當前位置:首頁 » 基礎知識 » 數學的知識點歸納大全
擴展閱讀
如何從基礎打到上台階 2024-11-17 18:41:10

數學的知識點歸納大全

發布時間: 2022-12-22 11:42:32

1. 初中數學知識點全總結歸納

初中數學的知識點比較多,也比較雜,但是需要初中生扎實掌握,我整理了一些比較重要的知識點。

有理數

1、有理數:有理數分為正有理數、0、負有理數;

2、數軸:數軸是規定了原點、正方向、單位長度的一條直線。

3、相反數:

(1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0;

(2)相反數的和為0a+b=0a、b互為相反數。

4、絕對值:正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;注意:絕對值的意義是數軸上表示某數的點離開原點的距離。

5、科學記數法:把一個大於10的數記成a×10n的形式,其中a是整數數位只有一位的數,這種記數法叫科學記數法。

6、單項式:在代數式中,若只含有乘法(包括乘方)運算。或雖含有除法運算,但除式中不含字母的一類代數式叫單項式。

(1)單項式的系數與次數:單項式中不為零的數字因數,叫單項式的數字系數,簡稱單項式的系數;系數不為零時,單項式中所有字母指數的和,叫單項式的次數。

7、多項式:幾個單項式的和叫多項式。

(1)多項式的項數與次數:多項式中所含單項式的個數就是多項式的項數,每個單項式叫多項式的項;多項式里,次數最高項的次數叫多項式的次數。

一元一次方程

1、只含有一個未知數,並且未知數的次數是1,並且含未知數項的系數不是零的整式方程是一元一次方程。

2、一元一次方程的標准形式:ax+b=0(x是未知數,a、b是已知數,且a≠0)。

3、一元一次方程解法的一般步驟:整理方程……去分母……去括弧……移項……合並同類項……系數化為1……(檢驗方程的解)

相交線與平行線

1、線的性質:

性質1:過一點有且只有一條直線與已知直線垂直。

性質2:連接直線外一點與直線上各點的所有線段中,垂線段最短。

2、平行公理:經過直線外一點有且只有一條直線與已知直線平行。

平行公理的推論:如果兩條直線都與第三條直線平行,那麼這兩條直線也互相平行。

3、平行線的性質:

性質1:兩直線平行,同位角相等。

性質2:兩直線平行,內錯角相等。

性質3:兩直線平行,同旁內角互補。

4、平行線的判定:

判定1:同位角相等,兩直線平行。

判定2:內錯角相等,兩直線平行。

判定3:同旁內角相等,兩直線平行。

不等式

1、不等式的解:使不等式成立的未知數的值,叫做不等式的解。

2、不等式的解集:一個含有未知數的不等式的所有解,組成這個不等式的解集。

3、一元一次不等式:不等式的左、右兩邊都是整式,只有一個未知數,並且未知數的最高次數是1,像這樣的不等式,叫做一元一次不等式。

4、一元一次不等式組:一般地,關於同一未知數的幾個一元一次不等式合在一起,就組成了一個一元一次不等式組

全等三角形

1、兩個三角形的形狀、大小、都一樣時,其中一個可以經過平移、旋轉、對稱等運動(或稱變換)使之與另一個重合,這兩個三角形稱為全等三角形。

2、全等三角形的性質:全等三角形的對應角相等、對應邊相等。

3、三角形全等的判定公理及推論有:

(1)「邊角邊」簡稱「SAS」

(2)「角邊角」簡稱「ASA」

(3)「邊邊邊」簡稱「SSS」

(4)「角角邊」簡稱「AAS」

(5)斜邊和直角邊相等的兩直角三角形(HL)

分式

1、形如A/B,A、B是整式,B中含有未知數且B不等於0的整式叫做分式(fraction)。其中A叫做分式的分子,B叫做分式的分母。

2、分式有意義的條件:分母不等於0。

3、約分:把一個分式的分子和分母的公因式(不為1的數)約去,這種變形稱為約分。

4、通分:異分母的分式可以化成同分母的分式,這一過程叫做通分。

以上是我整理的比較重要的知識點,希望能幫到你。

2. 數學的知識點總結

集合的運算也遵循一般的代數式運算規律,也有著自己的法則和定理。下面是我整理的數學集合的知識點總結,歡迎參考閱讀!

一、集合有關概念

1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。

2、集合的中元素的三個特性:

①.元素的確定性; ②.元素的互異性; ③.元素的無序性

說明:(1)對於一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。

(2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。

(3)集合中的元素是平等的,沒有先後順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。

(4)集合元素的三個特性使集合本身具有了確定性和整體性。

3、集合的分類:

1.有限集 含有有限個元素的集合

2.無限集 含有無限個元素的集合

3.空集 不含任何元素的集合 例:{x|x2=-5}

4、集合的表示:{ } 如{我校的籃球隊員},{太平洋大西洋印度洋北冰洋}

1. 用拉丁字母表示集合:A={我校的籃球隊員}B={12345}

2.集合的表示方法:列舉法與描述法。

注意啊:常用數集及其記法:

非負整數集(即自然數集) 記作:N

正整數集 N*或 N+ 整數集Z 有理數集Q 實數集R

關於屬於的概念

集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬於集合A 記作 aA ,相反,a不屬於集合A 記作 a?A

列舉法:把集合中的元素一一列舉出來,然後用一個大括弧括上。

描述法:將集合中的元素的公共屬性描述出來,寫在大括弧內表示集合的方法。用確定的條件表示某些對象是否屬於這個集合的'方法。

①語言描述法:例:{不是直角三角形的三角形}

②數學式子描述法:例:不等式x-32的解集是{x?R| x-32}或{x| x-32}

二、集合間的基本關系

1.包含關系子集

注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

反之: 集合A不包含於集合B或集合B不包含集合A記作A B或B A

2. 不含任何元素的集合叫做空集,記為

規定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

3.相等關系(55,且55,則5=5)

實例:設 A={x|x2-1=0} B={-11} 元素相同

結論:對於兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時集合B的任何一個元素都是集合A的元素,我們就說集合A等於集合B,即:A=B

① 任何一個集合是它本身的子集。A?A

②真子集:如果A?B且A? B那就說集合A是集合B的真子集,記作A B(或B A)

③如果 A?B B?C 那麼 A?C

④ 如果A?B 同時 B?A 那麼A=B

三、集合的運算

1、並集的定義:一般地,由所有屬於集合A或屬於集合B的元素所組成的集合,叫做AB的並集。記作:AB(讀作A並B),即AB={x|xA,或xB}.

2.交集的定義:一般地,由所有屬於A且屬於B的元素所組成的集合叫做AB的交集.

記作AB(讀作A交B),即AB={x|xA,且xB}.

3、全集與補集

(1)補集:設S是一個集合,A是S的一個子集(即 ),由S中所有不屬於A的元素組成的集合,叫做S中子集A的補集(或余集)

記作: CSA 即 CSA ={x ? x?S且 x?A}

(2)全集:如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集。通常用U來表示。

(3)性質:⑴CU(C UA)=A ⑵(C UA) ⑶(CUA)A=U

4、交集與並集的性質:AA = A A= B = BA,AA = A

A= A AB = BA.

3. 數學初中知識點總結歸納

初中生學習數學要特別注意知識點的總結,下面為大家總結了初中數學重點知識點,僅供大家參考。

有理數

1.有理數的加法運算

同號兩數來相加,絕對值加不變號。

異號相加大減小,大數決定和符號。

互為相反數求和,結果是零須記好。

「大」減「小」是指絕對值的大小。

2.有理數的減法運算

減正等於加負,減負等於加正。

有理數的乘法運算符號法則。

同號得正異號負,一項為零積是零。

3.有理數混合運算的四種運算技巧

轉化法:一是將除法轉化為乘法,二是將乘方轉化為乘法,三是在乘除混合運算中,通常將小數轉化為分數進行約分計算。

湊整法:在加減混合運算中,通常將和為零的兩個數,分母相同的兩個數,和為整數的兩個數,乘積為整數的兩個數分別結合為一組求解。

分拆法:先將帶分數分拆成一個整數與一個真分數的和的形式,然後進行計算。

巧用運算律:在計算中巧妙運用加法運算律或乘法運算律往往使計算更簡便。

整式的加減

1.整式加減的理論根據是:去括弧法則,合並同類項法則,以及乘法分配率。

去括弧法則:如果括弧前是「十」號,把括弧和它前面的「+」號去掉,括弧里各項都不變符號;如果括弧前是「一」號,把括弧和它前面的「一」號去掉,括弧里各項都改變符號。

2.同類項:所含字母相同,並且相同字母的指數也相同的項叫做同類項。

合並同類項:

(1)合並同類項的概念:把多項式中的同類項合並成一項叫做合並同類項。

(2)合並同類項的法則:同類項的系數相加,所得結果作為系數,字母和字母的指數不變。

(3)合並同類項步驟:

a.准確的找出同類項。

b.逆用分配律,把同類項的系數加在一起(用小括弧),字母和字母的指數不變。

c.寫出合並後的結果。

實數

1.平方根

平方根,又叫二次方根,表示為〔±√ ̄〕,其中屬於非負數的平方根稱之為算術平方根。一個正數有兩個實平方根,它們互為相反數,負數沒有平方根。

2.立方根

如果一個數的立方等於a,那麼這個數叫a的立方根,也稱為三次方根。

立方根性質

①在實數范圍內,任何實數的立方根只有一個

②在實數范圍內,負數不能開平方,但可以開立方。

③0的立方根是0

3.實數

實數,是有理數和無理數的總稱。實數具有封閉性、有序性、傳遞性、稠密性、完備性等。

分式方程的解法

1.一般解法:去分母法,即方程兩邊同乘以最簡公分母。

2.特殊解法:換元法。

3.驗根:由於在去分母過程中,當未知數的取值范圍擴大而有可能產生增根.因此,驗根是解分式方程必不可少的步驟,一般把整式方程的根的值代人最簡公分母,看結果是不是零,使最簡公分母為零的根是原方程的增根,必須捨去。

說明:解分式方程,一般先考慮換元法,再考慮去分母法。

全等三角形的判定定理

1.邊邊邊:三邊對應相等的兩個三角形全等。

2.邊角邊:兩邊和它們的夾角對應相等的兩個三角形全等。

3.角邊角:兩角和它們的夾邊對應相等的兩個三角形全等。

4.角角邊:兩角和其中一個角的對邊對應相等的兩個三角形全等。

5.斜邊、直角邊:斜邊和一條直角邊對應相等的兩個直角三角形全等。

圖形的初步認識

1.幾何圖形:即從實物中抽象出的各種圖形,可幫助人們有效的刻畫錯綜復雜的世界。

2.平面圖形:平面圖形是幾何圖形的一種,指所有點都在同一平面內的圖形,如直線、三角形等。

3.立體圖形:是各部分不在同一平面內的幾何圖形,由一個或多個面圍成的可以存在於現實生活中的三維圖形。

4.展開圖:有些立體圖形是有一些平面圖形圍成的,將它們的表面適當剪開,可以展成平面圖形,這樣的平面圖形稱為相應立體圖形的展開圖。

5.點,線,面,體

(1)圖形是由點,線,面構成的。

(2)線與線相交得點,面與面相交得線。

(3)點動成線,線動成面,面動成體。

一元一次方程

1.定義:

一元一次方程指只含有一個未知數、未知數的最高次數為1且兩邊都為整式的等式,叫做一元一次方程。求出方程中未知數的值叫做方程式的解。

2.解一元一次方程的步驟

①去分母:把系數化成整數。

②去括弧

③移項:把等式一邊的某項變號後移到另一邊。

④合並同類項

⑤系數化為1

4. 高考數學知識點歸納

高三學生很快就會面臨繼續學業或事業的選擇。面對重要的人生選擇,是否考慮清楚了?這對於沒有社會 經驗 的學生來說,無疑是個困難的想選擇。下面是我整理的高考數學知識點,希望能夠幫助大家!

高考數學知識點1

一、高考數學中有函數、數列、三角函數、平面向量、不等式、立體幾何等九大章節

主要是考函數和導數,因為這是整個高中階段中最核心的部分,這部分里還重點考察兩個方面:第一個函數的性質,包括函數的單調性、奇偶性;第二是函數的解答題,重點考察的是二次函數和高次函數,分函數和它的一些分布問題,但是這個分布重點還包含兩個分析。

二、平面向量和三角函數

對於這部分知識重點考察三個方面:是劃減與求值,第一,重點掌握公式和五組基本公式;第二,掌握三角函數的圖像和性質,這里重點掌握正弦函數和餘弦函數的性質;第三,正弦定理和餘弦定理來解三角形,這方面難度並不大。

三、數列

數列這個板塊,重點考兩個方面:一個通項;一個是求和。

四、空間向量和立體幾何

在裡面重點考察兩個方面:一個是證明;一個是計算。

五、概率和統計

概率和統計主要屬於數學應用問題的范疇,需要掌握幾個方面:……等可能的概率;……事件;獨立事件和獨立重復事件發生的概率。

六、解析幾何

這部分內容說起來容易做起來難,需要掌握幾類問題,第一類直線和曲線的位置關系,要掌握它的通法;第二類動點問題;第三類是弦長問題;第四類是對稱問題;第五類重點問題,這類題往往覺得有思路卻沒有一個清晰的答案,但需要要掌握比較好的演算法,來提高做題的准確度。

七、壓軸題

同學們在最後的備考復習中,還應該把重點放在不等式計算的 方法 中,難度雖然很大,但是也切忌在試卷中留空白,平時多做些壓軸題真題,爭取能解題就解題,能思考就思考。

高考數學直線方程知識點:什麼是直線方程

從平面解析幾何的角度來看,平面上的直線就是由平面直角坐標系中的一個二元一次方程所表示的圖形。求兩條直線的交點,只需把這兩個二元一次方程聯立求解,當這個聯立方程組無解時,兩直線平行;有無窮多解時,兩直線重合;只有一解時,兩直線相交於一點。常用直線向上方向與 X 軸正向的 夾角( 叫直線的傾斜角 )或該角的正切(稱直線的斜率)來表示平面上直線(對於X軸)的傾斜程度。可以通過斜率來判斷兩條直線是否互相平行或互相垂直,也可計算它們的交角。直線與某個坐標軸的交點在該坐標軸上的坐標,稱為直線在該坐標軸上的截距。直線在平面上的位置,由它的斜率和一個截距完全確定。在空間,兩個平 面相 交時,交線為一條直線。因此,在空間直角坐標系中,用兩個表示平面的三元一次方程聯立,作為它們相交所得直線的方程。

高考數學知識點2

一、求動點的軌跡方程的基本步驟

⒈建立適當的坐標系,設出動點M的坐標;

⒉寫出點M的集合;

⒊列出方程=0;

⒋化簡方程為最簡形式;

⒌檢驗。

二、求動點的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關點法、參數法和交軌法等。

⒈直譯法:直接將條件翻譯成等式,整理化簡後即得動點的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。

⒉定義法:如果能夠確定動點的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫出方程,這種求軌跡方程的方法叫做定義法。

⒊相關點法:用動點Q的坐標x,y表示相關點P的坐標x0、y0,然後代入點P的坐標(x0,y0)所滿足的曲線方程,整理化簡便得到動點Q軌跡方程,這種求軌跡方程的方法叫做相關點法。

⒋參數法:當動點坐標x、y之間的直接關系難以找到時,往往先尋找x、y與某一變數t的關系,得再消去參變數t,得到方程,即為動點的軌跡方程,這種求軌跡方程的方法叫做參數法。

⒌交軌法:將兩動曲線方程中的參數消去,得到不含參數的方程,即為兩動曲線交點的軌跡方程,這種求軌跡方程的方法叫做交軌法。

-直譯法:求動點軌跡方程的一般步驟

①建系——建立適當的坐標系;

②設點——設軌跡上的任一點P(x,y);

③列式——列出動點p所滿足的關系式;

④代換——依條件的特點,選用距離公式、斜率公式等將其轉化為關於X,Y的方程式,並化簡;

⑤證明——證明所求方程即為符合條件的動點軌跡方程。

高考數學知識點3

第一、高考數學中有函數、數列、三角函數、平面向量、不等式、立體幾何等九大章節。

主要是考函數和導數,這是我們整個高中階段里最核心的板塊,在這個板塊里,重點考察兩個方面:第一個函數的性質,包括函數的單調性、奇偶性;第二是函數的解答題,重點考察的是二次函數和高次函數,分函數和它的一些分布問題,但是這個分布重點還包含兩個分析就是二次方程的分布的問題,這是第一個板塊。

第二、平面向量和三角函數。

重點考察三個方面:一個是劃減與求值,第一,重點掌握公式,重點掌握五組基本公式。第二,是三角函數的圖像和性質,這里重點掌握正弦函數和餘弦函數的性質,第三,正弦定理和餘弦定理來解三角形。難度比較小。

第三、數列。

數列這個板塊,重點考兩個方面:一個通項;一個是求和。

第四、空間向量和立體幾何,在裡面重點考察兩個方面:一個是證明;一個是計算。

第五、概率和統計。

這一板塊主要是屬於數學應用問題的范疇,當然應該掌握下面幾個方面,第一……等可能的概率,第二………事件,第三是獨立事件,還有獨立重復事件發生的概率。

第六、解析幾何。

這是我們比較頭疼的問題,是整個試卷里難度比較大,計算量的題,當然這一類題,我 總結 下面五類常考的題型,包括:

第一類所講的直線和曲線的位置關系,這是考試最多的內容。考生應該掌握它的通法;

第二類我們所講的動點問題;

第三類是弦長問題;

第四類是對稱問題,這也是2008年高考已經考過的一點;

第五類重點問題,這類題時往往覺得有思路,但是沒有答案,

當然這里我相等的是,這道題盡管計算量很大,但是造成計算量大的原因,往往有這個原因,我們所選方法不是很恰當,因此,在這一章里我們要掌握比較好的演算法,來提高我們做題的准確度,這是我們所講的第六大板塊。

第七、押軸題。

考生在備考復習時,應該重點不等式計算的方法,雖然說難度比較大,我建議考生,採取分部得分整個試卷不要留空白。這是高考所考的七大板塊核心的考點。

高考數學知識點4

(一)導數第一定義

設函數y=f(x)在點x0的某個領域內有定義,當自變數x在x0處有增量△x(x0+△x也在該鄰域內)時,相應地函數取得增量△y=f(x0+△x)-f(x0);如果△y與△x之比當△x→0時極限存在,則稱函數y=f(x)在點x0處可導,並稱這個極限值為函數y=f(x)在點x0處的導數記為f'(x0),即導數第一定義

(二)導數第二定義

設函數y=f(x)在點x0的某個領域內有定義,當自變數x在x0處有變化△x(x-x0也在該鄰域內)時,相應地函數變化△y=f(x)-f(x0);如果△y與△x之比當△x→0時極限存在,則稱函數y=f(x)在點x0處可導,並稱這個極限值為函數y=f(x)在點x0處的導數記為f'(x0),即導數第二定義

(三)導函數與導數

如果函數y=f(x)在開區間I內每一點都可導,就稱函數f(x)在區間I內可導。這時函數y=f(x)對於區間I內的每一個確定的x值,都對應著一個確定的導數,這就構成一個新的函數,稱這個函數為原來函數y=f(x)的導函數,記作y',f'(x),dy/dx,df(x)/dx。導函數簡稱導數。

(四)單調性及其應用

1.利用導數研究多項式函數單調性的一般步驟

(1)求f¢(x)

(2)確定f¢(x)在(a,b)內符號(3)若f¢(x)>0在(a,b)上恆成立,則f(x)在(a,b)上是增函數;若f¢(x)<0在(a,b)上恆成立,則f(x)在(a,b)上是減函數

2.用導數求多項式函數單調區間的一般步驟

(1)求f¢(x)

(2)f¢(x)>0的解集與定義域的交集的對應區間為增區間;f¢(x)<0的解集與定義域的交集的對應區間為減區間

高考數學知識點5

一、排列

1定義

(1)從n個不同元素中取出m個元素,按照一定的順序排成一列,叫做從n個不同元素中取出m個元素的一排列。

(2)從n個不同元素中取出m個元素的所有排列的個數,叫做從n個不同元素中取出m個元素的排列數,記為Amn.

2排列數的公式與性質

(1)排列數的公式:Amn=n(n-1)(n-2)…(n-m+1)

特例:當m=n時,Amn=n!=n(n-1)(n-2)…×3×2×1

規定:0!=1

二、組合

1定義

(1)從n個不同元素中取出m個元素並成一組,叫做從n個不同元素中取出m個元素的一個組合

(2)從n個不同元素中取出m個元素的所有組合的個數,叫做從n個不同元素中取出m個元素的組合數,用符號Cmn表示。

2比較與鑒別

由排列與組合的定義知,獲得一個排列需要「取出元素」和「對取出元素按一定順序排成一列」兩個過程,而獲得一個組合只需要「取出元素」,不管怎樣的順序並成一組這一個步驟。

排列與組合的區別在於組合僅與選取的元素有關,而排列不僅與選取的元素有關,而且還與取出元素的順序有關。因此,所給問題是否與取出元素的順序有關,是判斷這一問題是排列問題還是組合問題的理論依據。

三、排列組合與二項式定理知識點

1.計數原理知識點

①乘法原理:N=n1·n2·n3·…nM(分步)②加法原理:N=n1+n2+n3+…+nM(分類)

2.排列(有序)與組合(無序)

Anm=n(n-1)(n-2)(n-3)-…(n-m+1)=n!/(n-m)!Ann=n!

Cnm=n!/(n-m)!m!

Cnm=Cnn-mCnm+Cnm+1=Cn+1m+1k?k!=(k+1)!-k!

3.排列組合混合題的解題原則:先選後排,先分再排

排列組合題的主要解題方法:優先法:以元素為主,應先滿足特殊元素的要求,再考慮其他元素.以位置為主考慮,即先滿足特殊位置的要求,再考慮其他位置.

捆綁法(集團元素法,把某些必須在一起的元素視為一個整體考慮)

插空法(解決相間問題)間接法和去雜法等等

在求解排列與組合應用問題時,應注意:

(1)把具體問題轉化或歸結為排列或組合問題;

(2)通過分析確定運用分類計數原理還是分步計數原理;

(3)分析題目條件,避免「選取」時重復和遺漏;

(4)列出式子計算和作答.

經常運用的數學思想是:

①分類討論思想;②轉化思想;③對稱思想.

4.二項式定理知識點:

①(a+b)n=Cn0ax+Cn1an-1b1+Cn2an-2b2+Cn3an-3b3+…+Cnran-rbr+-…+Cnn-1abn-1+Cnnbn

特別地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn

②主要性質和主要結論:對稱性Cnm=Cnn-m

二項式系數在中間。(要注意n為奇數還是偶數,答案是中間一項還是中間兩項)

所有二項式系數的和:Cn0+Cn1+Cn2+Cn3+Cn4+…+Cnr+…+Cnn=2n

奇數項二項式系數的和=偶數項而是系數的和

Cn0+Cn2+Cn4+Cn6+Cn8+…=Cn1+Cn3+Cn5+Cn7+Cn9+…=2n-1

③通項為第r+1項:Tr+1=Cnran-rbr作用:處理與指定項、特定項、常數項、有理項等有關問題。

5.二項式定理的應用:解決有關近似計算、整除問題,運用二項展開式定理並且結合放縮法證明與指數有關的不等式。

6.注意二項式系數與項的系數(字母項的系數,指定項的系數等,指運算結果的系數)的區別,在求某幾項的系數的和時注意賦值法的應用。

高考數學知識點歸納相關 文章 :

★ 高考數學知識點歸納總結大全

★ 高考數學知識點總結歸納

★ 高考數學知識點整理

★ 高考數學知識點總結大全

★ 高考數學知識點總結大全

★ 高考數學知識點總結最新整理

★ 最新高考數學知識點歸納總結

★ 高考數學知識點歸納總結

★ 高考數學知識點歸納總結

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

5. 高中數學知識點大全

有的學生認為高中數學難做難做。其實高中數學整體上很簡單,很簡單,很多知識只要讀兩遍就可以了。下面是我整理的高中數學知識點大全,希望對你們有所幫助!

高中數學知識點

1、基本初等函數

指數、對數、冪函數三大函數的運算性質及圖像

函數的幾大要素和相關考點基本都在函數圖像上有所體現,單調性、增減性、極值、零點等等。關於這三大函數的運算公式,多記多用,多做一點練習,基本就沒問題。

函數圖像是這一章的重難點,而且圖像問題是不能靠記憶的,必須要理解,要會熟練的畫出函數圖像,定義域、值域、零點等等。對於冪函數還要搞清楚當指數冪大於一和小於一時圖像的不同及函數值的大小關系,這也是常考點。另外指數函數和對數函數的對立關系及其相互之間要怎樣轉化等問題,需要著重回看課本例題。

2、函數的應用

這一章主要考是函數與方程的結合,其實就是函數的零點,也就是函數圖像與X軸的交點。這三者之間的轉化關系是這一章的重點,要學會在這三者之間靈活轉化,以求能最簡單的解決問題。關於證明零點的 方法 ,直接計算加得必有零點,連續函數在x軸上方下方有定義則有零點等等,這些難點對應的證明方法都要記住,多練習。二次函數的零點的Δ判別法,這個需要你看懂定義,多畫多做題。

3、空間幾何

三視圖和直觀圖的繪制不算難,但是從三視圖復原出實物從而計算就需要比較強的空間感,要能從三張平面圖中慢慢在腦海中畫出實物,這就要求學生特別是空間感弱的學生多看書上的例圖,把實物圖和平面圖結合起來看,先熟練地正推,再慢慢的逆推(建議用紙做一個立方體來找感覺)。

在做題時結合草圖是有必要的,不能單憑想像。後面的錐體、柱體、台體的表面積和體積,把公式記牢問題就不大。

4、點、直線、平面之間的位置關系

這一章除了面與面的相交外,對空間概念的要求不強,大部分都可以直接畫圖,這就要求學生多看圖。自己畫草圖的時候要嚴格注意好實線虛線,這是個規范性問題。

關於這一章的內容,牢記直線與直線、面與面、直線與 面相 交、垂直、平行的幾大定理及幾大性質,同時能用圖形語言、文字語言、數學表達式表示出來。只要這些全部過關這一章就解決了一大半。這一章的難點在於二面角這個概念,大多同學即使知道有這個概念,也無法理解怎麼在二面裡面做出這個角。對這種情況只有從定義入手,先要把定義記牢,再多做多看,這個沒有什麼捷徑可走。

5、圓與方程

能熟練地把一般式方程轉化為標准方程,通常的考試形式是等式的一邊含根號,另一邊不含,這時就要注意開方後定義域或值域的限制。通過點到點的距離、點到直線的距離、圓半徑的大小關系來判斷點與圓、直線與圓、圓與圓的位置關系。另外注意圓的對稱性引起的相切、相交等的多種情況,自己把幾種對稱的形式羅列出來,多思考就不難理解了。

6、三角函數

考試必在這一塊出題,且題量不小!誘導公式和基本三角函數圖像的一些性質,沒有太大難度,只要會畫圖就行。難度都在三角函數形函數的振幅、頻率、周期、相位、初相上,及根據最值計算A、B的值和周期,及恆等變化時的圖像及性質變化,這部分的知識點內容較多,需要多花時間,不要再定義上死扣,要從圖像和例題入手。

7、平面向量

向量的運算性質及三角形法則、平行四邊形法則的難度都不大,只要在計算的時候記住要「同起點的向量」這一條就OK了。向量共線和垂直的數學表達,是計算當中經常用到的公式。向量的共線定理、基本定理、數量積公式。分點坐標公式是重點內容,也是難點內容,要花心思記憶。

8、三角恆等變換

這一章公式特別多,像差倍半形公式這類內容常會出現,所以必須要記牢。由於量比較大,記憶難度大,所以建議用紙寫好後貼在桌子上,天天都要看。要提一點,就是三角恆等變換是有一定規律的,記憶的時候可以集合三角函數去記。

9、解三角形

掌握正弦、餘弦公式及其變式、推論、三角面積公式即可。

10、數列

等差、等比數列的通項公式、前n項及一些性質常出現於填空、解答題中,這部分內容學起來比較簡單,但考驗對其推導、計算、活用的層面較深,因此要仔細。考試題中,通項公式、前n項和的內容出現頻次較多,這類題看到後要帶有目的的去推導就沒問題了。

11、不等式

這一章一般用線性規劃的形式來考察學生,這種題通常是和實際問題聯系的,所以要會讀題,從題中找不等式,畫出線性規劃圖,然後再根據實際問題的限制要求來求最值。



高中數學公式大全

乘法與因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b

|a-b|≥|a|-|b| -|a|≤a≤|a|

一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a

根與系數的關系 X1+X2=-b/a X1_X2=c/a 註:韋達定理

判別式

b2-4ac=0 註:方程有兩個相等的實根

b2-4ac>0 註:方程有兩個不等的實根

b2-4ac<0 註:方程沒有實根,有共軛復數根

三角函數公式

兩角和公式

sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)

ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

倍角公式

tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

半形公式

sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))

和差化積

2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB

某些數列前n項和

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2

2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

13+23+33+43+53+63+…n3=n2(n+1)2/4 1_2+2_3+3_4+4_5+5_6+6_7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理 a/sinA=b/sinB=c/sinC=2R 註: 其中 R 表示三角形的外接圓半徑

餘弦定理 b2=a2+c2-2accosB 註:角B是邊a和邊c的夾角

圓的標准方程 (x-a)2+(y-b)2=r2 註:(a,b)是圓心坐標

圓的一般方程 x2+y2+Dx+Ey+F=0 註:D2+E2-4F>0

拋物線標准方程 y2=2px y2=-2px x2=2py x2=-2py

直稜柱側面積 S=c_h 斜稜柱側面積 S=c'_h

正棱錐側面積 S=1/2c_h' 正稜台側面積 S=1/2(c+c')h'

圓台側面積 S=1/2(c+c')l=pi(R+r)l 球的表面積 S=4pi_r2

圓柱側面積 S=c_h=2pi_h 圓錐側面積 S=1/2_c_l=pi_r_l

弧長公式 l=a_r a是圓心角的弧度數r >0 扇形面積公式 s=1/2_l_r

錐體體積公式 V=1/3_S_H 圓錐體體積公式 V=1/3_pi_r2h

斜稜柱體積 V=S'L 註:其中,S'是直截面面積, L是側棱長

柱體體積公式 V=s_h 圓柱體 V=pi_r2h

高考前數學知識點 總結

選擇填空題

1、易錯點歸納:

九大模塊易混淆難記憶考點分析,如概率和頻率概念混淆、數列求和公式記憶錯誤等,強化基礎知識點記憶,避開因為知識點失誤造成的客觀性解題錯誤。

針對審題、解題思路不嚴謹如集合題型未考慮空集情況、函數問題未考慮定義域等主觀性因素造成的失誤進行專項訓練。

2、答題方法:

選擇題十大速解方法:

排除法、增加條件法、以小見大法、極限法、關鍵點法、對稱法、小結論法、歸納法、感覺法、分析選項法;

填空題四大速解方法:直接法、特殊化法、數形結合法、等價轉化法。

解答題

專題一、三角變換與三角函數的性質問題

1、解題路線圖

①不同角化同角

②降冪擴角

③化f(x)=Asin(ωx+φ)+h

④結合性質求解。

2、構建答題模板

①化簡:三角函數式的化簡,一般化成y=Asin(ωx+φ)+h的形式,即化為「一角、一次、一函數」的形式。

②整體代換:將ωx+φ看作一個整體,利用y=sin x,y=cos x的性質確定條件。

③求解:利用ωx+φ的范圍求條件解得函數y=Asin(ωx+φ)+h的性質,寫出結果。

④ 反思 :反思回顧,查看關鍵點,易錯點,對結果進行估算,檢查規范性。

專題二、解三角形問題

1、解題路線圖

(1) ①化簡變形;②用餘弦定理轉化為邊的關系;③變形證明。

(2) ①用餘弦定理表示角;②用基本不等式求范圍;③確定角的取值范圍。

2、構建答題模板

①定條件:即確定三角形中的已知和所求,在圖形中標注出來,然後確定轉化的方向。

②定工具:即根據條件和所求,合理選擇轉化的工具,實施邊角之間的互化。

③求結果。

④再反思:在實施邊角互化的時候應注意轉化的方向,一般有兩種思路:一是全部轉化為邊之間的關系;二是全部轉化為角之間的關系,然後進行恆等變形。

專題三、數列的通項、求和問題

1、解題路線圖

①先求某一項,或者找到數列的關系式。

②求通項公式。

③求數列和通式。

2、構建答題模板

①找遞推:根據已知條件確定數列相鄰兩項之間的關系,即找數列的遞推公式。

②求通項:根據數列遞推公式轉化為等差或等比數列求通項公式,或利用累加法或累乘法求通項公式。

③定方法:根據數列表達式的結構特徵確定求和方法(如公式法、裂項相消法、錯位相減法、分組法等)。

④寫步驟:規范寫出求和步驟。

⑤再反思:反思回顧,查看關鍵點、易錯點及解題規范。

專題四、利用空間向量求角問題

1、解題路線圖

①建立坐標系,並用坐標來表示向量。

②空間向量的坐標運算。

③用向量工具求空間的角和距離。

2、構建答題模板

①找垂直:找出(或作出)具有公共交點的三條兩兩垂直的直線。

②寫坐標:建立空間直角坐標系,寫出特徵點坐標。

③求向量:求直線的方向向量或平面的'法向量。

④求夾角:計算向量的夾角。

⑤得結論:得到所求兩個平面所成的角或直線和平面所成的角。

專題五、圓錐曲線中的范圍問題

1、解題路線圖

①設方程。

②解系數。

③得結論。

2、構建答題模板

①提關系:從題設條件中提取不等關系式。

②找函數:用一個變數表示目標變數,代入不等關系式。

③得范圍:通過求解含目標變數的不等式,得所求參數的范圍。

④再回顧:注意目標變數的范圍所受題中其他因素的制約。

專題六、解析幾何中的探索性問題

1、解題路線圖

①一般先假設這種情況成立(點存在、直線存在、位置關系存在等)

②將上面的假設代入已知條件求解。

③得出結論。

2、構建答題模板

①先假定:假設結論成立。

②再推理:以假設結論成立為條件,進行推理求解。

③下結論:若推出合理結果, 經驗 證成立則肯。 定假設;若推出矛盾則否定假設。

④再回顧:查看關鍵點,易錯點(特殊情況、隱含條件等),審視解題規范性。

專題七、離散型隨機變數的均值與方差

1、解題路線圖

(1)①標記事件;②對事件分解;③計算概率。

(2)①確定ξ取值;②計算概率;③得分布列;④求數學期望。

2、構建答題模板

①定元:根據已知條件確定離散型隨機變數的取值。

②定性:明確每個隨機變數取值所對應的事件。

③定型:確定事件的概率模型和計算公式。

④計算:計算隨機變數取每一個值的概率。

⑤列表:列出分布列。

⑥求解:根據均值、方差公式求解其值。

專題八、函數的單調性、極值、最值問題

1、解題路線圖

(1)①先對函數求導;②計算出某一點的斜率;③得出切線方程。

(2)①先對函數求導;②談論導數的正負性;③列表觀察原函數值;④得到原函數的單調區間和極值。

2、構建答題模板

①求導數:求f(x)的導數f′(x)。(注意f(x)的定義域)

②解方程:解f′(x)=0,得方程的根

③列表格:利用f′(x)=0的根將f(x)定義域分成若干個小開區間,並列出表格。

④得結論:從表格觀察f(x)的單調性、極值、最值等。

⑤再回顧:對需討論根的大小問題要特殊注意,另外觀察f(x)的間斷點及步驟規范性。

以上模板僅供參考,希望大家能針對自己的情況整理出來最適合的「套路」。

高中數學 學習心得

數學是一們基礎學科,我們從小就開始接觸到它。現在我們已經步入高中,由於高中數學對知識的難度、深度、廣度要求更高,有一部分同學由於不適應這種變化,數學成績總是不如人意。甚至產生這樣的困惑:「我在初中時數學成績很好,可現在怎麼了?」其實,學習是一個不斷接收新知識的過程。正是由於你在進入高中後 學習方法 或 學習態度 的影響,才會造成學得累死而成績不好的後果。那麼,究竟該如何學好高中數學呢?以下我談談我的高中數學學習心得。

一、 認清學習的能力狀態。

1、 心理素質。我們在高中學習環境下取決於我們是否具有面對挫折、冷靜分析問題的辦法。當我們面對困難時不應產生畏懼感,面對失敗時不應灰心喪氣,而要勇於正視自己,及時作出總結教訓,改變學習方法。

2、 學習方式、習慣的反思與認識。(1) 學習的主動性。我們在進入高中以後,不能還像初中時那樣有很強的依賴心理,不訂 學習計劃 ,坐等上課,課前不預習,上課忙於記筆記而忽略了真正的聽課,顧此失彼,被動學習。(2) 學習的條理性。我們在每學習一課內容時,要學會將知識有條理地分為若干類,剖析概念的內涵外延,重點難點要突出。不要忙於記筆記,而對要點沒有聽清楚或聽不全。筆記記了一大摞,問題也有一大堆。如果還不能及時鞏固、總結,而忙於套著題型趕作業,對概念、定理、公式不能理解而死記硬背,則會事倍功半,收效甚微。(3) 忽視基礎。在我身邊,常有些「自我感覺良好」的同學,忽視基礎知識、基本技能和基本方法,不能牢牢地抓住課本,而是偏重於對難題的攻解,好高騖遠,重「量」而輕「質」,陷入題海,往往在考試中不是演算錯誤就是中途「卡殼」。(4) 不良習慣。主要有對答案,卷面書寫不工整,格式不規范,不相信自己的結論,缺乏對問題解決的信心和決心,遇到問題不能獨立思考,養成一種依賴於老師解說的心理,做作業不講究效率,學習效率不高。

二、 努力提高自己的學習能力。

1、 抓要點提高學習效率。(1) 抓教材處理。正所謂「萬變不離其中」。要知道,教材始終是我們學習的根本依據。教學是活的,思維也是活的,學習能力是隨著知識的積累而同時形成的。我們要通過老師教學,理解所學內容在教材中的地位,並將前後知識聯系起來,把握教材,才能掌握學習的主動性。(2) 抓問題暴露。對於那些典型的問題,必須及時解決,而不能把問題遺留下來,而要對遺留的問題及時、有效的解決。(3) 抓 思維訓練 。數學的特點是具有高度的抽象性、邏輯性和廣泛的適用性,對能力要求較高。我們在平時的訓練中,要注重一個思維的過程,學習能力是在不斷運用中才能培養出來的。(5) 抓45分鍾課堂效率。我們學習的大部分時間都在學校,如果不能很好地抓住課堂時間,而寄希望於課外去補,則會使學習效率大打折扣。

高中數學知識點大全相關 文章 :

★ 高二數學知識點總結

★ 高一數學必修一知識點匯總

★ 高中數學學習方法:知識點總結最全版

★ 高中數學知識點總結

★ 高一數學知識點總結歸納

★ 高三數學知識點考點總結大全

★ 高中數學基礎知識大全

★ 高三數學知識點梳理匯總

★ 高中數學必考知識點歸納整理

★ 高一數學知識點總結期末必備

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

6. 初中數學知識點總結

初中數學知識點總結
一、基本知識
一、數與代數A、數與式:1、有理數有理數:①整數→正整數/0/負整數②分數→正分數/負分數
數軸:①畫一條水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規定直線上向右的方向為正方向,就得到數軸.②任何一個有理數都可以用數軸上的一個點來表示.③如果兩個數只有符號不同,那麼我們稱其中一個數為另外一個數的相反數,也稱這兩個數互為相反數.在數軸上,表示互為相反數的兩個點,位於原點的兩側,並且與原點距離相等.④數軸上兩個點表示的數,右邊的總比左邊的大.正數大於0,負數小於0,正數大於負數.
絕對值:①在數軸上,一個數所對應的點與原點的距離叫做該數的絕對值.②正數的絕對值是他的本身、負數的絕對值是他的相反數、0的絕對值是0.兩個負數比較大小,絕對值大的反而小.
有理數的運算:加法:①同號相加,取相同的符號,把絕對值相加.②異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數的符號,並用較大的絕對值減去較小的絕對值.③一個數與0相加不變.
減法:減去一個數,等於加上這個數的相反數.
乘法:①兩數相乘,同號得正,異號得負,絕對值相乘.②任何數與0相乘得0.③乘積為1的兩個有理數互為倒數.
除法:①除以一個數等於乘以一個數的倒數.②0不能作除數.
乘方:求N個相同因數A的積的運算叫做乘方,乘方的結果叫冪,A叫底數,N叫次數.
混合順序:先算乘法,再算乘除,最後算加減,有括弧要先算括弧里的.
2、實數 無理數:無限不循環小數叫無理數
平方根:①如果一個正數X的平方等於A,那麼這個正數X就叫做A的算術平方根.②如果一個數X的平方等於A,那麼這個數X就叫做A的平方根.③一個正數有2個平方根/0的平方根為0/負數沒有平方根.④求一個數A的平方根運算,叫做開平方,其中A叫做被開方數.
立方根:①如果一個數X的立方等於A,那麼這個數X就叫做A的立方根.②正數的立方根是正數、0的立方根是0、負數的立方根是負數.③求一個數A的立方根的運算叫開立方,其中A叫做被開方數.
實數:①實數分有理數和無理數.②在實數范圍內,相反數,倒數,絕對值的意義和有理數范圍內的相反數,倒數,絕對值的意義完全一樣.③每一個實數都可以在數軸上的一個點來表示.
3、代數式
代數式:單獨一個數或者一個字母也是代數式.
合並同類項:①所含字母相同,並且相同字母的指數也相同的項,叫做同類項.②把同類項合並成一項就叫做合並同類項.③在合並同類項時,我們把同類項的系數相加,字母和字母的指數不變.
4、整式與分式
整式:①數與字母的乘積的代數式叫單項式,幾個單項式的和叫多項式,單項式和多項式統稱整式.②一個單項式中,所有字母的指數和叫做這個單項式的次數.③一個多項式中,次數最高的項的次數叫做這個多項式的次數.
整式運算:加減運算時,如果遇到括弧先去括弧,再合並同類項.
冪的運算:AM+AN=A(M+N)
(AM)N=AMN
(A/B)N=AN/BN 除法一樣.
整式的乘法:①單項式與單項式相乘,把他們的系數,相同字母的冪分別相乘,其餘字母連同他的指數不變,作為積的因式.②單項式與多項式相乘,就是根據分配律用單項式去乘多項式的每一項,再把所得的積相加.③多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加.
公式兩條:平方差公式/完全平方公式
整式的除法:①單項式相除,把系數,同底數冪分別相除後,作為商的因式;對於只在被除式里含有的字母,則連同他的指數一起作為商的一個因式.②多項式除以單項式,先把這個多項式的每一項分別除以單項式,再把所得的商相加.
分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式.
方法:提公因式法、運用公式法、分組分解法、十字相乘法.
分式:①整式A除以整式B,如果除式B中含有分母,那麼這個就是分式,對於任何一個分式,分母不為0.②分式的分子與分母同乘以或除以同一個不等於0的整式,分式的值不變.
分式的運算:
乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母.
除法:除以一個分式等於乘以這個分式的倒數.
加減法:①同分母分式相加減,分母不變,把分子相加減.②異分母的分式先通分,化為同分母的分式,再加減.
分式方程:①分母中含有未知數的方程叫分式方程.②使方程的分母為0的解稱為原方程的增根.
B、方程與不等式
1、方程與方程組
一元一次方程:①在一個方程中,只含有一個未知數,並且未知數的指數是1,這樣的方程叫一元一次方程.②等式兩邊同時加上或減去或乘以或除以(不為0)一個代數式,所得結果仍是等式.
解一元一次方程的步驟:去分母,移項,合並同類項,未知數系數化為1.
二元一次方程:含有兩個未知數,並且所含未知數的項的次數都是1的方程叫做二元一次方程.
二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組.
適合一個二元一次方程的一組未知數的值,叫做這個二元一次方程的一個解.
二元一次方程組中各個方程的公共解,叫做這個二元一次方程的解.
解二元一次方程組的方法:代入消元法/加減消元法.
一元二次方程:只有一個未知數,並且未知數的項的最高系數為2的方程
1)一元二次方程的二次函數的關系
大家已經學過二次函數(即拋物線)了,對他也有很深的了解,好像解法,在圖象中表示等等,其實一元二次方程也可以用二次函數來表示,其實一元二次方程也是二次函數的一個特殊情況,就是當Y的0的時候就構成了一元二次方程了.那如果在平面直角坐標系中表示出來,一元二次方程就是二次函數中,圖象與X軸的交點.也就是該方程的解了
2)一元二次方程的解法
大家知道,二次函數有頂點式(-b/2a,4ac-b2/4a),這大家要記住,很重要,因為在上面已經說過了,一元二次方程也是二次函數的一部分,所以他也有自己的一個解法,利用他可以求出所有的一元一次方程的解
(1)配方法
利用配方,使方程變為完全平方公式,在用直接開平方法去求出解
(2)分解因式法
提取公因式,套用公式法,和十字相乘法.在解一元二次方程的時候也一樣,利用這點,把方程化為幾個乘積的形式去解
(3)公式法
這方法也可以是在解一元二次方程的萬能方法了,方程的根X1={-b+√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a
3)解一元二次方程的步驟:
(1)配方法的步驟:
先把常數項移到方程的右邊,再把二次項的系數化為1,再同時加上1次項的系數的一半的平方,最後配成完全平方公式
(2)分解因式法的步驟:
把方程右邊化為0,然後看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式
(3)公式法
就把一元二次方程的各系數分別代入,這里二次項的系數為a,一次項的系數為b,常數項的系數為c
4)韋達定理
利用韋達定理去了解,韋達定理就是在一元二次方程中,二根之和=-b/a,二根之積=c/a
也可以表示為x1+x2=-b/a,x1x2=c/a.利用韋達定理,可以求出一元二次方程中的各系數,在題目中很常用
5)一元一次方程根的情況
利用根的判別式去了解,根的判別式可在書面上可以寫為「△」,讀作「diao ta」,而△=b2-4ac,這里可以分為3種情況:
I當△>0時,一元二次方程有2個不相等的實數根;
II當△=0時,一元二次方程有2個相同的實數根;
III當△<0時,一元二次方程沒有實數根(在這里,學到高中就會知道,這里有2個虛數根)
2、不等式與不等式組
不等式:①用符號〉,=,〈號連接的式子叫不等式.②不等式的兩邊都加上或減去同一個整式,不等號的方向不變.③不等式的兩邊都乘以或者除以一個正數,不等號方向不變.④不等式的兩邊都乘以或除以同一個負數,不等號方向相反.
不等式的解集:①能使不等式成立的未知數的值,叫做不等式的解.②一個含有未知數的不等式的所有解,組成這個不等式的解集.③求不等式解集的過程叫做解不等式.
一元一次不等式:左右兩邊都是整式,只含有一個未知數,且未知數的最高次數是1的不等式叫一元一次不等式.
一元一次不等式組:①關於同一個未知數的幾個一元一次不等式合在一起,就組成了一元一次不等式組.②一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集.③求不等式組解集的過程,叫做解不等式組.
一元一次不等式的符號方向:
在一元一次不等式中,不像等式那樣,等號是不變的,他是隨著你加或乘的運算改變.
在不等式中,如果加上同一個數(或加上一個正數),不等式符號不改向;例如:A>B,A+C>B+C
在不等式中,如果減去同一個數(或加上一個負數),不等式符號不改向;例如:A>B,A-C>B-C
在不等式中,如果乘以同一個正數,不等號不改向;例如:A>B,A*C>B*C(C>0)
在不等式中,如果乘以同一個負數,不等號改向;例如:A>B,A*C<b*c(c<0)
如果不等式乘以0,那麼不等號改為等號
所以在題目中,要求出乘以的數,那麼就要看看題中是否出現一元一次不等式,如果出現了,那麼不等式乘以的數就不等為0,否則不等式不成立;
3、函數
變數:因變數,自變數.
在用圖象表示變數之間的關系時,通常用水平方向的數軸上的點自變數,用豎直方向的數軸上的點表示因變數.
一次函數:①若兩個變數X,Y間的關系式可以表示成Y=KX+B(B為常數,K不等於0)的形式,則稱Y是X的一次函數.②當B=0時,稱Y是X的正比例函數.
一次函數的圖象:①把一個函數的自變數X與對應的因變數Y的值分別作為點的橫坐標與縱坐標,在直角坐標系內描出它的對應點,所有這些點組成的圖形叫做該函數的圖象.②正比例函數Y=KX的圖象是經過原點的一條直線.③在一次函數中,當K〈0,B〈O,則經234象限;當K〈0,B〉0時,則經124象限;當K〉0,B〈0時,則經134象限;當K〉0,B〉0時,則經123象限.④當K〉0時,Y的值隨X值的增大而增大,當X〈0時,Y的值隨X值的增大而減少.
二空間與圖形
A、圖形的認識
1、點,線,面
點,線,面:①圖形是由點,線,面構成的.②面與面相交得線,線與線相交得點.③點動成線,線動成面,面動成體.
展開與折疊:①在稜柱中,任何相鄰的兩個面的交線叫做棱,側棱是相鄰兩個側面的交線,稜柱的所有側棱長相等,稜柱的上下底面的形狀相同,側面的形狀都是長方體.②N稜柱就是底面圖形有N條邊的稜柱.
截一個幾何體:用一個平面去截一個圖形,截出的面叫做截面.
視圖:主視圖,左視圖,俯視圖.
多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形.
弧、扇形:①由一條弧和經過這條弧的端點的兩條半徑所組成的圖形叫扇形.②圓可以分割成若干個扇形.
2、角
線:①線段有兩個端點.②將線段向一個方向無限延長就形成了射線.射線只有一個端點.③將線段的兩端無限延長就形成了直線.直線沒有端點.④經過兩點有且只有一條直線.
比較長短:①兩點之間的所有連線中,線段最短.②兩點之間線段的長度,叫做這兩點之間的距離.
角的度量與表示:①角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點.②一度的1/60是一分,一分的1/60是一秒.
角的比較:①角也可以看成是由一條射線繞著他的端點旋轉而成的.②一條射線繞著他的端點旋轉,當終邊和始邊成一條直線時,所成的角叫做平角.始邊繼續旋轉,當他又和始邊重合時,所成的角叫做周角.③從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線.
平行:①同一平面內,不相交的兩條直線叫做平行線.②經過直線外一點,有且只有一條直線與這條直線平行.③如果兩條直線都與第3條直線平行,那麼這兩條直線互相平行.
垂直:①如果兩條直線相交成直角,那麼這兩條直線互相垂直.②互相垂直的兩條直線的交點叫做垂足.③平面內,過一點有且只有一條直線與已知直線垂直.
垂直平分線:垂直和平分一條線段的直線叫垂直平分線.
垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據射線和直線可以無限延長有關,再看後面的,垂直平分線是一條直線,所以在畫垂直平分線的時候,確定了2點後(關於畫法,後面會講)一定要把線段穿出2點.
垂直平分線定理:
性質定理:在垂直平分線上的點到該線段兩端點的距離相等;
判定定理:到線段2端點距離相等的點在這線段的垂直平分線上
角平分線:把一個角平分的射線叫該角的角平分線.
定義中有幾個要點要注意一下的,就是角的角平分線是一條射線,不是線段也不是直線,很多時,在題目中會出現直線,這是角平分線的對稱軸才會用直線的,這也涉及到軌跡的問題,一個角個角平分線就是到角兩邊距離相等的點
性質定理:角平分線上的點到該角兩邊的距離相等
判定定理:到角的兩邊距離相等的點在該角的角平分線上
正方形:一組鄰邊相等的矩形是正方形
性質:正方形具有平行四邊形、菱形、矩形的一切性質
判定:1、對角線相等的菱形2、鄰邊相等的矩形
二、基本定理
1、過兩點有且只有一條直線
2、兩點之間線段最短
3、同角或等角的補角相等
4、同角或等角的餘角相等
5、過一點有且只有一條直線和已知直線垂直
6、直線外一點與直線上各點連接的所有線段中,垂線段最短
7、平行公理 經過直線外一點,有且只有一條直線與這條直線平行
8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9、同位角相等,兩直線平行
10、內錯角相等,兩直線平行
11、同旁內角互補,兩直線平行
12、兩直線平行,同位角相等
13、兩直線平行,內錯角相等
14、兩直線平行,同旁內角互補
15、定理 三角形兩邊的和大於第三邊
16、推論 三角形兩邊的差小於第三邊
17、三角形內角和定理 三角形三個內角的和等於180°
18、推論1 直角三角形的兩個銳角互余
19、推論2 三角形的一個外角等於和它不相鄰的兩個內角的和
20、推論3 三角形的一個外角大於任何一個和它不相鄰的內角
21、全等三角形的對應邊、對應角相等
22、邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等
23、角邊角公理( ASA)有兩角和它們的夾邊對應相等的 兩個三角形全等
24、推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等
25、邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等
26、斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等
27、定理1 在角的平分線上的點到這個角的兩邊的距離相等
28、定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上
29、角的平分線是到角的兩邊距離相等的所有點的集合
30、等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角)
31、推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊
32、等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33、推論3 等邊三角形的各角都相等,並且每一個角都等於60°
34、等腰三角形的判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)
35、推論1 三個角都相等的三角形是等邊三角形
36、推論 2 有一個角等於60°的等腰三角形是等邊三角形
37、在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半
38、直角三角形斜邊上的中線等於斜邊上的一半
39、定理 線段垂直平分線上的點和這條線段兩個端點的距離相等
40、逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42、定理1 關於某條直線對稱的兩個圖形是全等形
43、定理 2 如果兩個圖形於某直線對稱,那麼對稱軸是對應點連線的垂直平分線
44、定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上
45、逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱
46、勾股定理 直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a2+b2=c2
47、勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a2+b2=c2,那麼這個三角形是直角三角形
48、定理 四邊形的內角和等於360°
49、四邊形的外角和等於360°
50、多邊形內角和定理 n邊形的內角的和等於(n-2)×180°
51、推論 任意多邊的外角和等於360°
52、平行四邊形性質定理1 平行四邊形的對角相等
53、平行四邊形性質定理2 平行四邊形的對邊相等
54、推論 夾在兩條平行線間的平行線段相等
55、平行四邊形性質定理3 平行四邊形的對角線互相平分
56、平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形
57、平行四邊形判定定理2 兩組對邊分別相等的四邊 形是平行四邊形
58、平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形
59、平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形
60、矩形性質定理1 矩形的四個角都是直角
61、矩形性質定理2 矩形的對角線相等
62、矩形判定定理1 有三個角是直角的四邊形是矩形
63、矩形判定定理2 對角線相等的平行四邊形是矩形
64、菱形性質定理1 菱形的四條邊都相等
65、菱形性質定理2 菱形的對角線互相垂直,並且每一條對角線平分一組對角
66、菱形面積=對角線乘積的一半,即S=(a×b)÷2
67、菱形判定定理1 四邊都相等的四邊形是菱形
68、菱形判定定理2 對角線互相垂直的平行四邊形是菱形
69、正方形性質定理1 正方形的四個角都是直角,四條邊都相等
70、正方形性質定理2正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角
71、定理1 關於中心對稱的兩個圖形是全等的
72、定理2 關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分
73、逆定理 如果兩個圖形的對應點連線都經過某一點,並且被這一點平分,那麼這兩個圖形關於這一點對稱
74、等腰梯形性質定理 等腰梯形在同一底上的兩個角相等
75、等腰梯形的兩條對角線相等
76、等腰梯形判定定理 在同一底上的兩個角相等的梯 形是等腰梯形
77、對角線相等的梯形是等腰梯形
78、平行線等分線段定理 如果一組平行線在一條直線上截得的線段相等,那麼在其他直線上截得的線段也相等
79、推論1 經過梯形一腰的中點與底平行的直線,必平分另一腰
80、推論2 經過三角形一邊的中點與另一邊平行的直線,必平分第三邊
81、三角形中位線定理 三角形的中位線平行於第三邊,並且等於它的一半
82、梯形中位線定理 梯形的中位線平行於兩底,並且等於兩底和的一半 L=(a+b)÷2 S=L×h
83、(1)比例的基本性質:如果a:b=c:d,那麼ad=bc 如果 ad=bc ,那麼a:b=c:d
84、(2)合比性質:如果a/b=c/d,那麼(a±b)/b=(c±d)/d
85、(3)等比性質:如果a/b=c/d=…=m/n(b+d+…+n≠0),
那麼(a+c+…+m)/(b+d+…+n)=a/b
86、平行線分線段成比例定理 三條平行線截兩條直線,所得的對應線段成比例
87、推論 平行於三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例
88、定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那麼這條直線平行於三角形的第三邊
89、平行於三角形的一邊,並且和其他兩邊相交的直線, 所截得的三角形的三邊與原三角形三邊對應成比例
90、定理 平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似
91、相似三角形判定定理1 兩角對應相等,兩三角形相似(ASA)
92、直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
93、判定定理2 兩邊對應成比例且夾角相等,兩三角形相似(SAS)
94、判定定理3 三邊對應成比例,兩三角形相似(SSS)
95、定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那麼這兩個直角三角形相似
96、性質定理1 相似三角形對應高的比,對應中線的比與對應角平分線的比都等於相似比
97、性質定理2 相似三角形周長的比等於相似比
98、性質定理3 相似三角形面積的比等於相似比的平方
99、任意銳角的正弦值等於它的餘角的餘弦值,任意銳角的餘弦值等於它的餘角的正弦值
100、任意銳角的正切值等於它的餘角的餘切值,任意銳角的餘切值等於它的餘角的正切值
101、圓是定點的距離等於定長的點的集合
102、圓的內部可以看作是圓心的距離小於半徑的點的集合
103、圓的外部可以看作是圓心的距離大於半徑的點的集合
104、同圓或等圓的半徑相等
105、到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓
106、和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線
107、到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
108、到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線
109、定理 不在同一直線上的三點確定一個圓.
110、垂徑定理 垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧
111、推論1
①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧
②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧
112、推論2 圓的兩條平行弦所夾的弧相等
113、圓是以圓心為對稱中心的中心對稱圖形
114、定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
115、推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那麼它們所對應的其餘各組量都相等
116、定理 一條弧所對的圓周角等於它所對的圓心角的一半
117、推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
118、推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑
119、推論3 如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形
120、定理 圓的內接四邊形的對角互補,並且任何一個外角都等於它的內對角
121、①直線L和⊙O相交 d<r
②直線L和⊙O相切 d=r
③直線L和⊙O相離 d>r
122、切線的判定定理 經過半徑的外端並且垂直於這條半徑的直線是圓的切線
123、切線的性質定理 圓的切線垂直於經過切點的半徑
124、推論1 經過圓心且垂直於切線的直線必經過切點
125、推論2 經過切點且垂直於切線的直線必經過圓心
126、切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等圓心和這一點的連線平分兩條切線的夾角
127、圓的外切四邊形的兩組對邊的和相等
128、弦切角定理 弦切角等於它所夾的弧對的圓周角
129、推論 如果兩個弦切角所夾的弧相等,那麼這兩個弦切角也相等
130、相交弦定理 圓內的兩條相交弦,被交點分成的兩條線段長的積相等
131、推論 如果弦與直徑垂直相交,那麼弦的一半是它分直徑所成的兩條線段的比例中項
132、切割線定理 從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項
133、推論 從圓外一點引圓的兩條割線,這一點到每條 割線與圓的交點的兩條線段長的積相等
134、如果兩個圓相切,那麼切點一定在連心線上
135、①兩圓外離 d>R+r ②兩圓外切 d=R+r③兩圓相交 R-r<d<R+r(R>r)
④兩圓內切 d=R-r(R>r) ⑤兩圓內含 d<R-r(R>r)
136、定理 相交兩圓的連心線垂直平分兩圓的公共弦
137、定理 把圓分成n(n≥3):
⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形
⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
138、定理 任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓
139、正n邊形的每個內角都等於(n-2)×180°/n
140、定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
141、正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長
142、正三角形面積√3a/4 a表示邊長
143、如果在一個頂點周圍有k個正n邊形的角,由於這些角的和應為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
144、弧長計算公式:L=n兀R/180
145、扇形面積公式:S扇形=n兀R^2/360=LR/2
146、內公切線長= d-(R-r) 外公切線長= d-(R+r)</b*c(c<0)

7. 初三數學重點知識點歸納大全

數學 最重要的就是 知識點 ,下面我就大家整理一下初三數學重點知識點歸納大全,僅供參考。

函數易錯知識點
1:各個待定系數表示的的意義。

2:熟練掌握各種函數解析式的求法,有幾個的待定系數就要幾個點值。

3:利用圖像求不等式的解集和方程(組)的解,利用圖像性質確定增減性。

4:兩個變數利用函數模型解實際問題,注意區別方程、函數、不等式模型解決不等領域的問題。

5:利用函數圖象進行分類(平行四邊形、相似、直角三角形、等腰三角形)以及分類的求解方法。
方程(組)與不等式(組)
1:各種方程(組)的解法要熟練掌握,方程(組)無解的意義是找不到等式成立的條件。

2:運用等式性質時,兩邊同除以一個數必須要注意不能為O的情況,還要關註解方程與方程組的基本思想。消元降次的主要陷阱在於消除了一個帶X公因式時回頭檢驗!

3:運用不等式的性質3時,容易忘記改不變號的方向而導致結果出錯。

4:關於一元二次方程的取值范圍的題目易忽視二次項系數不為0。

5:關於一元一次不等式組有解、無解的條件易忽視相等的情況。

6:解分式方程時首要步驟去分母,分數相相當於括弧,易忘記根檢驗,導致運算結果出錯。

7:不等式(組)的解得問題要先確定解集,確定解集的方法運用數軸。

8:利用函數圖象求不等式的解集和方程的解。

6:與坐標軸交點坐標一定要會求。面積最大值的求解方法,距離之和的最小值的求解方法,距離之差最大值的求解方法。

7:數形結合思想方法的運用,還應注意結合圖像性質解題。函數圖象與圖形結合學會從復雜圖形分解為簡單圖形的方法,圖形為圖像提供數據或者圖像為圖形提供數據。

8:自變數的取值范圍有:二次根式的被開方數是非負數,分式的分母不為0,0指數底數不為0,其它都是全體實數。
初三數學學習法則
認真學習,研究教材,研究考試,把握教學的要求,了解教學中的重點和學生學習中的難點,提高自身的業務素養。另外也要根據當前教改的要求、學生的實際,研究教學方法,達到提高教學效率的目的。

要注重知識的發生發展過程,全面、准確的理解基本概念,切忌就事論事,然後通過大量的練習來「理解」、「掌握」概念,這種做法只能起到事倍功半的效果,不但「記不住」大量的數學概念,而且不會靈活地運用概念解決問題。

在平時的學習例題時,要注重分析解決問題的方法,糾正不研究的學習過程,只追求結果的錯誤學習方法;要注重數學思想方法的滲透,廢棄死記硬背的學習方式。數學思想方法是數學的靈魂,數學的精髓,它是培養學生創新意識、實踐能力的源泉,因此也是中考的重點。在初中階段要注意方程思想、函數思想、整體待換思想、化歸思想、數形結合思想、分類討論思想、換元法、配方法、待定系數法等數學思想方法,這樣才能提高學生分析問題解決問題的能力。

8. 初中數學知識點總結大全 重點都在這了

初中生學習數學要特別注意知識點的總結,下面我為大家總結了初中 數學知識點 ,僅供大家參考。

數學基礎知識點

平方根:①如果一個正數X的平方等於A,那麼這個正數X就叫做A的算術平方根。②如果一個數X的平方等於A,那麼這個數X就叫做A的平方根。③一個正數有2個平方根/0的平方根為0/負數沒有平方根。④求一個數A的平方根運算,叫做開平方,其中A叫做被開方數。

立方根:①如果一個數X的立方等於A,那麼這個數X就叫做A的立方根。②正數的立方根是正數、0的立方根是0、負數的立方根是負數。③求一個數A的立方根的運算叫開立方,其中A叫做被開方數。

實數:①實數分有理數和無理數。②在實數范圍內,相反數,倒數,絕對值的意義和有理數范圍內的相反數,倒數,絕對值的意義完全一樣。③每一個實數都可以在數軸上的一個點來表示。

初中數學重點知識點

平行:①同一平面內,不相交的兩條直線叫做平行線。②經過直線外一點,有且只有一條直線與這條直線平行。③如果兩條直線都與第3條直線平行,那麼這兩條直線互相平行。

垂直:①如果兩條直線相交成直角,那麼這兩條直線互相垂直。②互相垂直的兩條直線的交點叫做垂足。③平面內,過一點有且只有一條直線與已知直線垂直。

垂直平分線:垂直和平分一條線段的直線叫垂直平分線。

垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據射線和直線可以無限延長有關,再看後面的,垂直平分線是一條直線,所以在畫垂直平分線的時候,確定了2點後(關於畫法,後面會講)一定要把線段穿出2點。

垂直平分線定理

性質定理:在垂直平分線上的點到該線段兩端點的距離相等;

判定定理:到線段2端點距離相等的點在這線段的垂直平分線上

角平分線:把一個角平分的射線叫該角的角平分線。

數學基本定理

1、過兩點有且只有一條直線

2、兩點之間線段最短

3、同角或等角的補角相等

4、同角或等角的餘角相等

5、過一點有且只有一條直線和已知直線垂直

6、直線外一點與直線上各點連接的所有線段中,垂線段最短

7、平行公理 經過直線外一點,有且只有一條直線與這條直線平行

8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行

9、同位角相等,兩直線平行

10、內錯角相等,兩直線平行

11、同旁內角互補,兩直線平行

12、兩直線平行,同位角相等

以上就是我為大家總結的 初中數學 知識點總結大全,僅供參考,希望對大家有所幫助。

9. 數學知識點總結

小學數學知識匯總
圖形的周長、面積、體積公式及相關知識
長方形周長 =(長+寬)×2
長方形面積 =長×寬
正方形周長 = 邊長 × 4
正方形面積 = 邊長×邊長
三角形面積 = 底×高÷2
平行四邊形面積 = 底 × 高

梯形面積 = (上底 +下底)×高÷2
圓的周長等於∏×直徑或∏×半徑×2 即C =∏d或C = 2∏r
圓的面積等於3.14×半徑的平方。
環形的面積等於3.14×(大半徑的平方-
小半徑的平方)
半圓的周長 = 圓的周長的一半 + 直徑
即:∏ r + 2 r
長方體的表面積 = (長×寬 + 長×高 + 寬×高)× 2
長方體的體積 = 長 × 寬 × 高

底面積×高

正方體的表面積 = 棱長×棱長× 6
正方體的體積 = 棱長×棱長×棱長
圓柱體的表面積=2個底面積 + 側面積

側面積=底面周長×高
圓柱體的體積 = 底面積 × 高

圓錐體的體積 = 底面積 × 高 ÷ 3
長方體和正方體都有6個面、8個頂點和12條棱。
相交於同一頂點的三條棱分別叫做長方體的長、寬、高。
正方體可以看作是特殊的長方體。
最少需要8個相同的小正方體才能拼成一個大正方體。
圓柱體上下兩個底面都是圓形,而且它們的面積都相等。
圓柱體的側面展開是長方形,它的長是圓柱底面的周長,它的高是圓柱的高。
圓錐的底面也是圓形,側面展開是扇形。
圓柱體的體積是和它等底等高的圓錐體的體積的3倍。
大圓的半徑是小圓的直徑,則大圓的面積是小圓的面積的4倍。
在正方形里剪一個最大的圓,正方形的邊長就是圓的直徑。
在長方形里剪一個最大的圓,長方形的寬就是圓的直徑。
把一個長方形拉成一個平行四邊形以後,面積比原來變小了。
長方形的周長要先除以2,然後再按比例分配;而長方體的棱長總和要先除以4,然後再分配。
圓的半徑擴大3倍,周長也擴大3倍,面積擴大9倍。
正方體的棱長擴大3倍,則表面積擴大9倍,體積擴大27倍。
圓柱體或圓錐體的底面半徑擴大2倍,體積擴大4倍。
常見的統計圖有條形統計圖、折線統計圖和扇形統計圖。
條形統計圖的特點是很容易看出各種數量的多少;折線統計圖的特點是不但可以看出各種數量的多少,而且能夠清楚地表示出數量增減變化的情況;扇形統計圖的特點是可以清楚地表示出各部分數量和總數之間的關系
幾何初步知識
直線沒有端點,兩端可以無限延長,不能測量長度。
射線有一個端點,一端可以無限延長,不能測量長度。
線段有兩個端點,不能延長,可以測量長度。
過一點可以畫無數條直線,過兩點可以畫一條直線。
在同一平面內,兩條直線的相互位置有相交和平行兩種。
在同一平面內,不相交的兩條直線叫做平行線。
一個頂點和從這個頂點出發的兩條射線組成的圖形叫做角。
大於0度小於90度的角叫銳角;大於90度小於180度的角叫鈍角。
三角形的內角和是180度;四邊形的內角和是360度。
直角是90度,平角是180度,周角是360度。
三角形按角可以分為直角三角形、銳角三角形和鈍角三角形。
三角形按邊可分為等邊三角形、等腰三角形和不等邊三角形;等邊三角形三條邊都相等,三個角都是60度。
長方形和正方形都是特殊的平行四邊形。
當圓、正方形和長方形的周長相等時,圓的面積最大,長方形的面積最小。
三角形具有穩定性,平行四邊形容易變形。
等底等高的情況下,三角形的面積是平行四邊形面積的一半。
圓是平面上的一種曲線圖形,圍成圓的曲線的長度叫做圓的周長;圓所在的平面的大小叫做圓的面積。
從圓心到圓上任意一點的線段叫做圓的半徑。
通過圓心,並且兩端都在圓上的線段叫做圓的直徑。
頂點在圓心的角叫做圓心角;圓內最長的線段是直徑。
圓有無數條半徑和無數條直徑。
在同一圓內,所有的半徑都相等,所有的直徑也都相等。
在同一圓內,直徑是半徑的2倍。
圓的周長與直徑的比值叫做圓周率,用字母∏來表示,是祖沖之最早計算出來的。∏≈ 3.14
圓心決定了圓的位置,半徑決定了圓的大小。
扇形的大小是由半徑和圓心角來決定的 。
圓規兩角間的距離指的是圓的半徑。
如果一個圖形沿著一條直線對折,兩側的圖形能夠完全重合,這個圖形就叫做軸對稱圖形,摺痕所在的直線叫做對稱軸。
圓有無數條對稱軸,長方形有兩條對稱軸,正方形有四條對稱軸,等腰三角形有一條對稱軸,等邊三角形有三條對稱軸,等腰梯形有一條對稱軸,半圓或扇形都有一條對稱軸。
量的計量
常用的長度單位有千米、米、分米、厘米和毫米。
常用的面積單位有平方千米,公頃、平方米,平方分米和平方厘米。
常用的體積單位有立方米,立方分米,立方厘米。
常用的容積單位有升和毫升。1升=1000毫升。
立方分米就是升,立方厘米就是毫升。
常用的重量單位有噸,千克和克。
常用的人民幣單位有元、角、分。
常用的時間單位有世紀、年、月、日、時、分、秒。
1世紀=100年,1年=12月,大月31天,小月30天。
一年有12個月,分為四個季度,每個季度三個月。
每四年中有三個平年和一個閏年。平年2月有28天,閏年2月有29天。
代數初步知識
含有未知數的等式叫做方程。
求方程的解的過程叫做解方程。
兩個數相除又叫做兩個數的比;表示兩個比相等的式 子叫做比例。
比的後項不能為0。
比的前項除以後項的商,叫做比值。比值可以是整數、小數或分數。
比的前項和後項都乘上或除以相同的數(0除外),比值不變,叫做比的基本性質。
在比例里,兩個內項的積等於兩個外項的積,叫做比例的基本性質 。
圖上距離和實際距離的比叫做比例尺。
比例尺有數值比例尺和線段比例尺兩種。
兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的比值一定,這兩種量就叫做乘正比例的量,它們的關系叫做正比例關系。即: x ÷ y = k (一定)
兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做乘反比例的量,它們的關系叫做反比例關系。即: x × y = k ( 一定 )
圓的半徑和面積不成比例 和 周長成正比例。
三角形的面積一定,底和高成反比例。
比例尺一定,圖上距離和實際距離成正比例。
一種商品先降價10%,再提價10%,價格比原來降低了。
甲比乙多25%,則乙比甲少20%。

數和數的運算
我們在數物體的時候,用來表示物體個數的1 ,2 ,3 …… 叫做自然數。0也是自然數,是最小的自然數,沒有最大的自然數。自然數都是整數。
把單位「l」平均分成若干份,表示這樣的一份或幾份的數叫做分數。表示其中一份的數是這個分數的分數單位。
兩個整數相除,它們的商可以用分數表示。即:a÷b = (b≠0)
分子和分母是互質數的分數叫做最簡分數。
真分數的倒數一定大於1,但假分數的倒數不一定小於1。
分數的分子和分母同時乘上或者除以相同的數(0除外),分數的大小不變,叫做分數的基本性質。
小數的末尾添上「0」或者去掉「0」,小數的大小不變,這叫做小數的基本性質。
一個小數,從小數部分的某一位起,一個數字或幾個數字依次不斷地重復出現,這樣的小數叫做循環小數。
循環節從小數部分第一位就開始的叫做純循環小數;循環節不是從小數部分第一位開始的叫做混循環小數。
表示一個數是另一個數的百分之幾的數叫做百分數,也叫做百分率或百分比。百分數沒有單位。
整數a除以整數b( b≠0 ),除得的商正好是整數而沒有餘數,我們就說a能被b整除,或者b能整除a 。
如果a能被b整除,我們就說a是b的倍數,b是a的約數。
一個數的約數的個數是有限的,其中最小的約數是1,最大的約數是它的本身。
一個數的倍數的個數是無限的,其中最小的倍數是它本身,沒有最大的倍數。
一個數,如果只有1和它本身兩個約數,叫做質數。
一個數,如果除了1和它本身,還有別的約數,叫做合數。
把一個合數寫成幾個質數相乘的形式,叫做分解質因數。
幾個數公有的倍數叫做這幾個數的公倍數,其中最小的一個叫做這幾個數的最小公倍數。
幾個數公有的約數叫做這幾個數的公約數,其中最大的一個數叫做這幾個數的最大公約數。
公約數只有1的兩個數,叫做互質數。
能被2整除的數叫做偶數,不能被2整除的數叫做奇數。一個自然數不是偶數就是奇數。
最小的偶數是0,最小的奇數是1 ,最小的質數是2 ,最小的合數是4 。
除了0和2以外,所有的偶數都是合數。
能同時被2、3、5整除的最小的兩位數是30,最小的三位數是120。
一個算式,如果只含有同一級運算,要按照從左往右的順序依次計算。如果含有兩級運算,要先算乘除,後算加減。如果有括弧,還要先算括弧裡面的,再算括弧外面的。
乘積是1的兩個數叫做互為倒數。
甲數除以乙數(0除外),等於甲數乘以乙數的倒數。
利息 = 本金 × 利率 × 時間
稅後利息 = 本金 × 利率 × 時間 ×80%

概念
數的讀法和寫法
1. 整數的讀法:從高位到低位,一級一級地讀。讀億級、萬級時,先按照個級的讀法去讀,再在後面加一個「億」或「萬」字。每一級末尾的0都不讀出來,其它數位連續有幾個0都只讀一個零。
2. 整數的寫法:從高位到低位,一級一級地寫,哪一個數位上一個單位也沒有,就在那個數位上寫0。
3. 小數的讀法:讀小數的時候,整數部分按照整數的讀法讀,小數點讀作「點」,小數部分從左向右順次讀出每一位數位上的數字。
4. 小數的寫法:寫小數的時候,整數部分按照整數的寫法來寫,小數點寫在個位右下角,小數部分順次寫出每一個數位上的數字。
5. 分數的讀法:讀分數時,先讀分母再讀「分之」然後讀分子,分子和分母按照整數的讀法來讀。
6. 分數的寫法:先寫分數線,再寫分母,最後寫分子,按照整數的寫法來寫。
7. 百分數的讀法:讀百分數時,先讀百分之,再讀百分號前面的數,讀數時按照整數的讀法來讀。
8. 百分數的寫法:百分數通常不寫成分數形式,而在原來的分子後面加上百分號「%」來表示。
(二)數的改寫
一個較大的多位數,為了讀寫方便,常常把它改寫成用「萬」或「億」作單位的數。有時還可以根據需要,省略這個數某一位後面的數,寫成近似數。
1. 准確數:在實際生活中,為了計數的簡便,可以把一個較大的數改寫成以萬或億為單位的數。改寫後的數是原數的准確數。 例如把 1254300000 改寫成以萬做單位的數是 125430 萬;改寫成 以億做單位 的數 12.543 億。
2. 近似數:根據實際需要,我們還可以把一個較大的數,省略某一位後面的尾數,用一個近似數來表示。 例如: 1302490015 省略億後面的尾數是 13 億。
3. 四捨五入法:要省略的尾數的最高位上的數是4 或者比4小,就把尾數去掉;如果尾數的最高位上的數是5或者比5大,就把尾數捨去,並向它的前一位進1。例如:省略 345900 萬後面的尾數約是 35 萬。省略 4725097420 億後面的尾數約是 47 億。
4. 大小比較
1. 比較整數大小:比較整數的大小,位數多的那個數就大,如果位數相同,就看最高位,最高位上的數大,那個數就大;最高位上的數相同,就看下一位,哪一位上的數大那個數就大。
2. 比較小數的大小:先看它們的整數部分,,整數部分大的那個數就大;整數部分相同的,十分位上的數大的那個數就大;十分位上的數也相同的,百分位上的數大的那個數就大……
3. 比較分數的大小:分母相同的分數,分子大的分數比較大;分子相同的數,分母小的分數大。分數的分母和分子都不相同的,先通分,再比較兩個數的大小。
(三)數的互化
1. 小數化成分數:原來有幾位小數,就在1的後面寫幾個零作分母,把原來的小數去掉小數點作分子,能約分的要約分。
2. 分數化成小數:用分母去除分子。能除盡的就化成有限小數,有的不能除盡,不能化成有限小數的,一般保留三位小數。
3. 一個最簡分數,如果分母中除了2和5以外,不含有其他的質因數,這個分數就能化成有限小數;如果分母中含有2和5 以外的質因數,這個分數就不能化成有限小數。
4. 小數化成百分數:只要把小數點向右移動兩位,同時在後面添上百分號。
5. 百分數化成小數:把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。
6. 分數化成百分數:通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。
7. 百分數化成小數:先把百分數改寫成分數,能約分的要約成最簡分數。
(四)數的整除
1. 把一個合數分解質因數,通常用短除法。先用能整除這個合數的質數去除,一直除到商是質數為止,再把除數和商寫成連乘的形式。
2. 求幾個數的最大公約數的方法是:先用這幾個數的公約數連續去除,一直除到所得的商只有公約數1為止,然後把所有的除數連乘求積,這個積就是這幾個數的的最大公約數。
3. 求幾個數的最小公倍數的方法是:先用這幾個數(或其中的部分數)的公約數去除,一直除到互質(或兩兩互質)為止,然後把所有的除數和商連乘求積,這個積就是這幾個數的最小公倍數。
4. 成為互質關系的兩個數:1和任何自然數互質;相鄰的兩個自然數互質; 當合數不是質數的倍數時,這個合數和這個質數互質;兩個合數的公約數只有1時,這兩個合數互質。
(五)約分和通分
約分的方法:用分子和分母的公約數(1除外)去除分子、分母;通常要除到得出最簡分數為止。
通分的方法:先求出原來的幾個分數分母的最小公倍數,然後把各分數化成用這個最小公倍數作分母的分數。
第一章 數和數的運算
(一)整數
整數的意義
自然數和0都是整數。
自然數
我們在數物體的時候,用來表示物體個數的1,2,3……叫做自然數。
一個物體也沒有,用0表示。0也是自然數。
計數單位
一(個)、十、百、千、萬、十萬、百萬、千萬、億……都是計數單位。
每相鄰兩個計數單位之間的進率都是10。這樣的計數法叫做十進制計數法。
數位
計數單位按照一定的順序排列起來,它們所佔的位置叫做數位。
數的整除
整數a除以整數b(b ≠ 0),除得的商是整數而沒有餘數,我們就說a能被b整除,或者說b能整除a 。
如果數a能被數b(b ≠ 0)整除,a就叫做b的倍數,b就叫做a的約數(或a的因數)。倍數和約數是相互依存的。
因為35能被7整除,所以35是7的倍數,7是35的約數。
一個數的約數的個數是有限的,其中最小的約數是1,最大的約數是它本身。例如:10的約數有1、2、5、10,其中最小的約數是1,最大的約數是10。
一個數的倍數的個數是無限的,其中最小的倍數是它本身。3的倍數有:3、6、9、12……其中最小的倍數是3 ,沒有最大的倍數。
個位上是0、2、4、6、8的數,都能被2整除,例如:202、480、304,都能被2整除。。
個位上是0或5的數,都能被5整除,例如:5、30、405都能被5整除。。
一個數的各位上的數的和能被3整除,這個數就能被3整除,例如:12、108、204都能被3整除。
一個數各位數上的和能被9整除,這個數就能被9整除。
能被3整除的數不一定能被9整除,但是能被9整除的數一定能被3整除。
一個數的末兩位數能被4(或25)整除,這個數就能被4(或25)整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。
一個數的末三位數能被8(或125)整除,這個數就能被8(或125)整除。例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。
能被2整除的數叫做偶數。
不能被2整除的數叫做奇數。
0也是偶數。自然數按能否被2 整除的特徵可分為奇數和偶數。
一個數,如果只有1和它本身兩個約數,這樣的數叫做質數(或素數),100以內的質數有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數,例如 4、6、8、9、12都是合數。
1不是質數也不是合數,自然數除了1外,不是質數就是合數。如果把自然數按其約數的個數的不同分類,可分為質數、合數和1。
每個合數都可以寫成幾個質數相乘的形式。其中每個質數都是這個合數的因數,叫做這個合數的質因數,例如15=3×5,3和5 叫做15的質因數。
把一個合數用質因數相乘的形式表示出來,叫做分解質因數。
例如把28分解質因數
幾個數公有的約數,叫做這幾個數的公約數。其中最大的一個,叫做這幾個數的最大公約數,例如12的約數有1、2、3、4、6、12;18的約數有1、2、3、6、9、18。其中,1、2、3、6是12和1 8的公約數,6是它們的最大公約數。
公約數只有1的兩個數,叫做互質數,成互質關系的兩個數,有下列幾種情況:
1和任何自然數互質。
相鄰的兩個自然數互質。
兩個不同的質數互質。
當合數不是質數的倍數時,這個合數和這個質數互質。
兩個合數的公約數只有1時,這兩個合數互質,如果幾個數中任意兩個都互質,就說這幾個數兩兩互質。
如果較小數是較大數的約數,那麼較小數就是這兩個數的最大公約數。
如果兩個數是互質數,它們的最大公約數就是1。
幾個數公有的倍數,叫做這幾個數的公倍數,其中最小的一個,叫做這幾個數的最小公倍數,如2的倍數有2、4、6 、8、10、12、14、16、18 ……
3的倍數有3、6、9、12、15、18 …… 其中6、12、18……是2、3的公倍數,6是它們的最小公倍數。。
如果較大數是較小數的倍數,那麼較大數就是這兩個數的最小公倍數。
如果兩個數是互質數,那麼這兩個數的積就是它們的最小公倍數。
幾個數的公約數的個數是有限的,而幾個數的公倍數的個數是無限的。
(二)小數的意義
把整數1平均分成10份、100份、1000份…… 得到的十分之幾、百分之幾、千分之幾…… 可以用小數表示。
一位小數表示十分之幾,兩位小數表示百分之幾,三位小數表示千分之幾……
一個小數由整數部分、小數部分和小數點部分組成。數中的圓點叫做小數點,小數點左邊的數叫做整數部分,小數點左邊的數叫做整數部分,小數點右邊的數叫做小數部分。
在小數里,每相鄰兩個計數單位之間的進率都是10。小數部分的最高分數單位「十分之一」和整數部分的最低單位「一」之間的進率也是10。
小數的分類
純小數:整數部分是零的小數,叫做純小數。例如: 0.25 、 0.368 都是純小數。
帶小數:整數部分不是零的小數,叫做帶小數。 例如: 3.25 、 5.26 都是帶小數。
有限小數:小數部分的數位是有限的小數,叫做有限小數。 例如: 41.7 、 25.3 、 0.23 都是有限小數。
無限小數:小數部分的數位是無限的小數,叫做無限小數。 例如: 4.33 …… 3.1415926 ……
無限不循環小數:一個數的小數部分,數字排列無規律且位數無限,這樣的小數叫做無限不循環小數。例如:∏
循環小數:一個數的小數部分,有一個數字或者幾個數字依次不斷重復出現,這個數叫做循環小數。 例如: 3.555 …… 0.0333 …… 12.109109 ……
一個循環小數的小數部分,依次不斷重復出現的數字叫做這個循環小數的循環節。 例如: 3.99 ……的循環節是「 9 」 , 0.5454 ……的循環節是「 54 」 。
純循環小數:循環節從小數部分第一位開始的,叫做純循環小數。 例如: 3.111 …… 0.5656 ……
混循環小數:循環節不是從小數部分第一位開始的,叫做混循環小數。 3.1222 …… 0.03333 ……
寫循環小數的時候,為了簡便,小數的循環部分只需寫出一個循環節,並在這個循環節的首、末位數字上各點一個圓點。如果循環節只有一個數字,就只在它的上面點一個點。例如: 3.777 …… 簡寫作 0.5302302 …… 簡寫作 。
(三)分數的意義
把單位「1」平均分成若干份,表示這樣的一份或者幾份的數叫做分數。
在分數里,中間的橫線叫做分數線;分數線下面的數,叫做分母,表示把單位「1」平均分成多少份;分數線下面的數叫做分子,表示有這樣的多少份。
把單位「1」平均分成若干份,表示其中的一份的數,叫做分數單位。
分數的分類
真分數:分子比分母小的分數叫做真分數。真分數小於1。
假分數:分子比分母大或者分子和分母相等的分數,叫做假分數。假分數大於或等於1。
帶分數:假分數可以寫成整數與真分數合成的數,通常叫做帶分數。
約分和通分
把一個分數化成同它相等但是分子、分母都比較小的分數,叫做約分。
分子分母是互質數的分數,叫做最簡分數。
把異分母分數分別化成和原來分數相等的同分母分數,叫做通分。
(四)百分數
表示一個數是另一個數的百分之幾的數叫做百分數,也叫做百分率或百分比。百分數通常用"%"來表示。百分號是表示百分數的符號。