❶ 小學六年級數學知識點
知識是一座寶庫,而實踐就是開啟寶庫的鑰匙。數學這門學科,不僅僅需要大量的記憶,還需要大量的練習,從而達到鞏固知識的效果,其他學科也大都雷同。下面是我給大家整理的一些 六年級數學 的知識點,希望對大家有所幫助。
小學6年級 畢業 考試數學重難知識點
行程問題
基本概念:
行程問題是研究物體運動的,它研究的是物體速度、時間、路程三者之間的關系.
基本公式:
路程=速度×時間;路程÷時間=速度;路程÷速度=時間
關鍵問題:
確定運動過程中的位置和方向。
相遇問題:速度和×相遇時間=相遇路程(請寫出其他公式)
追及問題:追及時間=路程差÷速度差(寫出其他公式)
流水問題:順水行程=(船速+水速)×順水時間
逆水行程=(船速-水速)×逆水時間
順水速度=船速+水速
逆水速度=船速-水速
靜水速度=(順水速度+逆水速度)÷2
水 速=(順水速度-逆水速度)÷2
流水問題:關鍵是確定物體所運動的速度,參照以上公式。
過橋問題:關鍵是確定物體所運動的路程,參照以上公式。
主要 方法 :畫線段圖法
基本題型:
已知路程(相遇路程、追及路程)、時間(相遇時間、追及時間)、速度(速度和、速度差)中任意兩個量,求第三個量。
人教版學校六年級上冊數學知識點
百分數應用題
1、求常見的百分率,如:達標率、及格率、成活率、發芽率、出勤率等求百分率就是求一個數是另一個數的百分之幾。
2、求一個數比另一個數多(或少)百分之幾,實際生活中,人們常用增加了百分之幾、減少了百分之幾、節約了百分之幾等來表示增加、或減少的幅度。
求甲比乙多百分之幾:(甲-乙)÷乙
求乙比甲少百分之幾:(甲-乙)÷甲
3、求一個數的百分之幾是多少。一個數(單位「1」)×百分率
4、已知一個數的百分之幾是多少,求這個數。
部分量÷百分率=一個數(單位「1」)
5、折扣、打折的意義:幾折就是十分之幾也就是百分之幾十
折扣、成數=幾分之幾、百分之幾、小數
八折=八成=十分之八=百分之八十=0.8
八五折=八成五=十分之八點五=百分之八十五=0.85
五折=五成=十分之五=百分之五十=0.5=半價
利率
(1)存入銀行的錢叫做本金。
(2)取款時銀行多支付的錢叫做利息。
(3)利息與本金的比值叫做利率。
利息=本金×利率×時間
稅後利息=利息-利息的應納稅額=利息-利息×5%
註:國債和 教育 儲蓄的利息不納稅
百分數應用題型分類
(1)求甲是乙的百分之幾——(甲÷乙)×100%=百分之幾
(2)求甲比乙多百分之幾——(甲-乙)÷乙×100%
(3)求甲比乙少百分之幾——(乙-甲)÷乙×100%
六年級數學位置與方向復習知識點
一、確定物體位置的方法:
1、先找觀測點;
2、再定方向(看方向夾角的度數);
3、最後確定距離(看比例尺)
二、描繪路線圖的關鍵是選好觀測點,建立方向標,確定方向和路程。
三、位置關系的相對性:
1、兩地的位置具有相對性在敘述兩地的位置關系時,觀測點不同,敘述的方向正好相反,而度數和距離正好相等。
四、相對位置:東--西;南--北;南偏東--北偏西。
小學六年級數學知識點相關 文章 :
★ 小學六年級數學知識點總結
★ 六年級數學期末復習知識點匯總
★ 小學六年級數學學習方法和技巧大全
★ 六年級數學上冊知識點復習
★ 一至六年級數學知識點復習資料整合
★ 小學六年級數學知識點盤點
★ 六年級數學總復習知識點整理(完整版)
★ 六年級數學小知識總結
★ 六年級上冊數學知識點整理歸納
❷ 小學六年級數學知識點梳理
求學的三個條件是:多觀察、多吃苦、多研究。每一門科目都有自己的 學習 方法 ,但其實都是萬變不離其中的,也是要記、要背、要講練的。下面是我給大家整理的一些 六年級數學 的知識點,希望對大家有所幫助。
六年級數學知識點
分數混合運算
1、分數混合運算的運算順序與整數混合運算的運算順序完全相同,都是先算乘除,再算加減,有括弧的先算括弧里的。
①如果是同一級運算,按照從左到右的順序依次計算。
②如果是分數連乘,可先進行約分,再進行計算;
③如果是分數乘除混合運算時,要先把除法轉換成乘法,然後按乘法運算。
2、解決問題
(1)用分數運算解決「求比已知量多(或少)幾分之幾的量是多少」的實際問題,方法是:
第①種方法:可以先求出多或少的具體量,再用單位「1」的量加或減去多或少的部分,求出要求的問題。
第②種方法:也可以用單位「1」加或減去多或少的幾分之幾,求出未知數占單位「1」的幾分之幾,再用單位「1」的量乘這個分數。
(2)「已知甲與乙的和,其中甲占和的幾分之幾,求乙數是多少?」
第①種方法:首先明確誰占單位「1」的幾分之幾,求出甲數,再用單位「1」減去甲數,求出乙數。
第②種方法:先用單位「1」減去已知甲數所佔和的幾分之幾,即得未知乙數所佔和的幾分之幾,再求出乙數。
(3)用方程解決稍復雜的分數應用題的步驟:
①要找准單位「1」。
②確定好其他量和單位「1」的量有什麼關系,畫出關系圖,寫出等量關系式。
③設未知量為X,根據等量關系式,列出方程。
④解答方程。
(4)要記住以下幾種算術解法解應用題:
①對應數量÷對應分率=單位「1」 的量
②求一個數的幾分之幾是多少,用乘法計算。
③已知一個數的幾分之幾是多少,求這個數,用除法計算,還可以用列方程解答。
3、要記住以下的解方程定律:
加數 +加數 = 和;
加數 = 和–另一個加數。
被減數–減數 = 差;
被減數=差+減數;
減數=被減數–差。
因數×因數 = 積;
因數 = 積÷另一個因數。
被除數÷除數 = 商;
被除數=商×除數;
除數=被除數÷商。
4、繪制簡單線段圖的方法:
分數應用題,分兩種類型,一種是知道單位「1」的量用乘法,另一種是求單位「1」的量,用除法。這兩種類型應用題的數量關系可以分成三種:(一)一種量是另一種量的幾分之幾。(二)一種量比另一種量多幾分之幾。(三)一種量比另一種量少幾分之幾。繪制時關鍵處理好量與量之間的關系,在審題確定單位「1」的量。繪制步驟:
①首先用線段表示出這個單位「1」的量,畫在最上面,用直尺畫。
②分率的分母是幾就把單位「1」的量平均分成幾份,用直尺畫出平均的等分。標出相關的量。
③再繪制與單位「1」有關的量,根據實際是上面的三種關系中的哪一種再畫。標出相關的量。
④問題所求要標出「?」號和單位。
5、補充知識點
分數乘法:分數乘法的意義與整數乘法的意義相同,就是求幾個相同加數和的簡便運算。
分數乘法的計演算法則
分數乘整數,用分數的分子和整數相乘的積作分子,分母不變;分數乘分數,用分子相乘的積作分子,分母相乘的積作分母。但分子分母不能為零.。
分數乘法意義
分數乘整數的意義與整數乘法的意義相同,就是求幾個相同加數的和的簡便運算。一個數與分數相乘,可以看作是求這個數的幾分之幾是多少。
分數乘整數:數形結合、轉化化歸
倒數:乘積是1的兩個數叫做互為倒數。
分數的倒數
找一個分數的倒數,例如3/4把3/4這個分數的分子和分母交換位置,把原來的分子做分母,原來的分母做分子。則是4/3。3/4是4/3的倒數,也可以說4/3是3/4的倒數。
整數的倒數
找一個整數的倒數,例如12,把12化成分數,即12/1 ,再把12/1這個分數的分子和分母交換位置,把原來的分子做分母,原來的分母做分子。則是1/12 ,12是1/12的倒數。
六年級數學知識點歸納
體積和表面積
三角形的面積=底×高÷2。 公式 S= a×h÷2
正方形的面積=邊長×邊長 公式 S= a2
長方形的面積=長×寬 公式 S= a×b
平行四邊形的面積=底×高 公式 S= a×h
梯形的面積=(上底+下底)×高÷2 公式 S=(a+b)h÷2
內角和:三角形的內角和=180度。
長方體的表面積=(長×寬+長×高+寬×高 ) ×2 公式:S=(a×b+a×c+b×c)×2
正方體的表面積=棱長×棱長×6 公式: S=6a2
長方體的體積=長×寬×高 公式:V = abh
長方體(或正方體)的體積=底面積×高 公式:V = abh
正方體的體積=棱長×棱長×棱長 公式:V = a3
圓的周長=直徑×π 公式:L=πd=2πr
圓的面積=半徑×半徑×π 公式:S=πr2
圓柱的表(側)面積:圓柱的表(側)面積等於底面的周長乘高。公式:S=ch=πdh=2πrh
圓柱的表面積:圓柱的表面積等於底面的周長乘高再加上兩頭的圓的面積。 公式:S=ch+2s=ch+2πr2
圓柱的體積:圓柱的體積等於底面積乘高。公式:V=Sh
圓錐的體積=1/3底面×積高。公式:V=1/3Sh
數量關系計算公式
單價×數量=總價 2、單產量×數量=總產量
速度×時間=路程 4、工效×時間=工作總量
加數+加數=和 一個加數=和+另一個加數
被減數-減數=差 減數=被減數-差 被減數=減數+差
因數×因數=積 一個因數=積÷另一個因數
被除數÷除數=商 除數=被除數÷商 被除數=商×除數
六年級數學必考知識點
1.比和比例的意義
比的意義是兩個數的除又叫做兩個數的比,而比例的意義是表示兩個比相等的式子是叫做比例。比是表示兩個數相除,有兩項;比例是一個等式,表示兩個比相等,有四項。因此,比和比例的意義也有所不同。而且,比號沒有括弧的含義而另一種形式,分數有括弧的含義!
2.比的基本性質:比的前項和後項都乘以或除以一個不為零的數。比值不變。用於化簡比。
3.比例的性質:在比例里,兩個外項的乘積等於兩個內項的乘積。比例的性質用於解比例。
4.比和比例的聯系:
比和比例有著密切聯系。比是研究兩個量之間的關系,所以它有兩項;比例是研究相關聯的兩種量中兩組相對應數的關系,所以比例是由四項組成。比例是由比組成的,成比例的兩個比的比值一定相等。
5.比和比例的區別
(1)意義、項數、各部分名稱不同。比表示兩個數相除;只有兩個項:比的前項和後項。如:a:b這是比比例是一個等式,表示兩個比相等;有四個項:兩個外項和兩個內項。a:b=3:4這是比例。
(2)比的基本性質和比例的基本性質意義不同、應用不同。聯系:比例是由兩個相等的比組成。
6.正比例:若A擴大或縮小幾倍,B也擴大或縮小幾倍(AB的商不變時),則A與B成正比。反比例:若A擴大或縮小幾倍,B也縮小或擴大幾倍(AB的積不變時),則A與B成反比。比例尺:圖上距離與實際距離的比叫做比例尺。
六年級 數學學習方法
良好的學習習慣是一種良好的非智力因素,是學生必備的素質,是學好數學的最基本保證。小學數學學習習慣的培養,需要堅持不懈,持之以恆。
1. 課前預習 的習慣。
有效的預習,能提高學習新知識的目的性和針對性,可以提高學習的質量。通過布置預習提綱的方法來進行,以後逐步過渡到只布置預習內容,讓學生自己去讀書、去發現問題,讓學生課前對新知識有所了解。有些課上沒有條件、沒有時間做的活動,也可以讓學生課前去做。如講統計表時,就可以讓學生課前調查好同組同學的身高、體重等數據。
2.認真聽「講」的習慣。
這里的聽「講」,應包括兩方面的意思:一是說課堂上,精力要集中,不做與學習無關的動作,要認真傾聽老師的點撥、指導,要抓住新知識的生長點,新舊知識的聯系,弄清公式、法則的來龍去脈。二是說要認真地聽其他同學的發言,對他人的觀點、回答能做出評價和必要的補充。
3.認真完成作業的習慣。
完成作業,是學生最基本、最經常的學習實踐活動。要求學生從小就養成:(1)規范書寫,保持書寫清潔的習慣。作業的格式、數字的書寫、數學符號的書寫都要規范。(2)良好的行為習慣。要獨立思考,獨立完成作業,不要跟別人對算式和結果,更不要抄襲別人的作業。(3)認真審題,仔細運算的習慣。(4)驗算的習慣。
小學六年級數學知識點梳理相關 文章 :
★ 小學六年級數學知識點總結
★ 小學六年級數學上冊知識點總結
★ 六年級數學知識點梳理
★ 小學六年級數學學習方法和技巧大全
★ 六年級數學總復習知識點整理(完整版)
★ 六年級數學期末復習知識點匯總
★ 小學六年級數學知識點、難點及學習方法
★ 六年級數學知識點歸納
★ 六年級數學期末復習知識點匯總
★ 六年級上冊數學知識點整理歸納
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();❸ 六年級上冊數學知識點
科學是人類的共同財富,而真正的科學家的任務就是豐富這個令人類都能受益的知識寶庫。下面我給大家分享一些六年級上冊數學知識,希望能夠幫助大家,歡迎閱讀!
六年級上冊數學知識1
第一單元分數乘法
(一)分數乘法意義:
1、分數乘整數的意義與整數乘法的意義相同,就是求幾個相同加數的和的簡便運算。
「分數乘整數」指的是第二個因數必須是整數,不能是分數。
2、一個數乘分數的意義就是求一個數的幾分之幾是多少。
「一個數乘分數」指的是第二個因數必須是分數,不能是整數。(第一個因數是什麼都可以)
(二)分數乘法計演算法則:
1、分數乘整數的運演算法則是:分子與整數相乘,分母不變。
(1)為了計算簡便能約分的可先約分再計算。(整數和分母約分)(2)約分是用整數和下面的分母約掉最大公因數。(整數千萬不能與分母相乘,計算結果必須是最簡分數)。
2、分數乘分數的運演算法則是:用分子相乘的積做分子,分母相乘的積做分母。(分子乘分子,分母乘分母)
(1)如果分數乘法算式中含有帶分數,要先把帶分數化成假分數再計算。
(2)分數化簡的 方法 是:分子、分母同時除以它們的最大公因數。
(3)在乘的過程中約分,是把分子、分母中,兩個可以約分的數先劃去,再分別在它們的上、下方寫出約分後的數。(約分後分子和分母必須不再含有公因數,這樣計算後的結果才是最簡單分數)。
(4)分數的基本性質:分子、分母同時乘或者除以一個相同的數(0除外),分數的大小不變。
(三)積與因數的關系:
一個數(0除外)乘大於1的數,積大於這個數。a×b=c,當b >1時,c>a。
一個數(0除外)乘小於1的數,積小於這個數。a×b=c,當b <1時,c<a(b≠0)。< p="">
一個數(0除外)乘等於1的數,積等於這個數。a×b=c,當b =1時,c=a 。
在進行因數與積的大小比較時,要注意因數為0時的特殊情況。
(四)分數乘法混合運算
1、分數乘法混合運算順序與整數相同,先乘、除後加、減,有括弧的先算括弧裡面的,再算括弧外面的。
2、整數乘法運算定律對分數乘法同樣適用;運算定律可以使一些計算簡便。
乘法交換律:a×b=b×a 乘法結合律:(a×b)×c=a×(b×c)
乘法分配律:a×(b±c)=a×b±a×c
(五)倒數的意義:乘積為1的兩個數互為倒數。
1、倒數是兩個數的關系,它們互相依存,不能單獨存在。單獨一個數不能稱為倒數。(必須說清誰是誰的倒數)
2、判斷兩個數是否互為倒數的唯一標準是:兩數相乘的積是否為「1」。例如:a×b=1則a、b互為倒數。
3、求倒數的方法:
①求分數的倒數:交換分子、分母的位置。
②求整數的倒數:整數分之1。
③求帶分數的倒數:先化成假分數,再求倒數。
④求小數的倒數:先化成分數再求倒數。
4、1的倒數是它本身,因為1×1=1
0沒有倒數,因為任何數乘0積都是0,且0不能作分母。
5、真分數的倒數是假分數,真分數的倒數大於1,也大於它本身。
假分數的倒數小於或等於1。帶分數的倒數小於1。
(六)分數乘法應用題——用分數乘法解決問題
1、求一個數的幾分之幾是多少?(用乘法)
已知單位「1」的量,求單位「1」的量的幾分之幾是多少,用單位「1」的量與分數相乘。
2、巧找單位「1」的量:在含有分數(分率)的語句中,分率前面的量就是單位「1」對應的量,或者「占」「是」「比」字後面的量是單位「1」。
3、什麼是速度?
速度是單位時間內行駛的路程。
速度=路程÷時間 時間=路程÷速度 路程=速度×時間
單位時間指的是1小時1分鍾1秒等這樣的大小為1的時間單位,每分鍾、每小時、每秒鍾等。
4、求甲比乙多(少)幾分之幾?
多:(甲-乙)÷乙 少:(乙-甲)÷乙
六年級上冊數學知識2
第二單元位置與方向
1、什麼是數對?
數對:由兩個數組成,中間用逗號隔開,用括弧括起來。括弧裡面的數由左至右為列數和行數,即「先列後行」。
數對的作用:確定一個點的位置。經度和緯度就是這個原理。
2、確定物體位置的方法:
(1)、先找觀測點;(2)、再定方向(看方向夾角的度數);(3)、最後確定距離(看比例尺)。
描繪路線圖的關鍵是選好觀測點,建立方向標,確定方向和路程。
位置關系的相對性:兩地的位置具有相對性在敘述兩地的位置關系時,觀測點不同,敘述的方向正好相反,而度數和距離正好相等。
相對位置:東--西;南--北;南偏東--北偏西。
六年級上冊數學知識3
第三單元分數的除法
一、分數除法的意義:分數除法是分數乘法的逆運算,已知兩個數的積與其中一個因數,求另一個因數的運算。
二、分數除法計演算法則:除以一個數(0除外),等於乘上這個數的倒數。
1、被除數÷除數=被除數×除數的倒數。
2、除法轉化成乘法時,被除數一定不能變,「÷」變成「×」,除數變成它的倒數。
3、分數除法算式中出現小數、帶分數時要先化成分數、假分數再計算。
4、被除數與商的變化規律:
①除以大於1的數,商小於被除數:a÷b=c 當b>1時,c<a p="" (a≠0)
<a p="" (a≠0)②除以小於1的數,商大於被除數:a÷b=c 當b<1時,c>a (a≠0 b≠0)
<a p="" (a≠0)
③除以等於1的數,商等於被除數:a÷b=c 當b=1時,c=a
三、分數除法混合運算
1、混合運算用梯等式計算,等號寫在第一個數字的左下角。
2、運算順序:
①連除:同級運算,按照從左往右的順序進行計算;或者先把所有除法轉化成乘法再計算;或者依據「除以幾個數,等於乘上這幾個數的積」的簡便方法計算。加、減法為一級運算,乘、除法為二級運算。
②混合運算:沒有括弧的先乘、除後加、減,有括弧的先算括弧裡面,再算括弧外面。
(a±b)÷c=a÷c±b÷c
六年級上冊數學知識4
第四單元比
比:兩個數相除也叫兩個數的比
1、比式中,比號(∶)前面的數叫前項,比號後面的項叫做後項,比號相當於除號,比的前項除以後項的商叫做比值。
連比如:3:4:5讀作:3比4比5
2、比表示的是兩個數的關系,可以用分數表示,寫成分數的形式,讀作幾比幾。
例:12∶20= =12÷20= =0.6 12∶20讀作:12比20
區分比和比值:比值是一個數,通常用分數表示,也可以是整數、小數。
比是一個式子,表示兩個數的關系,可以寫成比,也可以寫成分數的形式。
3、比的基本性質:比的前項和後項同時乘以或除以相同的數(0除外),比值不變。
4、化簡比:化簡之後結果還是一個比,不是一個數。
(1)、用比的前項和後項同時除以它們的最大公約數。
(2)、兩個分數的比,用前項後項同時乘分母的最小公倍數,再按化簡整數比的方法來化簡。也可以求出比值再寫成比的形式。
(3)、兩個小數的比,向右移動小數點的位置,也是先化成整數比。
5、求比值:把比號寫成除號再計算,結果是一個數(或分數),相當於商,不是比。
6、比和除法、分數的區別:
除法:被除數除號(÷) 除數(不能為0) 商不變性質 除法是一種運算
分數:分子 分數線 (—)分母(不能為0) 分數的基本性質 分數是一個數
比:前項比號(∶) 後項(不能為0) 比的基本性質 比表示兩個數的關系
商不變性質:被除數和除數同時乘或除以相同的數(0除外),商不變。
分數的基本性質:分子和分母同時乘或除以相同的數(0除外),分數的大小不變。
分數除法和比的應用
1、已知單位「1」的量用乘法。
2、未知單位「1」的量用除法。
3、分數應用題基本數量關系(把分數看成比)
(1)甲是乙的幾分之幾?
甲=乙×幾分之幾 乙=甲÷幾分之幾 幾分之幾=甲÷乙
(2)甲比乙多(少)幾分之幾?
4、按比例分配:把一個量按一定的比分配的方法叫做按比例分配。
5、畫線段圖:
(1)找出單位「1」的量,先畫出單位「1」,標出已知和未知。
(2)分析數量關系。(3)找等量關系。(4)列方程。
兩個量的關系畫兩條線段圖,部分和整體的關系畫一條線段圖。
六年級上冊數學知識5
第五單元圓
一、圓的特徵
1、圓是平面內封閉曲線圍成的平面圖形。
2、圓的特徵:外形美觀,易滾動。
3、圓心O:圓中心的點叫做圓心.圓心一般用字母O表示。
圓多次對折之後,摺痕的相交於圓的中心即圓心。圓心確定圓的位置。
半徑r:連接圓心到圓上任意一點的線段叫做半徑。在同一個圓里,有無數條半徑,且所有的半徑都相等。半徑確定圓的大小。
直徑d:通過圓心且兩端都在圓上的線段叫做直徑。在同一個圓里,有無數條直徑,且所有的直徑都相等。直徑是圓內最長的線段。
同圓或等圓內直徑是半徑的2倍:d=2r 或 r=d÷2
4、等圓:半徑相等的圓叫做同心圓,等圓通過平移可以完全重合。
同心圓:圓心重合、半徑不等的兩個圓叫做同心圓。
5、圓是軸對稱圖形:如果一個圖形沿著一條直線對折,兩側的圖形能夠完全重合,這個圖形是軸對稱圖形。摺痕所在的直線叫做對稱軸。
有一條對稱軸的圖形:半圓、扇形、等腰梯形、等腰三角形、角。
有二條對稱軸的圖形:長方形
有三條對稱軸的圖形:等邊三角形
有四條對稱軸的圖形:正方形
有無條對稱軸的圖形:圓,圓環
6、畫圓
(1)圓規兩腳間的距離是圓的半徑。(2)畫圓步驟:定半徑、定圓心、旋轉一周。
二、圓的周長:圍成圓的曲線的長度叫做圓的周長,周長用字母C表示。
1、圓的周長總是直徑的三倍多一些。
2、圓周率:圓的周長與直徑的比值是一個固定值,叫做圓周率,用字母π表示。
即:圓周率π = 周長÷直徑≈3.14
所以,圓的周長(c)=直徑(d)×圓周率(π)—周長公式:c=πd, c=2πr
圓周率π是一個無限不循環小數,3.14是近似值。
3、周長的變化的規律:半徑擴大多少倍直徑也擴大多少倍,周長擴大的倍數與半徑、直徑擴大的倍數相同。
4、半圓周長=圓周長一半+直徑= πr+d
三、圓的面積s
1、圓面積公式的推導
如圖把一個圓沿直徑等分成若干份,剪開拼成長方形,份數越多拼成的圖像越接近長方形。
圓的半徑=長方形的寬
圓的周長的一半=長方形的長
長方形面積=長×寬
所以:圓的面積=圓的周長的一半(πr)×圓的半徑(r)
S圓 =πr×r=πr2
2、幾種圖形,在面積相等的情況下,圓的周長最短,而長方形的周長最長;反之,在周長相等的情況下,圓的面積則最大,而長方形的面積則最小。
周長相同時,圓面積最大,利用這一特點,籃子、盤子做成圓形。
3、圓面積的變化的規律:半徑擴大多少倍,直徑、周長也同時擴大多少倍,圓面積擴大的倍數是半徑、直徑擴大的倍數的平方倍。
4、環形面積 =大圓–小圓=πR2-πr2
扇形面積=πr2×n÷360(n表示扇形圓心角的度數)
5、跑道:每條跑道的周長等於兩半圓跑道合成的圓的周長加上兩條直跑道的和。因為兩條直跑道長度相等,所以,起跑線不同,相鄰兩條跑道起跑線也不同,間隔的距離是:2×π×跑道寬度。
一個圓的半徑增加a厘米,周長就增加2πa厘米。
一個圓的直徑增加b厘米,周長就增加πb厘米。
6、任意一個正方形的內切圓即最大圓的直徑是正方形的邊長,它們的面積比是4∶π。
7、常用數據
π=3.14 2π=6.28 3π=9.42 4π=12.56 5π=15.7
六年級上冊數學知識點相關 文章 :
★ 六年級數學上冊知識點復習
★ 六年級上冊數學知識點整理歸納
★ 六年級上冊數學知識點
★ 六年級數學上冊《百分數》知識點總結
★ 六年級數學上冊知識點總結
★ 六年級數學期末復習知識點匯總
★ 六年級數學上冊知識人教版
★ 六年級數學上冊知識點人教版
★ 六年級數學上冊知識點復習資料
★ 六年級數學幾何的初步知識知識點總結
❹ 六年級數學知識點總結
六年級數學必備知識
一、分數乘法
(一)分數乘法的意義:
1、分數乘整數與整數乘法的意義相同。都是求幾個相同加數的和的簡便運算。
例如:65×5表示求5個65的和是多少? 1/3×5表示求5個1/3的和是多少?
2、一個數乘分數的意義是求一個數的幾分之幾是多少。
例如:1/3×4/7表示求1/3的4/7是多少。
4×3/8表示求4的3/8是多少.
(二)、分數乘法的計演算法則:
1、分數與整數相乘:分子與整數相乘的積做分子,分母不變。(整數和分母約分)
2、分數與分數相乘:用分子相乘的積做分子,分母相乘的積做分母。注意:當帶分數進行乘法計算時,要先把帶分數化成假分數再進行計算。
3、為了計算簡便,能約分的要先約分,再計算。(盡量約分,不會約分的就不約,常考的質因數有11×11=121;13×13=169;17×17=289;19×19=361)
4、小數乘分數,可以先把小數化為分數,也可以把分數化成小數再計算(建議把小數化分數再計算)。
(三)、 乘法中比較大小的規律
一個數(0除外)乘大於1的數,積大於這個數。
一個數(0除外)乘小於1的數(0除外),積小於這個數。
一個數(0除外)乘1,積等於這個數。
(四)、分數混合運算的運算順序和整數的運算順序相同。整數乘法的交換律、結合律和分配律,對於分數乘法也同樣適用。
乘法交換律: a × b = b × a
乘法結合律: ( a × b )×c = a × ( b × c )
乘法分配律: ( a + b )×c = a c + b c
二、分數乘法的解決問題(已知單位「1」的量(用乘法),即求單位「1」的幾分之幾是多少)
1、畫線段圖:(1)兩個量的關系:畫兩條線段圖,先畫單位一的量,注意兩條線段的左邊要對齊。(2)部分和整體的關系:畫一條線段圖。
2、找單位「1」: 單位「1」 在分率句中分率的前面;
或在「占」、「是」、「比」「相當於」的後面。
3、寫數量關系式的技巧:
(1)「的」 相當於 「×」 ,「占」、「相當於」「是」、「比」是 「 = 」
(2)分率前是「的」字:用單位「1」的量×分率=具體量
例如:甲數是20,甲數的1/3是多少?列式是:20×1/3
4、看分率前有沒有多或少的問題;分率前是「多或少」的關系式:
(比少):單位「1」的量×(1-分率)=具體量;
例如:甲數是50,乙數比甲數少1/2,乙數是多少?
列式是:50×(1-1/2)
(比多):單位「1」的量×(1+分率)=具體量
例如:小紅有30元錢,小明比小紅多3/5,小紅有多少錢?
列式是:50×(1+3/5)
3、求一個數的幾倍是多少:用 一個數×幾倍;
4、求一個數的幾分之幾是多少: 用一個數×幾分之幾。
5、求幾個幾分之幾是多少:用幾分之幾×個數
6、求已知一個部分量是總量的幾分之幾,求另一個部分量的方法:
(1)、單位「1」的量×(1-分率)=另一個部分量(建議用)
(2)、單位「1」的量-已知占單位「1」的幾分之幾的部分量=要求的部分量
六年級數學知識重點
三角形的面積=底×高÷2。公式 S= a×h÷2
正方形的面積=邊長×邊長公式 S= a×a
長方形的面積=長×寬公式 S= a×b
平行四邊形的面積=底×高公式 S= a×h
梯形的面積=(上底+下底)×高÷2 公式 S=(a+b)h÷2
內角和:三角形的內角和=180度。
長方體的體積=長×寬×高公式:V=abh
長方體(或正方體)的體積=底面積×高公式:V=abh
正方體的體積=棱長×棱長×棱長公式:V=六年級數學知識點
圓的周長=直徑×π公式:L=πd=2πr
圓的面積=半徑×半徑×π公式:S=πr2
圓柱的表(側)面積:圓柱的表(側)面積等於底面的周長乘高。公式:S=ch=πdh=2πrh
圓柱的表面積:圓柱的表面積等於底面的周長乘高再加上兩頭的圓的面積。公式:S=ch+2s=ch+2πr2
圓柱的體積:圓柱的體積等於底面積乘高。公式:V=Sh
圓錐的體積=1/3底面×積高。公式:V=1/3Sh
分數的加、減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
分數的乘法則:用分子的積做分子,用分母的積做分母。
分數的除法則:除以一個數等於乘以這個數的倒數。
六年級數學常考知識點
1、加法交換律:兩數相加交換加數的位置,和不變。
2、加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第三個數相加,和不變。
3、乘法交換律:兩數相乘,交換因數的位置,積不變。
4、乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。
5、乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。如:(2+4)×5=2×5+4×5
6、除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。 O除以任何不是O的數都得O。
簡便乘法:被乘數、乘數末尾有O的乘法,可以先把O前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。
7、么叫等式?等號左邊的數值與等號右邊的數值相等的'式子叫做等式。
等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,等式仍然成立。
8、什麼叫方程式?答:含有未知數的等式叫方程式。
9、什麼叫一元一次方程式?答:含有一個未知數,並且未知數的次數是一次的等式叫做一元一次方程式。
學會一元一次方程式的例法及計算。即例出代有χ的算式並計算。
10、分數:把單位"1"平均分成若干份,表示這樣的一份或幾分的數,叫做分數。
11、分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
12、分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。異分母的分數相比較,先通分然後再比較;若分子相同,分母大的反而小。
13、分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。
14、分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。
15、分數除以整數(0除外),等於分數乘以這個整數的倒數。
16、真分數:分子比分母小的分數叫做真分數。
17、假分數:分子比分母大或者分子和分母相等的分數叫做假分數。假分數大於或等於1。
18、帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。
19、分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小不變。
20、一個數除以分數,等於這個數乘以分數的倒數。
21、甲數除以乙數(0除外),等於甲數乘以乙數的倒數。
❺ 六年級數學知識點歸納
學習從來無捷徑。每一門科目都有自己的 學習 方法 ,但其實都是萬變不離其中的,數學其實和語文英語一樣,也是要記、要背、要練的。下面是我給大家整理的一些 六年級數學 的知識點,希望對大家有所幫助。
小學六年級上冊數學《位置與方向(二)》知識點
1.根據方向和距離可以確定物體在平面圖上的位置。
2.在平面圖上標出物體位置的方法:
先用量角器確定方向,再以選定的單位長度為基準用直尺確定圖上距離,最後找出物體的具體位置,並標上名稱。
3.描述路線圖時,要先按行走路線確定每一個參照點,然後以每一個參照點建立方向標,描述到下一個目標所行走的方向和路程,即每一步都要說清是從哪兒走,向什麼方向走了多遠到哪兒。
4.繪制路線圖的方法:
(1)確定方向標和單位長度。
(2)確定起點的位置。
(3)根據描述,從起點出發,找好方向和距離,一段一段地畫。除第一段(以起點為參照點)外,其餘每一段都要以前一段的終點為參照點。
(4)以誰為參照點,就以誰為中心畫出「十」字方向標,然後判斷下一地點的方向和距離。
小學六年級上冊數學《分數乘法》知識點
(一)分數乘法意義:
1、分數乘整數的意義與整數乘法的意義相同,就是求幾個相同加數的和的簡便運算。
「分數乘整數」指的是第二個因數必須是整數,不能是分數。
2、一個數乘分數的意義就是求一個數的幾分之幾是多少。
「一個數乘分數」指的是第二個因數必須是分數,不能是整數。(第一個因數是什麼都可以)
(二)分數乘法計演算法則:
1、分數乘整數的計算方法:用分子乘整數的積作分子,分母不變。能約分的可以先約分,再計算。
(1)為了計算簡便能約分的可先約分再計算。(整數和分母約分)
(2)約分是用整數和下面的分母約掉公因數。(整數千萬不能與分母相乘,計算結果必須是最簡分數)。
2、分數乘分數的計算方法是:用分子相乘的積做分子,用分母相乘的積作分母。(分子乘分子,分母乘分母)
(1)如果分數乘法算式中含有帶分數,要先把帶分數化成假分數再計算。
(2)分數化簡的方法是:分子、分母同時除以它們的公因數。
(3)在乘的過程中約分,是把分子、分母中,兩個可以約分的數先劃去,再分別在它們的上、下方寫出約分後的數。(約分後分子和分母必須不再含有公因數,這樣計算後的結果才是最簡單分數)。
(4)分數的基本性質:分子、分母同時乘或者除以一個相同的數(0除外),分數的大小不變。
(三)積與因數的關系:
一個數(0除外)乘大於1的數,積大於這個數。a×b=c,當b>1時,c>a。
一個數(0除外)乘小於1的數,積小於這個數。a×b=c,當b<1時,c
一個數(0除外)乘等於1的數,積等於這個數。a×b=c,當b=1時,c=a。
在進行因數與積的大小比較時,要注意因數為0時的特殊情況。
人教版小學六年級數學下冊知識點
比例
1.理解比例的意義和基本性質,會解比例。
2.理解正比例和反比例的意義,能找出生活中成正比例和成反比例量的實例,能運用比例知識解決簡單的實際問題。
3.認識正比例關系的圖像,能根據給出的有正比例關系的數據在有坐標系的方格紙上畫出圖像,會根據其中一個量在圖像中找出或估計出另一個量的值。
4.了解比例尺,會求平面圖的比例尺以及根據比例尺求圖上距離或實際距離。
5.認識放大與縮小現象,能利用方格紙等形式按一定的比例將簡單圖形放大或縮小,體會圖形的相似。
6.滲透函數思想,使學生受到辯證唯物主義觀點的啟蒙 教育 。
7.比例的意義:表示兩個比相等的式子叫做比例。如:2:1=6:
8.組成比例的四個數,叫做比例的項。兩端的兩項叫做外項,中間的兩項叫做內項。
9.比例的性質:在比例里,兩個外項的積等於兩個兩個內向的積。這叫做比例的基本性質。例如:由3:2=6:4可知3×4=2×6;或者由x×1。5=y×1。2可知x:y=1.2:1.5。
10.解比例:根據比例的基本性質,如果已知比例中的任何三項,就可以求出這個數比例中的另外一個未知項。
求比例中的未知項,叫做解比例。
例如:3:x=4:8,內項乘內項,外項乘外項,則:4x=3×8,解得x=6。
六年級數學知識點歸納相關 文章 :
★ 六年級上冊數學知識點整理歸納
★ 六年級數學總復習知識點整理(完整版)
★ 小學六年級數學學習方法和技巧大全
★ 小學六年級數學知識點總結
★ 六年級數學上冊知識點復習
★ 六年級數學上冊知識點總結
★ 六年級數學圓的知識點總結
★ 六年級數學小知識總結
★ 一至六年級數學知識點復習資料整合
❻ 六年級下冊數學書知識點
六年級數學 下冊的學習即將結束,同學們對書中的知識點都掌握了多少呢?我為六年級師生整理了六年級數學下冊知識點,希望大家有所收獲!
六年級下冊數學書知識點1第一單元方向與位置
1、數對的表示 方法 :先表示橫的方向,後表示縱的方向,即根據直角坐標系,確定某一點的坐標(x,y).
2、數對的寫法:先橫向觀察,在第幾位就在小括弧里先寫幾,再點上逗號;然後再縱向觀察,在第幾位,就在小括弧裡面寫上幾。如小青的位置在第三組,第二個座位,用數對表示為(3,2)。
3、能根據數對說出相應的實際位置。如某個同學在(5,6)這個位置。他的實際位置是,班級中(從左往右數)第五組第六個座位。
確定位置(二)(根據方向和距離確定位置)
【知識點】:
1、認識方向:東、南、西、北、東南、東北、西南、西北。
2、根據方向和距離確定物體位置的方法:(1)以某一點為觀測中心,標出方向,上北、下南、左西、右東;將觀測點與物體所在的位置連線;用量角器測量角度,最後得出結論在哪個方向上。(2)用直尺測量兩點之間的圖上距離。
第二單元 正比例反比例
1.比的意義: (1)兩個數相除又叫做兩個數的比;
(2)“:”是比號,讀作“比”。比號前面的數叫做比的前項,
比號後面的數叫做比的後項。比的前項除以後項所得的商,叫做比值。
(3)同除法比較,比的前項相當於被除數,後項相當於除數,比值相當於商。
(4)比值通常用分數表示,也可以用小數表示,有時也可能是整數。
(5)比的後項不能是零。
(6)根據分數與除法的關系,可知比的前項相當於分子,
後項相當於分母,比值相當於分值。
2.比的基本性質:比的前項和後項同時乘上或者除以相同的數(0除外),
比值不變,這叫做比的基本性質。
3.求比值和化簡比:求比值的方法:用比的前項除以後項,它的結果是一個
數值可以是整數,也可以是小數或分數。根據比的基本性質可以把比化成
最簡單的整數比。它的結果必須是一個最簡比,即前、後項是互質的數。
4.按比例分配:在農業生產和日常生活中,常常需要把一個數量按照
一定的比來進行分配。這種分配的方法通常叫做按比例分配。
方法:首先求出各部分佔總量的幾分之幾,然後求出總數的幾分之幾是多少。
5.比例的意義:
表示兩個比相等的式子叫做比例。
組成比例的四個數,叫做比例的項。
兩端的兩項叫做外項,中間的兩項叫做內項。
6.比例的基本性質:在比例里,兩個外項的積等於兩個兩個內項的積。
這叫做比例的基本性質。
7.比和比例的區別
(1)比表示兩個量相除的關系,它有兩項(即前、後項);
比例表示兩個比相等的式子,它有四項(即兩個內項和兩個外項)。
(2)比有基本性質,它是化簡比的依據;比例也有基本性質,
它是解比例的依據。
8.解比例:
求比例中的未知項,叫做解比例。
9.成正比例的量:兩種相關聯的量,一種量變化,另一種量也隨著變化,
如果這兩種量中對應的兩個數的比值(也就是商)一定,這兩種量就
叫做成正比例的量,他們的關系叫
正比例關系。用字母表示=k(一定)。
10.成反比例的量:兩種相關聯的量,一種量變化,另一種量也隨著變化,
如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,
他們的關系叫做反比例關系。用字母表示x×y=k(一定)。
11.判斷兩種量成正比例還是成反比例的方法:
關鍵是看這兩個相關聯的量中相對就的兩個數的商一定還是積一定,
如果商一定,就成正比例;如果積一定,就成反比例。
12.比例尺:一幅圖的圖上距離和實際距離的比,叫做這幅圖的比例尺。
13.比例尺的分類:(1)數值比例尺和線段比例尺
(2)縮小比例尺和放大比例尺
14.實際距離×比例尺=圖上距離、
圖上距離÷比例尺=實際距離、圖上距離÷實際距離=比例尺
15.應用比例尺畫圖:
(1)寫出圖的名稱、
(2)確定比例尺;
(3)根據比例尺求出圖上距離;
(4)畫圖(畫出單位長度)
(5)標出實際距離,寫清地點名稱
(6)標出比例尺
16.圖形的放大與縮小:形狀相同,大小不同。(相似圖形)
17.用比例解決問題:
根據問題中的不變數找出兩種相關聯的量,
並正確判斷這兩種相關聯的量成什麼比例關系,
並根據正、反比例關系式列出相應的方程並求解。
六年級下冊數學書知識點2第三單元 圓柱和圓錐
1.圓柱的特徵:
(1)底面的特徵:圓柱的底面是完全相等的兩個圓。
(2)側面的特徵:圓柱的側面是一個曲面,其展開圖是一個長方形。
(3)高的特徵:圓柱有無數條高。
2.圓柱的高:兩個底面之間的距離叫做高。
3.圓柱的側面展開圖:當沿高展開時展開圖是長方形;當底面周長和高相等時,
沿高展開圖是正方形;當不沿高展開時展開圖是平行四邊形。
4.圓柱的側面積:圓柱的側面積=底面的周長×高,用字母表示為:S側=Ch。
5.圓往的表面積:圓柱的表面積=側面積+2×底面積,即S表=S側+2 S底。
6.圓柱的體積:圓柱所佔空間的大小,叫做這個圓柱體的體積,V=Sh。
7.圓錐:以直角三角形的一條直角邊所在直線為旋轉軸,其餘兩邊旋轉形成
的面所圍成的旋轉體叫做圓錐。該直角邊叫圓錐的軸。
8.圓錐的高:從圓錐的頂點到底面圓心的距離是圓錐的高。
9.圓錐的特徵:
(1)底面的特徵:圓錐的底面一個圓。
(2)側面的特徵:圓錐的側面是一個曲面,展開圖是扇形。
(3)高的特徵:圓錐只有一條高。
10.圓錐的母線:即圓錐的側面展開形成的扇形的半徑,底面圓周上點到頂點的
距離。圓錐有無數條母線。
11.圓錐的側面:將圓錐的側面沿母線展開,是一個扇形,這個扇形的弧長
等於圓錐底面的周長,而扇形的半徑等於圓錐的母線的長。
12.圓錐的側面積=底面的周長(展開圖弧長)×母線÷2;
13.圓錐的體積:一個圓錐所佔空間的大小,叫做這個圓錐的體積。
一個圓錐的體積等於與它等底等高的圓柱的體積的。根據圓柱體積公式
V=Sh(V=πr2h),得出圓錐體積公式:V=Sh
14.圓柱與圓錐的關系:
(1)與圓柱等底等高的圓錐體積是圓柱體積的三分之一。
(2)體積和高相等的圓錐與圓柱之間,圓錐的底面積是圓柱的三倍。
(3)體積和底面積相等的圓錐與圓柱之間,圓錐的高是圓柱的三倍。
15.生活中的圓錐:
生活中經常出現的圓錐有:沙堆、漏斗、帽子。
第四單元 統計
1.統計表:把統計數據填寫在一定格式的表格內,
用來反映情況、說明問題,這樣的表格就統計表。
2.統計種類:
單式統計表:只含有一個項目的統計表。
復式統計表:含有兩個或兩個以上統計項目的統計表。
3.統計圖:用點線面積等來表示相關的量之間的數量關系的圖形叫做統計圖。
4.條形統計圖優點:很容易看出各種數量的多少。
注意:畫條形統計圖時,直條的寬窄必須相同。
復式條形統計圖中表示不同項目的直條,要用不同的線條或顏色區別開,
並在制圖日期下面註明圖例。
5.折線統計圖不但可以表示數量的多少,而且能夠清楚地表示出數量
增減變化的情況。
注意:折線統計圖的橫軸表示不同的年份、月份等時間時,
不同時間之間的距離要根據年份或月份的間隔來確定。
按照數據的大小描出各點,再用線段順次連接起來,並註明數量。
6.扇形統計圖
(1)用整個圓的面積表示總數,用扇形面積表示各部分所佔總數的百分數。
(2)優點:很清楚地表示出各部分同總數之間的關系。
(3)制扇形統計圖的一般步驟:
a)先算出各部分數量占總量的百分之幾。
b)再算出表示各部分數量的扇形的圓心角度數。
c)取適當的半徑畫一個圓,並按照上面算出的圓心角的度數,
在圓里畫出各個扇形。
d)在每個扇形中標明所表示的各部分數量名稱和所佔的百分數,
並用不同顏色或條紋把各個扇形區別開。
↓↓↓ 下頁更多"六年級下冊數學書知識點" ↓↓↓
❼ 六年級上冊數學第二單元知識點
數學是研究數量結構、變化、以及空間模型等概念的科學.它是物理、化學等學科的基礎,而且與我們的生活息息相關.下面我給大家分享一些六年級上冊數學第二單元知識,希望能夠幫助大家,歡迎閱讀!
六年級上冊數學第二單元知識
一、確定物體位置的條件
在平面上確定物體的位置,首先要確定觀測點,然後要找准方向和角度(方位角),最後要確定距離。
二、在平面圖上標出物體位置的 方法 :
1、觀測點和方位角;
2、從觀測點沿著所確定的方向畫一條射線;
3、根據單位長度的線段所表示的地 面相 對距離把實際距離換算為圖上長度;
4、用直尺畫出圖上長度,並標出被觀測點的位置及名稱。
確定物體位置的條件:方向和距離,兩個條件缺一不可。
三、位置關系的相對性。
描述兩個物體或地點位置關系的時候會有兩種方式,如「上海在北京的南偏東約30°的方向上」「北京在上海的北偏西約30°的方向上」。角度不變,方向正好相反。南偏東對應北偏西(不能說成西偏北)
因為東西、南北正好相對,所以東偏南的相對位置是西偏北。
四、描述路線圖的方法
先按行走路線確定觀測點,再確定行走的方向和路程.即每走一步,都要說清從哪裡出發,向什麼方向走多遠的距離。每走一步,都換一個新的觀測點。
五、繪制路線圖的方法
1、確定方向標和單位長度
2、確定起點的位置
3、根據描述,從起點出發,找好方向和距離,一段一段地畫。除第一段(以起點為觀測點)外,其餘每段都要以前一段的終點為觀測點。
4、以誰為觀測點,就以誰為中心畫出"十"字方向標,然後判斷下一點的方向和距離。
每畫一段路都要重新確定觀測點、方向和距離。
北師大 六年級數學 第二單元知識點
分數混合運算
1、分數混合運算的運算順序與整數混合運算的運算順序完全相同,都是先算乘除,再算加減,有括弧的先算括弧里的。
①如果是同一級運算,按照從左到右的順序依次計算。
②如果是分數連乘,可先進行約分,再進行計算。
③如果是分數乘除混合運算時,要先把除法轉換成乘法,然後按乘法運算。
2、解決問題
(1)用分數運算解決「求比已知量多(或少)幾分之幾的量是多少」的實際問題,方法是:
第①種方法:可以先求出多或少的具體量,再用單位「1」的量加或減去多或少的部分,求出要求的問題。
第②種方法:也可以用單位「1」加或減去多或少的幾分之幾,求出未知數占單位「1」的幾分之幾,再用單位「1」的量乘這個分數。
(2)「已知甲與乙的和,其中甲占和的幾分之幾,求乙數是多少?」
第①種方法:首先明確誰占單位「1」的幾分之幾,求出甲數,再用單位「1」減去甲數,求出乙數。
第②種方法:先用單位「1」減去已知甲數所佔和的幾分之幾,即得未知乙數所佔和的幾分之幾,再求出乙數。
(3)用方程解決稍復雜的分數應用題的步驟:
①要找准單位「1」。
②確定好其他量和單位「1」的量有什麼關系,畫出關系圖,寫出等量關系式。
③設未知量為X,根據等量關系式,列出方程。
④解答方程。
(4)要記住以下幾種算術解法解應用題:
①對應數量÷對應分率=單位「1」 的量
②求一個數的幾分之幾是多少,用乘法計算。
③已知一個數的幾分之幾是多少,求這個數,用除法計算,還可以用列方程解答。
3、要記住以下的解方程定律:
加數+加數=和
加數=和-另一個加數
被減數-減數=差
被減數=差+減數
減數=被減數-差
因數×因數=積
因數=積÷另一個因數
被除數÷除數=商
被除數=商×除數
除數=被除數÷商
4、繪制簡單線段圖的方法
分數應用題,分兩種類型,一種是知道單位「1」的量用乘法,另一種是求單位「1」的量,用除法。這兩種類型應用題的數量關系可以分成三種:(一)一種量是另一種量的幾分之幾。(二)一種量比另一種量多幾分之幾。(三)一種量比另一種量少幾分之幾。繪制時關鍵處理好量與量之間的關系,在審題確定單位「1」的量。
繪制步驟:
①首先用線段表示出這個單位「1」的量,畫在最上面,用直尺畫。
②分率的分母是幾就把單位「1」的量平均分成幾份,用直尺畫出平均的等分。標出相關的量。
③再繪制與單位「1」有關的量,根據實際是上面的三種關系中的哪一種再畫。標出相關的量。
④問題所求要標出「?」號和單位。
5、補充知識點
分數乘法:分數乘法的意義與整數乘法的意義相同,就是求幾個相同加數和的簡便運算。
分數乘法的計演算法則
分數乘整數,用分數的分子和整數相乘的積作分子,分母不變;分數乘分數,用分子相乘的積作分子,分母相乘的積作分母。但分子分母不能為零。
分數乘法意義
分數乘整數的意義與整數乘法的意義相同,就是求幾個相同加數的和的簡便運算。一個數與分數相乘,可以看作是求這個數的幾分之幾是多少。
分數乘整數:數形結合、轉化化歸
倒數:乘積是1的兩個數叫做互為倒數。
分數的倒數
找一個分數的倒數,例如3/4把3/4這個分數的分子和分母交換位置,把原來的分子做分母,原來的分母做分子。則是4/3。3/4是4/3的倒數,也可以說4/3是3/4的倒數。
整數的倒數
找一個整數的倒數,例如12,把12化成分數,即12/1 ,再把12/1這個分數的分子和分母交換位置,把原來的分子做分母,原來的分母做分子。則是1/12 ,12是1/12的倒數。
小數的倒數
普通演算法:找一個小數的倒數,例如0.25 ,把0.25化成分數,即1/4 ,再把1/4這個分數的分子和分母交換位置,把原來的分子做分母,原來的分母做分子。則是4/1 用1計演算法:也可以用1去除以這個數,例如0.25 ,1/0.25等於4 ,所以0.25的倒數4 ,因為乘積是1的兩個數互為倒數。分數、整數也都使用這種規律。
分數除法:分數除法是分數乘法的逆運算。
分數除法計演算法則:
甲數除以乙數(0除外),等於甲數乘乙數的倒數。
分數除法的意義:與整數除法的意義相同,都是已知兩個因數的積與其中一個因數求另一個因數。
分數除法應用題:先找單位1。單位1已知,求部分量或對應分率用乘法,求單位1用除法。
數學的六大方法技巧
1、做好預習:
單元預習時粗讀,了解近階段的學習內容,課時預習時細讀,注重知識的形成過程,對難以理解的概念、公式和法則等要做好記錄,以便帶著問題聽課。
2、認真聽課:
聽課應包括聽、思、記三個方面。聽,聽知識形成的來龍去脈,聽重點和難點,聽例題的解法和要求。思,一是要善於聯想、類比和歸納,二是要敢於質疑,提出問題。記,指課堂筆記——記方法,記疑點,記要求,記注意點。
3、認真解題:
課堂練習是最及時最直接的反饋,一定不能錯過。不要急於完成作業,要先看看你的 筆記本 ,回顧學習內容,加深理解,強化記憶。
4、及時糾錯:
課堂練習、作業、檢測,反饋後要及時查閱,分析錯題的原因,必要時強化相關計算的訓練。不明白的問題要及時向同學和老師請教了,不能將問題處於懸而未解的狀態,養成今日事今日畢的好習慣。
5、學會 總結 :
「數學一環扣一環,知識間的聯系非常緊密,階段性總結,不僅能夠起到復習鞏固的作用,還能找到知識間的聯系,做到瞭然於心,融會貫通。
6、學會管理:
管理好自己的筆記本,作業本,糾錯本,還有做過的所有練習卷和測試卷。,這可是大考復習時最有用的資料,千萬不可疏忽。
六年級上冊數學第二單元知識點相關 文章 :
★ 六年級上冊數學知識點
★ 六年級上冊數學知識點整理歸納
★ 六年級數學上冊知識點復習
★ 六年級數學上冊知識點總結
★ 六年級數學上冊《百分數》知識點總結
★ 六年級數學上冊知識人教版
★ 六年級數學期末復習知識點匯總
★ 六年級數學上冊知識點復習資料
★ 六年級數學復習要點
★ 小學六年級數學學習方法和技巧大全
❽ 2022六年級數學知識點歸納
2022 六年級數學 知識點歸納有哪些你知道嗎?我們在學習數學的過程中能鍛煉自己觀察事物的能力,分析判斷力及創新能力,在以後的生活中,這些能力可以幫助我們把人生道路走得更好,使我們終生受益。一起來看看2022六年級數學知識點歸納,歡迎查閱!
六年級數學知識點歸納
小數【有限小數、無限小數】
1、分母是10、100、1000……的分數都可以用小數表示。
一位小數表示十分之幾,兩位小數表示百分之幾,三位小數表示千分之幾……
2、整數和小數都是按照十進制計數法寫出的數,個、十、百……以及十分之一、百分之一……都是計數單位。
每相鄰兩個計數單位間的進率都是10。
3、小數點向右移動一位、兩位、三位……原來的數分別擴大10倍、100倍、1000倍……
小數點向左移動一位、兩位、三位……原來的數分別縮小10倍、100倍、1000倍……
4、每個計數單位所佔的位置,叫做數位。
數位是按照一定的順序排列的。
5、小數的讀法:讀小數時,整數部分仍按照整數的讀法來讀,整數部分是「0」的讀作「零」,小數點讀作「點」,小數部分按從左往右的順序讀出每個數位上的數字,小數部分的0要讀。
6、小數的寫法:寫小數時,整數部分按照整數的寫法去寫,整數部分是0的寫作「0」,小數點寫在整數部分的右下角,小數部分順次寫出每一個數位上的數字。
7、小數的基本性質:小數的末尾添上「0」或去掉「0」,小數的大小不變。
8、根據小數的性質,通常可以去掉小數末尾的「0」,把小數化簡。
9、比較小數大小的 方法 :先比較整數部分的數,再依次比較小數部分十分位上的數,百分位上的數,千分位上的數,從左往右,如果哪個數位上的數大,這個小數就大。
10、求小數近似數的一般方法:
(1)先要弄清保留幾位小數;
(2)根據需要確定看哪一位上的數;
(3)用「四捨五入」的方法求得結果。
數學六年級知識點
第三部分【常用單位換算】
(一)長度單位換算
1千米=1000米;
1米=10分米;
1分米=10厘米;
1米=100厘米;
1厘米=10毫米
(二)面積單位換算:
1平方千米=100公頃;
1公頃=10000平方米;
1平方米=100平方分米;
1平方分米=100平方厘米;
1平方厘米=100平方毫米
(三)體積(容積)單位換算:
1立方米=1000立方分米;
1立方分米=1000立方厘米;
1立方分米=1升;
1立方厘米=1毫升;
1立方米=1000升
(四)重量單位換算:
1噸=1000千克;
1千克=1000克;
1千克=1公斤
(五)人民幣單位換算:
1元=10角; 1角=10分; 1元=100分
(六)時間單位換算:
1世紀=100年; 1年=12月;
【大月(31天)有:1、3、5、7、8、10、12月】;
【小月(30天)有:4、6、9、11月】
【平年:2月有28天;全年有365天】;
【閏年:2月有29天;全年有366天】
1日=24小時; 1時=60分=3600秒; 1分=60秒;
蘇版數學六年級下知識
分數【真分數、假分數】
1、把單位「1」平均分成若干份,表示這樣的一份或幾份的數叫做分數。
表示其中一份的數,是這個分數的分數單位。
3、從小數和分數的意義可以看出,小數實際上就是分母是10、100、1000……的分數。
4、分數可以分為真分數和假分數。
5、分子小於分母的分數叫做真分數。
真分數小於1。
6、分子大於或等於分母的分數叫做假分數。
假分數大於或等於1。分子是分母倍數的假分數實際上是整數。
7、分子和分母只有公因數1的分數叫做最簡分數。
8、分數的基本性質:分數的分子和分母同時乘或除以相同的數(0除外),分數的大小不變。
9、應用分數的基本性質,可以通分和約分。
約分:用分子和分母同時除以它們的最大公因數,化成最簡分數的過程。
通分: 根據分數的基本性質,把幾個異分母分數化成與原來分數相等的同分母的分數的過程,叫做通分。
10、倒數:乘積是1的兩個數互為倒數。
1的倒數是1,0沒有倒數。
2022六年級數學知識點歸納相關 文章 :
★ 2022六年級數學教學計劃
★ 2022年人教版小學六年級數學上冊教學計劃
★ 2022小學數學復習計劃最新5篇
★ 六年級數學上冊教學工作總結10篇
★ 2022年數學課堂教學反思總結(10篇)
★ 2022六年級數學教師工作總結
★ 高考數學必考知識點2022
★ 2022高考數學知識難點復習概括
★ 2022小學數學教研組教師工作總結
★ 六年級數學教師2022工作總結