當前位置:首頁 » 基礎知識 » 難以解釋的數學知識
擴展閱讀
近戰經典戰役有哪些 2024-11-16 00:34:37

難以解釋的數學知識

發布時間: 2022-12-17 06:10:12

❶ 關於數學的知識有哪些

如下:

1、數學是研究數量、結構、變化、空間以及信息等概念的一門學科,從某種角度看屬於形式科學的一種。

2、數學在人類歷史發展和社會生活中發揮著不可替代的作用,也是學習和研究現代科學技術必不可少的基本工具。

3、數學起源於人類早期的生產活動,古巴比倫人從遠古時代開始已經積累了一定的數學知識,並能應用實際問題。從數學本身看,他們的數學知識也只是觀察和經驗所得,沒有綜合結論和證明,但也要充分肯定他們對數學所做出的貢獻。

4、數學被應用在很多不同的領域上,包括科學、工程、醫學和經濟學等。數學在這些領域的應用一般被稱為應用數學,有時亦會激起新的數學發現,並促成全新數學學科的發展.數學家也研究純數學,也就是數學本身,而不以任何實際應用為目標。雖然有許多工作以研究純數學為開端,但之後也許會發現合適的應用。

❷ 初中數學冷門小知識

中考數學冷門知識點解析

四心:

內心 角平分線的交點,它到各邊的距離相等(內切圓圓心)

外心 三角形三邊的垂直平分線的交點,它到三個頂點的距離相等(外接圓圓心)

重心 三角形三條中線的交點,它到每個頂點的距離等於它到對邊中點的距離的2倍

垂心 三角形的三條高的交點


調查方式

全面調查優點:精確度高 缺點:費時費力(人口普查)

抽樣調查優點:花費少、省時缺點:准確度受樣本影響

總體、個體、樣本概念


分式概念

判斷一個式子是否是分式,不要看式子是否是A/ B的形式,關鍵要滿足:

1.分式的分母中必須含有字母。

2.分母的值不能為零。若分母的值為零,則分式無意義。

考法類似於有理數、無理數


比例中項

如果a、b、c三個量成連比例即a:b=b:c,b叫做a和c的比例中項。

b的平方=a*c b=正負根號下(a*c)

注意比例中項有負值(線段、實際問題要排除)


函數概念

一般地,在一個變化過程中,如果有兩個變數x與y,並且對於x的每一個確定的值,y都有唯一確定的值與其對應,那麼就稱y是x的函數


黃金分割點

把一條線段分割為兩部分滿足:

短邊/長邊=長邊/全長

其值為一個有理數,用分數表示為(√5-1)/2,約等於0.618(實際問題時使用)

黃金三角形

1.是等腰三角形,兩個底角為72°,頂角為36°;這種三角形既美觀又標准。這樣的三角形的底與一腰之長之比為黃金比:(√5-1)/2.

2.是等腰三角形,兩個底角為36°,頂角為108°;這種三角形一腰與底邊之長之比為黃金比:(√5-1)/2.


標准差

標准差是方差的算術平方根


位似

位似作圖:

1. 作位似圖形時注意有同向位似和反向位似兩種情況

2.在平面直角坐標系中,如果位似變換是以原點為位似中心,相似比為k,那麼位似圖形對應點的坐標的比等於k或-k

多邊形

內角和 (n-2)180

外角和360

對角線n(n-3)/2 推導見課本

❸ 一個難以解釋的數學問題

G(X+1)=X(X>0)的定義域是什麼?相對X來說.它的對應法則是什麼?與G(X)=X(X>0)是否為同一函數?

G(X+1)=X(X>0)的定義域是X>0
相對X來說.它的對應法則是G(X)=X-1,X>-1
這與G(X)=X(X>0)顯然不是同一函數

❹ 數學小知識簡短有哪些

數學小知識簡短:

1、目前為止世界上最大的數是多少?

從數學意義來講並不存在最大的數,但目前為止宇宙中任何一個數都為超過古戈爾(gogul),它相當於10的100次方。但正式數學證明中使用過的最大數是葛立恆數,其最後12位數是262464195387。

2、「千禧年數學難題」每一個懸賞100萬美元

美國克雷數學研究所於2000年5月24日在巴黎宣布,經一眾數學家聯合評選,對七個「千禧年數學難題」的每一個懸賞一百萬美元。「千年大獎問題」公布以來,在世界數學界產生了強烈反響,研究和破解「千年大獎問題」已成為世界數學界的熱點。

3、哪四位數學家被譽為數學界的「莎士比亞」?

這四大數學家分別是歐拉、阿基米德、牛頓、高斯。

4、「哥倫布雞蛋」0到底由中國人還是印度人發明存在爭議

最早在古代巴比倫楔形文字就有零的記錄,只是他們還沒有把零看作一個數;印度人對零的最大貢獻是承認它是一個數,而不僅僅是空位或一無所有;婆羅摩笈多對零的運算有較完整的敘述:「負數減去零是負數,正數減去零是正數,零減去零什麼也沒有;零乘負數、正數或零都是零。……零除以零是空無一物,正數或負數除以零是一個以零為分母的分數」。

我們起初用空格來表示零,後來以○表示零,但數字0到底是由中國人發明還是是經由印度傳入中國現在依然有爭議。

5、加減乘除四則運算符號歸宿不同的數學家發明

加減乘除+、-、×(•)、÷等數學四則運算符號是我們每一個人最熟悉的符號,直到17世紀中葉這些符號才全部被廣泛接受。1544年,德國數學家施蒂費爾在《整數算術》中正式用「+」和「-」表示加減,這兩個符號逐漸被公認為真正的算術符號。

則英國數學家奧特雷德在1631年出版的《數學之鑰》正式創立了「×」號,只是後來萊布尼茲認為「×」容易與「X」容易混淆,就建議用「•」表示乘號;最後除法符號「÷」是英國的瓦里斯最初使用的,並最先在英國得到廣泛推廣。

❺ 有趣的數學科普小知識有哪些

有趣的數學科普小知識如下:

一、阿拉伯數字

阿拉伯數字是古代印度人發明的,後來傳到阿拉伯,又從阿拉伯傳到歐洲,歐洲人誤以為是阿拉伯人發明的,就把它們叫做「阿拉伯數字」。因為流傳了許多年,人們叫得順口,所以至今人們仍然將錯就錯,把這些古代印度人發明的數字元號叫做阿拉伯數字。

二、九九歌

九九歌就是我們現在使用的乘法口訣。遠在公元前的春秋戰國時代,九九歌就已經被人們廣泛使用。在當時的許多著作中,都有關於九九歌的記載。最初的九九歌是從「九九八十一」起到「二二如四」止,共36句。因為是從「九九八十一」開始,所以取名九九歌。

大約在公元五至十世紀間,九九歌才擴充到「一一如一」。大約在公元十三、十四世紀,九九歌的順序才變成和現在所用的一樣,從「一一如一」起到「九九八十一」止。現在我國使用的乘法口訣有兩種,一種是45句的,通常稱為「小九九」;還有一種是81句的,通常稱為「大九九」。

三、莫比烏斯環

莫比烏斯環是一種拓撲學結構,它只有一個面和一個邊界。可以用一根紙條扭轉成180度後,兩頭再粘接起來,就形成了莫比烏斯環。

莫比烏斯環沿著中線剪開,第一次,可以得到一個更大的環;第二次及以後,每次都會得到兩個互相嵌套的環。中間永遠不會斷開,這也是莫比烏斯環的神奇之處。

四、克萊因瓶

在1882年,著名數學家菲利克斯·克萊因發現了後來以他的名字命名的著名「瓶子」:克萊因瓶。克萊因瓶就像是一個瓶子,但是它沒有瓶底,它的瓶頸被拉長,然後似乎是穿過了瓶壁,最後瓶頸和瓶底圈連在了一起。有趣的是,如果把克萊因瓶沿著它的對稱線切下去,竟會得到兩個莫比烏斯環。

五、黃金分割

黃金分割提出者是畢達哥拉斯。

有一次,畢達哥拉斯路過鐵匠作坊,被叮叮當當的打鐵聲迷住了。為了揭開這些聲音的秘密,他測量了鐵錘和鐵砧的尺寸,發現它們存在著十分和諧的比例關系。回家後,他取出一根線,分為兩段,反復比較,最後認定1:0.618的比例最為優美。這個比例被公認為是最能引起美感的比例,因此被稱為黃金分割。

❻ 數學小知識簡短有哪些

數學小知識簡短有:

1、傳說早在四千五百年以前,我們的祖先就用刻漏來計時。

2、荷蘭數學家盧道夫把圓周率測算到了第35位。

3、早在2000多年前,我們的祖先就用磁石製作了指示方向的儀器,這種儀器就是司南。

4、中國是最開始採用四捨五入法完成測算的國家。

5、最早使用小圓點作為小數點的是德國的數學家,叫克拉維斯。

6、數字系統。數字系統是一種處理「多少」的方法。不同的文化在不同的時代採用了各種不同的方法,從基本的「1,2,3,很多」延伸到今天所使用的高度復雜的十進製表示方法。

❼ 數學小知識簡短有哪些

數學小知識簡短:

1、早在2000多年前,我們的祖先就用磁石製作了指示方向的儀器,這種儀器就是司南。

2、最早使用小圓點作為小數點的是德國的數學家,叫克拉維斯。

4、「七巧板」是我國古代的一種拼板玩具,由七塊可以拼成一個大正方形的薄板組成,拼出來的圖案變化萬千,後來傳到國外叫做唐圖。

5、傳說早在四千五百年前,我們的祖先就用刻漏來計時。

6、中國是最早使用四捨五入法進行計算的國家。

7、歐幾里得最著名的著作《幾何原本》是歐洲數學的基礎,提出五大公設,發展為歐幾里得幾何,被廣泛的認為是歷史上最成功的教科書。

8、中國南北朝時代南朝數學家、天文學家、物理學家祖沖之把圓周率數值推算到了第7位數。

9、荷蘭數學家盧道夫把圓周率推算到了第35位。

10、有「力學之父」美稱的阿基米德流傳於世的數學著作有10餘種,阿基米德曾說過:給我一個支點,我可以翹起地球。這句話告訴我們:要有勇氣去尋找這個支點,要用於尋找真理。

11、零。在很早的時候,以為「1」是「數字字元表」的開始,並且它進一步引出了2,3,4,5等其他數字。這些數字的作用是,對那些真實存在的物體,如蘋果、香蕉、梨等進行計數。直到後來,才學會,當盒子里邊已經沒有蘋果時,如何計數里邊的蘋果數。

12、數字系統。數字系統是一種處理「多少」的方法。不同的文化在不同的時代採用了各種不同的方法,從基本的「1,2,3,很多」延伸到今天所使用的高度復雜的十進製表示方法。

❽ 本科的高等數學里,那一個部分比較難,難以理解,清各位學長指教

是的,高等數學最難的地方就是極限的概念,可以說這部分是貫穿始終的,以後就會發現後面的很多都是以這個為基礎,要是理解好的話後面的學習就相對輕松多了。剛開始學不明白是正常的,首先這部分比較抽象,不好理解,而且大學的講課方式和高中不一樣,講的很快,可能你還沒理解老師就講完了,或者總想找點參考書看。其實大家的感覺都一樣。
具體的學習方法就是上課一定要認真聽,認真記筆記,可以說考試的東西全都是課堂講的那些,絕對不可能超出課堂講的范圍。參考書沒必要,把教材上的內容看懂,課後題都做了就足夠了,不懂就問老師,不會不給你講的。
對於考試,重點是課堂上講的例題,那些都是典型題,肯定是考試的重點。最壞的情況,哪怕不理解也要把過程背下來,考試起碼能應付。但是,要想得個好分數,光背是不夠的,一定要理解概念。當然這需要時間,即使不能馬上都掌握,也別灰心。

❾ 高中數學哪些知識點最難學最讓人崩潰

高中數學重點有什麼?該怎樣攻克?

高中數學重點內容還有很多.這些重點都是保持多年來的經驗,他們分析過高考數學的題型,高中數學重點分為以下幾個部分.

向量講解

其實高中數學重點就是在必修的裡面.必修是每個高中生都必須學習的,不管是分不分文理科,他們都是會學習的.很多重點都是在必修裡面,然而在選秀當中就是講一些統計之類的問題,這都是我們在生活當中就會學到的,所以這些都不是重點,重中之重就是在必修的課本當中.