❶ 初中數學圓的重點
有關圓的知識無非就以下幾點:圓的面積、周長、扇形的面積、弧長還有圓心角
圓的面積:圓周率*半徑的平方
周長:2*圓周率*半徑
弧長:圓的周長*(圓心角/360)
扇形面積:圓的面積*(圓心角/360)
球體積:(4/3)*圓周率*半徑的三次方
有關圓的公式就這么點,關鍵還是考公式應用,多做題積累經驗是最好的方法
❷ 初中數學圓知識點總結歸納
數學是一門很重要的學科,下面是我為大家整理出來的一些初中數學圓的重要知識點,希望能幫助到大家。
一.圓的定義
1.平面上到定點的距離等於定長的所有點組成的圖形叫做圓。
2.平面上一條線段,繞它的一端旋轉360°,留下的軌跡叫圓。
二.圓心
1.定義1中的定點為圓心。
2.定義2中繞的那一端的端點為圓心。
3.圓任意兩條對稱軸的交點為圓心。
4.垂直於圓內任意一條弦且兩個端點在圓上的線段的二分點為圓心。
註:圓心一般用字母O表示
5.直徑:通過圓心,並且兩端都在圓上的線段叫做圓的直徑。直徑一般用字母d表示。
6.半徑:連接圓心和圓上任意一點的線段,叫做圓的半徑。半徑一般用字母r表示。
7.圓的直徑和半徑都有無數條。圓是軸對稱圖形,每條直徑所在的直線是圓的對稱軸。在同圓或等圓中:直徑是半徑的2倍,半徑是直徑的二分之一.d=2r或r=二分之d。
8.圓的半徑或直徑決定圓的大小,圓心決定圓的位置。
三.圓的基本性質
1.圓的對稱性
(1)圓是軸對稱圖形,它的對稱軸是直徑所在的直線。
(2)圓是中心對稱圖形,它的對稱中心是圓心。
(3)圓是旋轉對稱圖形。
2.垂徑定理
(1)垂直於弦的直徑平分這條弦,且平分這條弦所對的兩條弧。
(2)推論:
平分弦(非直徑)的直徑,垂直於弦且平分弦所對的兩條弧。
平分弧的直徑,垂直平分弧所對的弦。
3.圓心角的度數等於它所對弧的度數。圓周角的度數等於它所對弧度數的一半。
(1)同弧所對的圓周角相等。
(2)直徑所對的圓周角是直角;圓周角為直角,它所對的弦是直徑。
4.在同圓或等圓中,兩條弦、兩條弧、兩個圓周角、兩個圓心角、兩條弦心距五對量中只要有一對量相等,其餘四對量也分別相等。
5.夾在平行線間的兩條弧相等。
(1)過兩點的圓的圓心一定在兩點間連線段的中垂線上。
(2)不在同一直線上的三點確定一個圓,圓心是三邊中垂線的交點,它到三個點的距離相等。
(直角三角形的外心就是斜邊的中點。)
6.直線與圓的位置關系。d表示圓心到直線的距離,r表示圓的半徑。
直線與圓有兩個交點,直線與圓相交;直線與圓只有一個交點,直線與圓相切;直線與圓沒有交點,直線與圓相離。
四.圓和圓
1.兩個圓沒有公共點且每個圓的點都在另一個圓的外部時,叫做這兩個圓的外離。
2.兩個圓有唯一的公共點且除了這個公共點外,每個圓上的點都在另一個圓的外部,叫做兩個圓的外切。
3.兩個圓有兩個交點,叫做兩個圓的相交。
4.兩個圓有唯一的公共點且除了這個公共點外,每個圓上的點都在另一個圓的內部,叫做兩個圓的內切。
5.兩個圓沒有公共點且每個圓的點都在另一個圓的內部時,叫做這兩個圓的內含。
五.正多邊形和圓
1.正多邊形的概念:各邊相等,各角也相等的多邊形叫做正多邊形。
2.正多邊形與圓的關系:
(1)將一個圓n(n≥3)等分(可以藉助量角器),依次連結各等分點所得的多邊形是這個圓的內接正多邊形。
(2)這個圓是這個正多邊形的外接圓。
❸ 初中數學圓的知識點總結
即將步入初三的同學們,掌握好有關於圓的知識內容,對於後面接觸弧、扇形、橢圓等相關知識內容都有一定的幫助。下面是我為大家整理的關於初中數學圓的知識點 總結 ,希望對您有所幫助。歡迎大家閱讀參考學習!
圓
定義:
(1)平面上到定點的距離等於定長的所有點組成的圖形叫做圓。
(2)平面上一條線段,繞它的一端旋轉360°,留下的軌跡叫圓。
圓心:
(1)如定義(1)中,該定點為圓心
(2)如定義(2)中,繞的那一端的端點為圓心。
(3)圓任意兩條對稱軸的交點為圓心。
(4)垂直於圓內任意一條弦且兩個端點在圓上的線段的二分點為圓心。
註:圓心一般用字母O表示
直徑:通過圓心,並且兩端都在圓上的線段叫做圓的直徑。直徑一般用字母d表示。
半徑:連接圓心和圓上任意一點的線段,叫做圓的半徑。半徑一般用字母r表示。
圓的直徑和半徑都有無數條。圓是軸對稱圖形,每條直徑所在的直線是圓的對稱軸。在同圓或等圓中:直徑是半徑的2倍,半徑是直徑的二分之一.d=2r或r=二分之d。
圓的半徑或直徑決定圓的大小,圓心決定圓的位置。
圓的周長:圍成圓的曲線的長度叫做圓的周長,用字母C表示。
圓的周長與直徑的比值叫做圓周率。圓的周長除以直徑的商是一個固定的數,把它叫做圓周率,它是一個無限不循環小數(無理數),用字母π表示。計算時,通常取它的近似值,π≈3.14。
直徑所對的圓周角是直角。90°的圓周角所對的弦是直徑。
圓的面積公式:圓所佔平面的大小叫做圓的面積。πr^2,用字母S表示。
一條弧所對的圓周角是圓心角的二分之一。
在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦心距也相等。
在同圓或等圓中,如果兩條弧相等,那麼他們所對的圓心角相等,所對的弦相等,所對的弦心距也相等。
在同圓或等圓中,如果兩條弦相等,那麼他們所對的圓心角相等,所對的弧相等,所對的弦心距也相等。
周長計算公式
1.、已知直徑:C=πd
2、已知半徑:C=2πr
3、已知周長:D=cπ
4、圓周長的一半:12周長(曲線)
5、半圓的長:12周長+直徑
面積計算公式:
1、已知半徑:S=πr平方
2、已知直徑:S=π(d2)平方
3、已知周長:S=π(c2π)平方
點、直線、圓和圓的位置關系
1.點和圓的位置關系
①點在圓內<=>點到圓心的距離小於半徑
②點在圓上<=>點到圓心的距離等於半徑
③點在圓外<=>點到圓心的距離大於半徑
2.過三點的圓不在同一直線上的三個點確定一個圓。
3.外接圓和外心經過三角形的三個頂點可以做一個圓,這個圓叫做三角形的外接圓。外接圓的圓心是三角形三條邊垂直平分線的交點,叫做三角形的外心。
4.直線和圓的位置關系
相交:直線和圓有兩個公共點叫這條直線和圓相交,這條直線叫做圓的割線。
相切:直線和圓有一個公共點叫這條直線和圓相切,這條直線叫做圓的切線,這個點叫做切點。
相離:直線和圓沒有公共點叫這條直線和圓相離。
5.直線和圓位置關系的性質和判定
如果⊙O的半徑為r,圓心O到直線l的距離為d,那麼
①直線l和⊙O相交<=>d
②直線l和⊙O相切<=>d=r;
③直線l和⊙O相離<=>d>r。
圓和圓
定義:
兩個圓沒有公共點且每個圓的點都在另一個圓的外部時,叫做這兩個圓的外離。
兩個圓有唯一的公共點且除了這個公共點外,每個圓上的點都在另一個圓的外部,叫做兩個圓的外切。
兩個圓有兩個交點,叫做兩個圓的相交。
兩個圓有唯一的公共點且除了這個公共點外,每個圓上的點都在另一個圓的內部,叫做兩個圓的內切。
兩個圓沒有公共點且每個圓的點都在另一個圓的內部時,叫做這兩個圓的內含。
原理:圓心距和半徑的數量關系:
兩圓外離<=>d>R+r兩圓外切<=>d=R+r兩圓相交<=>R-r=r)
兩圓內切<=>d=R-r(R>r)兩圓內含<=>dr)
正多邊形和圓
1、正多邊形的概念:各邊相等,各角也相等的多邊形叫做正多邊形。
2、正多邊形與圓的關系:
(1)將一個圓n(n≥3)等分(可以藉助量角器),依次連結各等分點所得的多邊形是這個圓的內接正多邊形。
(2)這個圓是這個正多邊形的外接圓。
3、正多邊形的有關概念:
(1)正多邊形的中心——正多邊形的外接圓的圓心。
(2)正多邊形的半徑——正多邊形的外接圓的半徑。
(3)正多邊形的邊心距——正多邊形中心到正多邊形各邊的距離。
(4)正多邊形的中心角——正多邊形每一邊所對的外接圓的圓心角。
4、正多邊形性質:
(1)任何正多邊形都有一個外接圓。
(2)正多邊形都是軸對稱圖形,當邊數是偶數時,它又是中心對稱圖形,正n邊形的對稱軸有n條。(3)邊數相同的正多邊形相似。
相關 文章 :
1. 初中數學的常考知識點20條
2. 九年級數學下冊圓的知識點整理
3. 初中數學知識點整理:
4. 初三數學圓的思維導圖
5. 初中數學圓教學反思
❹ 中考數學圓知識點總結
中考數學圓知識點總結
在中考數學中, 圓是初中幾何課程中很重要的內容之一。下面是我推薦給大家的中考數學圓知識點總結,希望大家有所收獲。
中考數學圓知識點總結
一、圓及圓的相關量的定義
1.平面上到定點的距離等於定長的所有點組成的圖形叫做圓。定點稱為圓心,定長稱為半徑。
2.圓上任意兩點間的部分叫做圓弧,簡稱弧。大於半圓的弧稱為優弧,小於半圓的弧稱為劣弧。連接圓上任意兩點的線段叫做弦。經過圓心的弦叫做直徑。
3.頂點在圓心上的角叫做圓心角。頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角。
4.過三角形的三個頂點的圓叫做三角形的外接圓,其圓心叫做三角形的外心。和三角形三邊都相切的圓叫做這個三角形的內切圓,其圓心稱為內心。
5.直線與圓有3種位置關系:無公共點為相離;有2個公共點為相交;圓與直線有唯一公共點為相切,這條直線叫做圓的切線,這個唯一的公共點叫做切點。
6.兩圓之間有5種位置關系:無公共點的,一圓在另一圓之外叫外離,在之內叫內含;有唯一公共點的,一圓在另一圓之外叫外切,在之內叫內切;有2個公共點的叫相交。兩圓圓心之間的距離叫做圓心距。
7.在圓上,由2條半徑和一段弧圍成的圖形叫做扇形。圓錐側面展開圖是一個扇形。這個扇形的半徑成為圓錐的母線。
二、有關圓的字母表示方法
圓--⊙ 半徑—r 弧--⌒ 直徑—d
扇形弧長/圓錐母線—l 周長—C 面積—S三、有關圓的基本性質與定理(27個)
1.點P與圓O的位置關系(設P是一點,則PO是點到圓心的距離):
P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O內,PO
2.圓是軸對稱圖形,其對稱軸是任意一條過圓心的直線。圓也是中心對稱圖形,其對稱中心是圓心。
3.垂徑定理:垂直於弦的直徑平分這條弦,並且平分弦所對的弧。逆定理:平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的弧。
4.在同圓或等圓中,如果2個圓心角,2個圓周角,2條弧,2條弦中有一組量相等,那麼他們所對應的其餘各組量都分別相等。
5.一條弧所對的圓周角等於它所對的圓心角的一半。
6.直徑所對的圓周角是直角。90度的圓周角所對的弦是直徑。
7.不在同一直線上的3個點確定一個圓。
8.一個三角形有唯一確定的外接圓和內切圓。外接圓圓心是三角形各邊垂直平分線的交點,到三角形3個頂點距離相等;內切圓的圓心是三角形各內角平分線的交點,到三角形3邊距離相等。
9.直線AB與圓O的位置關系(設OP⊥AB於P,則PO是AB到圓心的距離):
AB與⊙O相離,PO>r;AB與⊙O相切,PO=r;AB與⊙O相交,PO
10.圓的切線垂直於過切點的直徑;經過直徑的一端,並且垂直於這條直徑的直線,是這個圓的切線。
11.圓與圓的位置關系(設兩圓的半徑分別為R和r,且R≥r,圓心距為P):
外離P>R+r;外切P=R+r;相交R-r
三、有關圓的計算公式
1.圓的周長C=2πr=πd 2.圓的面積S=s=πr² 3.扇形弧長l=nπr/180
4.扇形面積S=nπr² /360=rl/2 5.圓錐側面積S=πrl
四、圓的方程
1.圓的標准方程
在平面直角坐標系中,以點O(a,b)為圓心,以r為半徑的圓的標准方程是
(x-a)^2+(y-b)^2=r^2
2.圓的一般方程
把圓的標准方程展開,移項,合並同類項後,可得圓的一般方程是
x^2+y^2+Dx+Ey+F=0
和標准方程對比,其實D=-2a,E=-2b,F=a^2+b^2
相關知識:圓的離心率e=0.在圓上任意一點的曲率半徑都是r.
五、圓與直線的位置關系判斷
鏈接:圓與直線的位置關系(一.5)
平面內,直線Ax+By+C=O與圓x^2+y^2+Dx+Ey+F=0的位置關系判斷一般方法是
討論如下2種情況:
(1)由Ax+By+C=O可得y=(-C-Ax)/B,[其中B不等於0],
代入x^2+y^2+Dx+Ey+F=0,即成為一個關於x的一元二次方程f(x)=0.
利用判別式b^2-4ac的符號可確定圓與直線的位置關系如下:
如果b^2-4ac>0,則圓與直線有2交點,即圓與直線相交
如果b^2-4ac=0,則圓與直線有1交點,即圓與直線相切
如果b^2-4ac<0,則圓與直線有0交點,即圓與直線相離
(2)如果B=0即直線為Ax+C=0,即x=-C/A.它平行於y軸(或垂直於x軸)
將x^2+y^2+Dx+Ey+F=0化為(x-a)^2+(y-b)^2=r^2
令y=b,求出此時的兩個x值x1,x2,並且我們規定x1
當x=-C/Ax2時,直線與圓相離
當x1
當x=-C/A=x1或x=-C/A=x2時,直線與圓相切
圓的定理:
1不在同一直線上的三點確定一個圓。
2垂徑定理 垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧
推論1 ①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧
②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧
推論2 圓的兩條平行弦所夾的弧相等
3圓是以圓心為對稱中心的中心對稱圖形
4圓是定點的距離等於定長的點的集合
5圓的內部可以看作是圓心的距離小於半徑的點的集合
6圓的外部可以看作是圓心的距離大於半徑的點的集合
7同圓或等圓的半徑相等
8到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓
9定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦 相等,所對的弦的弦心距相等
10推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩 弦的弦心距中有一組量相等那麼它們所對應的其餘各組量都相等
11定理 圓的內接四邊形的對角互補,並且任何一個外角都等於它 的內對角
12①直線L和⊙O相交 d
②直線L和⊙O相切 d=r
③直線L和⊙O相離 d>r
13切線的'判定定理 經過半徑的外端並且垂直於這條半徑的直線是圓的切線
14切線的性質定理 圓的切線垂直於經過切點的半徑
15推論1 經過圓心且垂直於切線的直線必經過切點
16推論2 經過切點且垂直於切線的直線必經過圓心
17切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等, 圓心和這一點的連線平分兩條切線的夾角
18圓的外切四邊形的兩組對邊的和相等 外角等於內對角
19如果兩個圓相切,那麼切點一定在連心線上
20①兩圓外離 d>R+r ②兩圓外切 d=R+r
③兩圓相交 R-rr)
④兩圓內切 d=R-r(R>r) ⑤兩圓內含dr)
21定理 相交兩圓的連心線垂直平分兩圓的公共弦
22定理 把圓分成n(n≥3):
⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形
⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
23定理 任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓
24正n邊形的每個內角都等於(n-2)×180°/n
25定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
26正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長
27正三角形面積√3a/4 a表示邊長
28如果在一個頂點周圍有k個正n邊形的角,由於這些角的和應為 360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
29弧長計算公式:L=n兀R/180
30扇形面積公式:S扇形=n兀R^2/360=LR/2
31內公切線長= d-(R-r) 外公切線長= d-(R+r)
32定理 一條弧所對的圓周角等於它所對的圓心角的一半
33推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
34推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所 對的弦是直徑
35弧長公式 l=a*r a是圓心角的弧度數r >0 扇形面積公式 s=1/2*l*r
;❺ 九年級數學圓的知識點
一、圓的相關概念
1、圓的定義
在一個個平面內,線段OA繞它固定的一個端點O旋轉一周,另一個端點A隨之旋轉所形成的圖形叫做圓,固定的端點O叫做圓心,線段OA叫做半徑。
2、圓的幾何表示
以點O為圓心的圓記作「⊙O」,讀作「圓O」
二、弦、弧等與圓有關的定義
(1)弦
連接圓上任意兩點的線段叫做弦。(如圖中的AB)
(2)直徑
經過圓心的弦叫做直徑。(如途中的CD)
直徑等於半徑的2倍。
(3)半圓
圓的任意一條直徑的兩個端點分圓成兩條弧,每一條弧都叫做半圓。
(4)弧、優弧、劣弧
圓上任意兩點間的部分叫做圓弧,簡稱弧。
弧用符號「⌒」表示,以A,B為端點的弧記作「 」,讀作「圓弧AB」或「弧AB」。
大於半圓的弧叫做優弧(多用三個字母表示);小於半圓的弧叫做劣弧(多用兩個字母表示)
三、垂徑定理及其推論
垂徑定理:垂直於弦的直徑平分這條弦,並且平分弦所對的弧。
推論1:(1)平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧。
(2)弦的垂直平分線經過圓心,並且平分弦所對的兩條弧。
(3)平分弦所對的一條弧的直徑垂直平分弦,並且平分弦所對的另一條弧。
推論2:圓的兩條平行弦所夾的弧相等。
垂徑定理及其推論可概括為:
過圓心
垂直於弦
直徑平分弦知二推三
平分弦所對的優弧
平分弦所對的劣弧
四、圓的對稱性
1、圓的軸對稱性
圓是軸對稱圖形,經過圓心的每一條直線都是它的對稱軸。
2、圓的中心對稱性
圓是以圓心為對稱中心的中心對稱圖形。
五、弧、弦、弦心距、圓心角之間的關系定理
1、圓心角
頂點在圓心的角叫做圓心角。
2、弦心距
從圓心到弦的距離叫做弦心距。
3、弧、弦、弦心距、圓心角之間的關系定理
在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦想等,所對的弦的弦心距相等。
推論:在同圓或等圓中,如果兩個圓的圓心角、兩條弧、兩條弦或兩條弦的弦心距中有一組量相等,那麼它們所對應的其餘各組量都分別相等。
六、圓周角定理及其推論
1、圓周角
頂點在圓上,並且兩邊都和圓相交的角叫做圓周角。
2、圓周角定理
一條弧所對的圓周角等於它所對的圓心角的一半。
推論1:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。
推論2:半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑。
推論3:如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形。
七、點和圓的位置關系
設⊙O的半徑是r,點P到圓心O的距離為d,則有:
d
d=r點P在⊙O上;
d>r點P在⊙O外。
八、過三點的圓
1、過三點的圓
不在同一直線上的三個點確定一個圓。
2、三角形的外接圓
經過三角形的三個頂點的圓叫做三角形的外接圓。
3、三角形的外心
三角形的外接圓的圓心是三角形三條邊的垂直平分線的交點,它叫做這個三角形的外心。
4、圓內接四邊形性質(四點共圓的判定條件)
圓內接四邊形對角互補。
九、反證法
先假設命題中的結論不成立,然後由此經過推理,引出矛盾,判定所做的假設不正確,從而得到原命題成立,這種證明方法叫做反證法。
十、直線與圓的位置關系
直線和圓有三種位置關系,具體如下:
(1)相交:直線和圓有兩個公共點時,叫做直線和圓相交,這時直線叫做圓的割線,公共點叫做交點;
(2)相切:直線和圓有公共點時,叫做直線和圓相切,這時直線叫做圓的切線,
(3)相離:直線和圓沒有公共點時,叫做直線和圓相離。
如果⊙O的半徑為r,圓心O到直線l的距離為d,那麼:
直線l與⊙O相交d
直線l與⊙O相切d=r;
直線l與⊙O相離d>r;
十一、切線的判定和性質
1、切線的判定定理
經過半徑的外端並且垂直於這條半徑的直線是圓的切線。
2、切線的性質定理
圓的切線垂直於經過切點的半徑。
十二、切線長定理
1、切線長
在經過圓外一點的圓的切線上,這點和切點之間的線段的長叫做這點到圓的切線長。
2、切線長定理
從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角。
十三、三角形的內切圓
1、三角形的`內切圓
與三角形的各邊都相切的圓叫做三角形的內切圓。
2、三角形的內心
三角形的內切圓的圓心是三角形的三條內角平分線的交點,它叫做三角形的內心。
十四、圓和圓的位置關系
1、圓和圓的位置關系
如果兩個圓沒有公共點,那麼就說這兩個圓相離,相離分為外離和內含兩種。
如果兩個圓只有一個公共點,那麼就說這兩個圓相切,相切分為外切和內切兩種。
如果兩個圓有兩個公共點,那麼就說這兩個圓相交。
2、圓心距
兩圓圓心的距離叫做兩圓的圓心距。
3、圓和圓位置關系的性質與判定
設兩圓的半徑分別為R和r,圓心距為d,那麼
兩圓外離d>R+r
兩圓外切d=R+r
兩圓相交R—r
兩圓內切d=R—r(R>r)
兩圓內含dr)
4、兩圓相切、相交的重要性質
如果兩圓相切,那麼切點一定在連心線上,它們是軸對稱圖形,對稱軸是兩圓的連心線;相交的兩個圓的連心線垂直平分兩圓的公共弦。
十五、正多邊形和圓
1、正多邊形的定義
各邊相等,各角也相等的多邊形叫做正多邊形。
2、正多邊形和圓的關系
只要把一個圓分成相等的一些弧,就可以做出這個圓的內接正多邊形,這個圓就是這個正多邊形的外接圓。
十六、與正多邊形有關的概念
1、正多邊形的中心
正多邊形的外接圓的圓心叫做這個正多邊形的中心。
2、正多邊形的半徑
正多邊形的外接圓的半徑叫做這個正多邊形的半徑。
3、正多邊形的邊心距
正多邊形的中心到正多邊形一邊的距離叫做這個正多邊形的邊心距。
4、中心角
正多邊形的每一邊所對的外接圓的圓心角叫做這個正多邊形的中心角。
十七、正多邊形的對稱性
1、正多邊形的軸對稱性
正多邊形都是軸對稱圖形。一個正n邊形共有n條對稱軸,每條對稱軸都通過正n邊形的中心。
2、正多邊形的中心對稱性
邊數為偶數的正多邊形是中心對稱圖形,它的對稱中心是正多邊形的中心。
3、正多邊形的畫法
先用量角器或尺規等分圓,再做正多邊形。
十八、弧長和扇形面積
1、弧長公式
n°的圓心角所對的弧長l的計算公式為
2、扇形面積公式
其中n是扇形的圓心角度數,R是扇形的半徑,l是扇形的弧長。
3、圓錐的側面積
其中l是圓錐的母線長,r是圓錐的地面半徑。
數學性質
數學性質是數學表觀和內在所具有的特徵,一種事物區別於其他事物的屬性。如:平行四邊形的性質:對邊平行,對邊相等,對角線互相平分,中心對稱圖形。
初中數學知識點
加法:①同號相加,取相同的符號,把絕對值相加。②異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數的符號,並用較大的絕對值減去較小的絕對值。③一個數與0相加不變。
減法:減去一個數,等於加上這個數的相反數。
乘法:①兩數相乘,同號得正,異號得負,絕對值相乘。②任何數與0相乘得0。③乘積為1的兩個有理數互為倒數。
除法:①除以一個數等於乘以一個數的倒數。②0不能作除數。
乘方:求N個相同因數A的積的運算叫做乘方,乘方的結果叫冪,A叫底數,N叫次數。
混合順序:先算乘法,再算乘除,最後算加減,有括弧要先算括弧里的。
❻ 初三數學圓知識點總結
圓是初三數學幾何部分的重要內容,特別是切線的判定與性質的考題已成為多地中考數學幾何壓軸題的熱點題型。下面我為大家整理了初三數學圓知識點,供大家參考。
一、圓的概念
集合形式的概念:
1、圓可以看作是到定點的距離等於定長的點的集合;
2、圓的外部:可以看作是到定點的距離大於定長的點的集合;
3、圓的內部:可以看作是到定點的距離小於定長的點的集合
軌跡形式的概念:
1、圓:到定點的距離等於定長的點的軌跡就是以定點為圓心,定長為半徑的圓;
固定的端點O為圓心。連接圓上任意兩點的線段叫做弦,經過圓心的弦叫直徑。圓上任意兩點之間的部分叫做圓弧,簡稱弧。
2、垂直平分線:到線段兩端距離相等的點的軌跡是這條線段的垂直平分線;
3、角的平分線:到角兩邊距離相等的點的軌跡是這個角的平分線;
4、到直線的距離相等的點的軌跡是:平行於這條直線且到這條直線的距離等於定長的兩條直線;
5、到兩條平行線距離相等的點的軌跡是:平行於這兩條平行線且到兩條直線距離都相等的一條直線。
二、點、直線、圓和圓的位置關系
1.點和圓的位置關系
①點在圓內<=>點到圓心的距離小於半徑;
②點在圓上<=>點到圓心的距離等於半徑;
③點在圓外<=>點到圓心的距離大於半徑。
2.過三點的圓不在同一直線上的三個點確定一個圓。
3.外接圓和外心經過三角形的三個頂點可以做一個圓,這個圓叫做三角形的外接圓。外接圓的圓心是三角形三條邊垂直平分線的交點,叫做三角形的外心。
4.直線和圓的位置關系
相交:直線和圓有兩個公共點叫這條直線和圓相交,這條直線叫做圓的割線。
相切:直線和圓有一個公共點叫這條直線和圓相切,這條直線叫做圓的切線,這個點叫做切點。
相離:直線和圓沒有公共點叫這條直線和圓相離。
5.直線和圓位置關系的性質和判定
如果⊙O的半徑為r,圓心O到直線l的距離為d,那麼:
①直線l和⊙O相交<=>d<>;
②直線l和⊙O相切<=>d=r;
③直線l和⊙O相離<=>d>r。
三、正多邊形和圓
1、正多邊形的概念:各邊相等,各角也相等的多邊形叫做正多邊形。
2、正多邊形與圓的關系:
(1)將一個圓n(n≥3)等分(可以藉助量角器),依次連結各等分點所得的多邊形是這個圓的內接正多邊形。
(2)這個圓是這個正多邊形的外接圓。
3、正多邊形的有關概念:
(1)正多邊形的中心——正多邊形的外接圓的圓心。
(2)正多邊形的半徑——正多邊形的外接圓的半徑。
(3)正多邊形的邊心距——正多邊形中心到正多邊形各邊的距離。
(4)正多邊形的中心角——正多邊形每一邊所對的外接圓的圓心角。
4、正多邊形性質:
(1)任何正多邊形都有一個外接圓。
(2)正多邊形都是軸對稱圖形,當邊數是偶數時,它又是中心對稱圖形,正n邊形的對稱軸有n條。(3)邊數相同的正多邊形相似。
四、有關圓的公式
(1)給直徑求圓的周長:c=πd。
(2)給半徑求圓的周長:c=2πr。
(3)給直徑求圓的半徑:r=d÷2。
(4)給周長求圓的半徑:r=c÷π÷2。
(5)給半徑求圓的直徑:d=2r。
(6)給周長求圓的直徑:d=c÷π。
(7)給直徑求半圓周長:c=πr+d。
(8)給半徑求半圓周長:c=πr+2r。
(9)給半徑求圓的面積:s=πr²。
(10)給直徑求圓的面積:s=π(d÷2)²。
(11)給周長求圓的面積:s=π(c÷π÷2)²。
(12)給半徑求半圓面積:s=πr²÷2。
(13)給直徑求半圓面積:s=π(d÷2)²÷2。
(14)給大圓和小圓半徑求圓環面積:s=π(R²-r²)。
(15)給大圓和小圓半徑求圓環面積:s=πR²-πr²。
❼ 九年級下冊數學圓的知識點有哪些
九年級下冊數學圓的知識點如下:
1、圓的任意一條直徑的兩個端點分圓成兩條弧,每一條弧都叫做半圓。
2、垂徑定理:垂直於弦的直徑平分這條弦,並且平分弦所對的弧。
3、圓是軸對稱圖形,經過圓心的每一條直線都是它的對稱軸。
4、在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等。
5、切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等, 圓心和這一點的連線平分兩條切線的夾角。
❽ 求初三數學 圓這章知識點
圓的特徵:圓是由一條曲線構成的封閉圖形,圓上任意一點到圓心的距離相等。
圓心和半徑的作用:圓心決定圓的位置,半徑決定圓的大小
。
圓是軸對稱圖形,直徑所在的直線是圓的對稱軸。圓有無數條對稱軸
。
同一圓中直徑是半徑的2倍
圓的周長指圍成圓的曲線的長。直徑大的圓周長就大,直徑小的圓周長就小
圓的周長除以直徑的商是一個固定的數,我們把它叫做圓周率,用π表示,計算時通常取3.14
圓的周長:C=2πr或C=πd
求半徑:r=C/2π
求直徑:d=C/π
圓的面積意義:圓形物體,圖形所佔平面大小或圓形物體表面大小是圓的面積
。
面積計算公式:π*r的平方
圓環面積計算方法:S=πR的平方-πr的平方或S=π(R的平方-r的平方)
(R是大圓半徑,r是小圓半徑)
❾ 初三數學圓知識點歸納有哪些
數學幾何中圓是比較重要的一部分,所以對圓進行復習是很有必要的。以下是我分享給大家的初三數學圓知識點歸納,希望可以幫到你!
初三數學圓知識點歸納
一、圓的相關概念
1、圓的定義
在一個個平面內,線段OA繞它固定的一個端點O旋轉一周,另一個端點A隨之旋轉所形成的圖形叫做圓,固定的端點O叫做圓心,線段OA叫做半徑。
2、圓的幾何表示
以點O為圓心的圓記作“⊙O”,讀作“圓O”
二、弦、弧等與圓有關的定義
(1)弦
連接圓上任意兩點的線段叫做弦。(如圖中的AB)
(2)直徑
經過圓心的弦叫做直徑。(如途中的CD)
直徑等於半徑的2倍。
(3)半圓
圓的任意一條直徑的兩個端點分圓成兩條弧,每一條弧都叫做半圓。
(4)弧、優弧、劣弧
圓上任意兩點間的部分叫做圓弧,簡稱弧。
弧用符號“⌒”表示,以A,B為端點的弧記作“ ”,讀作“圓弧AB”或“弧AB”。
大於半圓的弧叫做優弧(多用三個字母表示);小於半圓的弧叫做劣弧(多用兩個字母表示)
三、垂徑定理及其推論
垂徑定理:垂直於弦的直徑平分這條弦,並且平分弦所對的弧。
推論1:(1)平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧。
(2)弦的垂直平分線經過圓心,並且平分弦所對的兩條弧。
(3)平分弦所對的一條弧的直徑垂直平分弦,並且平分弦所對的另一條弧。
推論2:圓的兩條平行弦所夾的弧相等。
垂徑定理及其推論可概括為:
過圓心
垂直於弦
直徑 平分弦 知二推三
平分弦所對的優弧
平分弦所對的劣弧
四、圓的對稱性
1、圓的軸對稱性
圓是軸對稱圖形,經過圓心的每一條直線都是它的對稱軸。
2、圓的中心對稱性
圓是以圓心為對稱中心的中心對稱圖形。
五、弧、弦、弦心距、圓心角之間的關系定理
1、圓心角
頂點在圓心的角叫做圓心角。
2、弦心距
從圓心到弦的距離叫做弦心距。
3、弧、弦、弦心距、圓心角之間的關系定理
在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦想等,所對的弦的弦心距相等。
推論:在同圓或等圓中,如果兩個圓的圓心角、兩條弧、兩條弦或兩條弦的弦心距中有一組量相等,那麼它們所對應的其餘各組量都分別相等。
六、圓周角定理及其推論
1、圓周角
頂點在圓上,並且兩邊都和圓相交的角叫做圓周角。
2、圓周角定理
一條弧所對的圓周角等於它所對的圓心角的一半。
推論1:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。
推論2:半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑。
推論3:如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形。
七、點和圓的位置關系
設⊙O的半徑是r,點P到圓心O的距離為d,則有:
d
d=r 點P在⊙O上;
d>r 點P在⊙O外。
八、過三點的圓
1、過三點的圓
不在同一直線上的三個點確定一個圓。
2、三角形的外接圓
經過三角形的三個頂點的圓叫做三角形的外接圓。
3、三角形的外心
三角形的外接圓的圓心是三角形三條邊的垂直平分線的交點,它叫做這個三角形的外心。
4、圓內接四邊形性質(四點共圓的判定條件)
圓內接四邊形對角互補。
九、反證法
先假設命題中的結論不成立,然後由此經過推理,引出矛盾,判定所做的假設不正確,從而得到原命題成立,這種證明方法叫做反證法。
十、直線與圓的位置關系
直線和圓有三種位置關系,具體如下:
(1)相交:直線和圓有兩個公共點時,叫做直線和圓相交,這時直線叫做圓的割線,公共點叫做交點;
(2)相切:直線和圓有唯一公共點時,叫做直線和圓相切,這時直線叫做圓的切線,
(3)相離:直線和圓沒有公共點時,叫做直線和圓相離。
如果⊙O的半徑為r,圓心O到直線l的距離為d,那麼:
直線l與⊙O相交 d
直線l與⊙O相切 d=r;
直線l與⊙O相離 d>r;
十一、切線的判定和性質
1、切線的判定定理
經過半徑的外端並且垂直於這條半徑的直線是圓的切線。
2、切線的性質定理
圓的切線垂直於經過切點的半徑。
十二、切線長定理
1、切線長
在經過圓外一點的圓的切線上,這點和切點之間的線段的長叫做這點到圓的切線長。
2、切線長定理
從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角。
十三、三角形的內切圓
1、三角形的內切圓
與三角形的各邊都相切的圓叫做三角形的內切圓。
2、三角形的內心
三角形的內切圓的圓心是三角形的三條內角平分線的交點,它叫做三角形的內心。
十四、圓和圓的位置關系
1、圓和圓的位置關系
如果兩個圓沒有公共點,那麼就說這兩個圓相離,相離分為外離和內含兩種。
如果兩個圓只有一個公共點,那麼就說這兩個圓相切,相切分為外切和內切兩種。
如果兩個圓有兩個公共點,那麼就說這兩個圓相交。
2、圓心距
兩圓圓心的距離叫做兩圓的圓心距。
3、圓和圓位置關系的性質與判定
設兩圓的半徑分別為R和r,圓心距為d,那麼
兩圓外離 d>R+r
兩圓外切 d=R+r
兩圓相交 R-r
兩圓內切 d=R-r(R>r)
兩圓內含 dr)
4、兩圓相切、相交的重要性質
如果兩圓相切,那麼切點一定在連心線上,它們是軸對稱圖形,對稱軸是兩圓的連心線;相交的兩個圓的連心線垂直平分兩圓的公共弦。
十五、正多邊形和圓
1、正多邊形的定義
各邊相等,各角也相等的多邊形叫做正多邊形。
2、正多邊形和圓的關系
只要把一個圓分成相等的一些弧,就可以做出這個圓的內接正多邊形,這個圓就是這個正多邊形的外接圓。
十六、與正多邊形有關的概念
1、正多邊形的中心
正多邊形的外接圓的圓心叫做這個正多邊形的中心。
2、正多邊形的半徑
正多邊形的外接圓的半徑叫做這個正多邊形的半徑。
3、正多邊形的邊心距
正多邊形的中心到正多邊形一邊的距離叫做這個正多邊形的邊心距。
4、中心角
正多邊形的每一邊所對的外接圓的圓心角叫做這個正多邊形的中心角。
十七、正多邊形的對稱性
1、正多邊形的軸對稱性
正多邊形都是軸對稱圖形。一個正n邊形共有n條對稱軸,每條對稱軸都通過正n邊形的中心。
2、正多邊形的中心對稱性
邊數為偶數的正多邊形是中心對稱圖形,它的對稱中心是正多邊形的中心。
3、正多邊形的畫法
先用量角器或尺規等分圓,再做正多邊形。
十八、弧長和扇形面積
1、弧長公式
n°的圓心角所對的弧長l的計算公式為 2、扇形面積公式
其中n是扇形的圓心角度數,R是扇形的半徑,l是扇形的弧長。
3、圓錐的側面積
其中l是圓錐的母線長,r是圓錐的地面半徑。
初中幾何掌握知識點然後靈活應用比較重要,希望大家牢記知識點然後靈活應用。
初三數學重點知識點歸納
1 過兩點有且只有一條直線
2 兩點之間線段最短
3 同角或等角的補角相等
4 同角或等角的餘角相等
5 過一點有且只有一條直線和已知直線垂直
6 直線外一點與直線上各點連接的所有線段中,垂線段最短
7 平行公理 經過直線外一點,有且只有一條直線與這條直線平行
8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9 同位角相等,兩直線平行
10 內錯角相等,兩直線平行
11 同旁內角互補,兩直線平行
12 兩直線平行,同位角相等
13 兩直線平行,內錯角相等
14 兩直線平行,同旁內角互補
15 定理 三角形兩邊的和大於第三邊
16 推論 三角形兩邊的差小於第三邊
17 三角形內角和定理 三角形三個內角的和等於180°
18 推論1 直角三角形的兩個銳角互余
19 推論2 三角形的一個外角等於和它不相鄰的兩個內角的和
20 推論3 三角形的一個外角大於任何一個和它不相鄰的內角
21 全等三角形的對應邊、對應角相等
22 邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等
23 角邊角公理( ASA)有兩角和它們的夾邊對應相等的兩個三角形全等
24 推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等
25 邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等
26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等
27 定理1 在角的平分線上的點到這個角的兩邊的距離相等
28 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上
29 角的平分線是到角的兩邊距離相等的所有點的集合
30 等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角)
31 推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊
32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33 推論3 等邊三角形的各角都相等,並且每一個角都等於60°
34 等腰三角形的判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)
35 推論1 三個角都相等的三角形是等邊三角形
36 推論 2 有一個角等於60°的等腰三角形是等邊三角形
37 在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半
38 直角三角形斜邊上的中線等於斜邊上的一半
39 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等
40 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42 定理1 關於某條直線對稱的兩個圖形是全等形
43 定理 2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線
44 定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上
45 逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱
46 勾股定理 直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a^2+b^2=c^2
47 勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a^2+b^2=c^2 ,那麼這個三角形是直角三角形
48 定理 四邊形的內角和等於360°
49 四邊形的外角和等於360°
50 多邊形內角和定理 n邊形的內角的和等於(n-2)×180°
51 推論 任意多邊的外角和等於360°
52 平行四邊形性質定理1 平行四邊形的對角相等
53 平行四邊形性質定理2 平行四邊形的對邊相等
54 推論 夾在兩條平行線間的平行線段相等
55 平行四邊形性質定理3 平行四邊形的對角線互相平分
56 平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形
57 平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形
58 平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形
59 平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形
60 矩形性質定理1 矩形的四個角都是直角
61 矩形性質定理2 矩形的對角線相等
62 矩形判定定理1 有三個角是直角的四邊形是矩形
63 矩形判定定理2 對角線相等的平行四邊形是矩形
64 菱形性質定理1 菱形的四條邊都相等
65 菱形性質定理2 菱形的對角線互相垂直,並且每一條對角線平分一組對角
66 菱形面積=對角線乘積的一半,即S=(a×b)÷2
67 菱形判定定理1 四邊都相等的四邊形是菱形
68 菱形判定定理2 對角線互相垂直的平行四邊形是菱形
69 正方形性質定理1 正方形的四個角都是直角,四條邊都相等
70 正方形性質定理2正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角
71 定理1 關於中心對稱的兩個圖形是全等的
72 定理2 關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分
73 逆定理 如果兩個圖形的對應點連線都經過某一點,並且被這一點平分,那麼這兩個圖形關於這一點對稱
74 等腰梯形性質定理 等腰梯形在同一底上的兩個角相等
75 等腰梯形的兩條對角線相等
76 等腰梯形判定定理 在同一底上的兩個角相等的梯形是等腰梯形
77 對角線相等的梯形是等腰梯形
78 平行線等分線段定理 如果一組平行線在一條直線上截得的線段相等,那麼在其他直線上截得的線段也相等
79 推論1 經過梯形一腰的中點與底平行的直線,必平分另一腰
80 推論2 經過三角形一邊的中點與另一邊平行的直線,必平分第三邊
81 三角形中位線定理 三角形的中位線平行於第三邊,並且等於它的一半
82 梯形中位線定理 梯形的中位線平行於兩底,並且等於兩底和的一半 L=(a+b)÷2 S=L×h
83 (1)比例的基本性質 如果a:b=c:d,那麼ad=bc 如果ad=bc,那麼a:b=c:d
84 (2)合比性質 如果a/b=c/d,那麼(a±b)/b=(c±d)/d
85 (3)等比性質 如果a/b=c/d=…=m/n(b+d+…+n≠0),那麼(a+c+…+m)/(b+d+…+n)=a/b
86 平行線分線段成比例定理 三條平行線截兩條直線,所得的對應線段成比例
87 推論 平行於三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例
88 定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那麼這條直線平行於三角形的第三邊
89 平行於三角形的一邊,並且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例
90 定理 平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似
91 相似三角形判定定理1 兩角對應相等,兩三角形相似(ASA)
92 直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
93 判定定理2 兩邊對應成比例且夾角相等,兩三角形相似(SAS)
94 判定定理3 三邊對應成比例,兩三角形相似(SSS)
95 定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那麼這兩個直角三角形相似
96 性質定理1 相似三角形對應高的比,對應中線的比與對應角平分線的比都等於相似比
97 性質定理2 相似三角形周長的比等於相似比
98 性質定理3 相似三角形面積的比等於相似比的平方
99 任意銳角的正弦值等於它的餘角的餘弦值,任意銳角的餘弦值等於它的餘角的正弦值
100 任意銳角的正切值等於它的餘角的餘切值,任意銳角的餘切值等於它的餘角的正切值
初三數學期末易錯點總結
函數部分:
易錯點1:各個待定系數表示的的意義。
易錯點2:熟練掌握各種函數解析式的求法,一般情況下有幾個的待定系數就要幾個點的坐標代入。
易錯點3:利用圖像求不等式的解集和方程(組)的解,利用圖像性質確定增減性。
易錯點4:利用函數圖象進行分類(平行四邊形、相似、直角三角形、等腰三角形)以及分類的求解方法。
易錯點5:與坐標軸交點坐標一定要會求。面積最大值的求解方法,距離之和的最小值的求解方法,距離之差最大值的求解方法。
易錯點6:數形結合思想方法的運用,還應注意結合圖像性質解題。函數圖象與圖形結合學會從復雜圖形分解為簡單圖形的方法,圖形為圖像提供數據或者圖像為圖形提供數據。
圓:
易錯點1:對弧、弦、圓周角等概念理解不深刻,特別是弦所對的圓周角有兩種情況要特別注意,兩條弦之間的距離也要考慮兩種情況。
易錯點2:對垂徑定理的理解不夠,不會正確添加輔助線運用直角三角形進行解題。
易錯點3:對切線的定義及性質理解不深,不能准確的利用切線的性質進行解題以及對切線的判定方法兩種方法使用不熟練。
易錯點4:與圓有關的位置關系把握好 d 與 R之間的關系求解。
易錯點5:圓周角定理是重點,同弧(等弧)所對的圓周角相等,直徑所對的圓周角是直角,90 度的圓周角所對的弦是直徑,一條弧所對的圓周角等於它所對的圓心角的一半。
易錯點6:圓的面積公式,圓周長公式,弧長,扇形面積,圓錐的側面積以及全面積以及弧長與底面周長,母線長與扇形的半徑之間的轉化關系。
旋轉與相似:
易錯點1:對於常見旋轉模型不熟悉,不能通過題目判斷出旋轉特徵。
易錯點2:相似對應關系不明確時注意分類討論。
易錯點3:線段乘積轉比例時,注意比例的順序。
易錯點4:常見幾何條件運用要熟練、比如中點、角平分線、垂直平分線、等腰直角三角形、等邊三角形、線段的和差,角度的二倍關系、平行等條件,要熟記相應的輔助線。
易錯點5:過於依賴圖形,從圖中看著像的結論揪住不放,但實際是錯誤的。
易錯點6:旋轉方向要看清楚,分清順時針和逆時針。
銳角三角函數:
易錯點1:應用三角函數定義時,要保證直角三角形這個前提.
易錯點2:在求解直角三角形的有關問題時,要畫出圖形,以利於分析解決問題.
易錯點3:選擇關系式時,要盡量利用原始數據,以防止“累積誤差”.
易錯點4:遇到不是直角三角形的圖形時,要添加適當的輔助線,將其轉化為直角三角形求解.
猜你喜歡:
1. 中考數學知識點總結
2. 初三數學知識點整理
3. 初三數學重點知識點
4. 初中數學知識點歸納
5. 初三數學備戰中考知識點大全
❿ 初中數學圓的知識點歸納
初中數學關於圓的知識點歸納
圓又是“正無限多邊形”,而“無限”只是一個概念。當多邊形的邊數越多時,其形狀、周長、面積就都越接近於圓。所以,世界上沒有真正的圓,圓實際上只是概念性的圖形。下面是我整理的關於圓的知識點歸納,歡迎大家參考!
集合:
圓:圓可以看作是到定點的距離等於定長的點的集合;
圓的外部:可以看作是到定點的距離大於定長的點的集合;
圓的內部:可以看作是到定點的距離小於定長的點的集合
軌跡:
1、到定點的距離等於定長的點的軌跡是:以定點為圓心,定長為半徑的圓;
2、到線段兩端點距離相等的點的軌跡是:線段的中垂線;
3、到角兩邊距離相等的點的軌跡是:角的平分線;
4、到直線的距離相等的點的軌跡是:平行於這條直線且到這條直線的距離等於定長的兩條直線;
5、到兩條平行線距離相等的點的軌跡是:平行於這兩條平行線且到兩條直線距離都相等的一條直線。
圓的知識點
1、不在同一直線上的三點確定一個圓。
2、垂徑定理:垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧
推論1: ①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧;②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧;③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧。
推論2: 圓的兩條平行弦所夾的弧相等。
3、圓是以圓心為對稱中心的中心對稱圖形。
4、圓是定點的'距離等於定長的點的集合。
5、圓的內部可以看作是圓心的距離小於半徑的點的集合。
6、圓的外部可以看作是圓心的距離大於半徑的點的集合。
7、同圓或等圓的半徑相等。
8、到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓。
9、定理:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等。
10、推論:在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那麼它們所對應的其餘各組量都相等。
11、定理 圓的內接四邊形的對角互補,並且任何一個外角都等於它的內對角。
12、①直線L和⊙O相交 d r
13、切線的判定定理:經過半徑的外端並且垂直於這條半徑的直線是圓的切線。
14、切線的性質定理:圓的切線垂直於經過切點的半徑。
15、推論1:經過圓心且垂直於切線的直線必經過切點。
16、推論2:經過切點且垂直於切線的直線必經過圓心。
17、切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角。
18、圓的外切四邊形的兩組對邊的和相等外角等於內對角。
19、如果兩個圓相切,那麼切點一定在連心線上。
20、①兩圓外離 d>R+r; ②兩圓外切 d=R+r;③兩圓相交 R-r<d r);④兩圓內切 d=R-r(R>r) ⑤兩圓內含d r) </d
21、定理:相交兩圓的連心線垂直平分兩圓的公共弦
22、定理:把圓分成n(n≥3):
①依次連結各分點所得的多邊形是這個圓的內接正n邊形;②經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形。
23、定理:任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓。
24、正n邊形的每個內角都等於(n-2)×180°/n。
25、定理:正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形。
26、正n邊形的面積Sn=pnrn/2p表示正n邊形的周長。
27、正三角形面積√3a/4 a表示邊長。
28、如果在一個頂點周圍有k個正n邊形的角,由於這些角的和應為 360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
29、弧長計算公式:L=n兀R/180
30、扇形面積公式:S扇形=n兀R^2/360=LR/2
31、內公切線長= d-(R-r) 外公切線長= d-(R+r)
32、定理:一條弧所對的圓周角等於它所對的圓心角的一半。
33、推論1:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。
34、推論2:半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑。
35、弧長公式:l=a*r a是圓心角的弧度數r >0 扇形面積公式 s=1/2*l*r
;