當前位置:首頁 » 基礎知識 » 高中數學知識點網路
擴展閱讀
如何教育論文構思 2024-11-17 07:19:52
剪映歌詞背景怎麼弄的 2024-11-17 07:01:00

高中數學知識點網路

發布時間: 2022-12-20 23:48:41

⑴ 高二數學推理知識點大總結

高中數學的推理要麼不出,要麼直接在出一個答題占據很多分數,但是做這個題目又很花費時間,原因是因為對知識點不清楚,我在此整理了相關資料,希望能幫助到您。

一、知識網路

二、合情推理

(一)歸納推理

1. 歸納推理:由某類事物的部分對象具有某些特徵,推出該類事物的全部對象具有這些特徵的推理,或者由個別事實概括出一般結論的推理,稱為歸納推理。簡言之,歸納推理是由部分到整體、由個別到一般的推理。

2. 歸納推理的一般步驟:

第一步,通過觀察個別情況發現某些相同的性質;

第二步,從已知的相同性質中推出一個明確表述的一般命題(猜想)。

題型1:用歸納推理發現規律

(1)觀察:

對於任意正實數,試寫出使成立的一個條件可以是 ____.

點撥:前面所列式子的共同特徵特徵是被開方數之和為22,故

(2)蜜蜂被認為是自然界中最傑出的建築師,單個蜂巢可以近似地看作是一個正六邊形,如圖為一組蜂巢的截面圖。其中第一個圖有1個蜂巢,第二個圖有7個蜂巢,第三個圖有19個蜂巢,按此規律,以表示第幅圖的蜂巢總數。則

【解題思路】找出的關系式

[解析]

總結:處理「遞推型」問題的方法之一是尋找相鄰兩組數據的關系

(二)類比推理

1. 類比推理:由兩類對象具有某些類似特徵和其中一類對象的某些已知特徵,推出另一類對象也具有這些特徵的推理。簡言之,類比推理是由特殊到特殊的推理。

2. 類比推理的一般步驟:

第一步:找出兩類對象之間可以確切表述的相似特徵;

第二步:用一類對象的已知特徵去推測另一類對象的特徵,從而得出一個猜想.

題型2:用類比推理猜想新的命題

(1)已知正三角形內切圓的半徑是高的,把這個結論推廣到空間正四面體,類似的結論是______.

【解題思路】從方法的類比入手

[解析]

原問題的解法為等面積法,即,類比問題的解法應為等體積法,

即正四面體的內切球的半徑是高

總結:

① 不僅要注意形式的類比,還要注意方法的類比。

② 類比推理常見的情形有:平面向空間類比;低維向高維類比;等差數列與等比數列類比;實數集的性質向復數集的性質類比;圓錐曲線間的類比等

(三)合情推理

1. 定義:歸納推理和類比推理都有是根據已有的事實,經過觀察、分析、比較、聯想,再進行歸納、類比,然後提出猜想的推理,我們把它們統稱為合情推理。簡言之,合情推理就是合乎情理的推理。

2. 推理的過程:

思考探究:

(1)歸納推理與類比推理有何區別與聯系?

① 歸納推理是由部分到整體,從特殊到一般的推理。通常歸納的個體數目越多,越具有代表性,那麼推廣的一般性命題也會越可靠,它是一種發現一般性規律的重要方法。

② 類比推理是從特殊到特殊的推理,是尋找事物之間的共同或相似性質。類比的性質相似性越多,相似的性質與推測的性質之間的關系就越相關,從而類比得出的結論就越可靠。

三、演繹推理

(一)含義:

1. 演繹推理是從一般性的原理出發,推出某個特殊情況下的結論。演繹推理又叫邏輯推理。

2. 演繹推理的特點是由一般到特殊的推理。

(二)演繹推理的模式

1. 演繹推理的模式採用「三段論」:

(1)大前提——已知的一般原理(M是P);

(2)小前提——所研究的特殊情況(S是M);

(3)結論——根據一般原理,對特殊情況做出的判斷(S是P)。

2. 從集合的角度看演繹推理:

(1)大前提:x∈M且x具有性質P;

(2)小前提:y∈S且SM

(3)結論:y具有性質P

(三)演繹推理與合情推理

合情推理與演繹推理的關系:

1. 從推理形式上看,歸納是由部分到整體、個別到一般的推理,類比是由特殊到特說的推理;演繹推理是由一般到特殊的推理。

2. 從推理所得的結論來看,合情推理的結論不一定正確,有待進一步證明;演繹推理在大前提、小前提和推理形式都正確的前提下,得到的結論一定正確。

四、直接證明與間接證明

(一)三種證明方法:綜合法、分析法、反證法

分析法和綜合法是思維方向相反的兩種思考方法。在數學解題中,分析法是從數學題的待證結論或需求問題出發,一步一步地探索下去,最後達到題設的已知條件。

綜合法則是從數學題的已知條件出發,經過逐步的邏輯推理,最後達到待證結論或需求問題。對於解答證明來說,分析法表現為執果索因,綜合法表現為由果導因,它們是尋求解題思路的兩種基本思考方法,應用十分廣泛。

反證法:它是一種間接的證明方法。用這種方法證明一個命題的一般步驟:

(1)假設命題的結論不成立;

(2) 根據假設進行推理,直到推理中導出矛盾為止

(3) 斷言假設不成立

(4)肯定原命題的結論成立

用反證法證明一個命題的步驟,大體上分為:(1)反設;(2)歸謬;(3)結論。

重難點:在函數、三角變換、不等式、立體幾何、解析幾何等不同的數學問題中,選擇好證明方法並運用三種證明方法分析問題或證明數學命題

考點1:綜合法

在銳角三角形中,求證:

[解析]

考點2:分析法

已知,求證

[解析]

總結:注意分析法的「格式」是「要證—只需證—」,而不是「因為—所以—」

考點3:反證法

已知,證明方程沒有負數根

【解題思路】「正難則反」,選擇反證法,因涉及方程的根,可從范圍方面尋找矛盾

[解析]

總結:否定性命題從正面突破往往比較困難,故用反證法比較多

五、數學歸納法

1. 數學歸納法的定義:

一般地,當要證明一個命題對於不小於某正整數N的所有正整數n都成立時,可以用以下兩個步驟:

(1)證明當時命題成立;

(2)假設當時命題成立,證明n=k+1時命題也成立。

在完成了這兩個步驟後,就可以斷定命題對於不小於的所有正整數都成立。這種證明方法稱為數學歸納法。

2. 數學歸納法的本質:

無窮的歸納→有限的演繹(遞推關系)

3. 數學歸納法步驟:

(1)(遞推奠基):當n取第一個值結論正確;

(2)(遞推歸納):假設當時結論正確;(歸納假設)

證明當n=k+1時結論也正確。(歸納證明)

由(1),(2)可知,命題對於從開始的所有正整數n都正確。

題型1:已知n是正偶數,用數學歸納法證明時,若已假設時命題為真,則還需證明( )

A. n=k+1時命題成立

B. n=k+2時命題成立

C. n=2k+2時命題成立

D. n=2(k+2)時命題成立

[解析]因n是正偶數,故只需證等式對所有偶數都成立,因k的下一個偶數是k+2,故選B

總結:

用數學歸納法證明時,要注意觀察幾個方面:

(1)n的范圍以及遞推的起點

(2)觀察首末兩項的次數(或其它),確定n=k時命題的形式

(3)從的差異,尋找由k到k+1遞推中,左邊要加(乘)上的式子

題型2:用數學歸納法證明不等式

[解析]

總結:

(1)數學歸納法證明命題,格式嚴謹,必須嚴格按步驟進行;

(2)歸納遞推是證明的難點,應看準「目標」進行變形;

⑵ 高中數學知識點總結

復數是高中代數的重要內容,在高考試題中約佔8%-10%,一般的出一道基礎題和一道中檔題,經常與三角、解析幾何、方程、不等式等知識綜合.本章主要內容是復數的概念,復數的代數、幾何、三角表示方法以及復數的運算.方程、方程組,數形結合,分域討論,等價轉化的數學思想與方法在本章中有突出的體現.而復數是代數,三角,解析幾何知識,相互轉化的樞紐,這對拓寬學生思路,提高學生解綜合習題能力是有益的.數、式的運算和解方程,方程組,不等式是學好本章必須具有的基本技能.簡化運算的意識也應進一步加強.
在本章學習結束時,應該明確對二次三項式的因式分解和解一元二次方程與二項方程可以畫上圓滿的句號了,對向量的運算、曲線的復數形式的方程、復數集中的數列等邊緣性的知識還有待於進一步的研究.
1.知識網路圖

2.復數中的難點
(1)復數的向量表示法的運算.對於復數的向量表示有些學生掌握得不好,對向量的運算的幾何意義的靈活掌握有一定的困難.對此應認真體會復數向量運算的幾何意義,對其靈活地加以證明.
(2)復數三角形式的乘方和開方.有部分學生對運演算法則知道,但對其靈活地運用有一定的困難,特別是開方運算,應對此認真地加以訓練.
(3)復數的輻角主值的求法.
(4)利用復數的幾何意義靈活地解決問題.復數可以用向量表示,同時復數的模和輻角都具有幾何意義,對他們的理解和應用有一定難度,應認真加以體會.
3.復數中的重點
(1)理解好復數的概念,弄清實數、虛數、純虛數的不同點.
(2)熟練掌握復數三種表示法,以及它們間的互化,並能准確地求出復數的模和輻角.復數有代數,向量和三角三種表示法.特別是代數形式和三角形式的互化,以及求復數的模和輻角在解決具體問題時經常用到,是一個重點內容.
(3)復數的三種表示法的各種運算,在運算中重視共軛復數以及模的有關性質.復數的運算是復數中的主要內容,掌握復數各種形式的運算,特別是復數運算的幾何意義更是重點內容.
(4)復數集中一元二次方程和二項方程的解法.

⑶ 高中理科數學公式知識點總結

高中數學理科是10本書,文科是9本書,數學公式非常多,如果基礎知識不扎實,平時做題查閱公式就要浪費很多時間。下面給大家帶來一些關於高中數學公式知識點 總結 ,希望對大家有所幫助。

一.圓的公式

1、圓體積=4/3(pi)(r^3)

2、面積=(pi)(r^2)

3、周長=2(pi)r

4、圓的標准方程(x-a)2+(y-b)2=r2【(a,b)是圓心坐標】

5、圓的一般方程x2+y2+dx+ey+f=0【d2+e2-4f>0】

二.橢圓公式

1、橢圓周長公式:l=2πb+4(a-b)

2、橢圓周長定理:橢圓的周長等於該橢圓短半軸,長為半徑的圓周長(2πb)加上四倍的該橢圓長半軸長(a)與短半軸長(b)的差.

3、橢圓面積公式:s=πab

4、橢圓面積定理:橢圓的面積等於圓周率(π)乘該橢圓長半軸長(a)與短半軸長(b)的乘積。

以上橢圓周長、面積公式中雖然沒有出現橢圓周率t,但這兩個公式都是通過橢圓周率t推導演變而來。

三.兩角和公式

1、sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-sinbcosa

2、cos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinb

3、tan(a+b)=(tana+tanb)/(1-tanatanb)tan(a-b)=(tana-tanb)/(1+tanatanb)

4、ctg(a+b)=(ctgactgb-1)/(ctgb+ctga)ctg(a-b)=(ctgactgb+1)/(ctgb-ctga)

四.倍角公式

1、tan2a=2tana/(1-tan2a)ctg2a=(ctg2a-1)/2ctga

2、cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

五.半形公式

1、sin(a/2)=√((1-cosa)/2)sin(a/2)=-√((1-cosa)/2)

2、cos(a/2)=√((1+cosa)/2)cos(a/2)=-√((1+cosa)/2)

3、tan(a/2)=√((1-cosa)/((1+cosa))tan(a/2)=-√((1-cosa)/((1+cosa))

4、ctg(a/2)=√((1+cosa)/((1-cosa))ctg(a/2)=-√((1+cosa)/((1-cosa))

六.和差化積

1、2sinacosb=sin(a+b)+sin(a-b)2cosasinb=sin(a+b)-sin(a-b)

2、2cosacosb=cos(a+b)-sin(a-b)-2sinasinb=cos(a+b)-cos(a-b)

3、sina+sinb=2sin((a+b)/2)cos((a-b)/2cosa+cosb=2cos((a+b)/2)sin((a-b)/2)

4、tana+tanb=sin(a+b)/cosacosbtana-tanb=sin(a-b)/cosacosb

5、ctga+ctgbsin(a+b)/sinasinb-ctga+ctgbsin(a+b)/sinasinb

七.等差數列

1、等差數列的通項公式為:

an=a1+(n-1)d (1)

2、前n項和公式為:

Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)

從(1)式可以看出,an是n的一次數函(d≠0)或常數函數(d=0),(n,an)排在一條直線上,由(2)式知,Sn是n的二次函數(d≠0)或一次函數(d=0,a1≠0),且常數項為0.

在等差數列中,等差中項:一般設為Ar,Am+An=2Ar,所以Ar為Am,An的等差中項.

且任意兩項am,an的關系為:

an=am+(n-m)d

它可以看作等差數列廣義的通項公式.

3、從等差數列的定義、通項公式,前n項和公式還可推出:

a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}

若m,n,p,q∈N-,且m+n=p+q,則有

am+an=ap+aq

Sm-1=(2n-1)an,S2n+1=(2n+1)an+1

Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差數列,等等.

和=(首項+末項)-項數÷2

項數=(末項-首項)÷公差+1

首項=2和÷項數-末項

末項=2和÷項數-首項

項數=(末項-首項)/公差+1

八.等比數列

1、等比數列的通項公式是:An=A1-q^(n-1)

2、前n項和公式是:Sn=[A1(1-q^n)]/(1-q)

且任意兩項am,an的關系為an=am·q^(n-m)

3、從等比數列的定義、通項公式、前n項和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}

4、若m,n,p,q∈N-,則有:ap·aq=am·an,

等比中項:aq·ap=2ar ar則為ap,aq等比中項.

記πn=a1·a2…an,則有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1

另外,一個各項均為正數的等比數列各項取同底數數後構成一個等差數列;反之,以任一個正數C為底,用一個等差數列的各項做指數構造冪Can,則是等比數列.在這個意義下,我們說:一個正項等比數列與等差數列是「同構」的.

性質:①若 m、n、p、q∈N,且m+n=p+q,則am·an=ap-aq;

②在等比數列中,依次每 k項之和仍成等比數列.

「G是a、b的等比中項」「G^2=ab(G≠0)」.

在等比數列中,首項A1與公比q都不為零.

九.拋物線

1、拋物線:y=ax-+bx+c就是y等於ax的平方加上bx再加上c。

a>0時,拋物線開口向上;a<0時拋物線開口向下;c=0時拋物線經過原點;b=0時拋物線對稱軸為y軸。

2、頂點式y=a(x+h)-+k就是y等於a乘以(x+h)的平方+k,-h是頂點坐標的x,k是頂點坐標的y,一般用於求最大值與最小值。

3、拋物線標准方程:y^2=2px它表示拋物線的焦點在x的正半軸上,焦點坐標為(p/2,0)。

4、准線方程為x=-p/2由於拋物線的焦點可在任意半軸,故共有標准方程:y^2=2pxy^2=-2p-^2=2pyx^2=-2py。


高中理科數學公式知識點總結相關 文章 :

★ 高三文科數學2020重要知識點歸納

★ 高中文科數學函數試題及答案

⑷ 高中數學必考知識點歸納大全

總結 是指社會團體、企業單位和個人對某一階段的學習、工作或其完成情況加以回顧和分析,得出教訓和一些規律性認識的一種書面材料,下面是我給大家帶來的數學必考知識點歸納大全,以供大家參考!

高中數學必考知識點歸納大全

1、 高一數學 知識點總結:集合一、集合有關概念

1.集合的含義

2.集合的中元素的三個特性:

(1)元素的確定性如:世界上最高的山

(2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}

(3)元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個集合

3.集合的表示:{…}如:{我校的 籃球 隊員},{太平洋,大西洋,印度洋,北冰洋}

(1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

(2)集合的表示 方法 :列舉法與描述法。

注意:常用數集及其記法:

非負整數集(即自然數集)記作:N

正整數集N或N+整數集Z有理數集Q實數集R

1)列舉法:{a,b,c……}

2)描述法:將集合中的元素的公共屬性描述出來,寫在大

括弧內表示集合的方法。{x∈R|x-3>2},{x|x-3>2}

3)語言描述法:例:{不是直角三角形的三角形}

4)Venn圖:

4、集合的分類:

(1)有限集含有有限個元素的集合

(2)無限集含有無限個元素的集合

(3)空集不含任何元素的集合例:{x|x2=-5}

2、高一數學知識點總結:集合間的基本關系

1.「包含」關系—子集

注意:A?B有兩種可能(1)A是B的一部分;(2)A與B是同一集合。

反之:集合A不包含於集合B,或集合B不包含集合A,記作A?/B或B?/A

2.「相等」關系:A=B(5≥5,且5≤5,則5=5)

實例:設A={x|x2

-1=0}B={-1,1}「元素相同則兩集合相等」即:①任何一個集合是它本身的子集。A?A

②真子集:如果A?B,且A≠B那就說集合A是集合B的真子集,記作AB(或BA)

③如果A?B,B?C,那麼A?C

④如果A?B同時B?A那麼A=B

3.不含任何元素的集合叫做空集,記為Φ

規定:空集是任何集合的子集,空集是任何非空集合的真子集。

有n個元素的集合,含有2n個子集,2n-1個真子集,一般我們把不含任何元素的集合叫做空集。

3、高一數學知識點總結:集合的分類(1)按元素屬性分類,如點集,數集。(2)按元素的個數多少,分為有/無限集

關於集合的概念:

(1)確定性:作為一個集合的元素,必須是確定的,這就是說,不能確定的對象就不能構成集合,也就是說,給定一個集合,任何一個對象是不是這個集合的元素也就確定了。

(2)互異性:對於一個給定的集合,集合中的元素一定是不同的(或說是互異的),這就是說,集合中的任何兩個元素都是不同的對象,相同的對象歸入同一個集合時只能算作集合的一個元素。

(3)無序性:判斷一些對象時候構成集合,關鍵在於看這些對象是否有明確的標准。

集合可以根據它含有的元素的個數分為兩類:

含有有限個元素的集合叫做有限集,含有無限個元素的集合叫做無限集。

非負整數全體構成的集合,叫做自然數集,記作N;

在自然數集內排除0的集合叫做正整數集,記作N+或N;

整數全體構成的集合,叫做整數集,記作Z;

有理數全體構成的集合,叫做有理數集,記作Q;(有理數是整數和分數的統稱,一切有理數都可以化成分數的形式。)

實數全體構成的集合,叫做實數集,記作R。(包括有理數和無理數。其中無理數就是無限不循環小數,有理數就包括整數和分數。數學上,實數直觀地定義為和數軸上的點一一對應的數。)

1.列舉法:如果一個集合是有限集,元素又不太多,常常把集合的所有元素都列舉出來,寫在花括弧「{}」內表示這個集合,例如,由兩個元素0,1構成的集合可表示為{0,1}.

有些集合的元素較多,元素的排列又呈現一定的規律,在不致於發生誤解的情況下,也可以列出幾個元素作為代表,其他元素用省略號表示。

例如:不大於100的自然數的全體構成的集合,可表示為{0,1,2,3,…,100}.

無限集有時也用上述的列舉法表示,例如,自然數集N可表示為{1,2,3,…,n,…}.

2.描述法:一種更有效地描述集合的方法,是用集合中元素的特徵性質來描述。

例如:正偶數構成的集合,它的每一個元素都具有性質:「能被2整除,且大於0」

而這個集合外的其他元素都不具有這種性質,因此,我們可以用上述性質把正偶數集合表示為

{x∈R│x能被2整除,且大於0}或{x∈R│x=2n,n∈N+},

大括弧內豎線左邊的X表示這個集合的任意一個元素,元素X從實數集合中取值,在豎線右邊寫出只有集合內的元素x才具有的性質。

一般地,如果在集合I中,屬於集合A的任意一個元素x都具有性質p(x),而不屬於集合A的元素都不具有的性質p(x),則性質p(x)叫做集合A的一個特徵性質。於是,集合A可以用它的性質p(x)描述為{x∈I│p(x)}

它表示集合A是由集合I中具有性質p(x)的所有元素構成的,這種表示集合的方法,叫做特徵性質描述法,簡稱描述法。

例如:集合A={x∈R│x2-1=0}的特徵是X2-1=0

高一數學必修一知識點摘要

(1)直線的傾斜角

定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°

(2)直線的斜率

①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。

②過兩點的直線的斜率公式:

注意下面四點:

(1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;

(2)k與P1、P2的順序無關;

(3)以後求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;

(4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到。

(3)直線方程

①點斜式:直線斜率k,且過點

注意:當直線的斜率為0°時,k=0,直線的方程是y=y1。當直線的斜率為90°時,直線的斜率不存在,它的方程不能用點斜式表示.但因l上每一點的橫坐標都等於x1,所以它的方程是x=x1。

②斜截式:,直線斜率為k,直線在y軸上的截距為b

③兩點式:()直線兩點,

④截矩式:其中直線與軸交於點,與軸交於點,即與軸、軸的截距分別為。

⑤一般式:(A,B不全為0)

⑤一般式:(A,B不全為0)

注意:○1各式的適用范圍

○2特殊的方程如:平行於x軸的直線:(b為常數);平行於y軸的直線:(a為常數);

(4)直線系方程:即具有某一共同性質的直線

高一數學知識點小結

1.二次函數y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點坐標及對稱軸如下表:

解析式

頂點坐標

對稱軸

y=ax^2

(0,0)

x=0

y=a(x-h)^2

(h,0)

x=h

y=a(x-h)^2+k

(h,k)

x=h

y=ax^2+bx+c

(-b/2a,[4ac-b^2]/4a)

x=-b/2a

當h>0時,y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動h個單位得到,

當h<0時,則向左平行移動|h|個單位得到.

當h>0,k>0時,將拋物線y=ax^2向右平行移動h個單位,再向上移動k個單位,就可以得到y=a(x-h)^2+k的圖象;

當h>0,k<0時,將拋物線y=ax^2向右平行移動h個單位,再向下移動|k|個單位可得到y=a(x-h)^2+k的圖象;

當h<0,k>0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y=a(x-h)^2+k的圖象;

當h<0,k<0時,將拋物線向左平行移動|h|個單位,再向下移動|k|個單位可得到y=a(x-h)^2+k的圖象;

因此,研究拋物線y=ax^2+bx+c(a≠0)的圖象,通過配方,將一般式化為y=a(x-h)^2+k的形式,可確定其頂點坐標、對稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便.

2.拋物線y=ax^2+bx+c(a≠0)的圖象:當a>0時,開口向上,當a<0時開口向下,對稱軸是直線x=-b/2a,頂點坐標是(-b/2a,[4ac-b^2]/4a).

3.拋物線y=ax^2+bx+c(a≠0),若a>0,當x≤-b/2a時,y隨x的增大而減小;當x≥-b/2a時,y隨x的增大而增大.若a<0,當x≤-b/2a時,y隨x的增大而增大;當x≥-b/2a時,y隨x的增大而減小.

4.拋物線y=ax^2+bx+c的圖象與坐標軸的交點:

(1)圖象與y軸一定相交,交點坐標為(0,c);

(2)當△=b^2-4ac>0,圖象與x軸交於兩點A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0

(a≠0)的兩根.這兩點間的距離AB=|x?-x?|

當△=0.圖象與x軸只有一個交點;

當△<0.圖象與x軸沒有交點.當a>0時,圖象落在x軸的上方,x為任何實數時,都有y>0;當a<0時,圖象落在x軸的下方,x為任何實數時,都有y<0.

5.拋物線y=ax^2+bx+c的最值:如果a>0(a<0),則當x=-b/2a時,y最小(大)值=(4ac-b^2)/4a.

頂點的橫坐標,是取得最值時的自變數值,頂點的縱坐標,是最值的取值.

6.用待定系數法求二次函數的解析式

(1)當題給條件為已知圖象經過三個已知點或已知x、y的三對對應值時,可設解析式為一般形式:

y=ax^2+bx+c(a≠0).

(2)當題給條件為已知圖象的頂點坐標或對稱軸時,可設解析式為頂點式:y=a(x-h)^2+k(a≠0).

(3)當題給條件為已知圖象與x軸的兩個交點坐標時,可設解析式為兩根式:y=a(x-x?)(x-x?)(a≠0).

7.二次函數知識很容易與 其它 知識綜合應用,而形成較為復雜的綜合題目。因此,以二次函數知識為主的綜合性題目是中考的 熱點 考題,往往以大題形式出現.


高中數學必考知識點歸納大全相關 文章 :

★ 高中數學必考知識點歸納整理

★ 高中數學必考知識點歸納

★ 高中數學知識點全總結最全版

★ 高一數學有用必考知識點歸納

★ 高考數學必考知識點考點2020大全總結

★ 高中數學知識點大全

★ 高中數學全部知識點提綱整理

★ 高中數學考點整理歸納

★ 高中數學知識點總結及公式大全

★ 高中數學知識點全總結

⑸ 高一數學基礎知識點總結

學習這件事不在乎有沒有人教你,最重要的是在於你自己有沒有覺悟和恆心。任何科目 學習 方法 其實都是一樣的,不斷的記憶與練習,使知識刻在腦海里。下面是我給大家整理的一些 高一數學 的知識點,希望對大家有所幫助。

高一上冊數學必修一知識點梳理

兩個平面的位置關系:

(1)兩個平面互相平行的定義:空間兩平面沒有公共點

(2)兩個平面的位置關系:

兩個平面平行-----沒有公共點;兩個平 面相 交-----有一條公共直線。

a、平行

兩個平面平行的判定定理:如果一個平面內有兩條相交直線都平行於另一個平面,那麼這兩個平面平行。

兩個平面平行的性質定理:如果兩個平行平面同時和第三個平面相交,那麼交線平行。

b、相交

二面角

(1)半平面:平面內的一條直線把這個平面分成兩個部分,其中每一個部分叫做半平面。

(2)二面角:從一條直線出發的兩個半平面所組成的圖形叫做二面角。二面角的取值范圍為[0°,180°]

(3)二面角的棱:這一條直線叫做二面角的棱。

(4)二面角的面:這兩個半平面叫做二面角的面。

(5)二面角的平面角:以二面角的棱上任意一點為端點,在兩個面內分別作垂直於棱的兩條射線,這兩條射線所成的角叫做二面角的平面角。

(6)直二面角:平面角是直角的二面角叫做直二面角。

esp.兩平面垂直

兩平面垂直的定義:兩平面相交,如果所成的角是直二面角,就說這兩個平面互相垂直。記為⊥

兩平面垂直的判定定理:如果一個平面經過另一個平面的一條垂線,那麼這兩個平面互相垂直

兩個平面垂直的性質定理:如果兩個平面互相垂直,那麼在一個平面內垂直於交線的直線垂直於另一個平面。

高一數學必修五知識點 總結

⑴公差為d的等差數列,各項同加一數所得數列仍是等差數列,其公差仍為d.

⑵公差為d的等差數列,各項同乘以常數k所得數列仍是等差數列,其公差為kd.

⑶若{a}、{b}為等差數列,則{a±b}與{ka+b}(k、b為非零常數)也是等差數列.

⑷對任何m、n,在等差數列{a}中有:a=a+(n-m)d,特別地,當m=1時,便得等差數列的通項公式,此式較等差數列的通項公式更具有一般性.

⑸、一般地,如果l,k,p,…,m,n,r,…皆為自然數,且l+k+p+…=m+n+r+…(兩邊的自然數個數相等),那麼當{a}為等差數列時,有:a+a+a+…=a+a+a+….

⑹公差為d的等差數列,從中取出等距離的項,構成一個新數列,此數列仍是等差數列,其公差為kd(k為取出項數之差).

⑺如果{a}是等差數列,公差為d,那麼,a,a,…,a、a也是等差數列,其公差為-d;在等差數列{a}中,a-a=a-a=md.(其中m、k、)

⑻在等差數列中,從第一項起,每一項(有窮數列末項除外)都是它前後兩項的等差中項.

⑼當公差d>0時,等差數列中的數隨項數的增大而增大;當d<0時,等差數列中的數隨項數的減少而減小;d=0時,等差數列中的數等於一個常數.

⑽設a,a,a為等差數列中的三項,且a與a,a與a的項距差之比=(≠-1),則a=.

⑴數列{a}為等差數列的充要條件是:數列{a}的前n項和S可以寫成S=an+bn的形式(其中a、b為常數).

⑵在等差數列{a}中,當項數為2n(nN)時,S-S=nd,=;當項數為(2n-1)(n)時,S-S=a,=.

⑶若數列{a}為等差數列,則S,S-S,S-S,…仍然成等差數列,公差為.

⑷若兩個等差數列{a}、{b}的前n項和分別是S、T(n為奇數),則=.

⑸在等差數列{a}中,S=a,S=b(n>m),則S=(a-b).

⑹等差數列{a}中,是n的一次函數,且點(n,)均在直線y=x+(a-)上.

⑺記等差數列{a}的前n項和為S.①若a>0,公差d<0,則當a≥0且a≤0時,S;②若a<0,公差d>0,則當a≤0且a≥0時,S最小.

高一 數學學習方法

1、培養良好的學習習慣。

(1)制定計劃明確學習目的。合理的 學習計劃 是推動我們主動學習和克服困難的內在動力。計劃先由老師指導督促,再一定要由自己切實完成,既有長遠打算,又有短期安排,執行過程中嚴格要求自己,磨煉學習意志。

(2) 課前預習 是取得較好學習效果的基礎。課前預習不僅能培養自學能力,而且能提高學習新課的興趣,掌握學習的主動權。預習不能搞走過場,要講究質量,力爭在課前把教材弄懂,上課著重聽老師講思路,把握重點,突破難點,盡可能把問題解決在課堂上。

(3)上課是理解和掌握基本知識、基本技能和基本方法的關鍵環節。學然後知不足,上課更能專心聽重點難點,把老師補充的內容記錄下來,而不是全抄全錄,顧此失彼。

(4)及時復習是提高效率學習的重要一環。通過反復閱讀教材,多方面查閱有關資料,強化對基本概念知識體系的理解與記憶,將所學的新知識與有關舊知識聯系起來,進行分析比效,一邊復習一邊將復習成果整理在 筆記本 上,使對所學的新知識由懂到會。

(5)獨立作業是通過自己的獨立思考,靈活地分析問題、解決問題,進一步加深對所學新知識的理解和對新技能的掌握過程。這一過程也是對我們意志毅力的考驗,通過運用使我們對所學知識由會到熟。

(6)解決疑難是指對獨立完成作業過程中暴露出來對知識理解的錯誤,或由於思維受阻遺漏解答,通過點撥使思路暢通,補遺解答的過程。解決疑難一定要有鍥而不舍的精神。做錯的作業再做一遍。對錯誤的地方沒弄清楚要反復思考。實在解決不了的要請教老師和同學,並要經常把易錯的地方拿來復習強化,作適當的重復性練習,把求老師問同學獲得的東西消化變成自己的知識,長期堅持使對所學知識由熟到活。

(7)系統小結是通過積極思考,達到全面系統深刻地掌握知識和發展認識能力的重要環節。小結要在系統復習的基礎上以教材為依據,參照筆記與資料,通過分析、綜合、類比、概括,揭示知識間的內在聯系,以達到對所學知識融會貫通的目的。經常進行多層次小結,能對所學知識由活到悟。

(8)課外學習包括閱讀課外書籍與報刊,參加學科競賽與講座,走訪高年級同學或老師交流 學習心得 等。課外學習是課內學習的補充和繼續,它不僅能豐富同學們的 文化 科學知識,加深和鞏固課內所學的知識,而且能夠滿足和發展我們的 興趣 愛好 ,培養獨立學習和工作的能力,激發求知慾與學習熱情。


高一數學基礎知識點總結相關 文章 :

★ 高一數學知識點新總結

★ 高一數學知識點小歸納

★ 高中數學基礎知識點總結

★ 高一數學基礎知識學習方法歸納

★ 高一數學集合知識點匯總

★ 高一數學知識點總結歸納

★ 高一數學知識點總結

★ 高一數學常考知識點總結

★ 高一數學知識點總結下冊

★ 高一數學必修一知識點匯總

⑹ 高中數學基本知識點

新世紀更加關注素質教育,在基礎教育中,高中數學素質教育的實施顯得更為突出。數學接下來我為你整理了高中數學基本知識點,一起來看看吧。

高中數學基本知識點:集合間的基本關系

1.子集:一般地,對於兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,我們就說集合A包含於集合B,或集合B包含集合A,記作:AB(或BA),讀作“A包含於B”(或“B包含A”),這時我們說集合是集合的子集.

當集合A不包含於集合B,或集合B不包含集合A時,記作A B(或B A),讀作:A不包含於B(或B不包含A).

2.由子集的定義可知子集有這樣三條主要的性質:

a.規定: 空集(不含任何元素的集合叫做空集,記為f)是任何集合的子集,即f集合間的基本關系A

b. 任何一個集合是它本身的子集.即A

集合間的基本關系A;

c. 子集具有傳遞性,對於集合A、B、C,A

集合間的基本關系B,B

集合間的基本關系C,那麼A

集合間的基本關系C.

⑺ 高中數學必考知識點歸納

高考數學必考知識點有哪些,高中數學重點知識有哪些,需要我們掌握?下面是我為大家整理的關於高中數學必考知識點歸納,希望對您有所幫助。

高中數學知識點 總結

1.必修課程由5個模塊組成:

必修1:集合,函數概念與基本初等函數(指數函數,冪函數,對數函數)

必修2:立體幾何初步、平面解析幾何初步。

必修3:演算法初步、統計、概率。

必修4:基本初等函數(三角函數)、平面向量、三角恆等變換。

必修5:解三角形、數列、不等式。

以上所有的知識點是所有高中生必須掌握的,而且要懂得運用。

選修課程分為4個系列:

系列1:2個模塊

選修1-1:常用邏輯用語、圓錐曲線與方程、空間向量與立體幾何。

選修1-2:統計案例、推理與證明、數系的擴充與復數、框圖

系列2: 3個模塊

選修2-1:常用邏輯用語、圓錐曲線與方程、空間向量與立體幾何

選修2-2:導數及其應用、推理與證明、數系的擴充與復數

選修2-3:計數原理、隨機變數及其分布列、統計案例

選修4-1:幾何證明選講

選修4-4:坐標系與參數方程

選修4-5:不等式選講

2.高考數學必考重難點及其考點:

重點:函數,數列,三角函數,平面向量,圓錐曲線,立體幾何,導數

難點:函數,圓錐曲線

高考相關考點:

1. 集合與邏輯:集合的邏輯與運算(一般出現在高考卷的第一道選擇題)、簡易邏輯、充要條件

2. 函數:映射與函數、函數解析式與定義域、值域與最值、反函數、三大性質、函數圖象、指數函數、對數函數、函數的應用

3. 數列:數列的有關概念、等差數列、等比數列、數列求通項、求和

4. 三角函數:有關概念、同角關系與誘導公式、和差倍半公式、求值、化簡、證明、三角函數的圖像及其性質、應用

5. 平面向量:初等運算、坐標運算、數量積及其應用

6. 不等式:概念與性質、均值不等式、不等式的證明、不等式的解法、絕對值不等式(經常出現在大題的選做題里)、不等式的應用

7. 直線與圓的方程:直線的方程、兩直線的位置關系、線性規劃、圓、直線與圓的位置關系

8. 圓錐曲線方程:橢圓、雙曲線、拋物線、直線與圓錐曲線的位置關系、軌跡問題、圓錐曲線的應用

9. 直線、平面、簡單幾何體:空間直線、直線與平面、平面與平面、稜柱、棱錐、球、空間向量

10. 排列、組合和概率:排列、組合應用題、二項式定理及其應用

11. 概率與統計:概率、分布列、期望、方差、抽樣、正態分布

12. 導數:導數的概念、求導、導數的應用

13. 復數:復數的概念與運算

高中數學易錯知識點整理

一.集合與函數

1.進行集合的交、並、補運算時,不要忘了全集和空集的特殊情況,不要忘記了藉助數軸和文氏圖進行求解.

2.在應用條件時,易A忽略是空集的情況

3.你會用補集的思想解決有關問題嗎?

4.簡單命題與復合命題有什麼區別?四種命題之間的相互關系是什麼?如何判斷充分與必要條件?

5.你知道「否命題」與「命題的否定形式」的區別.

6.求解與函數有關的問題易忽略定義域優先的原則.

7.判斷函數奇偶性時,易忽略檢驗函數定義域是否關於__對稱.

8.求一個函數的解析式和一個函數的反函數時,易忽略標注該函數的定義域.

9.原函數在區間[-a,a]上單調遞增,則一定存在反函數,且反函數也單調遞增;但一個函數存在反函數,此函數不一定單調.例如:.

10.你熟練地掌握了函數單調性的證明 方法 嗎?定義法(取值,作差,判正負)和導數法

11.求函數單調性時,易錯誤地在多個單調區間之間添加符號「∪」和「或」;單調區間不能用集合或不等式表示.

12.求函數的值域必須先求函數的定義域。

13.如何應用函數的單調性與奇偶性解題?①比較函數值的大小;②解抽象函數不等式;③求參數的范圍(恆成立問題).這幾種基本應用你掌握了嗎?

14.解對數函數問題時,你注意到真數與底數的限制條件了嗎?

(真數大於零,底數大於零且不等於1)字母底數還需討論

15.三個二次(哪三個二次?)的關系及應用掌握了嗎?如何利用二次函數求最值?

16.用換元法解題時易忽略換元前後的等價性,易忽略參數的范圍。

17.「實系數一元二次方程有實數解」轉化時,你是否注意到:當時,「方程有解」不能轉化為。若原題中沒有指出是二次方程,二次函數或二次不等式,你是否考慮到二次項系數可能為的零的情形?

二.不等式

18.利用均值不等式求最值時,你是否注意到:「一正;二定;三等」.

19.絕對值不等式的解法及其幾何意義是什麼?

20.解分式不等式應注意什麼問題?用「根軸法」解整式(分式)不等式的注意事項是什麼?

21.解含參數不等式的通法是「定義域為前提,函數的單調性為基礎,分類討論是關鍵」,注意解完之後要寫上:「綜上,原不等式的解集是……」.

22.在求不等式的解集、定義域及值域時,其結果一定要用集合或區間表示;不能用不等式表示.

23.兩個不等式相乘時,必須注意同向同正時才能相乘,即同向同正可乘;同時要注意「同號可倒」即a>b>0,a<0.

三.數列

24.解決一些等比數列的前項和問題,你注意到要對公比及兩種情況進行討論了嗎?

25.在「已知,求」的問題中,你在利用公式時注意到了嗎?(時,應有)需要驗證,有些題目通項是分段函數。

26.你知道存在的條件嗎?(你理解數列、有窮數列、無窮數列的概念嗎?你知道無窮數列的前項和與所有項的和的不同嗎?什麼樣的無窮等比數列的所有項的和必定存在?

27.數列單調性問題能否等同於對應函數的單調性問題?(數列是特殊函數,但其定義域中的值不是連續的。)

28.應用數學歸納法一要注意步驟齊全,二要注意從到過程中,先假設時成立,再結合一些數學方法用來證明時也成立。

四.三角函數

29.正角、負角、零角、象限角的概念你清楚嗎?,若角的終邊在坐標軸上,那它歸哪個象限呢?你知道銳角與第一象限的角;終邊相同的角和相等的角的區別嗎?

30.三角函數的定義及單位圓內的三角函數線(正弦線、餘弦線、正切線)的定義你知道嗎?

31.在解三角問題時,你注意到正切函數、餘切函數的定義域了嗎?你注意到正弦函數、餘弦函數的有界性了嗎?

32.你還記得三角化簡的通性通法嗎?(切割化弦、降冪公式、用三角公式轉化出現特殊角.異角化同角,異名化同名,高次化低次)

33.反正弦、反餘弦、反正切函數的取值范圍分別是

34.你還記得某些特殊角的三角函數值嗎?

35.掌握正弦函數、餘弦函數及正切函數的圖象和性質.你會寫三角函數的單調區間嗎?會寫簡單的三角不等式的解集嗎?(要注意數形結合與書寫規范,可別忘了),你是否清楚函數的圖象可以由函數經過怎樣的變換得到嗎?

36.函數的圖象的平移,方程的平移以及點的平移公式易混:

(1)函數的圖象的平移為「左+右-,上+下-」;如函數的圖象左移2個單位且下移3個單位得到的圖象的解析式為,即.

(2)方程表示的圖形的平移為「左+右-,上-下+」;如直線左移2個個單位且下移3個單位得到的圖象的解析式為,即.

(3)點的平移公式:點按向量平移到點,則.

37.在三角函數中求一個角時,注意考慮兩方面了嗎?(先求出某一個三角函數值,再判定角的范圍)

38.形如的周期都是,但的周期為。

39.正弦定理時易忘比值還等於2R.

五.平面向量

40.數0有區別,的模為數0,它不是沒有方向,而是方向不定。可以看成與任意向量平行,但與任意向量都不垂直。

41.數量積與兩個實數乘積的區別:

在實數中:若,且ab=0,則b=0,但在向量的數量積中,若,且,不能推出.

已知實數,且,則a=c,但在向量的數量積中沒有.

在實數中有,但是在向量的數量積中,這是因為左邊是與共線的向量,而右邊是與共線的向量.

42.是向量與平行的充分而不必要條件,是向量和向量夾角為鈍角的必要而不充分條件。

六.解析幾何

43.在用點斜式、斜截式求直線的方程時,你是否注意到不存在的情況?

44.用到角公式時,易將直線l1、l2的斜率k1、k2的順序弄顛倒。

45.直線的傾斜角、到的角、與的夾角的取值范圍依次是。

46.定比分點的坐標公式是什麼?(起點,中點,分點以及值可要搞清),在利用定比分點解題時,你注意到了嗎?

47.對不重合的兩條直線

(建議在解題時,討論後利用斜率和截距)

48.直線在兩坐標軸上的截距相等,直線方程可以理解為,但不要忘記當時,直線在兩坐標軸上的截距都是0,亦為截距相等。

49.解決線性規劃問題的基本步驟是什麼?請你注意解題格式和完整的文字表達.(①設出變數,寫出目標函數②寫出線性約束條件③畫出可行域④作出目標函數對應的系列平行線,找到並求出最優解⑦應用題一定要有答。)

50.三種圓錐曲線的定義、圖形、標准方程、幾何性質,橢圓與雙曲線中的兩個特徵三角形你掌握了嗎?

51.圓、和橢圓的參數方程是怎樣的?常用參數方程的方法解決哪一些問題?

52.利用圓錐曲線第二定義解題時,你是否注意到定義中的定比前後項的順序?如何利用第二定義推出圓錐曲線的焦半徑公式?如何應用焦半徑公式?

53.通徑是拋物線的所有焦點弦中最短的弦.(想一想在雙曲線中的結論?)

54.在用圓錐曲線與直線聯立求解時,消元後得到的方程中要注意:二次項的系數是否為零?橢圓,雙曲線二次項系數為零時直線與其只有一個交點,判別式的限制.(求交點,弦長,中點,斜率,對稱,存在性問題都在下進行).

55.解析幾何問題的求解中,平面幾何知識利用了嗎?題目中是否已經有坐標系了,是否需要建立直角坐標系?

七.立體幾何

56.你掌握了空間圖形在平面上的直觀畫法嗎?(斜二測畫法)。

57.線面平行和面面平行的定義、判定和性質定理你掌握了嗎?線線平行、線面平行、面面平行這三者之間的聯系和轉化在解決立幾問題中的應用是怎樣的?每種平行之間轉換的條件是什麼?

58.三垂線定理及其逆定理你記住了嗎?你知道三垂線定理的關鍵是什麼嗎?(一面、四線、三垂直、立柱即面的垂線是關鍵)一面四直線,立柱是關鍵,垂直三處見

59.線面平行的判定定理和性質定理在應用時都是三個條件,但這三個條件易混為一談;面面平行的判定定理易把條件錯誤地記為」一個平面內的兩條相交直線與另一個平面內的兩條相交直線分別平行」而導致證明過程跨步太大.

60.求兩條異面直線所成的角、直線與平面所成的角和二面角時,如果所求的角為90°,那麼就不要忘了還有一種求角的方法即用證明它們垂直的方法.

61.異面直線所成角利用「平移法」求解時,一定要注意平移後所得角等於所求角(或其補角),特別是題目告訴異面直線所成角,應用時一定要從題意出發,是用銳角還是其補角,還是兩種情況都有可能。

62.你知道公式:和中每一字母的意思嗎?能夠熟練地應用它們解題嗎?

63.兩條異面直線所成的角的范圍:0°<α≤90° >

直線與平面所成的角的范圍:0o≤α≤90°

二面角的平面角的取值范圍:0°≤α≤180°

64.你知道異面直線上兩點間的距離公式如何運用嗎?

65.平面圖形的翻折,立體圖形的展開等一類問題,要注意翻折,展開前後有關幾何元素的「不變數」與「不變性」。

66.立幾問題的求解分為「作」,「證」,「算」三個環節,你是否只注重了「作」,「算」,而忽視了「證」這一重要環節?

67.稜柱及其性質、平行六面體與長方體及其性質.這些知識你掌握了嗎?(注意運用向量的方法解題)

68.球及其性質;經緯度定義易混.經度為二面角,緯度為線面角、球面距離的求法;球的表面積和體積公式.這些知識你掌握了嗎?

八.排列、組合和概率

69.解排列組合問題的依據是:分類相加,分步相乘,有序排列,無序組合.

解排列組合問題的規律是:相鄰問題捆綁法;不鄰問題插空法;多排問題單排法;定位問題優先法;定序問題倍縮法;多元問題分類法;有序分配問題法;選取問題先排後排法;至多至少問題間接法.

70.二項式系數與展開式某一項的系數易混,第r+1項的二項式系數為。二項式系數最大項與展開式中系數最大項易混.二項式系數最大項為中間一項或兩項;展開式中系數最大項的求法要用解不等式組來確定r.

71.你掌握了三種常見的概率公式嗎?(①等可能事件的概率公式;②互斥事件有一個發生的概率公式;③相互獨立事件同時發生的概率公式.)

72.二項式展開式的通項公式、n次獨立重復試驗中事件A發生k次的概率易記混。

通項公式:它是第r+1項而不是第r項;

事件A發生k次的概率:.其中k=0,1,2,3,…,n,且0

<1,p+q=1.< p="">

73.求分布列的解答題你能把步驟寫全嗎?

74.如何對總體分布進行估計?(用樣本估計總體,是研究統計問題的一個基本思想方法,一般地,樣本容量越大,這種估計就越精確,要求能畫出頻率分布表和頻率分布直方圖;理解頻率分布直方圖矩形面積的幾何意義.)

75.你還記得一般正態總體如何化為標准正態總體嗎?(對任一正態總體來說,取值小於x的概率,其中表示標准正態總體取值小於的概率)

相關 文章 :

1. 高中數學重要知識點巧記口訣

2. 高中數學學習方法:知識點總結最全版

3. 高一數學必背公式及知識匯總

4. 高一數學重點知識點公式總結

5. 高中數學重點知識結構總結

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

⑻ 高中數學必修知識點

書籍是最有耐心、最能忍耐和最令人愉快的夥伴。在任何艱難困苦的時刻,它都不會拋棄你。下面我給大家分享一些高中數學必修知識點,希望能夠幫助大家,歡迎閱讀!

高中數學必修知識點1

必修1

【第一章】集合和函數的基本概念這一章的易錯點,都集中在空集這一概念上,而每次考試基本都會在選填題上涉及這一概念,一個不小心就會丟分。次一級的知識點就是集合的韋恩圖、會畫圖,掌握了這些,集合的「並、補、交、非」也就解決了。

還有函數的定義域和函數的單調性、增減性的概念,這些都是函數的基礎而且不難理解。在第一輪復習中一定要反復去記這些概念,最好的 方法 是寫在 筆記本 上,每天至少看上一遍。

【第二章】基本初等函數——指數、對數、冪函數三大函數的運算性質及圖像函數的幾大要素和相關考點基本都在函數圖像上有所體現,單調性、增減性、極值、零點等等。關於這三大函數的運算公式,多記多用,多做一點練習,基本就沒問題。

函數圖像是這一章的重難點,而且圖像問題是不能靠記憶的,必須要理解,要會熟練的畫出函數圖像,定義域、值域、零點等等。對於冪函數還要搞清楚當指數冪大於一和小於一時圖像的不同及函數值的大小關系,這也是常考點。另外指數函數和對數函數的對立關系及其相互之間要怎樣轉化等問題,需要著重回看課本例題。

【第三章】函數的應用這一章主要考是函數與方程的結合,其實就是函數的零點,也就是函數圖像與X軸的交點。這三者之間的轉化關系是這一章的重點,要學會在這三者之間靈活轉化,以求能最簡單的解決問題。關於證明零點的方法,直接計算加得必有零點,連續函數在x軸上方下方有定義則有零點等等,這些難點對應的證明方法都要記住,多練習。二次函數的零點的Δ判別法,這個需要你看懂定義,多畫多做題

高中數學必修知識點2

必修2

【第一章】空間幾何三視圖和直觀圖的繪制不算難,但是從三視圖復原出實物從而計算就需要比較強的空間感,要能從三張平面圖中慢慢在腦海中畫出實物,這就要求學生特別是空間感弱的學生多看書上的例圖,把實物圖和平面圖結合起來看,先熟練地正推,再慢慢的逆推(建議用紙做一個立方體來找感覺)。

在做題時結合草圖是有必要的,不能單憑想像。後面的錐體、柱體、台體的表面積和體積,把公式記牢問題就不大。

【第二章】點、直線、平面之間的位置關系這一章除了面與面的相交外,對空間概念的要求不強,大部分都可以直接畫圖,這就要求學生多看圖。自己畫草圖的時候要嚴格注意好實線虛線,這是個規范性問題。

關於這一章的內容,牢記直線與直線、面與面、直線與 面相 交、垂直、平行的幾大定理及幾大性質,同時能用圖形語言、文字語言、數學表達式表示出來。只要這些全部過關這一章就解決了一大半。這一章的難點在於二面角這個概念,大多同學即使知道有這個概念,也無法理解怎麼在二面裡面做出這個角。對這種情況只有從定義入手,先要把定義記牢,再多做多看,這個沒有什麼捷徑可走。

【第三章】直線與方程這一章主要講斜率與直線的位置關系,只要搞清楚直線平行、垂直的斜率表示問題就錯不了。需要注意的是當直線垂直時斜率不存在的情況是考試中的常考點。另外直線方程的幾種形式所涉及到的一般公式,會用就行,要求不高。點與點的距離、點與直線的距離、直線與直線的距離,只要直接套用公式就行,沒什麼難點。

【第四章】圓與方程能熟練的把一般式方程轉化為標准方程,通常的考試形式是等式的一邊含根號,另一邊不含,這時就要注意開方後定義域或值域的限制。通過點到點的距離、點到直線的距離、圓半徑的大小關系來判斷點與圓、直線與圓、圓與圓的位置關系。另外注意圓的對稱性引起的相切、相交等的多種情況,自己把幾種對稱的形式羅列出來,多思考就不難理解了。

高中數學必修知識點3

必修3

總的來說這一本書難度不大,只是比較繁瑣,需要有耐心的去畫圖去計算。 程序框圖與三種演算法語句的結合,及框圖的演算法表示,不要用常規的語言來理解,否則你會在這樣的題型中栽跟頭。 秦九韶演算法是重點,要牢記演算法的公式。 統計就是對一堆數據的處理,考試也是以計算為主,會從條形圖中計算出中位數等數字特徵,對於回歸問題,只要記住公式,也就是個計算問題。 概率,主要就只幾何概型、古典概型。幾何概型只要會找表示所求事件的長度面積等,古典概型只要能表示出全部事件就可以。

高中數學必修知識點4

必修4

【第一章】三角函數考試必在這一塊出題,且題量不小!誘導公式和基本三角函數圖像的一些性質,沒有太大難度,只要會畫圖就行。難度都在三角函數形函數的振幅、頻率、周期、相位、初相上,及根據最值計算A、B的值和周期,及恆等變化時的圖像及性質變化,這部分的知識點內容較多,需要多花時間,不要再定義上死扣,要從圖像和例題入手。

【第二章】平面向量向量的運算性質及三角形法則、平行四邊形法則的難度都不大,只要在計算的時候記住要「同起點的向量」這一條就OK了。向量共線和垂直的數學表達,是計算當中經常用到的公式。向量的共線定理、基本定理、數量積公式。分點坐標公式是重點內容,也是難點內容,要花心思記憶。

【第三章】三角恆等變換這一章公式特別多,像差倍半形公式這類內容常會出現,所以必須要記牢。由於量比較大,記憶難度大,所以建議用紙寫好後貼在桌子上,天天都要看。要提一點,就是三角恆等變換是有一定規律的,記憶的時候可以集合三角函數去記。

高中數學必修知識點5

必修5

【第一章】解三角形掌握正弦、餘弦公式及其變式、推論、三角面積公式即可。 【第二章】數列等差、等比數列的通項公式、前n項及一些性質常出現於填空、解答題中,這部分內容學起來比較簡單,但考驗對其推導、計算、活用的層面較深,因此要仔細。考試題中,通項公式、前n項和的內容出現頻次較多,這類題看到後要帶有目的的去推導就沒問題了。

【第三章】不等式這一章一般用線性規劃的形式來考察學生,這種題通常是和實際問題聯系的,所以要會讀題,從題中找不等式,畫出線性規劃圖,然後再根據實際問題的限制要求來求最值。


高中數學必修知識點相關 文章 :

★ 高一數學必修一知識點匯總

★ 高中數學必修二知識點總結

★ 高中數學必修一知識點總結

★ 高一數學必修4知識點總結(人教版)

★ 知識點高中數學必修一

★ 高中數學必修一知識點總結

★ 高一數學必修4知識點

★ 高中數學必修一復習提綱

★ 高一數學必修1知識點

⑼ 高中必背知識點數學

教版高中數學必背知識點

1.課程內容:

必修課程由5個模塊組成:

必修1:集合、函數概念與基本初等函數(指、對、冪函數)

必修2:立體幾何初步、平面解析幾何初步。

必修3:演算法初步、統計、概率。

必修4:基本初等函數(三角函數)、平面向量、三角恆等變換。

必修5:解三角形、數列、不等式。

以上是每一個高中學生所必須學習的。

上述內容覆蓋了高中階段傳統的數學基礎知識和基本技能的主要部分,其中包括集合、函數、數列、不等式、解三角形、立體幾何初步、平面解析幾何初步等。不同的是在保證打好基礎的同時,進一步強調了這些知識的發生、發展過程和實際應用,而不在技巧與難度上做過高的要求。

此外,基礎內容還增加了向量、演算法、概率、統計等內容。

2.重難點及考點:

重點:函數,數列,三角函數,平面向量,圓錐曲線,立體幾何,導數

難點:函數、圓錐曲線

高考相關考點:

⑴集合與簡易邏輯:集合的概念與運算、簡易邏輯、充要條件

⑵函數:映射與函數、函數解析式與定義域、值域與最值、反函數、三大性質、函數圖象、指數與指數函數、對數與對數函數、函數的應用

⑶數列:數列的有關概念、等差數列、等比數列、數列求和、數列的應用

⑷三角函數:有關概念、同角關系與誘導公式、和、差、倍、半公式、求值、化簡、證明、三角函數的圖象與性質、三角函數的應用

⑸平面向量:有關概念與初等運算、坐標運算、數量積及其應用

⑹不等式:概念與性質、均值不等式、不等式的證明、不等式的解法、絕對值不等式、不等式的應用

⑺直線和圓的方程:直線的方程、兩直線的位置關系、線性規劃、圓、直線與圓的位置關系

⑻圓錐曲線方程:橢圓、雙曲線、拋物線、直線與圓錐曲線的位置關系、軌跡問題、圓錐曲線的應用

⑼直線、平面、簡單幾何體:空間直線、直線與平面、平面與平面、稜柱、棱錐、球、空間向量

⑽排列、組合和概率:排列、組合應用題、二項式定理及其應用

⑾概率與統計:概率、分布列、期望、方差、抽樣、正態分布

⑿導數:導數的概念、求導、導數的應用

⒀復數:復數的概念與運算