當前位置:首頁 » 基礎知識 » 浙江初中數學知識點
擴展閱讀
英語知識生活中的作用 2024-11-17 12:21:45
歌詞什麼讓你流淚 2024-11-17 12:11:59

浙江初中數學知識點

發布時間: 2022-12-21 22:44:32

1. 初二數學基礎知識點歸納總結

失敗乃成功之母,重復是學習之母。學習,需要不斷的重復重復,重復學過的知識,加深印象,其實任何科目的 學習 方法 都是不斷重復學習。下面是我給大家整理的一些初二數學的知識點,希望對大家有所幫助。

初二數學下冊知識點歸納

一次函數

一、正比例函數與一次函數的概念:

一般地,形如y=kx(k為常數,且k≠0)的函數叫做正比例函數.其中k叫做比例系數。

一般地,形如y=kx+b(k,b為常數,且k≠0)的函數叫做一次函數.

當b=0時,y=kx+b即為y=kx,所以正比例函數,是一次函數的特例.

二、正比例函數的圖象與性質:

(1)圖象:正比例函數y=kx(k是常數,k≠0))的圖象是經過原點的一條直線,我們稱它為直線y=kx。

(2)性質:當k>0時,直線y=kx經過第三,一象限,從左向右上升,即隨著x的增大y也增大;當k0,b>0圖像經過一、二、三象限;

(2)k>0,b<0圖像經過一、三、四象限;

(3)k>0,b=0圖像經過一、三象限;

(4)k<0,b>0圖像經過一、二、四象限;

(5)k<0,b<0圖像經過二、三、四象限;

(6)k<0,b=0圖像經過二、四象限。

一次函數表達式的確定

求一次函數y=kx+b(k、b是常數,k≠0)時,需要由兩個點來確定;求正比例函數y=kx(k≠0)時,只需一個點即可.

5.一次函數與二元一次方程組:

解方程組

從「數」的角度看,自變數(x)為何值時兩個函數的值相等.並

求出這個函數值

解方程組從「形」的角度看,確定兩直線交點的坐標.

數據的分析

數據的代表:平均數、眾數、中位數、極差、方差

八年級 下冊數學期中知識點 總結

1.平行四邊形定義:有兩組對邊分別平行的四邊形叫做平行四邊形。

2.平行四邊形的性質:平行四邊形的對邊相等;平行四邊形的對角相等;平行四邊形的對角線互相平分。

3.平行四邊形的判定:兩組對邊分別相等的四邊形是平行四邊形;對角線互相平分的四邊形是平行四邊形;兩組對角分別相等的四邊形是平行四邊形;一組對邊平行且相等的四邊形是平行四邊形。

4.三角形的中位線平行於三角形的第三邊,且等於第三邊的一半。

5.直角三角形斜邊上的中線等於斜邊的一半。

6.矩形的定義:有一個角是直角的平行四邊形。

7.矩形的性質:矩形的四個角都是直角;矩形的對角線平分且相等。AC=BD

8.矩形判定定理:有一個角是直角的平行四邊形叫做矩形;對角線相等的平行四邊形是矩形;有三個角是直角的四邊形是矩形。

9.菱形的定義:鄰邊相等的平行四邊形。

10.菱形的性質:菱形的四條邊都相等;菱形的兩條對角線互相垂直,並且每一條對角線平分一組對角。

11.菱形的判定定理:一組鄰邊相等的平行四邊形是菱形;對角線互相垂直的平行四邊形是菱形;四條邊相等的四邊形是菱形。S菱形=1/2×ab(a、b為兩條對角線)

12.正方形定義:一個角是直角的菱形或鄰邊相等的矩形。

13.正方形的性質:四條邊都相等,四個角都是直角。正方形既是矩形,又是菱形。

14.正方形判定定理:1.鄰邊相等的矩形是正方形。2.有一個角是直角的菱形是正方形。

15.梯形的定義:一組對邊平行,另一組對邊不平行的四邊形叫做梯形。

16.直角梯形的定義:有一個角是直角的梯形

17.等腰梯形的定義:兩腰相等的梯形。

18.等腰梯形的性質:等腰梯形同一底邊上的兩個角相等;等腰梯形的兩條對角線相等。

19.等腰梯形判定定理:同一底上兩個角相等的梯形是等腰梯形。

八年級數學 重要知識點

1.提公共因式法

※1.如果一個多項式的各項含有公因式,那麼就可以把這個公因式提出來,從而將多項式化成兩個因式乘積的形式.這種分解因式的方法叫做提公因式法.

如:

※2.概念內涵:

(1)因式分解的最後結果應當是「積」;

(2)公因式可能是單項式,也可能是多項式;

(3)提公因式法的理論依據是乘法對加法的分配律,即:

※3.易錯點點評:

(1)注意項的符號與冪指數是否搞錯;

(2)公因式是否提「干凈」;

(3)多項式中某一項恰為公因式,提出後,括弧中這一項為+1,不漏掉.

2.運用公式法

※1.如果把乘法公式反過來,就可以用來把某些多項式分解因式.這種分解因式的方法叫做運用公式法.

※2.主要公式:

(1)平方差公式:

(2)完全平方公式:

¤3.易錯點點評:

因式分解要分解到底.如就沒有分解到底.

※4.運用公式法:

(1)平方差公式:

①應是二項式或視作二項式的多項式;

②二項式的每項(不含符號)都是一個單項式(或多項式)的平方;

③二項是異號.

(2)完全平方公式:

①應是三項式;

②其中兩項同號,且各為一整式的平方;

③還有一項可正負,且它是前兩項冪的底數乘積的2倍.

3.因式分解的思路與解題步驟:

(1)先看各項有沒有公因式,若有,則先提取公因式;

(2)再看能否使用公式法;

(3)用分組分解法,即通過分組後提取各組公因式或運用公式法來達到分解的目的;

(4)因式分解的最後結果必須是幾個整式的乘積,否則不是因式分解;

(5)因式分解的結果必須進行到每個因式在有理數范圍內不能再分解為止.

初二數學 學習 經驗 心得

1好初中數學課前要預習

初中生想要學好數學,那麼就要利用課前的時間將課上老師要講的內容預習一下。初中數學課前的預習是要明白老師在課上大致所講的內容,這樣有利於和方便初中生整理知識結構。

初中生 課前預習 數學還能夠知道自己有哪些不明白的知識點,這樣在課上就會集中注意力去聽,不會出現溜號和走神的情況。同時課前預習還可以將知識點形成體系,可以幫助初中生建立完整的知識結構。

2學習初中數學課上是關鍵

初中生想要學好學生,在課上就是一個字:跟。上初中數學課時跟住老師,老師講到哪裡一定要跟上,仔細看老師的板書,隨時知道老師講的是哪裡,涉及到的知識點是什麼。有的初中生喜歡記筆記,在這里提醒大家,初中數學課上的時候盡量不要記筆記。

你的主要目的是跟著老師,而不是一味的記筆記,即使有不會的地方也要快速簡短的記下來,可以在課後完善。跟上老師的思維是最重要的,這就意味著你明白了老師的分析和解題過程。

3課後可以適當做一些初中數學基礎題

在每學完一課後,初中生可以在課後做一些初中數學的基礎題型,在做這樣的題時,建議大家是,不要出現錯誤的情況,做完題後要學會思考和整理。當你的初中數學基礎題沒問題的時候,就可以做一些有點難度的提升題了,如果做不出來可以根據解析看題。

但是記住千萬不要大量的做這類題,初中生偶爾做一次有難度的題還是對數學的學習有幫助的,但是如果將重點放在這上面,沒有什麼好處。同時要學會整理,將自己錯題歸納並總結,

數學是由簡單明了的事項一步一步地發展而來,所以,只要學習數學的人老老實實地、一步一步地去理解,並同時記住其要點,以備以後之需用,就一定能理解其全部內容.就是說,若理解了第一步,就必然能理解第二步,理解了第一步、第二步,就必然能理解第三步.這好比梯子的階級,在登梯子時,一級一級地往上登,無論多小的人,只要他的腿長足以跨過一級階梯,就一定能從第一級登上第二級,從第二級登上第三級、第四級,…….這時,只不過是反復地做同一件事,故不管誰都應該會做.

初二數學基礎知識點歸納總結相關 文章 :

★ 初中數學基礎知識點歸納總結

★ 初中數學基礎知識整理歸納

★ 八年級數學知識點整理歸納

★ 初中數學基礎知識點總結

★ 初二數學知識點整理歸納

★ 初二數學知識點復習整理

★ 初二數學知識點歸納

★ 初二數學知識點歸納上冊人教版

★ 初二數學下冊重要知識點總結

★ 初二數學上冊知識點總結歸納

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

2. 初中數學基礎知識大全 初中數學基礎知識介紹

1、知識點:一元二次方程的基本概念

一元二次方程3x2+5x-2=0的常數項是-2。

一元二次方程3x2+4x-2=0的一次項系數為4,常數項是-2。

一元二次方程3x2-5x-7=0的二次項系數為3,常數項是-7。

把方程3x(x-1)-2=-4x化為一般式為3x2-x-2=0.

2、知識點:直角坐標系與點的位置

直角坐標系中,點(3,0)在y軸上。

直角坐標系中,x軸上的任意點的橫坐標為0。

直角坐標系中,點A(1,1)在第一象限。

角坐標系中,點A(-2,3)在第四象限。

直角坐標系中,點(-2,1)在第二象限。

3、知識點:已知自變數的值求函數值

當x=2時,函數y=的值為1。

當x=3時,函數y=的值為1。

當x=-1時,函數y=的值為1。

4、知識點:基本函數的概念及性質

函數y=-8x是一次函數。

函數y=4x+1正比例函數。

函數是反比例函數。

拋物線y=-3(x-2)2-5的開口向下。

拋物線y=4(x-3)2-10的對稱軸是x=3。

拋物線的頂點坐標是(1,2)。

反比例函數的圖象在第一、三象限。

3. 初一數學全冊知識點歸納

知識是一座寶庫,而實踐就是開啟寶庫的鑰匙。學習任何學科,不僅需要大量的記憶,還需要大量的練習,從而達到鞏固知識的效果。下面是我給大家整理的一些初一數學的知識點,希望對大家有所幫助。

初一下冊數學知識點 總結

1、單項式:數字與字母的積,叫做單項式。

2、多項式:幾個單項式的和,叫做多項式。

3、整式:單項式和多項式統稱整式。

4、單項式的次數:單項式中所有字母的指數的和叫單項式的次數。

5、多項式的次數:多項式中次數的項的次數,就是這個多項式的次數。

6、餘角:兩個角的和為90度,這兩個角叫做互為餘角。

7、補角:兩個角的和為180度,這兩個角叫做互為補角。

8、對頂角:兩個角有一個公共頂點,其中一個角的兩邊是另一個角兩邊的反向延長線。這兩個角就是對頂角。

9、同位角:在「三線八角」中,位置相同的角,就是同位角。

10、內錯角:在「三線八角」中,夾在兩直線內,位置錯開的角,就是內錯角。

11、同旁內角:在「三線八角」中,夾在兩直線內,在第三條直線同旁的角,就是同旁內角。

12、有效數字:一個近似數,從左邊第一個不為0的數開始,到精確的那位止,所有的數字都是有效數字。

13、概率:一個事件發生的可能性的大小,就是這個事件發生的概率。

14、三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。

15、三角形的角平分線:在三角形中,一個內角的角平分線與它的對邊相交,這個角的頂點與交點之間的線段叫做三角形的角平分線。

16、三角形的中線:在三角形中連接一個頂點與它的對邊中點的線段,叫做這個三角形的中線。

17、全等圖形:兩個能夠重合的圖形稱為全等圖形。

18、變數:變化的數量,就叫變數。

19、自變數:在變化的量中主動發生變化的,變叫自變數。

20、因變數:隨著自變數變化而被動發生變化的量,叫因變數。

21、軸對稱圖形:如果一個圖形沿一條直線折疊後,直線兩旁的部分能夠互相重合,那麼這個圖形叫做軸對稱圖形。

22、對稱軸:軸對稱圖形中對折的直線叫做對稱軸。

初一下冊數學知識點

一、同底數冪的乘法

(m,n都是整數)是冪的運算中最基本的法則,在應用法則運算時,要注意以下幾點:

a)法則使用的前提條件是:冪的底數相同而且是相乘時,底數a可以是一個具體的數字式字母,也可以是一個單項或多項式;

b)指數是1時,不要誤以為沒有指數;

c)不要將同底數冪的乘法與整式的加法相混淆,對乘法,只要底數相同指數就可以相加;而對於加法,不僅底數相同,還要求指數相同才能相加;

二、冪的乘方與積的乘方

三、同底數冪的除法

(1)運用法則的前提是底數相同,只有底數相同,才能用此法則

(2)底數可以是具體的數,也可以是單項式或多項式

(3)指數相減指的是被除式的指數減去除式的指數,要求差不為負

四、整式的乘法

1、單項式的概念:由數與字母的乘積構成的代數式叫做單項式。單獨的一個數或一個字母也是單項式。單項式的數字因數叫做單項式的系數,所有字母指數和叫單項式的次數。

如:bca22-的系數為2-,次數為4,單獨的一個非零數的次數是0。

2、多項式:幾個單項式的和叫做多項式。多項式中每個單項式叫多項式的項,次數項的次數叫多項式的次數。

五、平方差公式

表達式:(a+b)(a-b)=a^2-b^2,兩個數的和與這兩個數差的積,等於這兩個數的平方差,這個公式就叫做乘法的平方差公式

公式運用

可用於某些分母含有根號的分式:

1/(3-4倍根號2)化簡:

六、完全平方公式

完全平方公式中常見錯誤有:

①漏下了一次項

②混淆公式

③運算結果中符號錯誤

④變式應用難於掌握。

七、整式的除法

1、單項式的除法法則

單項式相除,把系數、同底數冪分別相除,作為商的因式,對於只在被除式里含有的字母,則連同它的指數作為商的一個因式。

注意:首先確定結果的系數(即系數相除),然後同底數冪相除,如果只在被除式里含有的字母,則連同它的指數作為商的一個因式。

初一數學知識點

一元一次方程

一元一次方程:只含有一個未知數,並且未知數的次數是1,並且含未知數項的系數不是零的整式方程是一元一次方程.

一元一次方程的標准形式: ax+b=0(x是未知數,a、b是已知數,且a≠0).

一元一次方程的最簡形式: ax=b(x是未知數,a、b是已知數,且a≠0).

一元一次方程解法的一般步驟: 整理方程 …… 去分母 …… 去括弧 …… 移項 …… 合並同類項 …… 系數化為1 …… (檢驗方程的解).

列方程解應用題的常用公式:

(1)行程問題:距離=速度·時間;

(2)工程問題:工作量=工效·工時;

(3)比率問題:部分=全體·比率;

(4)順逆流問題:順流速度=靜水速度+水流速度,逆流速度=靜水速度-水流速度;

(5)商品價格問題:售價=定價·折·0.1 ,利潤=售價-成本;

(6)周長、面積、體積問題:C圓=2πR,S圓=πR2,C長方形=2(a+b),S長方形=ab, C正方形=4a,S正方形=a2,S環形=π(R2-r2),V長方體=abc ,V正方體=a3,V圓柱=πR2h ,V圓錐=1/3πR2h.


初一數學全冊知識點歸納相關 文章 :

★ 初一數學上冊知識點歸納

★ 初一數學上冊知識點匯總歸納

★ 初一數學知識點小歸納

★ 初一數學知識點梳理歸納

★ 初一數學人教版知識點歸納

★ 初一數學知識點歸納與學習方法

★ 初一上冊數學知識點歸納整理

★ 初一數學部編版知識點歸納

★ 初中七年級數學知識點歸納整理

★ 七年級數學知識點整理大全

4. 初一上冊數學知識點總結歸納

初一數學是初中數學的基礎,這篇文章我給大家總結歸納了初一上冊數學課本的重要知識點,供同學們參考。

有理數

(1)定義:由整數和分數組成的數。包括:正整數、0、負整數,正分數、負分數。可以寫成兩個整之比的形式。

(2)數軸:在數學中,可以用一條直線上的點表示數,這條直線叫做數軸。

(3)相反數:相反數是一個數學術語,指絕對值相等,正負號相反的兩個數互為相反數。

(4)絕對值:絕對值是指一個數在數軸上所對應點到原點的距離。正數的絕對值是它本身,負數的絕對值是它的相反數;0的絕對值是0,兩個負數,絕對值大的反而小。

(5)有理數的加減法

同號相加,到相同符號,並把絕對值相加。異號相加,取絕對值大的加數的符號,並用較大的絕對值減去較小的絕對值。

(6)有理數的乘法

兩數相乘,同號得正,異號得負,並把絕對值相乘。

任何數與0相乘,積為0.例:0×1=0

(7)有理數的除法

除以一個不為0的數,等於乘這個數的倒數。

兩數相除,同號得正,異號得負,並把絕對值相除。0除

以任何一個不為0的數,都得0。

(8)有理數的乘方

求n個相同因數乘積的運算,叫做乘方,乘方的結果叫做冪。其中,a叫做底數,n叫做指數。當aⁿ看作a的n次乘方的結果時,也可讀作「a的n次冪」或「a的n次方」。

一元一次方程

(1)方程:先設字母表示未知數,然後根據相等關系,寫出含有未知數的等式叫做方程。

(2)一元一次方程

一元一次方程指只含有一個未知數、未知數的最高次數為1且兩邊都為整式的等式,叫做一元一次方程。求出方程中未知數的值叫做方程式的解。

(3)等式的性質

①等式兩邊同時加上(或減去)同一個整式,等式仍然成立。

若a=b

那麼a+c=b+c

②等式兩邊同時乘或除以同一個不為0的整式,等式仍然成立。

若a=b

那麼有a·c=b·c或a÷c=b÷c(c≠0)

③等式具有傳遞性。

若a1=a2,a2=a3,a3=a4,……an=an,那麼a1=a2=a3=a4=……=an

(3)解方程式的步驟

解一元一次方程的步驟:去分母、去括弧、移項、合並同類項、未知數系數化為1。

①去分母:把系數化成整數。

②去括弧

③移項:把等式一邊的某項變號後移到另一邊。

④合並同類項

⑤系數化為1。

角的知識點

1.角:角是由兩條有公共端點的射線組成的幾何對象。

2.角的度量單位:度、分、秒

3.頂點:角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點

4.角的比較:

(1)角可以看成是由一條射線繞著他的端點旋轉而成的。

(2)平角和周角:一條射線繞著他的端點旋轉,當始邊和終邊成一條直線時,所成的角叫平角。當它又和始邊重合的時候,所成的角角周角。平角等於108度,周角等於360度,直角等於90度。

(3)平分線:從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。

5.餘角和補角:

(1)餘角:如果兩個角的和是90度,那麼稱這兩個角「互為餘角」,簡稱「互余」。

性質:等角的餘角相等。

(2)補角:如果兩個角的和是180度,那麼稱這兩個角「互為補角」,簡稱「互補」。

性質:等角的補角相等。

5. 中考數學知識點總結最全提綱

初中是非常重要的學習階段,因為初中正是往高中時期過渡的階段,很多人都抱怨從中數學難,初中生數學知識點有哪些呢?接下來我為大家收集了中考數學知識點 總結 最全提綱_中考數學知識點歸納總結大全,供大家參考學習,感謝你的閱讀!

▼ 目 錄 ▼

★ 中考數學知識點總結最全提綱 ★

★ 初中數學的 學習 方法 ★

★ 初中提高數學成績的四大技巧 ★

中考數學知識點總結最全提綱

初中幾何公式:線

1.同角或等角的餘角相等

2.過一點有且只有一條直線和已知直線垂直

3.過兩點有且只有一條直線

4.兩點之間線段最短

5.同角或等角的補角相等

6.直線外一點與直線上各點連接的所有線段中,垂線段最短

7.平行公理經過直線外一點,有且只有一條直線與這條直線平行

8.如果兩條直線都和第三條直線平行,這兩條直線也互相平行

初中幾何公式:角

9.同位角相等,兩直線平行

10.內錯角相等,兩直線平行

11.同旁內角互補,兩直線平行

12.兩直線平行,同位角相等

13.兩直線平行,內錯角相等

14.兩直線平行,同旁內角互補

初中幾何公式:三角形

15.定理三角形兩邊的和大於第三邊

16.推論三角形兩邊的差小於第三邊

17.三角形內角和定理三角形三個內角的和等於180°

18.推論1直角三角形的兩個銳角互余

19.推論2三角形的一個外角等於和它不相鄰的兩個內角的和

20.推論3三角形的一個外角大於任何一個和它不相鄰的內角

21.全等三角形的對應邊、對應角相等

22.邊角邊公理有兩邊和它們的夾角對應相等的兩個三角形全等

23.角邊角公理有兩角和它們的夾邊對應相等的兩個三角形全等

24.推論有兩角和其中一角的對邊對應相等的兩個三角形全等

25.邊邊邊公理有三邊對應相等的兩個三角形全等

26.斜邊、直角邊公理有斜邊和一條直角邊對應相等的兩個直角三角形全等

27.定理1在角的平分線上的點到這個角的兩邊的距離相等

28.定理2到一個角的兩邊的距離相同的點,在這個角的平分線上

29.角的平分線是到角的兩邊距離相等的所有點的集合

初中幾何公式:等腰三角形

30.等腰三角形的性質定理等腰三角形的兩個底角相等

31.推論1等腰三角形頂角的平分線平分底邊並且垂直於底邊

32.等腰三角形的頂角平分線、底邊上的中線和高互相重合

33.推論3等邊三角形的各角都相等,並且每一個角都等於60°

34.等腰三角形的判定定理如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)

35.推論1三個角都相等的三角形是等邊三角形

36.推論2有一個角等於60°的等腰三角形是等邊三角形

37.在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半

38.直角三角形斜邊上的中線等於斜邊上的一半

39.定理線段垂直平分線上的點和這條線段兩個端點的距離相等

40.逆定理和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上

41.線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合

42.定理1關於某條直線對稱的兩個圖形是全等形

43.定理2如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線

44.定理3兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上

45.逆定理如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱

46.勾股定理直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a+b=c

47.勾股定理的逆定理如果三角形的三邊長a、b、c有關系a+b=c,那麼這個三角形是直角三角形

初中幾何公式:四邊形

48.定理四邊形的內角和等於360°

49.四邊形的外角和等於360°

50.多邊形內角和定理n邊形的內角的和等於(n-2)×180°

51.推論任意多邊的外角和等於360°

52.平行四邊形性質定理1平行四邊形的對角相等

53.平行四邊形性質定理2平行四邊形的對邊相等

54.推論夾在兩條平行線間的平行線段相等

55.平行四邊形性質定理3平行四邊形的對角線互相平分

56.平行四邊形判定定理1兩組對角分別相等的四邊形是平行四邊形

57.平行四邊形判定定理2兩組對邊分別相等的四邊形是平行四邊形

58.平行四邊形判定定理3對角線互相平分的四邊形是平行四邊形

59.平行四邊形判定定理4一組對邊平行相等的四邊形是平行四邊形

初中幾何公式:矩形

60.矩形性質定理1矩形的四個角都是直角

61.矩形性質定理2矩形的對角線相等

62.矩形判定定理1有三個角是直角的四邊形是矩形

63.矩形判定定理2對角線相等的平行四邊形是矩形

初中幾何公式:菱形

64.菱形性質定理1菱形的四條邊都相等

65.菱形性質定理2菱形的對角線互相垂直,並且每一條對角線平分一組對角

66.菱形面積=對角線乘積的一半,即S=(a×b)÷2

67.菱形判定定理1四邊都相等的四邊形是菱形

68.菱形判定定理2對角線互相垂直的平行四邊形是菱形

初中幾何公式:正方形

69.正方形性質定理1正方形的四個角都是直角,四條邊都相等

70.正方形性質定理2正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角

71.定理1關於中心對稱的兩個圖形是全等的

72.定理2關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分

73.逆定理如果兩個圖形的對應點連線都經過某一點,並且被這一點平分,那麼這兩個圖形關於這一點對稱

初中幾何公式:等腰梯形

74.等腰梯形性質定理等腰梯形在同一底上的兩個角相等

75.等腰梯形的兩條對角線相等

76.等腰梯形判定定理在同一底上的兩個角相等的梯形是等腰梯形

77.對角線相等的梯形是等腰梯形

初中幾何公式:等分

78.平行線等分線段定理如果一組平行線在一條直線上截得的線段相等,那麼在其他直線上截得的線段也相等

79.推論1經過梯形一腰的中點與底平行的直線,必平分另一腰

80.推論2經過三角形一邊的中點與另一邊平行的直線,必平分第三邊

81.三角形中位線定理三角形的中位線平行於第三邊,並且等於它的一半

82.梯形中位線定理梯形的中位線平行於兩底,並且等於兩底和的一半L=(a+b)÷2S=L×h

83(1)比例的基本性質如果a:b=c:d,那麼ad=bc如果ad=bc,那麼a:b=c:d

84.(2)合比性質如果a/b=c/d,那麼(a±b)/b=(c±d)/d

85.(3)等比性質如果a/b=c/d=…=m/n(b+d+…+n≠0),那麼(a+c+…+m)/(b+d+…+n)=a/b

86.平行線分線段成比例定理三條平行線截兩條直線,所得的對應線段成比例

87.推論平行於三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例

88.定理如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那麼這條直線平行於三角形的第三邊

89.平行於三角形的一邊,並且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例

90.定理平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似

91.相似三角形判定定理1兩角對應相等,兩三角形相似(ASA)

92.直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似

93.判定定理2兩邊對應成比例且夾角相等,兩三角形相似(SAS)

94.判定定理3三邊對應成比例,兩三角形相似(SSS)

95.定理如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那麼這兩個直角三角形相似

96.性質定理1相似三角形對應高的比,對應中線的比與對應角平分線的比都等於相似比

97.性質定理2相似三角形周長的比等於相似比

98.性質定理3相似三角形面積的比等於相似比的平方

99.任意銳角的正弦值等於它的餘角的餘弦值,任意銳角的餘弦值等於它的餘角的正弦值

100.任意銳角的正切值等於它的餘角的餘切值,任意銳角的餘切值等於它的餘角的正切值

初中幾何公式:圓

101.圓是定點的距離等於定長的點的集合

102.圓的內部可以看作是圓心的距離小於半徑的點的集合

103.圓的外部可以看作是圓心的距離大於半徑的點的集合

104.同圓或等圓的半徑相等

105.到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓

106.和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線

107.到已知角的兩邊距離相等的點的軌跡,是這個角的平分線

108.到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線

109.定理不在同一直線上的三個點確定一條直線

110.垂徑定理垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧

111.推論1①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧

②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧

③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧

112.推論2圓的兩條平行弦所夾的弧相等

113.圓是以圓心為對稱中心的中心對稱圖形

114.定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

115.推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那麼它們所對應的其餘各組量都相等

116.定理一條弧所對的圓周角等於它所對的圓心角的一半

117.推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

118.推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑

119.推論3如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形

120.定理圓的內接四邊形的對角互補,並且任何一個外角都等於它的內對角

121.①直線L和⊙O相交d﹤r

②直線L和⊙O相切d=r

③直線L和⊙O相離d﹥r

122.切線的判定定理經過半徑的外端並且垂直於這條半徑的直線是圓的切線

123.切線的性質定理圓的切線垂直於經過切點的半徑

124.推論1經過圓心且垂直於切線的直線必經過切點

125.推論2經過切點且垂直於切線的直線必經過圓心

126.切線長定理從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角

127.圓的外切四邊形的兩組對邊的和相等

128.弦切角定理弦切角等於它所夾的弧對的圓周角

129.推論如果兩個弦切角所夾的弧相等,那麼這兩個弦切角也相等

130.相交弦定理圓內的兩條相交弦,被交點分成的兩條線段長的積相等

131.推論如果弦與直徑垂直相交,那麼弦的一半是它分直徑所成的兩條線段的比例中項

132.切割線定理從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項

133.推論從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等

134.如果兩個圓相切,那麼切點一定在連心線上

135.①兩圓外離d﹥R+r②兩圓外切d=R+r

③兩圓相交R-r﹤d﹤R+r(R﹥r)

④兩圓內切d=R-r(R﹥r)⑤兩圓內含d﹤R-r(R﹥r)

136.定理相交兩圓的連心線垂直平分兩圓的公共弦

137.定理把圓分成n(n≥3):

⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形

⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形

138.定理任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓

139.正n邊形的每個內角都等於(n-2)×180°/n

140.定理正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形

141.正n邊形的面積Sn=pnrn/2p表示正n邊形的周長

142.正三角形面積√3a/4a表示邊長

143.如果在一個頂點周圍有k個正n邊形的角,由於這些角的和應為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4

144.弧長計算公式:L=nπR/180

145.扇形面積公式:S扇形=nπR/360=LR/2

146.內公切線長=d-(R-r)外公切線長=d-(R+r)

く く く

初中數學的學習方法

1、適當多做題,養成良好的解題習慣。要想學好數學,多做題目是難免的,熟悉掌握各種題型的解題思路。剛開始要從基礎題入手,以課本上的習題為准,反復練習打好基礎,再找一些課外的習題,以幫助開拓思路,提高自己的初中數學分析、解決能力,掌握一般的解題規律。對於一些易錯題,可備有錯題集,寫出自己的解題思路和正確的解題過程兩者一起比較找出自己的錯誤所在,以便及時更正。

2、在平時要養成良好的解題習慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進入最佳狀態,在初中數學考試中能運用自如。實踐證明:越到關鍵時候,你所表現的解題習慣與平時練習無異。如果平時解題時隨便、粗心、大意等,往往在大考中充分暴露,故在平時養成良好的解題習慣是非常重要的。

3、預習的習慣。預習就是為了對所學知識的初步感知,通過預習,查出障礙;它不僅能培養自學能力,而且能提高學習初中數學新課的興趣,掌握學習的主動權。

4、認真聽"講"的習慣。新知識的接受,數學能力的培養主要在課堂上進行,所以要特別重視課內的學習效率,尋求正確的初中 數學學習方法 。上課時要緊跟老師的思路,積極展開思維預測下面的步驟,比較自己的解題思路與教師所講有哪些不同。數學課的聽講要堅持做到「五到」即耳到、眼到、口到、心到、手到。

く く く

初中提高數學成績的四大技巧

一、該記的記,該背的背,不要以為理解了就行

有的同學認為,數學不像英語、史地,要背單詞、背年代、背地名,數學靠的是智慧、技巧和推理。我說你只講對了一半。數學同樣也離不開記憶。試想一下,小學的加、減、乘、除運算要不是背熟了「乘法九九表」,你能順利地進行運算嗎?盡管你理解了乘法是相同加數的和的運算,但你在做9 _ 9時用九個9去相加得出81就太不合算了。而用「九九八十一」得出就方便多了。同樣,是運用大家熟記的法則做出來的。同時,數學中還有大量的規定需要記憶,比如規定(a≠0)等等。因此,我覺得數學更像游戲,它有許多游戲規則(即數學中的定義、法則、公式、定理等),誰記住了這些游戲規則,誰就能順利地做游戲;誰違反了這些游戲規則,誰就被判錯,罰下。因此,數學的定義、法則、公式、定理等一定要記熟,有些最好能背誦,朗朗上口。比如大家熟悉的「整式乘法三個公式」,我看在座的有的背得出,有的就背不出。在這里,我向背不出的同學敲一敲警鍾,如果背不出這三個公式,將會對今後的學習造成很大的麻煩,因為今後的學習將會大量地用到這三個公式,特別是初二即將學的因式分解,其中相當重要的三個因式分解公式就是由這三個乘法公式推出來的,二者是相反方向的變形。

對數學的定義、法則、公式、定理等,理解了的要記住,暫時不理解的也要記住,在記憶的基礎上、在應用它們解決問題時再加深理解。打一個比方,數學的定義、法則、公式、定理就像木匠手中的斧頭、鋸子、墨斗、刨子等,沒有這些工具,木匠是打不出傢具的;有了這些工具,再加上嫻熟的手藝和智慧,就可以打出各式各樣精美的傢具。同樣,記不住數學的定義、法則、公式、定理就很難解數學題。而記住了這些再配以一定的方法、技巧和敏捷的思維,就能在解數學題,甚至是解數學難題中得心應手。

二、幾個重要的數學思想

1、「方程」的思想

數學是研究事物的空間形式和數量關系的,初中最重要的數量關系是等量關系,其次是不等量關系。最常見的等量關系就是「方程」。比如等速運動中,路程、速度和時間三者之間就有一種等量關系,可以建立一個相關等式:速度 _ 時間=路程,在這樣的等式中,一般會有已知量,也有未知量,像這樣含有未知量的等式就是「方程」,而通過方程里的已知量求出未知量的過程就是解方程。我們在小學就已經接觸過簡易方程,而初一則比較系統地學習解一元一次方程,並總結出解一元一次方程的五個步驟。如果學會並掌握了這五個步驟,任何一個一元一次方程都能順利地解出來。初二、初三我們還將學習解一元二次方程、二元二次方程組、簡單的三角方程;到了高中我們還將學習指數方程、對數方程、線性方程組、、參數方程、極坐標方程等。解這些方程的思維幾乎一致,都是通過一定的方法將它們轉化成一元一次方程或一元二次方程的形式,然後用大家熟悉的解一元一次方程的五個步驟或者解一元二次方程的求根公式加以解決。物理中的能量守恆,化學中的化學平衡式,現實中的大量實際應用,都需要建立方程,通過解方程來求出結果。因此,同學們一定要將解一元一次方程和解一元二次方程學好,進而學好 其它 形式的方程。

所謂的「方程」思想就是對於數學問題,特別是現實當中碰到的未知量和已知量的錯綜復雜的關系,善於用「方程」的觀點去構建有關的方程,進而用解方程的方法去解決它。

2、「數形結合」的思想

大千世界,「數」與「形」無處不在。任何事物,剝去它的質的方面,只剩下形狀和大小這兩個屬性,就交給數學去研究了。初中數學的兩個分支棗-代數和幾何,代數是研究「數」的,幾何是研究「形」的。但是,研究代數要藉助「形」,研究幾何要藉助「數」,「數形結合」是一種趨勢,越學下去,「數」與「形」越密不可分,到了高中,就出現了專門用代數方法去研究幾何問題的一門課,叫做「解析幾何」。在初三,建立平面直角坐標系後,研究函數的問題就離不開圖象了。往往藉助圖象能使問題明朗化,比較容易找到問題的關鍵所在,從而解決問題。在今後的數學學習中,要重視「數形結合」的 思維訓練 ,任何一道題,只要與「形」沾得上一點邊,就應該根據題意畫出草圖來分析一番,這樣做,不但直觀,而且全面,整體性強,容易找出切入點,對解題大有益處。嘗到甜頭的人慢慢會養成一種「數形結合」的好習慣。

3、「對應」的思想

「對應」的思想由來已久,比如我們將一支鉛筆、一本書、一棟房子對應一個抽象的數「1」,將兩隻眼睛、一對耳環、雙胞胎對應一個抽象的數「2」;隨著學習的深入,我們還將「對應」擴展到對應一種形式,對應一種關系,等等。比如我們在計算或化簡中,將對應公式的左邊,對應a,y對應b,再利用公式的右邊直接得出原式的結果即。這就是運用「對應」的思想和方法來解題。初二、初三我們還將看到數軸上的點與實數之間的一一對應,直角坐標平面上的點與一對有序實數之間的一一對應,函數與其圖象之間的對應。「對應」的思想在今後的學習中將會發揮越來越大的作用

三、自學能力的培養是深化學習的必由之路

在學習新概念、新運算時,老師們總是通過已有知識自然而然過渡到新知識,水到渠成,亦即所謂「溫故而知新」。因此說,數學是一門能自學的學科,自學成才最典型的例子就是數學家華羅庚。

我們在課堂上聽老師講解,不光是學習新知識,更重要的是潛移默化老師的那種數學思維習慣,逐漸地培養起自己對數學的一種悟性。我去佛山一中開家長會時,一中校長的一番話使我感觸良多。他說:我是教物理的,學生物理學得好,不是我教出來的,而是他們自己悟出來的。當然,校長是謙虛的,但他說明了一個道理,學生不能被動地學習,而應主動地學習。一個班裡幾十個學生,同一個老師教,差異那麼大,這就是學習主動性問題了。

自學能力越強,悟性就越高。隨著年齡的增長,同學們的依賴性應不斷減弱,而自學能力則應不斷增強。因此,要養成預習的習慣。在老師講新課前,能不能運用自己所學過的已掌握的舊知識去預習新課,結合新課中的新規定去分析、理解新的學習內容。由於數學知識的無矛盾性,你所學過的數學知識永遠都是有用的,都是正確的,數學的進一步學習只是加深拓廣而已。因此,以前的數學學得扎實,就為以後的進取奠定了基礎,就不難自學新課。同時,在預習新課時,碰到什麼自己解決不了的問題,帶著問題去聽老師講解新課,收獲之大是不言而喻的。有些同學為什麼聽老師講新課時總有一種似懂非懂的感覺,或者是「一聽就懂、一做就錯」,就是因為沒有預習,沒有帶著問題學,沒有將「要我學」真正變為「我要學」,力求把知識變為自己的。學來學去,知識還是別人的。檢驗數學學得好不好的標准就是會不會解題。聽懂並記憶有關的定義、法則、公式、定理,只是學好數學的必要條件,能獨立解題、解對題才是學好數學的標志。

四、自信才能自強

在考試中,總是看見有些同學的試卷出現許多空白,即有好幾題根本沒有動手去做。當然,俗話說,藝高膽大,藝不高就膽不大。但是,做不出是一回事,沒有去做則是另一回事。稍為難一點的數學題都不是一眼就能看出它的解法和結果的。要去分析、探索、比比畫畫、寫寫算算,經過迂迴曲折的推理或演算,才顯露出條件和結論之間的某種聯系,整個思路才會明朗清晰起來。你都沒有動手去做,又怎麼知道自己不會做呢?即使是老師,拿到一道難題,也不能立即答復你。也同樣要先分析、研究,找到正確的思路後才向你講授。不敢去做稍為復雜一點的題(不一定是難題,有些題只不過是敘述多一點),是缺乏自信心的表現。在數學解題中,自信心是相當重要的。要相信自己,只要不超出自己的知識范疇,不管哪道題,總是能夠用自己所學過的知識把它解出來。要敢於去做題,要善於去做題。這就叫做「在戰略上藐視敵人,在戰術上重視敵人」。

具體解題時,一定要認真審題,緊緊抓住題目的所有條件不放,不要忽略了任何一個條件。一道題和一類題之間有一定的共性,可以想想這一類題的一般思路和一般解法,但更重要的是抓住這一道題的特殊性,抓住這一道題與這一類題不同的地方。數學的題目幾乎沒有相同的,總有一個或幾個條件不盡相同,因此思路和解題過程也不盡相同。有些同學老師講過的題會做,其它的題就不會做,只會依樣畫瓢,題目有些小的變化就乾瞪眼,無從下手。當然,做題先從哪兒下手是一件棘手的事,不一定找得准。但是,做題一定要抓住其特殊性則絕對沒錯。選擇一個或幾個條件作為解題的突破口,看由這個條件能得出什麼,得出的越多越好,然後從中選擇與其它條件有關的、或與結論有關的、或與題目中的隱含條件有關的,進行推理或演算。一般難題都有多種解法,條條大路通北京。要相信利用這道題的條件,加上自己學過的那些知識,一定能推出正確的結論。

數學題目是無限的,但數學的思想和方法卻是有限的。我們只要學好了有關的基礎知識,掌握了必要的數學思想和方法,就能順利地對付那無限的題目。題目並不是做得越多越好,題海無邊,總也做不完。關鍵是你有沒有培養起良好的數學思維習慣,有沒有掌握正確的數學解題方法。當然,題目做得多也有若干好處:一是「熟能生巧」,加快速度,節省時間,這一點在考試時間有限時顯得很重要;一是利用做題來鞏固、記憶所學的定義、定理、法則、公式,形成良性循環。

解題需要豐富的知識,更需要自信心。沒有自信就會畏難,就會放棄;只有自信,才能勇往直前,才不會輕言放棄,才會加倍努力地學習,才有希望攻克難關,迎來屬於自己的春天。

く く く


初中數學知識點總結相關 文章 :

★ 初中數學知識點總結最全提綱

★ 初中數學知識點復習提綱

★ 中考數學知識點復習提綱

★ 初一數學上冊知識點匯總歸納

★ 初中數學學習方法和知識點總結

★ 初中數學幾何知識點提綱

★ 初中數學三年的知識點歸納

★ 北師大版初中數學知識點提綱

★ 初中七年級數學知識點總結歸納

★ 初中三角函數知識點提綱

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

6. 初中數學基礎知識總結

初中數學知識點總結
一、基本知識
一、數與代數A、數與式:1、有理數有理數:①整數→正整數/0/負整數②分數→正分數/負分數
數軸:①畫一條水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規定直線上向右的方向為正方向,就得到數軸。②任何一個有理數都可以用數軸上的一個點來表示。③如果兩個數只有符號不同,那麼我們稱其中一個數為另外一個數的相反數,也稱這兩個數互為相反數。在數軸上,表示互為相反數的兩個點,位於原點的兩側,並且與原點距離相等。④數軸上兩個點表示的數,右邊的總比左邊的大。正數大於0,負數小於0,正數大於負數。
絕對值:①在數軸上,一個數所對應的點與原點的距離叫做該數的絕對值。②正數的絕對值是他的本身、負數的絕對值是他的相反數、0的絕對值是0。兩個負數比較大小,絕對值大的反而小。
有理數的運算:加法:①同號相加,取相同的符號,把絕對值相加。②異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數的符號,並用較大的絕對值減去較小的絕對值。③一個數與0相加不變。
減法:減去一個數,等於加上這個數的相反數。
乘法:①兩數相乘,同號得正,異號得負,絕對值相乘。②任何數與0相乘得0。③乘積為1的兩個有理數互為倒數。
除法:①除以一個數等於乘以一個數的倒數。②0不能作除數。
乘方:求N個相同因數A的積的運算叫做乘方,乘方的結果叫冪,A叫底數,N叫次數。
混合順序:先算乘法,再算乘除,最後算加減,有括弧要先算括弧里的。
2、實數 無理數:無限不循環小數叫無理數
平方根:①如果一個正數X的平方等於A,那麼這個正數X就叫做A的算術平方根。②如果一個數X的平方等於A,那麼這個數X就叫做A的平方根。③一個正數有2個平方根/0的平方根為0/負數沒有平方根。④求一個數A的平方根運算,叫做開平方,其中A叫做被開方數。
立方根:①如果一個數X的立方等於A,那麼這個數X就叫做A的立方根。②正數的立方根是正數、0的立方根是0、負數的立方根是負數。③求一個數A的立方根的運算叫開立方,其中A叫做被開方數。
實數:①實數分有理數和無理數。②在實數范圍內,相反數,倒數,絕對值的意義和有理數范圍內的相反數,倒數,絕對值的意義完全一樣。③每一個實數都可以在數軸上的一個點來表示。
3、代數式
代數式:單獨一個數或者一個字母也是代數式。
合並同類項:①所含字母相同,並且相同字母的指數也相同的項,叫做同類項。②把同類項合並成一項就叫做合並同類項。③在合並同類項時,我們把同類項的系數相加,字母和字母的指數不變。
4、整式與分式
整式:①數與字母的乘積的代數式叫單項式,幾個單項式的和叫多項式,單項式和多項式統稱整式。②一個單項式中,所有字母的指數和叫做這個單項式的次數。③一個多項式中,次數最高的項的次數叫做這個多項式的次數。
整式運算:加減運算時,如果遇到括弧先去括弧,再合並同類項。
冪的運算:AM+AN=A(M+N)
(AM)N=AMN
(A/B)N=AN/BN 除法一樣。
整式的乘法:①單項式與單項式相乘,把他們的系數,相同字母的冪分別相乘,其餘字母連同他的指數不變,作為積的因式。②單項式與多項式相乘,就是根據分配律用單項式去乘多項式的每一項,再把所得的積相加。③多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。
公式兩條:平方差公式/完全平方公式
整式的除法:①單項式相除,把系數,同底數冪分別相除後,作為商的因式;對於只在被除式里含有的字母,則連同他的指數一起作為商的一個因式。②多項式除以單項式,先把這個多項式的每一項分別除以單項式,再把所得的商相加。
分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式。
方法:提公因式法、運用公式法、分組分解法、十字相乘法。
分式:①整式A除以整式B,如果除式B中含有分母,那麼這個就是分式,對於任何一個分式,分母不為0。②分式的分子與分母同乘以或除以同一個不等於0的整式,分式的值不變。
分式的運算:
乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。
除法:除以一個分式等於乘以這個分式的倒數。
加減法:①同分母分式相加減,分母不變,把分子相加減。②異分母的分式先通分,化為同分母的分式,再加減。
分式方程:①分母中含有未知數的方程叫分式方程。②使方程的分母為0的解稱為原方程的增根。
B、方程與不等式
1、方程與方程組
一元一次方程:①在一個方程中,只含有一個未知數,並且未知數的指數是1,這樣的方程叫一元一次方程。②等式兩邊同時加上或減去或乘以或除以(不為0)一個代數式,所得結果仍是等式。
解一元一次方程的步驟:去分母,移項,合並同類項,未知數系數化為1。
二元一次方程:含有兩個未知數,並且所含未知數的項的次數都是1的方程叫做二元一次方程。
二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。
適合一個二元一次方程的一組未知數的值,叫做這個二元一次方程的一個解。
二元一次方程組中各個方程的公共解,叫做這個二元一次方程的解。
解二元一次方程組的方法:代入消元法/加減消元法。
一元二次方程:只有一個未知數,並且未知數的項的最高系數為2的方程
1)一元二次方程的二次函數的關系
大家已經學過二次函數(即拋物線)了,對他也有很深的了解,好像解法,在圖象中表示等等,其實一元二次方程也可以用二次函數來表示,其實一元二次方程也是二次函數的一個特殊情況,就是當Y的0的時候就構成了一元二次方程了。那如果在平面直角坐標系中表示出來,一元二次方程就是二次函數中,圖象與X軸的交點。也就是該方程的解了
2)一元二次方程的解法
大家知道,二次函數有頂點式(-b/2a,4ac-b2/4a),這大家要記住,很重要,因為在上面已經說過了,一元二次方程也是二次函數的一部分,所以他也有自己的一個解法,利用他可以求出所有的一元一次方程的解
(1)配方法
利用配方,使方程變為完全平方公式,在用直接開平方法去求出解
(2)分解因式法
提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時候也一樣,利用這點,把方程化為幾個乘積的形式去解
(3)公式法
這方法也可以是在解一元二次方程的萬能方法了,方程的根X1={-b+√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a
3)解一元二次方程的步驟:
(1)配方法的步驟:
先把常數項移到方程的右邊,再把二次項的系數化為1,再同時加上1次項的系數的一半的平方,最後配成完全平方公式
(2)分解因式法的步驟:
把方程右邊化為0,然後看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式
(3)公式法
就把一元二次方程的各系數分別代入,這里二次項的系數為a,一次項的系數為b,常數項的系數為c
4)韋達定理
利用韋達定理去了解,韋達定理就是在一元二次方程中,二根之和=-b/a,二根之積=c/a
也可以表示為x1+x2=-b/a,x1x2=c/a。利用韋達定理,可以求出一元二次方程中的各系數,在題目中很常用
5)一元一次方程根的情況
利用根的判別式去了解,根的判別式可在書面上可以寫為「△」,讀作「diao ta」,而△=b2-4ac,這里可以分為3種情況:
I當△>0時,一元二次方程有2個不相等的實數根;
II當△=0時,一元二次方程有2個相同的實數根;
III當△<0時,一元二次方程沒有實數根(在這里,學到高中就會知道,這里有2個虛數根)
2、不等式與不等式組
不等式:①用符號〉,=,〈號連接的式子叫不等式。②不等式的兩邊都加上或減去同一個整式,不等號的方向不變。③不等式的兩邊都乘以或者除以一個正數,不等號方向不變。④不等式的兩邊都乘以或除以同一個負數,不等號方向相反。
不等式的解集:①能使不等式成立的未知數的值,叫做不等式的解。②一個含有未知數的不等式的所有解,組成這個不等式的解集。③求不等式解集的過程叫做解不等式。
一元一次不等式:左右兩邊都是整式,只含有一個未知數,且未知數的最高次數是1的不等式叫一元一次不等式。
一元一次不等式組:①關於同一個未知數的幾個一元一次不等式合在一起,就組成了一元一次不等式組。②一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。③求不等式組解集的過程,叫做解不等式組。
一元一次不等式的符號方向:
在一元一次不等式中,不像等式那樣,等號是不變的,他是隨著你加或乘的運算改變。
在不等式中,如果加上同一個數(或加上一個正數),不等式符號不改向;例如:A>B,A+C>B+C
在不等式中,如果減去同一個數(或加上一個負數),不等式符號不改向;例如:A>B,A-C>B-C
在不等式中,如果乘以同一個正數,不等號不改向;例如:A>B,A*C>B*C(C>0)
在不等式中,如果乘以同一個負數,不等號改向;例如:A>B,A*C<B*C(C<0)
如果不等式乘以0,那麼不等號改為等號
所以在題目中,要求出乘以的數,那麼就要看看題中是否出現一元一次不等式,如果出現了,那麼不等式乘以的數就不等為0,否則不等式不成立;
3、函數
變數:因變數,自變數。
在用圖象表示變數之間的關系時,通常用水平方向的數軸上的點自變數,用豎直方向的數軸上的點表示因變數。
一次函數:①若兩個變數X,Y間的關系式可以表示成Y=KX+B(B為常數,K不等於0)的形式,則稱Y是X的一次函數。②當B=0時,稱Y是X的正比例函數。
一次函數的圖象:①把一個函數的自變數X與對應的因變數Y的值分別作為點的橫坐標與縱坐標,在直角坐標系內描出它的對應點,所有這些點組成的圖形叫做該函數的圖象。②正比例函數Y=KX的圖象是經過原點的一條直線。③在一次函數中,當K〈0,B〈O,則經234象限;當K〈0,B〉0時,則經124象限;當K〉0,B〈0時,則經134象限;當K〉0,B〉0時,則經123象限。④當K〉0時,Y的值隨X值的增大而增大,當X〈0時,Y的值隨X值的增大而減少。
二空間與圖形
A、圖形的認識
1、點,線,面
點,線,面:①圖形是由點,線,面構成的。②面與面相交得線,線與線相交得點。③點動成線,線動成面,面動成體。
展開與折疊:①在稜柱中,任何相鄰的兩個面的交線叫做棱,側棱是相鄰兩個側面的交線,稜柱的所有側棱長相等,稜柱的上下底面的形狀相同,側面的形狀都是長方體。②N稜柱就是底面圖形有N條邊的稜柱。
截一個幾何體:用一個平面去截一個圖形,截出的面叫做截面。
視圖:主視圖,左視圖,俯視圖。
多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。
弧、扇形:①由一條弧和經過這條弧的端點的兩條半徑所組成的圖形叫扇形。②圓可以分割成若干個扇形。
2、角
線:①線段有兩個端點。②將線段向一個方向無限延長就形成了射線。射線只有一個端點。③將線段的兩端無限延長就形成了直線。直線沒有端點。④經過兩點有且只有一條直線。
比較長短:①兩點之間的所有連線中,線段最短。②兩點之間線段的長度,叫做這兩點之間的距離。
角的度量與表示:①角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點。②一度的1/60是一分,一分的1/60是一秒。
角的比較:①角也可以看成是由一條射線繞著他的端點旋轉而成的。②一條射線繞著他的端點旋轉,當終邊和始邊成一條直線時,所成的角叫做平角。始邊繼續旋轉,當他又和始邊重合時,所成的角叫做周角。③從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。
平行:①同一平面內,不相交的兩條直線叫做平行線。②經過直線外一點,有且只有一條直線與這條直線平行。③如果兩條直線都與第3條直線平行,那麼這兩條直線互相平行。
垂直:①如果兩條直線相交成直角,那麼這兩條直線互相垂直。②互相垂直的兩條直線的交點叫做垂足。③平面內,過一點有且只有一條直線與已知直線垂直。
垂直平分線:垂直和平分一條線段的直線叫垂直平分線。
垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據射線和直線可以無限延長有關,再看後面的,垂直平分線是一條直線,所以在畫垂直平分線的時候,確定了2點後(關於畫法,後面會講)一定要把線段穿出2點。
垂直平分線定理:
性質定理:在垂直平分線上的點到該線段兩端點的距離相等;
判定定理:到線段2端點距離相等的點在這線段的垂直平分線上
角平分線:把一個角平分的射線叫該角的角平分線。
定義中有幾個要點要注意一下的,就是角的角平分線是一條射線,不是線段也不是直線,很多時,在題目中會出現直線,這是角平分線的對稱軸才會用直線的,這也涉及到軌跡的問題,一個角個角平分線就是到角兩邊距離相等的點
性質定理:角平分線上的點到該角兩邊的距離相等
判定定理:到角的兩邊距離相等的點在該角的角平分線上
正方形:一組鄰邊相等的矩形是正方形
性質:正方形具有平行四邊形、菱形、矩形的一切性質
判定:1、對角線相等的菱形2、鄰邊相等的矩形
二、基本定理
1、過兩點有且只有一條直線
2、兩點之間線段最短
3、同角或等角的補角相等
4、同角或等角的餘角相等
5、過一點有且只有一條直線和已知直線垂直
6、直線外一點與直線上各點連接的所有線段中,垂線段最短
7、平行公理 經過直線外一點,有且只有一條直線與這條直線平行
8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9、同位角相等,兩直線平行
10、內錯角相等,兩直線平行
11、同旁內角互補,兩直線平行
12、兩直線平行,同位角相等
13、兩直線平行,內錯角相等
14、兩直線平行,同旁內角互補
15、定理 三角形兩邊的和大於第三邊
16、推論 三角形兩邊的差小於第三邊
17、三角形內角和定理 三角形三個內角的和等於180°
18、推論1 直角三角形的兩個銳角互余
19、推論2 三角形的一個外角等於和它不相鄰的兩個內角的和
20、推論3 三角形的一個外角大於任何一個和它不相鄰的內角
21、全等三角形的對應邊、對應角相等
22、邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等
23、角邊角公理( ASA)有兩角和它們的夾邊對應相等的 兩個三角形全等
24、推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等
25、邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等
26、斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等
27、定理1 在角的平分線上的點到這個角的兩邊的距離相等
28、定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上
29、角的平分線是到角的兩邊距離相等的所有點的集合
30、等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角)
31、推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊
32、等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33、推論3 等邊三角形的各角都相等,並且每一個角都等於60°
34、等腰三角形的判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)
35、推論1 三個角都相等的三角形是等邊三角形
36、推論 2 有一個角等於60°的等腰三角形是等邊三角形
37、在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半
38、直角三角形斜邊上的中線等於斜邊上的一半
39、定理 線段垂直平分線上的點和這條線段兩個端點的距離相等
40、逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42、定理1 關於某條直線對稱的兩個圖形是全等形
43、定理 2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線
44、定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上
45、逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱
46、勾股定理 直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a2+b2=c2
47、勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a2+b2=c2,那麼這個三角形是直角三角形
48、定理 四邊形的內角和等於360°
49、四邊形的外角和等於360°
50、多邊形內角和定理 n邊形的內角的和等於(n-2)×180°
51、推論 任意多邊的外角和等於360°
52、平行四邊形性質定理1 平行四邊形的對角相等
53、平行四邊形性質定理2 平行四邊形的對邊相等
54、推論 夾在兩條平行線間的平行線段相等
55、平行四邊形性質定理3 平行四邊形的對角線互相平分
56、平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形
57、平行四邊形判定定理2 兩組對邊分別相等的四邊 形是平行四邊形
58、平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形
59、平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形
60、矩形性質定理1 矩形的四個角都是直角
61、矩形性質定理2 矩形的對角線相等
62、矩形判定定理1 有三個角是直角的四邊形是矩形
63、矩形判定定理2 對角線相等的平行四邊形是矩形
64、菱形性質定理1 菱形的四條邊都相等
65、菱形性質定理2 菱形的對角線互相垂直,並且每一條對角線平分一組對角
66、菱形面積=對角線乘積的一半,即S=(a×b)÷2
67、菱形判定定理1 四邊都相等的四邊形是菱形
68、菱形判定定理2 對角線互相垂直的平行四邊形是菱形
69、正方形性質定理1 正方形的四個角都是直角,四條邊都相等
70、正方形性質定理2正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角
71、定理1 關於中心對稱的兩個圖形是全等的
72、定理2 關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分
73、逆定理 如果兩個圖形的對應點連線都經過某一點,並且被這一點平分,那麼這兩個圖形關於這一點對稱
74、等腰梯形性質定理 等腰梯形在同一底上的兩個角相等
75、等腰梯形的兩條對角線相等
76、等腰梯形判定定理 在同一底上的兩個角相等的梯 形是等腰梯形
77、對角線相等的梯形是等腰梯形
78、平行線等分線段定理 如果一組平行線在一條直線上截得的線段相等,那麼在其他直線上截得的線段也相等
79、推論1 經過梯形一腰的中點與底平行的直線,必平分另一腰
80、推論2 經過三角形一邊的中點與另一邊平行的直線,必平分第三邊
81、三角形中位線定理 三角形的中位線平行於第三邊,並且等於它的一半
82、梯形中位線定理 梯形的中位線平行於兩底,並且等於兩底和的一半 L=(a+b)÷2 S=L×h
83、(1)比例的基本性質:如果a:b=c:d,那麼ad=bc 如果 ad=bc ,那麼a:b=c:d
84、(2)合比性質:如果a/b=c/d,那麼(a±b)/b=(c±d)/d
85、(3)等比性質:如果a/b=c/d=…=m/n(b+d+…+n≠0),
那麼(a+c+…+m)/(b+d+…+n)=a/b
86、平行線分線段成比例定理 三條平行線截兩條直線,所得的對應線段成比例
87、推論 平行於三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例
88、定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那麼這條直線平行於三角形的第三邊
89、平行於三角形的一邊,並且和其他兩邊相交的直線, 所截得的三角形的三邊與原三角形三邊對應成比例
90、定理 平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似
91、相似三角形判定定理1 兩角對應相等,兩三角形相似(ASA)
92、直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
93、判定定理2 兩邊對應成比例且夾角相等,兩三角形相似(SAS)
94、判定定理3 三邊對應成比例,兩三角形相似(SSS)
95、定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那麼這兩個直角三角形相似
96、性質定理1 相似三角形對應高的比,對應中線的比與對應角平分線的比都等於相似比
97、性質定理2 相似三角形周長的比等於相似比
98、性質定理3 相似三角形面積的比等於相似比的平方
99、任意銳角的正弦值等於它的餘角的餘弦值,任意銳角的餘弦值等於它的餘角的正弦值
100、任意銳角的正切值等於它的餘角的餘切值,任意銳角的餘切值等於它的餘角的正切值
101、圓是定點的距離等於定長的點的集合
102、圓的內部可以看作是圓心的距離小於半徑的點的集合
103、圓的外部可以看作是圓心的距離大於半徑的點的集合
104、同圓或等圓的半徑相等
105、到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓
106、和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線
107、到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
108、到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線
109、定理 不在同一直線上的三點確定一個圓。
110、垂徑定理 垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧
111、推論1
①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧
②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧
112、推論2 圓的兩條平行弦所夾的弧相等
113、圓是以圓心為對稱中心的中心對稱圖形
114、定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
115、推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那麼它們所對應的其餘各組量都相等
116、定理 一條弧所對的圓周角等於它所對的圓心角的一半
117、推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
118、推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑
119、推論3 如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形
120、定理 圓的內接四邊形的對角互補,並且任何一個外角都等於它的內對角
121、①直線L和⊙O相交 d<r
②直線L和⊙O相切 d=r
③直線L和⊙O相離 d>r
122、切線的判定定理 經過半徑的外端並且垂直於這條半徑的直線是圓的切線
123、切線的性質定理 圓的切線垂直於經過切點的半徑
124、推論1 經過圓心且垂直於切線的直線必經過切點
125、推論2 經過切點且垂直於切線的直線必經過圓心
126、切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等圓心和這一點的連線平分兩條切線的夾角
127、圓的外切四邊形的兩組對邊的和相等
128、弦切角定理 弦切角等於它所夾的弧對的圓周角
129、推論 如果兩個弦切角所夾的弧相等,那麼這兩個弦切角也相等
130、相交弦定理 圓內的兩條相交弦,被交點分成的兩條線段長的積相等
131、推論 如果弦與直徑垂直相交,那麼弦的一半是它分直徑所成的兩條線段的比例中項
132、切割線定理 從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項
133、推論 從圓外一點引圓的兩條割線,這一點到每條 割線與圓的交點的兩條線段長的積相等
134、如果兩個圓相切,那麼切點一定在連心線上

7. 七年級數學考試知識點整理

課堂臨時報佛腳,不如 課前預習 好。其實任何學科的知識都是一樣的,學習任何一門學科,勤奮都是最好的 學習 方法 ,沒有之一,書山有路勤為徑。下面是我給大家整理的一些 七年級數學 的知識點,希望對大家有所幫助。

一下冊數學知識點 總結

1、單項式:數字與字母的積,叫做單項式。

2、多項式:幾個單項式的和,叫做多項式。

3、整式:單項式和多項式統稱整式。

4、單項式的次數:單項式中所有字母的指數的和叫單項式的次數。

5、多項式的次數:多項式中次數的項的次數,就是這個多項式的次數。

6、餘角:兩個角的和為90度,這兩個角叫做互為餘角。

7、補角:兩個角的和為180度,這兩個角叫做互為補角。

8、對頂角:兩個角有一個公共頂點,其中一個角的兩邊是另一個角兩邊的反向延長線。這兩個角就是對頂角。

9、同位角:在「三線八角」中,位置相同的角,就是同位角。

10、內錯角:在「三線八角」中,夾在兩直線內,位置錯開的角,就是內錯角。

11、同旁內角:在「三線八角」中,夾在兩直線內,在第三條直線同旁的角,就是同旁內角。

12、有效數字:一個近似數,從左邊第一個不為0的數開始,到精確的那位止,所有的數字都是有效數字。

13、概率:一個事件發生的可能性的大小,就是這個事件發生的概率。

14、三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。

15、三角形的角平分線:在三角形中,一個內角的角平分線與它的對邊相交,這個角的頂點與交點之間的線段叫做三角形的角平分線。

16、三角形的中線:在三角形中連接一個頂點與它的對邊中點的線段,叫做這個三角形的中線。

17、全等圖形:兩個能夠重合的圖形稱為全等圖形。

18、變數:變化的數量,就叫變數。

19、自變數:在變化的量中主動發生變化的,變叫自變數。

20、因變數:隨著自變數變化而被動發生變化的量,叫因變數。

21、軸對稱圖形:如果一個圖形沿一條直線折疊後,直線兩旁的部分能夠互相重合,那麼這個圖形叫做軸對稱圖形。

22、對稱軸:軸對稱圖形中對折的直線叫做對稱軸。

2021七年級下冊數學知識點

概率

一、事件:

1、事件分為必然事件、不可能事件、不確定事件。

2、必然事件:事先就能肯定一定會發生的事件。也就是指該事件每次一定發生,不可能不發生,即發生的可能是100%(或1)。

3、不可能事件:事先就能肯定一定不會發生的事件。也就是指該事件每次都完全沒有機會發生,即發生的可能性為零。

4、不確定事件:事先無法肯定會不會發生的事件,也就是說該事件可能發生,也可能不發生,即發生的可能性在0和1之間。

二、等可能性:是指幾種事件發生的可能性相等。

1、概率:是反映事件發生的可能性的大小的量,它是一個比例數,一般用P來表示,P(A)=事件A可能出現的結果數/所有可能出現的結果數。

2、必然事件發生的概率為1,記作P(必然事件)=1;

3、不可能事件發生的概率為0,記作P(不可能事件)=0;

4、不確定事件發生的概率在0—1之間,記作0

三、幾何概率

1、事件A發生的概率等於此事件A發生的可能結果所組成的面積(用SA表示)除以所有可能結果組成圖形的面積(用S全表示),所以幾何概率公式可表示為P(A)=SA/S全,這是因為事件發生在每個單位面積上的概率是相同的。

2、求幾何概率:

(1)首先分析事件所佔的面積與總面積的關系;

(2)然後計算出各部分的面積;

(3)最後代入公式求出幾何概率。

初一數學 復習方法

考試與作業邏輯不同:

我們的考試不同於作業,有些孩子作業寫的還可以,准確率挺高的,但是考試成績不理想。比如學校上完課,回家就寫當天的作業,但是考試不一樣,它是階段性的、綜合性的;再比如寫作業,可以看資料,不會的可以請教同學,但是考試就得靠自己;還有寫作業時格式不一定規范,不一定符合標准,但是考試老師會要求很嚴格;另外有些孩子考試比較焦慮,考試之前,爸爸媽媽給孩子加油鼓勁,反倒孩子考不好,有些孩子甚至在考試前後一定要上廁所,排解壓力,甚至影響到考試成績。

那具體涉及到數學的復習,我以北師大版為例,可以分4個步驟:

復習方法總結

1回歸書本,梳理章節概念公式、性質定理等

就像蓋房子,房子的地基是否扎實穩固。比如我們在復習課中,要求孩子們默寫公式等,記憶單項式、多項式、整式的概念,以及冪的運算、整式乘除的法則,而且一定要記住平方差和完全平方公式以及變形。有些孩子能夠背下完全平方公式,但是一旦用的時候,就偏偏不用,因為不夠熟練,怕出錯,所以就用最復雜的公式推導一遍,費時費力,還總錯,而且重要的公式更加生疏。

比如知識點填空:

知識點填空

我們的孩子在學校大題普遍做的多,考試也能拿到一些分數,但是選擇填空老錯,考完試下來一看,錯就錯在概念不清。

比如平行線是怎麼定義,性質定理有幾條,判定定理有幾條?他們之間有什麼聯系和區別?在這一章中,哪些地方一定要加「同一平面內」這5個字?家長們可以讓孩子找找看,捋一捋。

再比如說,三角形一章,涉及到三邊關系,角的關系,以及三角形的重要線段和它們的性質,等腰等邊三角形的性質,這些一定是期末選擇題的備選項。

還有全等的幾種證明方法,常見的輔助線做法這是幾何證明題的思路。

2題型突破,對各章節常見的 熱點 問題歸納練習。

我們的數學、物理這些理科都是要做題型的,而不僅僅是做題,一定要明白思路。

大多數孩子要考的題型和難度,學校每天的作業以及每周的考試卷,你都必須分析一下,對題型歸類,你可以用不同的筆標記一下,比如第2題和第8題是一類題,是化簡求值還是公式的變形應用?通過這樣一遍的分析,孩子們都會發現,其實考來考去,就是那幾種題型反復的出,反復的練。這是非常高效的學習方法。

3、熟悉套路、模型

平行線常見的模型:鉛筆模型、豬蹄模型,比如我經常和大家說的,遇見拐點,就做平行線。

三角形倒角常見模型:8字型、飛鏢型、折角型。

三角形全等模型:角平分線的性質模型,等腰直角三角形模型,三垂直模型,翻折(對稱)。

學好這些模型相等於我們是拿著工具箱考試,效率很高,比起其他同學,省去了推導的過程,速度又快,又准確。當然前提要掌握好基礎內容,不要本末倒置。

如果孩子們能把前面的步驟都做好了,基本知識點,題型都掌握了,計算也不會出錯,那你們考試一定沒有問題,除了有些學校本來要求考很難,比如壓軸題,不在於做的多,而是在精練,你做完之後不斷的復盤,用自己的語言說出思路來,找找看裡面的邏輯關系。

4、堅持改錯題

把整個學期的試卷裝訂在一起,每周花半天的時間,訂正錯題,不會的標記星號,問老師問同學,直到會了為止,下周繼續改,看自己是否真的懂了,對於錯題,就像駱駝吃草一樣,不停地咀嚼,錯題也需要孩子們不斷反復的看思路,才能在考試的時候避免在同類型的題上反復錯。


七年級數學考試知識點整理相關 文章 :

★ 七年級數學知識點整理大全

★ 初一數學考試知識點總結

★ 初中七年級數學知識點歸納整理

★ 初一數學知識點歸納梳理

★ 七年級上冊數學月考知識點整理

★ 初一數學必考的21個知識點,附考試重難點

★ 七年級數學知識點整理部編版

★ 七年級數學知識點梳理總結

★ 初中數學知識點整理:

★ 七年級數學的知識點歸納總結

8. 初一數學重要知識點總結

初一數學是整個初中數學的基礎,初一時期數學的重要知識點有哪些呢?接下來是我為大家帶來的初一數學重要的知識點 總結 ,供大家參考。
初一數學重要知識點總結:有理數
知識概念

1.有理數:

(1)凡能寫成形式的數,都是有理數.正整數、0、負整數統稱整數;正分數、負分數統稱分數;整數和分數統稱有理數.注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;p不是有理數;

(2)有理數的分類:①②2.數軸:數軸是規定了原點、正方向、單位長度的一條直線.

3.相反數:

(1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0;

(2)相反數的和為0?a+b=0?a、b互為相反數.

4.絕對值:

(1)正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;注意:絕對值的意義是數軸上表示某數的點離開原點的距離;

(2)絕對值可表示為:或;絕對值的問題經常分類討論;

5.有理數比大小:(1)正數的絕對值越大,這個數越大;(2)正數永遠比0大,負數永遠比0小;(3)正數大於一切負數;(4)兩個負數比大小,絕對值大的反而小;(5)數軸上的兩個數,右邊的數總比左邊的數大;(6)大數-小數>0,小數-大數<0.

6.互為倒數:乘積為1的兩個數互為倒數;注意:0沒有倒數;若a≠0,那麼的倒數是;若ab=1?a、b互為倒數;若ab=-1?a、b互為負倒數.

7.有理數加法法則:

(1)同號兩數相加,取相同的符號,並把絕對值相加;

(2)異號兩數相加,取絕對值較大的符號,並用較大的絕對值減去較小的絕對值;

(3)一個數與0相加,仍得這個數.

8.有理數加法的運算律:

(1)加法的交換律:a+b=b+a;(2)加法的結合律:(a+b)+c=a+(b+c).

9.有理數減法法則:減去一個數,等於加上這個數的相反數;即a-b=a+(-b).

10有理數乘法法則:

(1)兩數相乘,同號為正,異號為負,並把絕對值相乘;

(2)任何數同零相乘都得零;

(3)幾個數相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數決定.

11有理數乘法的運算律:

(1)乘法的交換律:ab=ba;(2)乘法的結合律:(ab)c=a(bc);

(3)乘法的分配律:a(b+c)=ab+ac.

12.有理數除法法則:除以一個數等於乘以這個數的倒數;注意:零不能做除數,.

13.有理數乘方的法則:

(1)正數的任何次冪都是正數;

(2)負數的奇次冪是負數;負數的偶次冪是正數;注意:當n為正奇數時:(-a)n=-an或(a-b)n=-(b-a)n,當n為正偶數時:(-a)n=an或(a-b)n=(b-a)n.

14.乘方的定義:

(1)求相同因式積的運算,叫做乘方;

(2)乘方中,相同的因式叫做底數,相同因式的個數叫做指數,乘方的結果叫做冪;

15.科學記數法:把一個大於10的數記成a×10n的形式,其中a是整數數位只有一位的數,這種記數法叫科學記數法.

16.近似數的精確位:一個近似數,四捨五入到那一位,就說這個近似數的精確到那一位.

17.有效數字:從左邊第一個不為零的數字起,到精確的位數止,所有數字,都叫這個近似數的有效數字.

18.混合運演算法則:先乘方,後乘除,最後加減.

本章內容要求學生正確認識有理數的概念,在實際生活和學習數軸的基礎上,理解正負數、相反數、絕對值的意義所在。重點利用有理數的運演算法則解決實際問題.

體驗數學發展的一個重要原因是生活實際的需要.激發學生學習數學的興趣,教師培養學生的觀察、歸納與概括的能力,使學生建立正確的數感和解決實際問題的能力。教師在講授本章內容時,應該多創設情境,充分體現學生學習的主體性地位。
初一數學重要知識點總結:整式的加減
1.單項式:在代數式中,若只含有乘法(包括乘方)運算。或雖含有除法運算,但除式中不含字母的一類代數式叫單項式.

2.單項式的系數與次數:單項式中不為零的數字因數,叫單項式的數字系數,簡稱單項式的系數;系數不為零時,單項式中所有字母指數的和,叫單項式的次數.

3.多項式:幾個單項式的和叫多項式.

4.多項式的項數與次數:多項式中所含單項式的個數就是多項式的項數,每個單項式叫多項式的項;多項式里,次數最高項的次數叫多項式的次數。

通過本章學習,應使學生達到以下學習目標:

1.理解並掌握單項式、多項式、整式等概念,弄清它們之間的區別與聯系。

2.理解同類項概念,掌握合並同類項的 方法 ,掌握去括弧時符號的變化規律,能正確地進行同類項的合並和去括弧。在准確判斷、正確合並同類項的基礎上,進行整式的加減運算。

3.理解整式中的字母表示數,整式的加減運算建立在數的運算基礎上;理解合並同類項、去括弧的依據是分配律;理解數的運算律和運算性質在整式的加減運算中仍然成立。

4.能夠分析實際問題中的數量關系,並用還有字母的式子表示出來。

在本章學習中,教師可以通過讓學生小組討論、合作學習等方式,經歷概念的形成過程,初步培養學生觀察、分析、抽象、概括等思維能力和應用意識。
初一數學重要知識點總結:一元一次方程
本章內容是代數學的核心,也是所有代數方程的基礎。豐富多彩的問題情境和解決問題的快樂很容易激起學生對數學的樂趣,所以要注意引導學生從身邊的問題研究起,進行有效的數學活動和合作交流,讓學生在主動學習、探究學習的過程中獲得知識,提升能力,體會數學思想方法。

知識概念

1.一元一次方程:只含有一個未知數,並且未知數的次數是1,並且含未知數項的系數不是零的整式方程是一元一次方程.

2.一元一次方程的標准形式:ax+b=0(x是未知數,a、b是已知數,且a≠0).

3.一元一次方程解法的一般步驟:整理方程……去分母……去括弧……移項……合並同類項……系數化為1……(檢驗方程的解).

4.列一元一次方程解應用題:

(1)讀題分析法:…………多用於“和,差,倍,分問題”

仔細讀題,找出表示相等關系的關鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套-----”,利用這些關鍵字列出文字等式,並且據題意設出未知數,最後利用題目中的量與量的關系填入代數式,得到方程.

(2)畫圖分析法:…………多用於“行程問題”

利用圖形分析數學問題是數形結合思想在數學中的體現,仔細讀題,依照題意畫出有關圖形,使圖形各部分具有特定的含義,通過圖形找相等關系是解決問題的關鍵,從而取得布列方程的依據,最後利用量與量之間的關系(可把未知數看做已知量),填入有關的代數式是獲得方程的基礎.

11.列方程解應用題的常用公式:

(1)行程問題:距離=速度·時間;

(2)工程問題:工作量=工效·工時;

(3)比率問題:部分=全體·比率;

(4)順逆流問題:順流速度=靜水速度+水流速度,逆流速度=靜水速度-水流速度;

(5)商品價格問題:售價=定價·折·,利潤=售價-成本,;

(6)周長、面積、體積問題:C圓=2πR,S圓=πR2,C長方形=2(a+b),S長方形=ab,C正方形=4a,

9. 初中數學知識有哪些簡單概括

知識點1:一元二次方程的基本概念
知識點2:直角坐標系與點的位置
知識點3:已知自變數的值求函數值
1.當x=2時,函數y=的值為1.
2.當x=3時,函數y=的值為1.
3.當x=-1時,函數y=的值為1.
知識點4:基本函數的概念及性質
1.函數y=-8x是一次函數.
2.函數y=4x+1是正比例函數.
4.拋物線y=-3(x-2)2-5的開口向下.
5.拋物線y=4(x-3)2-10的對稱軸是x=3.
6.拋物線的頂點坐標是(1,2).
7.反比例函數的圖象在第一、三象限.
知識點5:數據的平均數中位數與眾數
1.數據13,10,12,8,7的平均數是10.
2.數據3,4,2,4,4的眾數是4.
3.數據1,2,3,4,5的中位數是3
知識點6:特殊三角函數值
2.sin260°+cos260°=1.
3.2sin30°+tan45°=2.
4.tan45°=1.
5.cos60°+sin30°=1.
知識點7:圓的基本性質
1.半圓或直徑所對的圓周角是直角.
2.任意一個三角形一定有一個外接圓.
3.在同一平面內,到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓.
4.在同圓或等圓中,相等的圓心角所對的弧相等.
5.同弧所對的圓周角等於圓心角的一半.
6.同圓或等圓的半徑相等.
7.過三個點一定可以作一個圓.
8.長度相等的兩條弧是等弧.
9.在同圓或等圓中,相等的圓心角所對的弧相等.
10.經過圓心平分弦的直徑垂直於弦。
知識點8:直線與圓的位置關系
1.直線與圓有唯一公共點時,叫做直線與圓相切.
2.三角形的外接圓的圓心叫做三角形的外心.
3.弦切角等於所夾的弧所對的圓心角.
4.三角形的內切圓的圓心叫做三角形的內心.
5.垂直於半徑的直線必為圓的切線.
6.過半徑的外端點並且垂直於半徑的直線是圓的切線.
7.垂直於半徑的直線是圓的切線.
8.圓的切線垂直於過切點的半徑.

10. 九年級數學基礎知識點

天才就是勤奮曾經有人這樣說過。如果這話不完全正確,那至少在很大程度上是正確的。學習,就算是天才,也是需要不斷練習與記憶的。下面是我給大家整理的一些 九年級數學 的知識點,希望對大家有所幫助。

初三年級下學期數學知識點

反比例函數

形如y=k/x(k為常數且k≠0,x≠0,y≠0)的函數,叫做反比例函數。

自變數x的取值范圍是不等於0的一切實數。

反比例函數圖像性質:

反比例函數的圖像為雙曲線。

由於反比例函數屬於奇函數,有f(-x)=-f(x),圖像關於原點對稱。

另外,從反比例函數的解析式可以得出,在反比例函數的圖像上任取一點,向兩個坐標軸作垂線,這點、兩個垂足及原點所圍成的矩形面積是定值,為∣k∣。

當K>0時,反比例函數圖像經過一,三象限,是減函數(即y隨x的增大而減小)

當K<0時,反比例函數圖像經過二,四象限,是增函數(即y隨x的增大而增大)

由於反比例函數的自變數和因變數都不能為0,所以圖像只能無限向坐標軸靠近,無法和坐標軸相交。

1.過反比例函數圖象上任意一點作兩坐標軸的垂線段,這兩條垂線段與坐標軸圍成的矩形的面積為|k|。

2.對於雙曲線y=k/x,若在分母上加減任意一個實數(即y=k/x(x±m)m為常數),就相當於將雙曲線圖象向左或右平移一個單位。(加一個數時向左平移,減一個數時向右平移)

二次函數

知識點一、平面直角坐標系

1,平面直角坐標系

在平面內畫兩條互相垂直且有公共原點的數軸,就組成了平面直角坐標系。

其中,水平的數軸叫做x軸或橫軸,取向右為正方向;鉛直的數軸叫做y軸或縱軸,取向上為正方向;兩軸的交點O(即公共的原點)叫做直角坐標系的原點;建立了直角坐標系的平面,叫做坐標平面。

為了便於描述坐標平面內點的位置,把坐標平面被x軸和y軸分割而成的四個部分,分別叫做第一象限、第二象限、第三象限、第四象限。

注意:x軸和y軸上的點,不屬於任何象限。

2、點的坐標的概念

點的坐標用(a,b)表示,其順序是橫坐標在前,縱坐標在後,中間有「,」分開,橫、縱坐標的位置不能顛倒。平面內點的坐標是有序實數對,當時,(a,b)和(b,a)是兩個不同點的坐標。

知識點二、不同位置的點的坐標的特徵

1、各象限內點的坐標的特徵

點P(x,y)在第一象限

點P(x,y)在第二象限

點P(x,y)在第三象限

點P(x,y)在第四象限

2、坐標軸上的點的特徵

點P(x,y)在x軸上,x為任意實數

點P(x,y)在y軸上,y為任意實數

點P(x,y)既在x軸上,又在y軸上x,y同時為零,即點P坐標為(0,0)

3、兩條坐標軸夾角平分線上點的坐標的特徵

點P(x,y)在第一、三象限夾角平分線上x與y相等

點P(x,y)在第二、四象限夾角平分線上x與y互為相反數

4、和坐標軸平行的直線上點的坐標的特徵

位於平行於x軸的直線上的各點的縱坐標相同。

位於平行於y軸的直線上的各點的橫坐標相同。

5、關於x軸、y軸或遠點對稱的點的坐標的特徵

點P與點p』關於x軸對稱橫坐標相等,縱坐標互為相反數

點P與點p』關於y軸對稱縱坐標相等,橫坐標互為相反數

點P與點p』關於原點對稱橫、縱坐標均互為相反數

6、點到坐標軸及原點的距離

點P(x,y)到坐標軸及原點的距離:

(1)點P(x,y)到x軸的距離等於

(2)點P(x,y)到y軸的距離等於

(3)點P(x,y)到原點的距離等於

初 三年級數學 知識點歸納

旋轉

一.知識框架

二.知識概念

1.旋轉:在平面內,將一個圖形繞一個圖形按某個方向轉動一個角度,這樣的運動叫做圖形的旋轉。這個定點叫做旋轉中心,轉動的角度叫做旋轉角。(圖形的旋轉是圖形上的每一點在平面上繞著某個固定點旋轉固定角度的位置移動,其中對應點到旋轉中心的距離相等,對應線段的長度、對應角的大小相等,旋轉前後圖形的大小和形狀沒有改變。)

2.旋轉對稱中心:把一個圖形繞著一個定點旋轉一個角度後,與初始圖形重合,這種圖形叫做旋轉對稱圖形,這個定點叫做旋轉對稱中心,旋轉的角度叫做旋轉角(旋轉角小於0°,大於360°)。

3.中心對稱圖形與中心對稱:

中心對稱圖形:如果把一個圖形繞著某一點旋轉180度後能與自身重合,那麼我們就說,這個圖形成中心對稱圖形。

中心對稱:如果把一個圖形繞著某一點旋轉180度後能與另一個圖形重合,那麼我們就說,這兩個圖形成中心對稱。

4.中心對稱的性質:

關於中心對稱的兩個圖形是全等形。

關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分。

關於中心對稱的兩個圖形,對應線段平行(或者在同一直線上)且相等。

本章內容通過讓學生經歷觀察、操作等過程了解旋轉的概念,探索旋轉的性質,進一步發展空間觀察,培養幾何思維和審美意識,在實際問題中體驗數學的快樂,激發對學習學習。

九年級上冊數學復習知識點

知識點1:一元二次方程的基本概念

1、一元二次方程3x2+5x-2=0的常數項是-2。

2、一元二次方程3x2+4x-2=0的一次項系數為4,常數項是-2。

3、一元二次方程3x2-5x-7=0的二次項系數為3,常數項是-7。

4、把方程3x(x-1)-2=-4x化為一般式為3x2-x-2=0。

知識點2:直角坐標系與點的位置

1、直角坐標系中,點A(3,0)在y軸上。

2、直角坐標系中,x軸上的任意點的橫坐標為0。

3、直角坐標系中,點A(1,1)在第一象限。

4、直角坐標系中,點A(-2,3)在第四象限。

5、直角坐標系中,點A(-2,1)在第二象限。

知識點3:已知自變數的值求函數值

1、當x=2時,函數y=的值為1。

2、當x=3時,函數y=的值為1。

3、當x=-1時,函數y=的值為1。

知識點4:基本函數的概念及性質

1、函數y=-8x是一次函數。

2、函數y=4x+1是正比例函數。

3、函數是反比例函數。

4、拋物線y=-3(x-2)2-5的開口向下。

5、拋物線y=4(x-3)2-10的對稱軸是x=3。

6、拋物線的頂點坐標是(1,2)。

7、反比例函數的圖象在第一、三象限。

知識點5:數據的平均數中位數與眾數

1、數據13,10,12,8,7的平均數是10。

2、數據3,4,2,4,4的眾數是4。

3、數據1,2,3,4,5的中位數是3。

知識點6:特殊三角函數值

1.cos30°=。

2.sin260°+cos260°=1。

3.2sin30°+tan45°=2。

4.tan45°=1。

5.cos60°+sin30°=1。


九年級數學基礎知識點相關 文章 :

★ 初三數學基礎知識點總結

★ 九年級數學上冊重要知識點總結

★ 九年級數學知識點上冊

★ 九年級上冊數學知識點歸納整理

★ 初三數學知識點考點歸納總結

★ 初中數學基礎知識點總結

★ 初中數學基礎知識點歸納總結

★ 初三數學知識點歸納總結

★ 初三數學基礎知識的復習規劃

★ 初三數學復習知識點總結