❶ 高中數學必考知識點歸納大全
總結 是指社會團體、企業單位和個人對某一階段的學習、工作或其完成情況加以回顧和分析,得出教訓和一些規律性認識的一種書面材料,下面是我給大家帶來的數學必考知識點歸納大全,以供大家參考!
高中數學必考知識點歸納大全
1、 高一數學 知識點總結:集合一、集合有關概念
1.集合的含義
2.集合的中元素的三個特性:
(1)元素的確定性如:世界上最高的山
(2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}
(3)元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個集合
3.集合的表示:{…}如:{我校的 籃球 隊員},{太平洋,大西洋,印度洋,北冰洋}
(1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
(2)集合的表示 方法 :列舉法與描述法。
注意:常用數集及其記法:
非負整數集(即自然數集)記作:N
正整數集N或N+整數集Z有理數集Q實數集R
1)列舉法:{a,b,c……}
2)描述法:將集合中的元素的公共屬性描述出來,寫在大
括弧內表示集合的方法。{x∈R|x-3>2},{x|x-3>2}
3)語言描述法:例:{不是直角三角形的三角形}
4)Venn圖:
4、集合的分類:
(1)有限集含有有限個元素的集合
(2)無限集含有無限個元素的集合
(3)空集不含任何元素的集合例:{x|x2=-5}
2、高一數學知識點總結:集合間的基本關系
1.「包含」關系—子集
注意:A?B有兩種可能(1)A是B的一部分;(2)A與B是同一集合。
反之:集合A不包含於集合B,或集合B不包含集合A,記作A?/B或B?/A
2.「相等」關系:A=B(5≥5,且5≤5,則5=5)
實例:設A={x|x2
-1=0}B={-1,1}「元素相同則兩集合相等」即:①任何一個集合是它本身的子集。A?A
②真子集:如果A?B,且A≠B那就說集合A是集合B的真子集,記作AB(或BA)
③如果A?B,B?C,那麼A?C
④如果A?B同時B?A那麼A=B
3.不含任何元素的集合叫做空集,記為Φ
規定:空集是任何集合的子集,空集是任何非空集合的真子集。
有n個元素的集合,含有2n個子集,2n-1個真子集,一般我們把不含任何元素的集合叫做空集。
3、高一數學知識點總結:集合的分類(1)按元素屬性分類,如點集,數集。(2)按元素的個數多少,分為有/無限集
關於集合的概念:
(1)確定性:作為一個集合的元素,必須是確定的,這就是說,不能確定的對象就不能構成集合,也就是說,給定一個集合,任何一個對象是不是這個集合的元素也就確定了。
(2)互異性:對於一個給定的集合,集合中的元素一定是不同的(或說是互異的),這就是說,集合中的任何兩個元素都是不同的對象,相同的對象歸入同一個集合時只能算作集合的一個元素。
(3)無序性:判斷一些對象時候構成集合,關鍵在於看這些對象是否有明確的標准。
集合可以根據它含有的元素的個數分為兩類:
含有有限個元素的集合叫做有限集,含有無限個元素的集合叫做無限集。
非負整數全體構成的集合,叫做自然數集,記作N;
在自然數集內排除0的集合叫做正整數集,記作N+或N;
整數全體構成的集合,叫做整數集,記作Z;
有理數全體構成的集合,叫做有理數集,記作Q;(有理數是整數和分數的統稱,一切有理數都可以化成分數的形式。)
實數全體構成的集合,叫做實數集,記作R。(包括有理數和無理數。其中無理數就是無限不循環小數,有理數就包括整數和分數。數學上,實數直觀地定義為和數軸上的點一一對應的數。)
1.列舉法:如果一個集合是有限集,元素又不太多,常常把集合的所有元素都列舉出來,寫在花括弧「{}」內表示這個集合,例如,由兩個元素0,1構成的集合可表示為{0,1}.
有些集合的元素較多,元素的排列又呈現一定的規律,在不致於發生誤解的情況下,也可以列出幾個元素作為代表,其他元素用省略號表示。
例如:不大於100的自然數的全體構成的集合,可表示為{0,1,2,3,…,100}.
無限集有時也用上述的列舉法表示,例如,自然數集N可表示為{1,2,3,…,n,…}.
2.描述法:一種更有效地描述集合的方法,是用集合中元素的特徵性質來描述。
例如:正偶數構成的集合,它的每一個元素都具有性質:「能被2整除,且大於0」
而這個集合外的其他元素都不具有這種性質,因此,我們可以用上述性質把正偶數集合表示為
{x∈R│x能被2整除,且大於0}或{x∈R│x=2n,n∈N+},
大括弧內豎線左邊的X表示這個集合的任意一個元素,元素X從實數集合中取值,在豎線右邊寫出只有集合內的元素x才具有的性質。
一般地,如果在集合I中,屬於集合A的任意一個元素x都具有性質p(x),而不屬於集合A的元素都不具有的性質p(x),則性質p(x)叫做集合A的一個特徵性質。於是,集合A可以用它的性質p(x)描述為{x∈I│p(x)}
它表示集合A是由集合I中具有性質p(x)的所有元素構成的,這種表示集合的方法,叫做特徵性質描述法,簡稱描述法。
例如:集合A={x∈R│x2-1=0}的特徵是X2-1=0
高一數學必修一知識點摘要
(1)直線的傾斜角
定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°
(2)直線的斜率
①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。
②過兩點的直線的斜率公式:
注意下面四點:
(1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;
(2)k與P1、P2的順序無關;
(3)以後求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;
(4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到。
(3)直線方程
①點斜式:直線斜率k,且過點
注意:當直線的斜率為0°時,k=0,直線的方程是y=y1。當直線的斜率為90°時,直線的斜率不存在,它的方程不能用點斜式表示.但因l上每一點的橫坐標都等於x1,所以它的方程是x=x1。
②斜截式:,直線斜率為k,直線在y軸上的截距為b
③兩點式:()直線兩點,
④截矩式:其中直線與軸交於點,與軸交於點,即與軸、軸的截距分別為。
⑤一般式:(A,B不全為0)
⑤一般式:(A,B不全為0)
注意:○1各式的適用范圍
○2特殊的方程如:平行於x軸的直線:(b為常數);平行於y軸的直線:(a為常數);
(4)直線系方程:即具有某一共同性質的直線
高一數學知識點小結
1.二次函數y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點坐標及對稱軸如下表:
解析式
頂點坐標
對稱軸
y=ax^2
(0,0)
x=0
y=a(x-h)^2
(h,0)
x=h
y=a(x-h)^2+k
(h,k)
x=h
y=ax^2+bx+c
(-b/2a,[4ac-b^2]/4a)
x=-b/2a
當h>0時,y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動h個單位得到,
當h<0時,則向左平行移動|h|個單位得到.
當h>0,k>0時,將拋物線y=ax^2向右平行移動h個單位,再向上移動k個單位,就可以得到y=a(x-h)^2+k的圖象;
當h>0,k<0時,將拋物線y=ax^2向右平行移動h個單位,再向下移動|k|個單位可得到y=a(x-h)^2+k的圖象;
當h<0,k>0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y=a(x-h)^2+k的圖象;
當h<0,k<0時,將拋物線向左平行移動|h|個單位,再向下移動|k|個單位可得到y=a(x-h)^2+k的圖象;
因此,研究拋物線y=ax^2+bx+c(a≠0)的圖象,通過配方,將一般式化為y=a(x-h)^2+k的形式,可確定其頂點坐標、對稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便.
2.拋物線y=ax^2+bx+c(a≠0)的圖象:當a>0時,開口向上,當a<0時開口向下,對稱軸是直線x=-b/2a,頂點坐標是(-b/2a,[4ac-b^2]/4a).
3.拋物線y=ax^2+bx+c(a≠0),若a>0,當x≤-b/2a時,y隨x的增大而減小;當x≥-b/2a時,y隨x的增大而增大.若a<0,當x≤-b/2a時,y隨x的增大而增大;當x≥-b/2a時,y隨x的增大而減小.
4.拋物線y=ax^2+bx+c的圖象與坐標軸的交點:
(1)圖象與y軸一定相交,交點坐標為(0,c);
(2)當△=b^2-4ac>0,圖象與x軸交於兩點A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0
(a≠0)的兩根.這兩點間的距離AB=|x?-x?|
當△=0.圖象與x軸只有一個交點;
當△<0.圖象與x軸沒有交點.當a>0時,圖象落在x軸的上方,x為任何實數時,都有y>0;當a<0時,圖象落在x軸的下方,x為任何實數時,都有y<0.
5.拋物線y=ax^2+bx+c的最值:如果a>0(a<0),則當x=-b/2a時,y最小(大)值=(4ac-b^2)/4a.
頂點的橫坐標,是取得最值時的自變數值,頂點的縱坐標,是最值的取值.
6.用待定系數法求二次函數的解析式
(1)當題給條件為已知圖象經過三個已知點或已知x、y的三對對應值時,可設解析式為一般形式:
y=ax^2+bx+c(a≠0).
(2)當題給條件為已知圖象的頂點坐標或對稱軸時,可設解析式為頂點式:y=a(x-h)^2+k(a≠0).
(3)當題給條件為已知圖象與x軸的兩個交點坐標時,可設解析式為兩根式:y=a(x-x?)(x-x?)(a≠0).
7.二次函數知識很容易與 其它 知識綜合應用,而形成較為復雜的綜合題目。因此,以二次函數知識為主的綜合性題目是中考的 熱點 考題,往往以大題形式出現.
高中數學必考知識點歸納大全相關 文章 :
★ 高中數學必考知識點歸納整理
★ 高中數學必考知識點歸納
★ 高中數學知識點全總結最全版
★ 高一數學有用必考知識點歸納
★ 高考數學必考知識點考點2020大全總結
★ 高中數學知識點大全
★ 高中數學全部知識點提綱整理
★ 高中數學考點整理歸納
★ 高中數學知識點總結及公式大全
★ 高中數學知識點全總結
❷ 高中數學知識點重點總結大全
總結 是指社會團體、企業單位和個人對某一階段的學習、它可以給我們下一階段的學習和工作生活做指導,因此十分有必須要寫一份總結哦。下面是我給大家帶來的高中數學知識點重點總結大全,以供大家參考!
高中數學知識點重點總結大全
集合的有關概念
1)集合(集):某些指定的對象集在一起就成為一個集合(集).其中每一個對象叫元素
注意:①集合與集合的元素是兩個不同的概念,教科書中是通過描述給出的,這與平面幾何中的點與直線的概念類似。
②集合中的元素具有確定性(a?A和a?A,二者必居其一)、互異性(若a?A,b?A,則a≠b)和無序性({a,b}與{b,a}表示同一個集合)。
③集合具有兩方面的意義,即:凡是符合條件的對象都是它的元素;只要是它的元素就必須符號條件
2)集合的表示 方法 :常用的有列舉法、描述法和圖文法
3)集合的分類:有限集,無限集,空集。
4)常用數集:N,Z,Q,R,N
子集、交集、並集、補集、空集、全集等概念
1)子集:若對_∈A都有_∈B,則AB(或AB);
2)真子集:AB且存在_0∈B但_0A;記為AB(或,且)
3)交集:A∩B={_|_∈A且_∈B}
4)並集:A∪B={_|_∈A或_∈B}
5)補集:CUA={_|_A但_∈U}
注意:A,若A≠?,則?A;
若且,則A=B(等集)
集合與元素
掌握有關的術語和符號,特別要注意以下的符號:(1)與、?的區別;(2)與的區別;(3)與的區別。
子集的幾個等價關系
①A∩B=AAB;②A∪B=BAB;③ABCuACuB;
④A∩CuB=空集CuAB;⑤CuA∪B=IAB。
交、並集運算的性質
①A∩A=A,A∩?=?,A∩B=B∩A;②A∪A=A,A∪?=A,A∪B=B∪A;
③Cu(A∪B)=CuA∩CuB,Cu(A∩B)=CuA∪CuB;
有限子集的個數:
設集合A的元素個數是n,則A有2n個子集,2n-1個非空子集,2n-2個非空真子集。
練習題:
已知集合M={_|_=m+,m∈Z},N={_|_=,n∈Z},P={_|_=,p∈Z},則M,N,P滿足關系()
A)M=NPB)MN=PC)MNPD)NPM
分析一:從判斷元素的共性與區別入手。
解答一:對於集合M:{_|_=,m∈Z};對於集合N:{_|_=,n∈Z}
對於集合P:{_|_=,p∈Z},由於3(n-1)+1和3p+1都表示被3除餘1的數,而6m+1表示被6除餘1的數,所以MN=P,故選B。
人教版 高一數學 知識點整理
考點一、映射的概念
1.了解對應大千世界的對應共分四類,分別是:一對一多對一一對多多對多
2.映射:設A和B是兩個非空集合,如果按照某種對應關系f,對於集合A中的任意一個元素_,在集合B中都存在的一個元素y與之對應,那麼,就稱對應f:A→B為集合A到集合B的一個映射(mapping).映射是特殊的對應,簡稱「對一」的對應。包括:一對一多對一
考點二、函數的概念
1.函數:設A和B是兩個非空的數集,如果按照某種確定的對應關系f,對於集合A中的任意一個數_,在集合B中都存在確定的數y與之對應,那麼,就稱對應f:A→B為集合A到集合B的一個函數。記作y=f(_),_A.其中_叫自變數,_的取值范圍A叫函數的定義域;與_的值相對應的y的值函數值,函數值的集合叫做函數的值域。函數是特殊的映射,是非空數集A到非空數集B的映射。
2.函數的三要素:定義域、值域、對應關系。這是判斷兩個函數是否為同一函數的依據。
3.區間的概念:設a,bR,且a
①(a,b)={_a
⑤(a,+∞)={__>a}⑥[a,+∞)={__≥a}⑦(-∞,b)={__
考點三、函數的表示方法
1.函數的三種表示方法列表法圖象法解析法
2.分段函數:定義域的不同部分,有不同的對應法則的函數。注意兩點:①分段函數是一個函數,不要誤認為是幾個函數。②分段函數的定義域是各段定義域的並集,值域是各段值域的並集。
考點四、求定義域的幾種情況
①若f(_)是整式,則函數的定義域是實數集R;
②若f(_)是分式,則函數的定義域是使分母不等於0的實數集;
③若f(_)是二次根式,則函數的定義域是使根號內的式子大於或等於0的實數集合;
④若f(_)是對數函數,真數應大於零。
⑤.因為零的零次冪沒有意義,所以底數和指數不能同時為零。
⑥若f(_)是由幾個部分的數學式子構成的,則函數的定義域是使各部分式子都有意義的實數集合;
⑦若f(_)是由實際問題抽象出來的函數,則函數的定義域應符合實際問題
高一數學知識點歸納大全
圓的方程定義:
圓的標准方程(_—a)2+(y—b)2=r2中,有三個參數a、b、r,即圓心坐標為(a,b),只要求出a、b、r,這時圓的方程就被確定,因此確定圓方程,須三個獨立條件,其中圓心坐標是圓的定位條件,半徑是圓的定形條件。
直線和圓的位置關系:
1、直線和圓位置關系的判定方法一是方程的觀點,即把圓的方程和直線的方程聯立成方程組,利用判別式Δ來討論位置關系。
①Δ>0,直線和圓相交、②Δ=0,直線和圓相切、③Δ<0,直線和圓相離。
方法二是幾何的觀點,即把圓心到直線的距離d和半徑R的大小加以比較。
①dR,直線和圓相離、
2、直線和圓相切,這類問題主要是求圓的切線方程、求圓的切線方程主要可分為已知斜率k或已知直線上一點兩種情況,而已知直線上一點又可分為已知圓上一點和圓外一點兩種情況。
3、直線和圓相交,這類問題主要是求弦長以及弦的中點問題。
切線的性質
⑴圓心到切線的距離等於圓的半徑;
⑵過切點的半徑垂直於切線;
⑶經過圓心,與切線垂直的直線必經過切點;
⑷經過切點,與切線垂直的直線必經過圓心;
當一條直線滿足
(1)過圓心;
(2)過切點;
(3)垂直於切線三個性質中的兩個時,第三個性質也滿足。
切線的判定定理
經過半徑的外端點並且垂直於這條半徑的直線是圓的切線。
切線長定理
從圓外一點作圓的兩條切線,兩切線長相等,圓心與這一點的連線平分兩條切線的夾角。
高中數學知識點重點總結大全相關 文章 :
★ 高中數學知識點總結及公式大全
★ 高中數學知識點全總結最全版
★ 高中數學知識點全總結
★ 高中數學知識點大全
★ 高一數學知識點匯總大全
★ 高中數學知識要點總結範文
★ 高中數學知識點總結歸納最新
★ 高中數學知識點總結
★ 高一數學知識點總結歸納
★ 高一數學知識點全面總結
❸ 高一數學必背重要知識點
是你主動地適應環境,而不是環境適應你。因為你走向社會參加工作也得適應社會。下面是我給大家帶來的 高一數學 必背重要知識點,以供大家參考!
高一數學必背重要知識點
一、集合有關概念
1. 集合的含義
2. 集合的中元素的三個特性:
(1) 元素的確定性,
(2) 元素的互異性,
(3) 元素的無序性,
3.集合的表示:{ … } 如:{我校的 籃球 隊員},{太平洋,大西洋,印度洋,北冰洋}
(1) 用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
(2) 集合的表示 方法 :列舉法與描述法。
? 注意:常用數集及其記法:
非負整數集(即自然數集) 記作:N
正整數集 N_或 N+ 整數集Z 有理數集Q 實數集R
1) 列舉法:{a,b,c……}
2) 描述法:將集合中的元素的公共屬性描述出來,寫在大括弧內表示集合的方法。{x?R| x-3>2} ,{x| x-3>2}
3) 語言描述法:例:{不是直角三角形的三角形}
4) Venn圖:
4、集合的分類:
(1) 有限集 含有有限個元素的集合
(2) 無限集 含有無限個元素的集合
(3) 空集 不含任何元素的集合 例:{x|x2=-5}
二、集合間的基本關系
1.「包含」關系—子集
注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之: 集合A不包含於集合B,或集合B不包含集合A,記作A B或B A
2.「相等」關系:A=B (5≥5,且5≤5,則5=5)
實例:設 A={x|x2-1=0} B={-1,1} 「元素相同則兩集合相等」
即:① 任何一個集合是它本身的子集。A?A
②真子集:如果A?B,且A? B那就說集合A是集合B的真子集,記作A B(或B A)
③如果 A?B, B?C ,那麼 A?C
④ 如果A?B 同時 B?A 那麼A=B
3. 不含任何元素的集合叫做空集,記為Φ
規定: 空集是任何集合的子集, 空集是任何非空集合的真子集。
? 有n個元素的集合,含有2n個子集,2n-1個真子集
三、集合的運算
運算類型 交 集 並 集 補 集
定 義 由所有屬於A且屬於B的元素所組成的集合,叫做A,B的交集.記作A B(讀作『A交B』),即A B={x|x A,且x B}.
由所有屬於集合A或屬於集合B的元素所組成的集合,叫做A,B的並集.記作:A B(讀作『A並B』),即A B ={x|x A,或x B}).
設S是一個集合,A是S的一個子集,由S中所有不屬於A的元素組成的集合,叫做S中子集A的補集(或余集)
二、函數的有關概念
1.函數的概念:設A、B是非空的數集,如果按照某個確定的對應關系f,使對於集合A中的任意一個數x,在集合B中都有唯一確定的數f(x)和它對應,那麼就稱f:A→B為從集合A到集合B的一個函數.記作: y=f(x),x∈A.其中,x叫做自變數,x的取值范圍A叫做函數的定義域;與x的值相對應的y值叫做函數值,函數值的集合{f(x)| x∈A }叫做函數的值域.
注意:
1.定義域:能使函數式有意義的實數x的集合稱為函數的定義域。
求函數的定義域時列不等式組的主要依據是:
(1)分式的分母不等於零;
(2)偶次方根的被開方數不小於零;
(3)對數式的真數必須大於零;
(4)指數、對數式的底必須大於零且不等於1.
(5)如果函數是由一些基本函數通過四則運算結合而成的.那麼,它的定義域是使各部分都有意義的x的值組成的集合.
(6)指數為零底不可以等於零,
(7)實際問題中的函數的定義域還要保證實際問題有意義.
相同函數的判斷方法:①表達式相同(與表示自變數和函數值的字母無關);②定義域一致 (兩點必須同時具備)
2.值域 : 先考慮其定義域
(1)觀察法
(2)配方法
(3)代換法
3. 函數圖象知識歸納
(1)定義:在平面直角坐標系中,以函數 y=f(x) , (x∈A)中的x為橫坐標,函數值y為縱坐標的點P(x,y)的集合C,叫做函數 y=f(x),(x ∈A)的圖象.C上每一點的坐標(x,y)均滿足函數關系y=f(x),反過來,以滿足y=f(x)的每一組有序實數對x、y為坐標的點(x,y),均在C上 .
(2) 畫法
A、 描點法:
B、 圖象變換法
常用變換方法有三種
1) 平移變換
2) 伸縮變換
3) 對稱變換
4.區間的概念
(1)區間的分類:開區間、閉區間、半開半閉區間
(2)無窮區間
(3)區間的數軸表示.
5.映射
一般地,設A、B是兩個非空的集合,如果按某一個確定的對應法則f,使對於集合A中的任意一個元素x,在集合B中都有唯一確定的元素y與之對應,那麼就稱對應f:A B為從集合A到集合B的一個映射。記作f:A→B
6.分段函數
(1)在定義域的不同部分上有不同的解析表達式的函數。
(2)各部分的自變數的取值情況.
(3)分段函數的定義域是各段定義域的交集,值域是各段值域的並集.
補充:復合函數
如果y=f(u)(u∈M),u=g(x)(x∈A),則 y=f[g(x)]=F(x)(x∈A) 稱為f、g的復合函數。
二.函數的性質
1.函數的單調性(局部性質)
(1)增函數
設函數y=f(x)的定義域為I,如果對於定義域I內的某個區間D內的任意兩個自變數x1,x2,當x1
如果對於區間D上的任意兩個自變數的值x1,x2,當x1f(x2),那麼就說f(x)在這個區間上是減函數.區間D稱為y=f(x)的單調減區間.
注意:函數的單調性是函數的局部性質;
(2) 圖象的特點
如果函數y=f(x)在某個區間是增函數或減函數,那麼說函數y=f(x)在這一區間上具有(嚴格的)單調性,在單調區間上增函數的圖象從左到右是上升的,減函數的圖象從左到右是下降的.
(3).函數單調區間與單調性的判定方法
(A) 定義法:
○1 任取x1,x2∈D,且x1
○2 作差f(x1)-f(x2);
○3 變形(通常是因式分解和配方);
○4 定號(即判斷差f(x1)-f(x2)的正負);
○5 下結論(指出函數f(x)在給定的區間D上的單調性).
(B)圖象法(從圖象上看升降)
(C)復合函數的單調性
復合函數f[g(x)]的單調性與構成它的函數u=g(x),y=f(u)的單調性密切相關,其規律:「同增異減」
注意:函數的單調區間只能是其定義域的子區間 ,不能把單調性相同的區間和在一起寫成其並集.
8.函數的奇偶性(整體性質)
(1)偶函數
一般地,對於函數f(x)的定義域內的任意一個x,都有f(-x)=f(x),那麼f(x)就叫做偶函數.
(2).奇函數
一般地,對於函數f(x)的定義域內的任意一個x,都有f(-x)=—f(x),那麼f(x)就叫做奇函數.
(3)具有奇偶性的函數的圖象的特徵
偶函數的圖象關於y軸對稱;奇函數的圖象關於原點對稱.
利用定義判斷函數奇偶性的步驟:
○1首先確定函數的定義域,並判斷其是否關於原點對稱;
○2確定f(-x)與f(x)的關系;
○3作出相應結論:若f(-x) = f(x) 或 f(-x)-f(x) = 0,則f(x)是偶函數;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,則f(x)是奇函數.
(2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1來判定;
(3)利用定理,或藉助函數的圖象判定 .
9、函數的解析表達式
(1).函數的解析式是函數的一種表示方法,要求兩個變數之間的函數關系時,一是要求出它們之間的對應法則,二是要求出函數的定義域.
(2)求函數的解析式的主要方法有:
1) 湊配法
2) 待定系數法
3) 換元法
4) 消參法
10.函數最大(小)值(定義見課本p36頁)
○1 利用二次函數的性質(配方法)求函數的最大(小)值
○2 利用圖象求函數的最大(小)值
○3 利用函數單調性的判斷函數的'最大(小)值:
如果函數y=f(x)在區間[a,b]上單調遞增,在區間[b,c]上單調遞減則函數y=f(x)在x=b處有最大值f(b);
如果函數y=f(x)在區間[a,b]上單調遞減,在區間[b,c]上單調遞增則函數y=f(x)在x=b處有最小值f(b);
高一數學重要知識點大全
復數是高中代數的重要內容,在高考試題中約佔8%-10%,一般的出一道基礎題和一道中檔題,經常與三角、解析幾何、方程、不等式等知識綜合.本章主要內容是復數的概念,復數的代數、幾何、三角表示方法以及復數的運算.方程、方程組,數形結合,分域討論,等價轉化的數學思想與方法在本章中有突出的體現.而復數是代數,三角,解析幾何知識,相互轉化的樞紐,這對拓寬學生思路,提高學生解綜合習題能力是有益的.數、式的運算和解方程,方程組,不等式是學好本章必須具有的基本技能.簡化運算的意識也應進一步加強.
在本章學習結束時,應該明確對二次三項式的因式分解和解一元二次方程與二項方程可以畫上圓滿的句號了,對向量的運算、曲線的復數形式的方程、復數集中的數列等邊緣性的知識還有待於進一步的研究.
1.知識網路圖
復數知識點網路圖
2.復數中的難點
(1)復數的向量表示法的運算.對於復數的向量表示有些學生掌握得不好,對向量的運算的幾何意義的靈活掌握有一定的困難.對此應認真體會復數向量運算的幾何意義,對其靈活地加以證明.
(2)復數三角形式的乘方和開方.有部分學生對運演算法則知道,但對其靈活地運用有一定的困難,特別是開方運算,應對此認真地加以訓練.
(3)復數的輻角主值的求法.
(4)利用復數的幾何意義靈活地解決問題.復數可以用向量表示,同時復數的模和輻角都具有幾何意義,對他們的理解和應用有一定難度,應認真加以體會.
3.復數中的重點
(1)理解好復數的概念,弄清實數、虛數、純虛數的不同點.
(2)熟練掌握復數三種表示法,以及它們間的互化,並能准確地求出復數的模和輻角.復數有代數,向量和三角三種表示法.特別是代數形式和三角形式的互化,以及求復數的模和輻角在解決具體問題時經常用到,是一個重點內容.
(3)復數的三種表示法的各種運算,在運算中重視共軛復數以及模的有關性質.復數的運算是復數中的主要內容,掌握復數各種形式的運算,特別是復數運算的幾何意義更是重點內容.
(4)復數集中一元二次方程和二項方程的解法.
數學知識點 總結 歸納
內容子交並補集,還有冪指對函數。性質奇偶與增減,觀察圖象最明顯。
復合函數式出現,性質乘法法則辨,若要詳細證明它,還須將那定義抓。
指數與對數函數, 初中 學習方法 ,兩者互為反函數。底數非1的正數,1兩邊增減變故。
函數定義域好求。分母不能等於0,偶次方根須非負,零和負數無對數;
正切函數角不直,餘切函數角不平;其餘函數實數集,多種情況求交集。
兩個互為反函數,單調性質都相同;圖象互為軸對稱,Y=X是對稱軸;
求解非常有規律,反解換元定義域;反函數的定義域,原來函數的值域。
冪函數性質易記,指數化既約分數;函數性質看指數,奇母奇子奇函數,
奇母偶子偶函數,偶母非奇偶函數;圖象第一象限內,函數增減看正負。
形如y=k/x(k為常數且k≠0)的函數,叫做反比例函數。
自變數x的取值范圍是不等於0的一切實數。
反比例函數圖像性質:
反比例函數的圖像為雙曲線。
由於反比例函數屬於奇函數,有f(-x)=-f(x),圖像關於原點對稱。
另外,從反比例函數的解析式可以得出,在反比例函數的圖像上任取一點,向兩個坐標軸作垂線,高中地理,這點、兩個垂足及原點所圍成的矩形面積是定值,為?k?。
如圖,上面給出了k分別為正和負(2和-2)時的函數圖像。
當K>0時,反比例函數圖像經過一,三象限,是減函數
當K<0時,反比例函數圖像經過二,四象限,是增函數
反比例函數圖像只能無限趨向於坐標軸,無法和坐標軸相交。
知識點:
1.過反比例函數圖象上任意一點作兩坐標軸的垂線段,這兩條垂線段與坐標軸圍成的矩形的面積為k。
2.對於雙曲線y=k/x,若在分母上加減任意一個實數(即y=k/(x±m)m為常數),就相當於將雙曲線圖象向左或右平移一個單位。(加一個數時向左平移,減一個數時向右平移)
高一數學必背重要知識點相關 文章 :
★ 高一數學必背公式及知識匯總
★ 高一數學必記知識點概括
★ 高一數學必修的必會知識難點歸納
★ 高中數學必考知識點歸納
★ 高一數學必修一函數必背知識點整理
★ 高一數學主要講什麼知識點
★ 高一數學知識點部編版
★ 高一必修一的重要知識點梳理
★ 高一數學知識點總結
❹ 高中數學必考知識點歸納
高考數學必考知識點有哪些,高中數學重點知識有哪些,需要我們掌握?下面是我為大家整理的關於高中數學必考知識點歸納,希望對您有所幫助。
高中數學知識點 總結
1.必修課程由5個模塊組成:
必修1:集合,函數概念與基本初等函數(指數函數,冪函數,對數函數)
必修2:立體幾何初步、平面解析幾何初步。
必修3:演算法初步、統計、概率。
必修4:基本初等函數(三角函數)、平面向量、三角恆等變換。
必修5:解三角形、數列、不等式。
以上所有的知識點是所有高中生必須掌握的,而且要懂得運用。
選修課程分為4個系列:
系列1:2個模塊
選修1-1:常用邏輯用語、圓錐曲線與方程、空間向量與立體幾何。
選修1-2:統計案例、推理與證明、數系的擴充與復數、框圖
系列2: 3個模塊
選修2-1:常用邏輯用語、圓錐曲線與方程、空間向量與立體幾何
選修2-2:導數及其應用、推理與證明、數系的擴充與復數
選修2-3:計數原理、隨機變數及其分布列、統計案例
選修4-1:幾何證明選講
選修4-4:坐標系與參數方程
選修4-5:不等式選講
2.高考數學必考重難點及其考點:
重點:函數,數列,三角函數,平面向量,圓錐曲線,立體幾何,導數
難點:函數,圓錐曲線
高考相關考點:
1. 集合與邏輯:集合的邏輯與運算(一般出現在高考卷的第一道選擇題)、簡易邏輯、充要條件
2. 函數:映射與函數、函數解析式與定義域、值域與最值、反函數、三大性質、函數圖象、指數函數、對數函數、函數的應用
3. 數列:數列的有關概念、等差數列、等比數列、數列求通項、求和
4. 三角函數:有關概念、同角關系與誘導公式、和差倍半公式、求值、化簡、證明、三角函數的圖像及其性質、應用
5. 平面向量:初等運算、坐標運算、數量積及其應用
6. 不等式:概念與性質、均值不等式、不等式的證明、不等式的解法、絕對值不等式(經常出現在大題的選做題里)、不等式的應用
7. 直線與圓的方程:直線的方程、兩直線的位置關系、線性規劃、圓、直線與圓的位置關系
8. 圓錐曲線方程:橢圓、雙曲線、拋物線、直線與圓錐曲線的位置關系、軌跡問題、圓錐曲線的應用
9. 直線、平面、簡單幾何體:空間直線、直線與平面、平面與平面、稜柱、棱錐、球、空間向量
10. 排列、組合和概率:排列、組合應用題、二項式定理及其應用
11. 概率與統計:概率、分布列、期望、方差、抽樣、正態分布
12. 導數:導數的概念、求導、導數的應用
13. 復數:復數的概念與運算
高中數學易錯知識點整理
一.集合與函數
1.進行集合的交、並、補運算時,不要忘了全集和空集的特殊情況,不要忘記了藉助數軸和文氏圖進行求解.
2.在應用條件時,易A忽略是空集的情況
3.你會用補集的思想解決有關問題嗎?
4.簡單命題與復合命題有什麼區別?四種命題之間的相互關系是什麼?如何判斷充分與必要條件?
5.你知道「否命題」與「命題的否定形式」的區別.
6.求解與函數有關的問題易忽略定義域優先的原則.
7.判斷函數奇偶性時,易忽略檢驗函數定義域是否關於__對稱.
8.求一個函數的解析式和一個函數的反函數時,易忽略標注該函數的定義域.
9.原函數在區間[-a,a]上單調遞增,則一定存在反函數,且反函數也單調遞增;但一個函數存在反函數,此函數不一定單調.例如:.
10.你熟練地掌握了函數單調性的證明 方法 嗎?定義法(取值,作差,判正負)和導數法
11.求函數單調性時,易錯誤地在多個單調區間之間添加符號「∪」和「或」;單調區間不能用集合或不等式表示.
12.求函數的值域必須先求函數的定義域。
13.如何應用函數的單調性與奇偶性解題?①比較函數值的大小;②解抽象函數不等式;③求參數的范圍(恆成立問題).這幾種基本應用你掌握了嗎?
14.解對數函數問題時,你注意到真數與底數的限制條件了嗎?
(真數大於零,底數大於零且不等於1)字母底數還需討論
15.三個二次(哪三個二次?)的關系及應用掌握了嗎?如何利用二次函數求最值?
16.用換元法解題時易忽略換元前後的等價性,易忽略參數的范圍。
17.「實系數一元二次方程有實數解」轉化時,你是否注意到:當時,「方程有解」不能轉化為。若原題中沒有指出是二次方程,二次函數或二次不等式,你是否考慮到二次項系數可能為的零的情形?
二.不等式
18.利用均值不等式求最值時,你是否注意到:「一正;二定;三等」.
19.絕對值不等式的解法及其幾何意義是什麼?
20.解分式不等式應注意什麼問題?用「根軸法」解整式(分式)不等式的注意事項是什麼?
21.解含參數不等式的通法是「定義域為前提,函數的單調性為基礎,分類討論是關鍵」,注意解完之後要寫上:「綜上,原不等式的解集是……」.
22.在求不等式的解集、定義域及值域時,其結果一定要用集合或區間表示;不能用不等式表示.
23.兩個不等式相乘時,必須注意同向同正時才能相乘,即同向同正可乘;同時要注意「同號可倒」即a>b>0,a<0.
三.數列
24.解決一些等比數列的前項和問題,你注意到要對公比及兩種情況進行討論了嗎?
25.在「已知,求」的問題中,你在利用公式時注意到了嗎?(時,應有)需要驗證,有些題目通項是分段函數。
26.你知道存在的條件嗎?(你理解數列、有窮數列、無窮數列的概念嗎?你知道無窮數列的前項和與所有項的和的不同嗎?什麼樣的無窮等比數列的所有項的和必定存在?
27.數列單調性問題能否等同於對應函數的單調性問題?(數列是特殊函數,但其定義域中的值不是連續的。)
28.應用數學歸納法一要注意步驟齊全,二要注意從到過程中,先假設時成立,再結合一些數學方法用來證明時也成立。
四.三角函數
29.正角、負角、零角、象限角的概念你清楚嗎?,若角的終邊在坐標軸上,那它歸哪個象限呢?你知道銳角與第一象限的角;終邊相同的角和相等的角的區別嗎?
30.三角函數的定義及單位圓內的三角函數線(正弦線、餘弦線、正切線)的定義你知道嗎?
31.在解三角問題時,你注意到正切函數、餘切函數的定義域了嗎?你注意到正弦函數、餘弦函數的有界性了嗎?
32.你還記得三角化簡的通性通法嗎?(切割化弦、降冪公式、用三角公式轉化出現特殊角.異角化同角,異名化同名,高次化低次)
33.反正弦、反餘弦、反正切函數的取值范圍分別是
34.你還記得某些特殊角的三角函數值嗎?
35.掌握正弦函數、餘弦函數及正切函數的圖象和性質.你會寫三角函數的單調區間嗎?會寫簡單的三角不等式的解集嗎?(要注意數形結合與書寫規范,可別忘了),你是否清楚函數的圖象可以由函數經過怎樣的變換得到嗎?
36.函數的圖象的平移,方程的平移以及點的平移公式易混:
(1)函數的圖象的平移為「左+右-,上+下-」;如函數的圖象左移2個單位且下移3個單位得到的圖象的解析式為,即.
(2)方程表示的圖形的平移為「左+右-,上-下+」;如直線左移2個個單位且下移3個單位得到的圖象的解析式為,即.
(3)點的平移公式:點按向量平移到點,則.
37.在三角函數中求一個角時,注意考慮兩方面了嗎?(先求出某一個三角函數值,再判定角的范圍)
38.形如的周期都是,但的周期為。
39.正弦定理時易忘比值還等於2R.
五.平面向量
40.數0有區別,的模為數0,它不是沒有方向,而是方向不定。可以看成與任意向量平行,但與任意向量都不垂直。
41.數量積與兩個實數乘積的區別:
在實數中:若,且ab=0,則b=0,但在向量的數量積中,若,且,不能推出.
已知實數,且,則a=c,但在向量的數量積中沒有.
在實數中有,但是在向量的數量積中,這是因為左邊是與共線的向量,而右邊是與共線的向量.
42.是向量與平行的充分而不必要條件,是向量和向量夾角為鈍角的必要而不充分條件。
六.解析幾何
43.在用點斜式、斜截式求直線的方程時,你是否注意到不存在的情況?
44.用到角公式時,易將直線l1、l2的斜率k1、k2的順序弄顛倒。
45.直線的傾斜角、到的角、與的夾角的取值范圍依次是。
46.定比分點的坐標公式是什麼?(起點,中點,分點以及值可要搞清),在利用定比分點解題時,你注意到了嗎?
47.對不重合的兩條直線
(建議在解題時,討論後利用斜率和截距)
48.直線在兩坐標軸上的截距相等,直線方程可以理解為,但不要忘記當時,直線在兩坐標軸上的截距都是0,亦為截距相等。
49.解決線性規劃問題的基本步驟是什麼?請你注意解題格式和完整的文字表達.(①設出變數,寫出目標函數②寫出線性約束條件③畫出可行域④作出目標函數對應的系列平行線,找到並求出最優解⑦應用題一定要有答。)
50.三種圓錐曲線的定義、圖形、標准方程、幾何性質,橢圓與雙曲線中的兩個特徵三角形你掌握了嗎?
51.圓、和橢圓的參數方程是怎樣的?常用參數方程的方法解決哪一些問題?
52.利用圓錐曲線第二定義解題時,你是否注意到定義中的定比前後項的順序?如何利用第二定義推出圓錐曲線的焦半徑公式?如何應用焦半徑公式?
53.通徑是拋物線的所有焦點弦中最短的弦.(想一想在雙曲線中的結論?)
54.在用圓錐曲線與直線聯立求解時,消元後得到的方程中要注意:二次項的系數是否為零?橢圓,雙曲線二次項系數為零時直線與其只有一個交點,判別式的限制.(求交點,弦長,中點,斜率,對稱,存在性問題都在下進行).
55.解析幾何問題的求解中,平面幾何知識利用了嗎?題目中是否已經有坐標系了,是否需要建立直角坐標系?
七.立體幾何
56.你掌握了空間圖形在平面上的直觀畫法嗎?(斜二測畫法)。
57.線面平行和面面平行的定義、判定和性質定理你掌握了嗎?線線平行、線面平行、面面平行這三者之間的聯系和轉化在解決立幾問題中的應用是怎樣的?每種平行之間轉換的條件是什麼?
58.三垂線定理及其逆定理你記住了嗎?你知道三垂線定理的關鍵是什麼嗎?(一面、四線、三垂直、立柱即面的垂線是關鍵)一面四直線,立柱是關鍵,垂直三處見
59.線面平行的判定定理和性質定理在應用時都是三個條件,但這三個條件易混為一談;面面平行的判定定理易把條件錯誤地記為」一個平面內的兩條相交直線與另一個平面內的兩條相交直線分別平行」而導致證明過程跨步太大.
60.求兩條異面直線所成的角、直線與平面所成的角和二面角時,如果所求的角為90°,那麼就不要忘了還有一種求角的方法即用證明它們垂直的方法.
61.異面直線所成角利用「平移法」求解時,一定要注意平移後所得角等於所求角(或其補角),特別是題目告訴異面直線所成角,應用時一定要從題意出發,是用銳角還是其補角,還是兩種情況都有可能。
62.你知道公式:和中每一字母的意思嗎?能夠熟練地應用它們解題嗎?
63.兩條異面直線所成的角的范圍:0°<α≤90° >
直線與平面所成的角的范圍:0o≤α≤90°
二面角的平面角的取值范圍:0°≤α≤180°
64.你知道異面直線上兩點間的距離公式如何運用嗎?
65.平面圖形的翻折,立體圖形的展開等一類問題,要注意翻折,展開前後有關幾何元素的「不變數」與「不變性」。
66.立幾問題的求解分為「作」,「證」,「算」三個環節,你是否只注重了「作」,「算」,而忽視了「證」這一重要環節?
67.稜柱及其性質、平行六面體與長方體及其性質.這些知識你掌握了嗎?(注意運用向量的方法解題)
68.球及其性質;經緯度定義易混.經度為二面角,緯度為線面角、球面距離的求法;球的表面積和體積公式.這些知識你掌握了嗎?
八.排列、組合和概率
69.解排列組合問題的依據是:分類相加,分步相乘,有序排列,無序組合.
解排列組合問題的規律是:相鄰問題捆綁法;不鄰問題插空法;多排問題單排法;定位問題優先法;定序問題倍縮法;多元問題分類法;有序分配問題法;選取問題先排後排法;至多至少問題間接法.
70.二項式系數與展開式某一項的系數易混,第r+1項的二項式系數為。二項式系數最大項與展開式中系數最大項易混.二項式系數最大項為中間一項或兩項;展開式中系數最大項的求法要用解不等式組來確定r.
71.你掌握了三種常見的概率公式嗎?(①等可能事件的概率公式;②互斥事件有一個發生的概率公式;③相互獨立事件同時發生的概率公式.)
72.二項式展開式的通項公式、n次獨立重復試驗中事件A發生k次的概率易記混。
通項公式:它是第r+1項而不是第r項;
事件A發生k次的概率:.其中k=0,1,2,3,…,n,且0
<1,p+q=1.< p="">
73.求分布列的解答題你能把步驟寫全嗎?
74.如何對總體分布進行估計?(用樣本估計總體,是研究統計問題的一個基本思想方法,一般地,樣本容量越大,這種估計就越精確,要求能畫出頻率分布表和頻率分布直方圖;理解頻率分布直方圖矩形面積的幾何意義.)
75.你還記得一般正態總體如何化為標准正態總體嗎?(對任一正態總體來說,取值小於x的概率,其中表示標准正態總體取值小於的概率)
相關 文章 :
1. 高中數學重要知識點巧記口訣
2. 高中數學學習方法:知識點總結最全版
3. 高一數學必背公式及知識匯總
4. 高一數學重點知識點公式總結
5. 高中數學重點知識結構總結
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();❺ 高中數學知識點有哪些
01高中數學是全國高中生學習的一門學科。包括《集合與函數》《三角函數》《不等式》《數列》《立體幾何》《平面解析幾何》等部分, 高中數學主要分為代數和幾何兩大部分。代數主要是一次函數,二次函數,反比例函數和三角函數。幾何又分為平面解析幾何和立體幾何兩大部分。
平面解析幾何初步:
(1)直線與方程
1在平面直角坐標系中,結合具體圖形,探索確定直線位置的幾何要素。
2理解直線的傾斜角和斜率的概念,經歷用代數方法刻畫直線斜率的過程,掌握過兩點的直線斜率的計算公式。
3能根據斜率判定兩條直線平行或垂直。
4根據確定直線位置的幾何要素,探索並掌握直線方程的幾種形式(點斜式、兩點式及一般式),體會斜截式與一次函數的關系。
5能用解方程組的方法求兩直線的交點坐標。
6探索並掌握兩點間的距離公式、點到直線的距離公式,會求兩條平行直線間的距離。
(2)圓與方程
1回顧確定圓的幾何要素,在平面直角坐標系中,探索並掌握圓的標准方程與一般方程。
2能根據給定直線、圓的方程,判斷直線與圓、圓與圓的位置關系。
3能用直線和圓的方程解決一些簡單的問題。
(3)在平面解析幾何初步的學習過程中,體會用代數方法處理幾何問題的思想。
(4)空間直角坐標系
1通過具體情境,感受建立空間直角坐標系的必要性,了解空間直角坐標系,會用空間直角坐標系刻畫點的位置。
2通過表示特殊長方體(所有棱分別與坐標軸平行)頂點的坐標,探索並得出空間兩點間的距離公式。
❻ 高考數學知識點總結
高考數學知識點總結1
1、集合的含義:
「集合」這個詞首先讓我們想到的是上體育課或者開會時老師經常喊的「全體集合」。數學上的「集合」和這個意思是一樣的,只不過一個是動詞一個是名詞而已。
所以集合的含義是:某些指定的對象集在一起就成為一個集合,簡稱集,其中每一個對象叫元素。比如高一二班集合,那麼所有高一二班的同學就構成了一個集合,每一個同學就稱為這個集合的元素。
2、集合的表示
通常用大寫字母表示集合,用小寫字母表示元素,如集合A={a,b,c}。a、b、c就是集合A中的元素,記作a∈A,相反,d不屬於集合A,記作d?A。
有一些特殊的集合需要記憶:
非負整數集(即自然數集)N正整數集N*或N+
整數集Z有理數集Q實數集R
集合的表示方法:列舉法與描述法。
①列舉法:{a,b,c……}
②描述法:將集合中的元素的公共屬性描述出來。如{x?R|x-3>2},{x|x-3>2},{(x,y)|y=x2+1}
③語言描述法:例:{不是直角三角形的三角形}
例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2}
強調:描述法表示集合應注意集合的代表元素
A={(x,y)|y=x2+3x+2}與B={y|y=x2+3x+2}不同。集合A中是數組元素(x,y),集合B中只有元素y。
3、集合的三個特性
(1)無序性
指集合中的元素排列沒有順序,如集合A={1,2},集合B={2,1},則集合A=B。
例題:集合A={1,2},B={a,b},若A=B,求a、b的值。
解:,A=B
注意:該題有兩組解。
(2)互異性
指集合中的元素不能重復,A={2,2}只能表示為{2}
(3)確定性
集合的確定性是指組成集合的元素的性質必須明確,不允許有模稜兩可、含混不清的情況。
4、集合的基本關系
1.子集,A包含於B,有兩種可能
(1)A是B的一部分,
(2)A與B是同一集合,A=B,A、B兩集合中元素都相同。
反之:集合A不包含於集合B。
2.不含任何元素的集合叫做空集,記為Φ。Φ是任何集合的子集。
4、有n個元素的集合,含有2n個子集,2n-1個真子集,含有2n-2個非空真子集。如A={1,2,3,4,5},則集合A有25=32個子集,25-1=31個真子集,25-2=30個非空真子集。
高考數學知識點總結2
一、集合有關概念
1、集合的含義
2、集合的中元素的三個特性:
(1)元素的確定性如:世界上最高的山
(2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}
(3)元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個集合
3、集合的表示:{…}如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}
(1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
(2)集合的表示方法:列舉法與描述法。
注意:常用數集及其記法:XKb1、Com
非負整數集(即自然數集)記作:N
正整數集:Nx或N+
整數集:Z
有理數集:Q
實數集:R
1)列舉法:{a,b,c……}
2)描述法:將集合中的元素的公共屬性描述出來,寫在大括弧內表示集合{x?R|x—3>2},{x|x—3>2}
3)語言描述法:例:{不是直角三角形的三角形}
4)Venn圖:
4、集合的分類:
(1)有限集含有有限個元素的.集合
(2)無限集含有無限個元素的集合
(3)空集不含任何元素的集合
二、集合間的基本關系
1、「包含」關系—子集
注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之:集合A不包含於集合B,或集合B不包含集合A,記作AB或BA
2、「相等」關系:A=B(5≥5,且5≤5,則5=5)
實例:設A={x|x2—1=0}B={—1,1}「元素相同則兩集合相等」
即:①任何一個集合是它本身的子集。A?A
②真子集:如果A?B,且A?B那就說集合A是集合B的真子集,記作AB(或BA)
③如果A?B,B?C,那麼A?C
④如果A?B同時B?A那麼A=B
3、不含任何元素的集合叫做空集,記為Φ
規定:空集是任何集合的子集,空集是任何非空集合的真子集。
4、子集個數:
有n個元素的集合,含有2n個子集,2n—1個真子集,含有2n—1個非空子集,含有2n—1個非空真子集
三、集合的運算
運算類型交集並集補集
定義由所有屬於A且屬於B的元素所組成的集合,叫做A,B的交集、記作AB(讀作『A交B』),即AB={x|xA,且xB}、
由所有屬於集合A或屬於集合B的元素所組成的集合,叫做A,B的並集、記作:AB(讀作『A並B』),即AB={x|xA,或xB})。
❼ 高三數學知識點考點總結大全
數學是我們我們從小學到大的一門學科,如果能認認真真學下來,數學並不難,只是數學要下苦功去學,學會了很有意思。這次我給大家整理了 高三數學 知識點考點 總結 ,供大家閱讀參考。
高三數學知識點考點總結
1.定義:
用符號〉,=,〈號連接的式子叫不等式。
2.性質:
①不等式的兩邊都加上或減去同一個整式,不等號方向不變。
②不等式的兩邊都乘以或者除以一個正數,不等號方向不變。
③不等式的兩邊都乘以或除以同一個負數,不等號方向相反。
3.分類:
①一元一次不等式:左右兩邊都是整式,只含有一個未知數,且未知數的次數是1的不等式叫一元一次不等式。
②一元一次不等式組:
a.關於同一個未知數的幾個一元一次不等式合在一起,就組成了一元一次不等式組。
b.一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。
4.考點:
①解一元一次不等式(組)
②根據具體問題中的數量關系列不等式(組)並解決簡單實際問題
③用數軸表示一元一次不等式(組)的解集
高三數學知識點
一、排列
1定義
(1)從n個不同元素中取出m個元素,按照一定的順序排成一列,叫做從n個不同元素中取出m個元素的一排列。
(2)從n個不同元素中取出m個元素的所有排列的個數,叫做從n個不同元素中取出m個元素的排列數,記為Amn.
2排列數的公式與性質
(1)排列數的公式:Amn=n(n-1)(n-2)…(n-m+1)
特例:當m=n時,Amn=n!=n(n-1)(n-2)…×3×2×1
規定:0!=1
二、組合
1定義
(1)從n個不同元素中取出m個元素並成一組,叫做從n個不同元素中取出m個元素的一個組合
(2)從n個不同元素中取出m個元素的所有組合的個數,叫做從n個不同元素中取出m個元素的組合數,用符號Cmn表示。
2比較與鑒別
由排列與組合的定義知,獲得一個排列需要「取出元素」和「對取出元素按一定順序排成一列」兩個過程,而獲得一個組合只需要「取出元素」,不管怎樣的順序並成一組這一個步驟。
排列與組合的區別在於組合僅與選取的元素有關,而排列不僅與選取的元素有關,而且還與取出元素的順序有關。因此,所給問題是否與取出元素的順序有關,是判斷這一問題是排列問題還是組合問題的理論依據。
三、排列組合與二項式定理知識點
1.計數原理知識點
①乘法原理:N=n1·n2·n3·…nM(分步)②加法原理:N=n1+n2+n3+…+nM(分類)
2.排列(有序)與組合(無序)
Anm=n(n-1)(n-2)(n-3)-…(n-m+1)=n!/(n-m)!Ann=n!
Cnm=n!/(n-m)!m!
Cnm=Cnn-mCnm+Cnm+1=Cn+1m+1k?k!=(k+1)!-k!
3.排列組合混合題的解題原則:先選後排,先分再排
排列組合題的主要解題 方法 :優先法:以元素為主,應先滿足特殊元素的要求,再考慮其他元素.以位置為主考慮,即先滿足特殊位置的要求,再考慮其他位置.
捆綁法(集團元素法,把某些必須在一起的元素視為一個整體考慮)
插空法(解決相間問題)間接法和去雜法等等
在求解排列與組合應用問題時,應注意:
(1)把具體問題轉化或歸結為排列或組合問題;
(2)通過分析確定運用分類計數原理還是分步計數原理;
(3)分析題目條件,避免「選取」時重復和遺漏;
(4)列出式子計算和作答.
經常運用的數學思想是:
①分類討論思想;②轉化思想;③對稱思想.
4.二項式定理知識點:
①(a+b)n=Cn0ax+Cn1an-1b1+Cn2an-2b2+Cn3an-3b3+…+Cnran-rbr+-…+Cnn-1abn-1+Cnnbn
特別地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn
②主要性質和主要結論:對稱性Cnm=Cnn-m
二項式系數在中間。(要注意n為奇數還是偶數,答案是中間一項還是中間兩項)
所有二項式系數的和:Cn0+Cn1+Cn2+Cn3+Cn4+…+Cnr+…+Cnn=2n
奇數項二項式系數的和=偶數項而是系數的和
Cn0+Cn2+Cn4+Cn6+Cn8+…=Cn1+Cn3+Cn5+Cn7+Cn9+…=2n-1
③通項為第r+1項:Tr+1=Cnran-rbr作用:處理與指定項、特定項、常數項、有理項等有關問題。
5.二項式定理的應用:解決有關近似計算、整除問題,運用二項展開式定理並且結合放縮法證明與指數有關的不等式。
6.注意二項式系數與項的系數(字母項的系數,指定項的系數等,指運算結果的系數)的區別,在求某幾項的系數的和時注意賦值法的應用。
高三數學考點總結
考點一:集合與簡易邏輯
集合部分一般以選擇題出現,屬容易題。重點考查集合間關系的理解和認識。近年的試題加強了對集合計算化簡能力的考查,並向無限集發展,考查 抽象思維 能力。在解決這些問題時,要注意利用幾何的直觀性,並注重集合表示方法的轉換與化簡。簡易邏輯考查有兩種形式:一是在選擇題和填空題中直接考查命題及其關系、邏輯聯結詞、「充要關系」、命題真偽的判斷、全稱命題和特稱命題的否定等,二是在解答題中深層次考查常用邏輯用語表達數學解題過程和邏輯推理。
考點二:函數與導數
函數是高考的重點內容,以選擇題和填空題的為載體針對性考查函數的定義域與值域、函數的性質、函數與方程、基本初等函數(一次和二次函數、指數、對數、冪函數)的應用等,分值約為10分,解答題與導數交匯在一起考查函數的性質。導數部分一方面考查導數的運算與導數的幾何意義,另一方面考查導數的簡單應用,如求函數的單調區間、極值與最值等,通常以客觀題的形式出現,屬於容易題和中檔題,三是導數的綜合應用,主要是和函數、不等式、方程等聯系在一起以解答題的形式出現,如一些不等式恆成立問題、參數的取值范圍問題、方程根的個數問題、不等式的證明等問題。
考點三:三角函數與平面向量
一般是2道小題,1道綜合解答題。小題一道考查平面向量有關概念及運算等,另一道對三角知識點的補充。大題中如果沒有涉及正弦定理、餘弦定理的應用,可能就是一道和解答題相互補充的三角函數的圖像、性質或三角恆等變換的題目,也可能是考查平面向量為主的試題,要注意數形結合思想在解題中的應用。向量重點考查平面向量數量積的概念及應用,向量與直線、圓錐曲線、數列、不等式、三角函數等結合,解決角度、垂直、共線等問題是「新 熱點 」題型.
考點四:數列與不等式
不等式主要考查一元二次不等式的解法、一元二次不等式組和簡單線性規劃問題、基本不等式的應用等,通常會在小題中設置1到2道題。對不等式的工具性穿插在數列、解析幾何、函數導數等解答題中進行考查.在選擇、填空題中考查等差或等比數列的概念、性質、通項公式、求和公式等的靈活應用,一道解答題大多凸顯以數列知識為工具,綜合運用函數、方程、不等式等解決問題的能力,它們都屬於中、高檔題目.
考點五:立體幾何與空間向量
一是考查空間幾何體的結構特徵、直觀圖與三視圖;二是考查空間點、線、面之間的位置關系;三是考查利用空間向量解決立體幾何問題:利用空間向量證明線面平行與垂直、求空間角等(文科不要求).在高考試卷中,一般有1~2個客觀題和一個解答題,多為中檔題。
考點六:解析幾何
一般有1~2個客觀題和1個解答題,其中客觀題主要考查直線斜率、直線方程、圓的方程、直線與圓的位置關系、圓錐曲線的定義應用、標准方程的求解、離心率的計算等,解答題則主要考查直線與橢圓、拋物線等的位置關系問題,經常與平面向量、函數與不等式交匯,考查一些存在性問題、證明問題、定點與定值、最值與范圍問題等。
考點七:演算法復數推理與證明
高考對演算法的考查以選擇題或填空題的形式出現,或給解答題披層「外衣」.考查的熱點是流程圖的識別與演算法語言的閱讀理解.演算法與數列知識的網路交匯命題是考查的主流.復數考查的重點是復數的有關概念、復數的代數形式、運算及運算的幾何意義,一般是選擇題、填空題,難度不大.推理證明部分命題的方向主要會在函數、三角、數列、立體幾何、解析幾何等方面,單獨出題的可能性較小。對於理科,數學歸納法可能作為解答題的一小問.
高三數學考點有哪些
1、圓柱體:
表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)
2、圓錐體:
表面積:πR2+πR[(h2+R2)的平方根]體積:πR2h/3(r為圓錐體低圓半徑,h為其高,
3、正方體
a-邊長,S=6a2,V=a3
4、長方體
a-長,b-寬,c-高S=2(ab+ac+bc)V=abc
5、稜柱
S-底面積h-高V=Sh
6、棱錐
S-底面積h-高V=Sh/3
7、稜台
S1和S2-上、下底面積h-高V=h[S1+S2+(S1S2)^1/2]/3
8、擬柱體
S1-上底面積,S2-下底面積,S0-中截面積
h-高,V=h(S1+S2+4S0)/6
9、圓柱
r-底半徑,h-高,C—底面周長
S底—底面積,S側—側面積,S表—表面積C=2πr
S底=πr2,S側=Ch,S表=Ch+2S底,V=S底h=πr2h
10、空心圓柱
R-外圓半徑,r-內圓半徑h-高V=πh(R^2-r^2)
11、直圓錐
r-底半徑h-高V=πr^2h/3
12、圓台
r-上底半徑,R-下底半徑,h-高V=πh(R2+Rr+r2)/3
13、球
r-半徑d-直徑V=4/3πr^3=πd^3/6
14、球缺
h-球缺高,r-球半徑,a-球缺底半徑V=πh(3a2+h2)/6=πh2(3r-h)/3
15、球台
r1和r2-球台上、下底半徑h-高V=πh[3(r12+r22)+h2]/6
16、圓環體
R-環體半徑D-環體直徑r-環體截面半徑d-環體截面直徑
V=2π2Rr2=π2Dd2/4
17、桶狀體
D-桶腹直徑d-桶底直徑h-桶高
V=πh(2D2+d2)/12,(母線是圓弧形,圓心是桶的中心)
V=πh(2D2+Dd+3d2/4)/15(母線是拋物線形)
如何學好數學
首先你要有一個好的態度,有些人學習數學,可能有的階段會喜歡學習,但是某一階段,對數學就沒有什麼興趣了,可能每個人都會有這樣一個階段,但是如果發現自己不喜歡學習數學了,一定要剋制自己,在學習數學上,保持一個良好的 學習態度 ,這是你學好數學的第一步。
充分的利用好上課的時間,上課時間你所掌握的知識,會比你在課下學很長時間都有用,所以珍惜課堂老師所講的內容,老師的某些話對我們以後做數學題都很有幫助,如果你上課走神,這些話沒有聽到,你在做題的時候,可能會走很多彎路,做題的效率也會降低,一旦有這樣的情況,可能你就會不喜歡數學了。
學習最重要的是思考,會思考數學才能學好,數學中的題都是需要我們去舉一反三的,沒做一道題,都要思考一下,圍繞著這道題的知識點,還會有什麼樣的題型出現,哪怕是遇到不會的題,也要勤加的思考,如果你把知識點自認為學習透徹,那麼就用做題檢驗吧,數學中多做題是必須的,成績都是用題堆積出來的,很少會有人不做題數學成績很高的。
高三數學知識點考點總結大全相關 文章 :
★ 高三數學重要知識點總結
★ 高三數學知識點總結與歸納
★ 高三數學知識點總結
★ 高三數學考試知識點總結
★ 高三數學重點知識點
★ 高三數學必考知識點總結整合
★ 高三重要數學知識點梳理
★ 高三數學第一輪復習知識點
★ 高三數學補習知識點總結
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();❽ 數學知識點總結
數學集合知識點總結
集合是高中數學中的一個重要考點,相關的知識掌握並不是十分的難,下面是我想跟大家分享的數學集合知識點總結,歡迎大家瀏覽。
數學知識點總結1
一、知識歸納:
1、集合的有關概念。
1)集合(集):某些指定的對象集在一起就成為一個集合(集)、其中每一個對象叫元素
注意:
①集合與集合的元素是兩個不同的概念,教科書中是通過描述給出的,這與平面幾何中的點與直線的概念類似。
②集合中的元素具有確定性(a?A和a?A,二者必居其一)、互異性(若a?A,b?A,則a≠b)和無序性({a,b}與{b,a}表示同一個集合)。
③集合具有兩方面的意義,即:凡是符合條件的對象都是它的元素;只要是它的元素就必須符號條件
2)集合的表示方法:常用的有列舉法、描述法和圖文法
3)集合的分類:有限集,無限集,空集。
4)常用數集:N,Z,Q,R,N*
2、子集、交集、並集、補集、空集、全集等概念。
1)子集:若對x∈A都有x∈B,則A B(或A B);
2)真子集:A B且存在x0∈B但x0 A;記為A B(或 ,且 )
3)交集:A∩B={x| x∈A且x∈B}
4)並集:A∪B={x| x∈A或x∈B}
5)補集:CUA={x| x A但x∈U}
注意:
①? A,若A≠?,則? A ;
②若 , ,則 ;
③若 且 ,則A=B(等集)
3、弄清集合與元素、集合與集合的關系,掌握有關的術語和符號,特別要注意以下的符號:
(1) 與 、?的區別;
(2) 與 的區別;
(3) 與 的區別。
4、有關子集的幾個等價關系
①A∩B=A A B;②A∪B=B A B;③A B C uA C uB;
④A∩CuB = 空集 CuA B;⑤CuA∪B=I A B。
5、交、並集運算的性質
①A∩A=A,A∩? = ?,A∩B=B∩A;②A∪A=A,A∪? =A,A∪B=B∪A;
③Cu (A∪B)= CuA∩CuB,Cu (A∩B)= CuA∪CuB;
6、有限子集的個數:設集合A的元素個數是n,則A有2n個子集,2n—1個非空子集,2n—2個非空真子集。
二、例題講解:
【例1】已知集合M={x|x=m+ ,m∈Z},N={x|x= ,n∈Z},P={x|x= ,p∈Z},則M,N,P滿足關系
A) M=N P B) M N=P C) M N P D) N P M
分析一:從判斷元素的共性與區別入手。
解答一:對於集合M:{x|x= ,m∈Z};對於集合N:{x|x= ,n∈Z}
對於集合P:{x|x= ,p∈Z},由於3(n—1)+1和3p+1都表示被3除餘1的數,而6m+1表示被6除餘1的數,所以M N=P,故選B。
分析二:簡單列舉集合中的元素。
解答二:M={…, ,…},N={…, , , ,…},P={…, , ,…},這時不要急於判斷三個集合間的關系,應分析各集合中不同的元素。
= ∈N, ∈N,∴M N,又 = M,∴M N,
= P,∴N P 又 ∈N,∴P N,故P=N,所以選B。
點評:由於思路二隻是停留在最初的歸納假設,沒有從理論上解決問題,因此提倡思路一,但思路二易人手。
變式:設集合 , ,則( B )
A、M=N B、M N C、N M
解:
當 時,2k+1是奇數,k+2是整數,選B
【例2】定義集合A*B={x|x∈A且x B},若A={1,3,5,7},B={2,3,5},則A*B的子集個數為
A)1 B)2 C)3 D)4
分析:確定集合A*B子集的個數,首先要確定元素的個數,然後再利用公式:集合A={a1,a2,…,an}有子集2n個來求解。
解答:∵A*B={x|x∈A且x B}, ∴A*B={1,7},有兩個元素,故A*B的子集共有22個。選D。
變式1:已知非空集合M {1,2,3,4,5},且若a∈M,則6?a∈M,那麼集合M的個數為
A)5個 B)6個 C)7個 D)8個
變式2:已知{a,b} A {a,b,c,d,e},求集合A。
解:由已知,集合中必須含有元素a,b。
集合A可能是{a,b},{a,b,c},{a,b,d},{a,b,e},{a,b,c,d},{a,b,c,e},{a,b,d,e}。
評析 本題集合A的個數實為集合{c,d,e}的真子集的個數,所以共有 個 。
【例3】已知集合A={x|x2+px+q=0},B={x|x2?4x+r=0},且A∩B={1},A∪B={?2,1,3},求實數p,q,r的值。
解答:∵A∩B={1} ∴1∈B ∴12?4×1+r=0,r=3。
∴B={x|x2?4x+r=0}={1,3}, ∵A∪B={?2,1,3},?2 B, ∴?2∈A
∵A∩B={1} ∴1∈A ∴方程x2+px+q=0的兩根為—2和1,
∴ ∴
變式:已知集合A={x|x2+bx+c=0},B={x|x2+mx+6=0},且A∩B={2},A∪B=B,求實數b,c,m的值。
解:∵A∩B={2} ∴1∈B ∴22+m?2+6=0,m=—5
∴B={x|x2—5x+6=0}={2,3} ∵A∪B=B ∴
又 ∵A∩B={2} ∴A={2} ∴b=—(2+2)=4,c=2×2=4
∴b=—4,c=4,m=—5
【例4】已知集合A={x|(x—1)(x+1)(x+2)>0},集合B滿足:A∪B={x|x>—2},且A∩B={x|1
分析:先化簡集合A,然後由A∪B和A∩B分別確定數軸上哪些元素屬於B,哪些元素不屬於B。
解答:A={x|—21}。由A∩B={x|1—2}可知[—1,1] B,而(—∞,—2)∩B=ф。
綜合以上各式有B={x|—1≤x≤5}
變式1:若A={x|x3+2x2—8x>0},B={x|x2+ax+b≤0},已知A∪B={x|x>—4},A∩B=Φ,求a,b。(答案:a=—2,b=0)
點評:在解有關不等式解集一類集合問題,應注意用數形結合的方法,作出數軸來解之。
變式2:設M={x|x2—2x—3=0},N={x|ax—1=0},若M∩N=N,求所有滿足條件的a的集合。
解答:M={—1,3} , ∵M∩N=N, ∴N M
①當 時,ax—1=0無解,∴a=0 ②
綜①②得:所求集合為{—1,0, }
【例5】已知集合 ,函數y=log2(ax2—2x+2)的定義域為Q,若P∩Q≠Φ,求實數a的取值范圍。
分析:先將原問題轉化為不等式ax2—2x+2>0在 有解,再利用參數分離求解。
解答:(1)若 , 在 內有有解
令 當 時,
所以a>—4,所以a的取值范圍是
變式:若關於x的方程 有實根,求實數a的取值范圍。
解答:
點評:解決含參數問題的題目,一般要進行分類討論,但並不是所有的問題都要討論,怎樣可以避免討論是我們思考此類問題的關鍵。
數學知識點總結2
一、集合與函數概念
1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。
2、集合的中元素的三個特性:元素的確定性;元素的互異性;元素的無序性。
集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬於集合A記作a∈A,相反,a不屬於集合A
列舉法:把集合中的元素一一列舉出來,然後用一個大括弧括上。
描述法:將集合中的元素的公共屬性描述出來,寫在大括弧內表示集合的方法。用確定的條件表示某些對象是否屬於這個集合的方法。
①語言描述法:例:{不是直角三角形的三角形}
②數學式子描述法
二、函數的有關概念
1、函數的概念:設A、B是非空的數集,如果按照某個確定的對應關系f,使對於集合A中的任意一個數x,在集合B中都有唯一確定的數f(x)和它對應,那麼就稱f:A→B為從集合A到集合B的一個函數。記作:y=f(x),x∈A。其中,x叫做自變數,x的取值范圍A叫做函數的定義域;與x的值相對應的y值叫做函數值,函數值的集合{f(x)| x∈A }叫做函數的.值域。
一般地,設A、B是兩個非空的集合,如果按某一個確定的對應法則f,使對於集合A中的任意一個元素x,在集合B中都有唯一確定的元素y與之對應,那麼就稱對應f:A B為從集合A到集合B的一個映射。記作「f:A B」
給定一個集合A到B的映射,如果a∈A,b∈B。且元素a和元素b對應,那麼,我們把元素b叫做元素a的象,元素a叫做元素b的原象
說明:函數是一種特殊的映射,映射是一種特殊的對應,
①集合A、B及對應法則f是確定的;
②對應法則有「方向性」,即強調從集合A到集合B的對應,它與從B到A的對應關系一般是不同的;
③對於映射f:A→B來說,則應滿足:
(Ⅰ)集合A中的每一個元素,在集合B中都有象,並且象是唯一的;
(Ⅱ)集合A中不同的元素,在集合B中對應的象可以是同一個;
(Ⅲ)不要求集合B中的每一個元素在集合A中都有原象。
拓展閱讀:學習數學的方法
第一、興趣。
如今的家庭和學校對孩子的期望很高,而且女生的性格普遍較為文靜,心理不夠強大,還有的就是數學這科目難度相對來說較高,很容易會導致女生對數學的興趣降低。
所以說,作為老師應該多關心她們的學習情況,多與她們交流科目上的內容,了解她們的想法,只有理解她們的想法才能有效的制定相應的學習計劃,為她們驅除緊張的情緒,從而達到一個好的學習狀態。與此同時,作為家長的應該多關心孩子的情況,不要一看到成績不好就開口訓斥,這樣對孩子的心理會造成一定的影響,甚至可能削弱孩子對數學的興趣。我們應該用積極的態度去對待孩子的學習,女生的情感與男生不同,她們對於感興趣的,一般會更有耐心克服困難,達到自己的目標。
第二、自信。
女生的形象思維能力一般比男生要差,邏輯思維能力也如此,所以容易造成沒有信心的現象。事實上,女生在運算準確率方面是很高的,也比較規范,所以我們看到女生的數學答題大都很工整,其實這是一個優點。
所謂每個人都有優缺點,我們不應該因為自己的缺點而妄自菲薄,而是應該努力克服缺點,增強自己的自信心,在學習上應該多了解通解通法,還有一些常用的數學公式,解題技巧,還有解題速度。很多女生解數學題的速度都不快,甚至有些女生到時間了還有幾道大題沒做,這樣丟分是讓人很遺憾的。
第三、學習方法。
很多女生在學習數學的時候喜歡按部就班,注重基礎,但是卻很少做難題,所以便導致了解題能力薄弱。女生上課的時候很認真,復習的時候喜歡看筆記和書本,但是卻忽視了對自己能力的訓練,所以導致了自己適應性比較差。
所以,女生應該從這幾點下手,多下功夫,對於難題我們不要害怕,但是也不能一味地做難題,適當的訓練,對於自己的數學能力是有很大提升的。還有,女生在學習數學的時候應該多向男生學習,學習他們的一些優秀技巧,進而轉化為自己的學習技巧,結合在做題上,多訓練,相信對自己的數學水平是有很大幫助的。
第四、課前預習。
正所謂「笨鳥先飛」,我們經過預習可以提前對新內容有一個大概的了解,從而在聽課的時候能夠有的放矢,對自己不了解的知識點著重注意,很可能會有奇效。而提前預習,還能對女生的心理有一個暗示,對女生的信心提高也是有極大的好處。
;❾ 數學的知識點總結
集合的運算也遵循一般的代數式運算規律,也有著自己的法則和定理。下面是我整理的數學集合的知識點總結,歡迎參考閱讀!
一、集合有關概念
1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。
2、集合的中元素的三個特性:
①.元素的確定性; ②.元素的互異性; ③.元素的無序性
說明:(1)對於一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。
(2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。
(3)集合中的元素是平等的,沒有先後順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。
(4)集合元素的三個特性使集合本身具有了確定性和整體性。
3、集合的分類:
1.有限集 含有有限個元素的集合
2.無限集 含有無限個元素的集合
3.空集 不含任何元素的集合 例:{x|x2=-5}
4、集合的表示:{ } 如{我校的籃球隊員},{太平洋大西洋印度洋北冰洋}
1. 用拉丁字母表示集合:A={我校的籃球隊員}B={12345}
2.集合的表示方法:列舉法與描述法。
注意啊:常用數集及其記法:
非負整數集(即自然數集) 記作:N
正整數集 N*或 N+ 整數集Z 有理數集Q 實數集R
關於屬於的概念
集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬於集合A 記作 aA ,相反,a不屬於集合A 記作 a?A
列舉法:把集合中的元素一一列舉出來,然後用一個大括弧括上。
描述法:將集合中的元素的公共屬性描述出來,寫在大括弧內表示集合的方法。用確定的條件表示某些對象是否屬於這個集合的'方法。
①語言描述法:例:{不是直角三角形的三角形}
②數學式子描述法:例:不等式x-32的解集是{x?R| x-32}或{x| x-32}
二、集合間的基本關系
1.包含關系子集
注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之: 集合A不包含於集合B或集合B不包含集合A記作A B或B A
2. 不含任何元素的集合叫做空集,記為
規定: 空集是任何集合的子集, 空集是任何非空集合的真子集。
3.相等關系(55,且55,則5=5)
實例:設 A={x|x2-1=0} B={-11} 元素相同
結論:對於兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時集合B的任何一個元素都是集合A的元素,我們就說集合A等於集合B,即:A=B
① 任何一個集合是它本身的子集。A?A
②真子集:如果A?B且A? B那就說集合A是集合B的真子集,記作A B(或B A)
③如果 A?B B?C 那麼 A?C
④ 如果A?B 同時 B?A 那麼A=B
三、集合的運算
1、並集的定義:一般地,由所有屬於集合A或屬於集合B的元素所組成的集合,叫做AB的並集。記作:AB(讀作A並B),即AB={x|xA,或xB}.
2.交集的定義:一般地,由所有屬於A且屬於B的元素所組成的集合叫做AB的交集.
記作AB(讀作A交B),即AB={x|xA,且xB}.
3、全集與補集
(1)補集:設S是一個集合,A是S的一個子集(即 ),由S中所有不屬於A的元素組成的集合,叫做S中子集A的補集(或余集)
記作: CSA 即 CSA ={x ? x?S且 x?A}
(2)全集:如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集。通常用U來表示。
(3)性質:⑴CU(C UA)=A ⑵(C UA) ⑶(CUA)A=U
4、交集與並集的性質:AA = A A= B = BA,AA = A
A= A AB = BA.
❿ 高三數學知識點歸納
高三數學知識點匯總歸納在日復一日的學習中,大家都背過各種知識點吧?知識點是傳遞信息的基本單位,知識點對提高學習導航具有重要的作用。那麼,都有哪些知識點呢?以下是小編為大家整理的高三數學知識點匯總歸納,僅供參考,希望能夠幫助到大家。
高三數學知識點歸納 篇1
高三上冊數學知識點整理
1、函數零點的概念:對於函數,把使成立的實數叫做函數的零點。
2、函數零點的意義:函數的零點就是方程實數根,亦即函數的圖象與軸交點的橫坐標。即:
方程有實數根函數的圖象與軸有交點函數有零點.
3、函數零點的求法:
求函數的零點:
(1)(代數法)求方程的實數根;
(2)(幾何法)對於不能用求根公式的方程,可以將它與函數的圖象聯系起來,並利用函數的性質找出零點.
4、二次函數的零點:
二次函數.
1)△>0,方程有兩不等實根,二次函數的圖象與軸有兩個交點,二次函數有兩個零點.
2)△=0,方程有兩相等實根(二重根),二次函數的圖象與軸有一個交點,二次函數有一個二重零點或二階零點.
3)△
人教版高三數學知識點總結
1.定義:
用符號〉,=,〈號連接的式子叫不等式。
2.性質:
1不等式的兩邊都加上或減去同一個整式,不等號方向不變。
2不等式的兩邊都乘以或者除以一個正數,不等號方向不變。
3不等式的兩邊都乘以或除以同一個負數,不等號方向相反。
3.分類:
1一元一次不等式:左右兩邊都是整式,只含有一個未知數,且未知數的次數是1的不等式叫一元一次不等式。
2一元一次不等式組:
a.關於同一個未知數的幾個一元一次不等式合在一起,就組成了一元一次不等式組。
b.一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。
4.考點:
1解一元一次不等式(組)
2根據具體問題中的數量關系列不等式(組)並解決簡單實際問題
3用數軸表示一元一次不等式(組)的解集
高三數學知識點歸納 篇2
1、圓柱體:
表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)
2、圓錐體:
表面積:πR2+πR[(h2+R2)的平方根]體積:πR2h/3(r為圓錐體低圓半徑,h為其高,
3、正方體
a-邊長,S=6a2,V=a3
4、長方體
a-長,b-寬,c-高S=2(ab+ac+bc)V=abc
5、稜柱
S-底面積h-高V=Sh
6、棱錐
S-底面積h-高V=Sh/3
7、稜台
S1和S2-上、下底面積h-高V=h[S1+S2+(S1S2)^1/2]/3
8、擬柱體
S1-上底面積,S2-下底面積,S0-中截面積
h-高,V=h(S1+S2+4S0)/6
9、圓柱
r-底半徑,h-高,C―底面周長
S底―底面積,S側―側面積,S表―表面積C=2πr
S底=πr2,S側=Ch,S表=Ch+2S底,V=S底h=πr2h
10、空心圓柱
R-外圓半徑,r-內圓半徑h-高V=πh(R^2-r^2)
11、直圓錐
r-底半徑h-高V=πr^2h/3
12、圓台
r-上底半徑,R-下底半徑,h-高V=πh(R2+Rr+r2)/3
13、球
r-半徑d-直徑V=4/3πr^3=πd^3/6
14、球缺
h-球缺高,r-球半徑,a-球缺底半徑V=πh(3a2+h2)/6=πh2(3r-h)/3
高三數學知識點歸納 篇3
復數的概念:
形如a+bi(a,b∈R)的數叫復數,其中i叫做虛數單位。全體復數所成的集合叫做復數集,用字母C表示。
復數的表示:
復數通常用字母z表示,即z=a+bi(a,b∈R),這一表示形式叫做復數的代數形式,其中a叫復數的實部,b叫復數的虛部。
復數的幾何意義:
(1)復平面、實軸、虛軸:
點Z的橫坐標是a,縱坐標是b,復數z=a+bi(a、b∈R)可用點Z(a,b)表示,這個建立了直角坐標系來表示復數的平面叫做復平面,x軸叫做實軸,y軸叫做虛軸。顯然,實軸上的點都表示實數,除原點外,虛軸上的點都表示純虛數
(2)復數的幾何意義:復數集C和復平面內所有的點所成的集合是一一對應關系,即
這是因為,每一個復數有復平面內惟一的一個點和它對應;反過來,復平面內的每一個點,有惟一的一個復數和它對應。
這就是復數的一種幾何意義,也就是復數的另一種表示方法,即幾何表示方法。
復數的模:
復數z=a+bi(a、b∈R)在復平面上對應的點Z(a,b)到原點的距離叫復數的模,記為|Z|,即|Z|=
虛數單位i:
(1)它的平方等於-1,即i2=-1;
(2)實數可以與它進行四則運算,進行四則運算時,原有加、乘運算律仍然成立
(3)i與-1的關系:i就是-1的一個平方根,即方程x2=-1的一個根,方程x2=-1的另一個根是-i。
(4)i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。
復數模的性質:
復數與實數、虛數、純虛數及0的關系:
對於復數a+bi(a、b∈R),當且僅當b=0時,復數a+bi(a、b∈R)是實數a;當b≠0時,復數z=a+bi叫做虛數;當a=0且b≠0時,z=bi叫做純虛數;當且僅當a=b=0時,z就是實數0。
高三數學知識點歸納 篇4
1.不等式的定義
在客觀世界中,量與量之間的不等關系是普遍存在的,我們用數學符號連接兩個數或代數式以表示它們之間的不等關系,含有這些不等號的式子,叫做不等式.
2.比較兩個實數的大小
兩個實數的大小是用實數的運算性質來定義的,
有a-b>0?;a-b=0?;a-b
另外,若b>0,則有>1?;=1?;
概括為:作差法,作商法,中間量法等.
3.不等式的性質
(1)對稱性:a>b?;
(2)傳遞性:a>b,b>c?;
(3)可加性:a>b?a+cb+c,a>b,c>d?a+cb+d;
(4)可乘性:a>b,c>0?ac>bc;a>b>0,c>d>0?;
(5)可乘方:a>b>0?(n∈N,n≥2);
(6)可開方:a>b>0?(n∈N,n≥2).
復習指導
1.「一個技巧」作差法變形的技巧:作差法中變形是關鍵,常進行因式分解或配方.
2.「一種方法」待定系數法:求代數式的范圍時,先用已知的代數式表示目標式,再利用多項式相等的法則求出參數,最後利用不等式的性質求出目標式的范圍.
3.「兩條常用性質」
(1)倒數性質:1a>b,ab>0?<;2a
3a>b>0,0;40
(2)若a>b>0,m>0,則
1真分數的性質:<;>
(b-m>0);
高三數學知識點歸納 篇5
不等式的解集:
1能使不等式成立的未知數的值,叫做不等式的解。
2一個含有未知數的不等式的所有解,組成這個不等式的解集。
3求不等式解集的過程叫做解不等式。
不等式的判定:
1常見的不等號有「>」「<」「≤」「≥」及「≠」。分別讀作「大於,小於,小於等於,大於等於,不等於」,其中「≤」又叫作不大於,「≥」叫作不小於;
2在不等式「a>b」或「a
3不等號的開口所對的數較大,不等號的尖頭所對的數較小;
4在列不等式時,一定要注意不等式關系的關鍵字,如:正數、非負數、不大於、小於等等。
高三數學知識點歸納 篇6
等式的性質:
1不等式的性質可分為不等式基本性質和不等式運算性質兩部分。
不等式基本性質有:
(1)a>bb
(2)a>b,b>ca>c(傳遞性)
(3)a>ba+c>b+c(c∈R)
(4)c>0時,a>bac>bc
c
bac
運算性質有:
(1)a>b,c>da+c>b+d。
(2)a>b>0,c>d>0ac>bd。
(3)a>b>0an>bn(n∈N,n>1)。
(4)a>b>0>(n∈N,n>1)。
應注意,上述性質中,條件與結論的邏輯關系有兩種:「」和「」即推出關系和等價關系。一般地,證明不等式就是從條件出發施行一系列的推出變換。解不等式就是施行一系列的等價變換。因此,要正確理解和應用不等式性質。
2關於不等式的性質的考察,主要有以下三類問題:
(1)根據給定的不等式條件,利用不等式的性質,判斷不等式能否成立。
(2)利用不等式的性質及實數的性質,函數性質,判斷實數值的大小。
(3)利用不等式的性質,判斷不等式變換中條件與結論間的充分或必要關系。
高中數學集合復習知識點
任一A,B,記做AB
AB,BA,A=B
AB={|A|,且|B|}
AB={|A|,或|B|}
Card(AB)=card(A)+card(B)-card(AB)
(1)命題
原命題若p則q
逆命題若q則p
否命題若p則q
逆否命題若q,則p
(2)AB,A是B成立的充分條件
BA,A是B成立的必要條件
AB,A是B成立的充要條件
1.集合元素具有1確定性;2互異性;3無序性
2.集合表示方法1列舉法;2描述法;3韋恩圖;4數軸法
(3)集合的運算
1A∩(B∪C)=(A∩B)∪(A∩C)
2Cu(A∩B)=CuA∪CuB
Cu(A∪B)=CuA∩CuB
(4)集合的性質
n元集合的字集數:2n
真子集數:2n-1;
非空真子集數:2n-2
高中數學集合知識點歸納
1、集合的概念
集合是數學中最原始的不定義的概念,只能給出,描述性說明:某些制定的且不同的對象集合在一起就稱為一個集合。組成集合的對象叫元素,集合通常用大寫字母A、B、C、來表示。元素常用小寫字母a、b、c、來表示。
集合是一個確定的整體,因此對集合也可以這樣描述:具有某種屬性的對象的全體組成的一個集合。