坐標符號相同,即ab>0;二.四象限,橫.縱坐標符號相反即ab<0。)
2.坐標軸上點P(a,b)的坐標特徵:
x軸上:a為任意實數,b=0;y軸上:b為任意實數,a=0;坐標原點:a=0,b=0
(說明:若P(a,b)在坐標軸上,則ab=0;反之,若ab=0,則P(a,b)在坐標軸上。)
3.兩坐標軸夾角平分線上點P(a,b)的坐標特徵:一.三象限:a=b;二.四象限:a=-b。
對稱點的坐標特徵
點P(a,b)關於x軸的對稱點是(a,-b);
關於y軸的對稱點是(-a,b);
關於原點的對稱點是(-a,-b)
點到坐標軸的距離
點P(x,y)到x軸距離為∣y∣,到y軸的距離為∣x∣。
點的平移坐標變化規律
(1)橫坐標相同的兩點所在直線垂直於x軸,平行於y軸;
(2)縱坐標相同的兩點所在直線垂直於y軸,平行於x軸。
坐標平面內,點P(x,y)向右(或左)平移a個單位後的對應點為(x+a,y)或(x-a,y);點P(x,y)向上(或下)平移b個單位後的對應點為(x,y+b)或(x,y-b)。
(說明:左右平移,橫變縱不變,向右平移,橫坐標增加,向左平移,橫坐標減小;上下平移,縱變橫不變,向上平移,縱坐標增加,向下平移,縱坐標減小。簡記為右加左減,上加下減)
第十三章 一次函數
確定函數自變數的取值范圍
1.自變數以整式形式出現,自變數的取值范圍是全體實數;
2.自變數以分式形式出現,自變數的取值范圍是使分母不為0的數;
3.自變數以偶次方根形式出現,自變數的取值范圍是使被開方數大於或等於0(即被開方數≥0)的數;
自變數以奇次方根形式出現,自變數的取值范圍是全體實數。
4.自變數出現在零次冪或負整數次冪的底數中,自變數的取值范圍是使底數不為0的數。
說明:(1)當一個函數解析式含有幾種代數式時,自變數的取值范圍是各個代數式中自變數取值范圍的公共部分;
(2)當函數解析式表示具有實際意義的函數時,自變數取值范圍除應使函數解析式有意義外,還必須符合實際意義。
八年級上冊數學期末考試考點知識點整理2
考點一:三角形
三角形中的考點分為三類:一類是一般的三角形,一類是等腰三角形,一類是等邊三角形。
一般的三角形常考的是三角形的面積,周長相關的計算,以及三角形全等相關的證明。三角形的面積為1/2乘以底乘以高,三角形的周長為三個邊長之和。證明三角形全等的方法:SSS(三個邊對應相等的兩個三角形全等),SAS(兩邊及其夾角對應相等的兩個三角形全等),AAS(兩個角以及其中一個角對應的邊相等的兩個三角形全等),ASA(兩角及其夾邊對應的兩個三角形對應相等的兩個三角形全等)。
等腰三角形:兩個邊長或者兩個角相等的三角形為等腰三角形。等腰三角形底邊上的高和中線還有角平分線三線是重合的,考試的時候,經常構造這個輔助線進行相關的證明。
等邊三角形:三個邊都相等的三角形為等邊三角形,等邊三角形的各個角都是60度,各個邊長都相等。
考點二:多邊形
多邊形的內角和:180(n-2),n為多邊形的變數。經常給出度數范圍,求邊長,常用的方法是假設多邊形的邊數為n,列不等式,最後求出關於邊數n的范圍,取整數即可。如一個多邊形的'內角和大於850度小於1000度,求多邊形的邊數。
列不等式:850<180(n-2)<1000,解的:85/18+2<n<50/9+2,n為整數,n=7
多邊形的對角線的個數:n(n-3)/2
考點三:軸對稱
軸對稱圖像經常會結合全等進行相關的考核,主要是數形結合的題目,後續在模擬試題中會提到,你只要知道關於某條線能夠完全重合的圖形為軸對稱圖形即可,如等腰三角形,正方形等。
考點四:整式
整式必考的考點為代數式相關的求值,平時學生們都加以訓練了,只要考試認真按照四則運算進行相關的求解即可,先化簡,再代入值求解即可。
考點五:因式分解
因式分解是必考的內容之一,因式分解答題步驟我們來為大家總結一下:首先看式子中是否有公因數,有公因數的一定要提取公因數,然後,看是否能夠利用平方差公式或者完全平方公式,不能的話,考慮使用十字相乘的方法進行分解。具體的分解技巧見前面課程中提到的因式分解解題技巧。
考點六:分式
分式考點比較單一,首先是分式的計算,和整式是一樣的方法,其次是分式方程解應用題,求解完應用題一定要代入原來的分式方程中進行驗證,判斷分母是否為0,即解方程結束,要加上一句話:經驗證x等於某某數值為原分式方程的解。相關的解題注意事項,後續在期末試題中我們會給出詳解的哦。