當前位置:首頁 » 基礎知識 » 高一數學網路知識構建
擴展閱讀
舉報拐賣兒童如何報警 2024-11-16 00:49:08

高一數學網路知識構建

發布時間: 2022-12-16 19:28:12

㈠ 高一數學知識點歸納梳理

總結 就是把一個時間段取得的成績、存在的問題及得到的 經驗 和教訓進行一次全面系統的總結的書面材料,它可以明確下一步的工作方向,少走彎路,少犯錯誤,提高工作效益,下面是我給大家帶來的 高一數學 知識點歸納梳理,以供大家參考!

高一數學知識點歸納梳理

並集:以屬於A或屬於B的元素為元素的集合稱為A與B的並(集),記作A∪B(或B∪A),讀作「A並B」(或「B並A」),即A∪B={x|x∈A,或x∈B}交集:以屬於A且屬於B的元差集表示

素為元素的集合稱為A與B的交(集),記作A∩B(或B∩A),讀作「A交B」(或「B交A」),即A∩B={x|x∈A,且x∈B}例如,全集U={1,2,3,4,5}A={1,3,5}B={1,2,5}。那麼因為A和B中都有1,5,所以A∩B={1,5}。再來看看,他們兩個中含有1,2,3,5這些個元素,不管多少,反正不是你有,就是我有。那麼說A∪B={1,2,3,5}。圖中的陰影部分就是A∩B。有趣的是;例如在1到105中不是3,5,7的整倍數的數有多少個。結果是3,5,7每項減集合

1再相乘。48個。對稱差集:設A,B為集合,A與B的對稱差集A?B定義為:A?B=(A-B)∪(B-A)例如:A={a,b,c},B={b,d},則A?B={a,c,d}對稱差運算的另一種定義是:A?B=(A∪B)-(A∩B)無限集:定義:集合里含有無限個元素的集合叫做無限集有限集:令N_是正整數的全體,且N_n={1,2,3,……,n},如果存在一個正整數n,使得集合A與N_n一一對應,那麼A叫做有限集合。差:以屬於A而不屬於B的元素為元素的集合稱為A與B的差(集)。記作:AB={x│x∈A,x不屬於B}。註:空集包含於任何集合,但不能說「空集屬於任何集合」.補集:是從差集中引出的概念,指屬於全集U不屬於集合A的元素組成的集合稱為集合A的補集,記作CuA,即CuA={x|x∈U,且x不屬於A}空集也被認為是有限集合。例如,全集U={1,2,3,4,5}而A={1,2,5}那麼全集有而A中沒有的3,4就是CuA,是A的補集。CuA={3,4}。在信息技術當中,常常把CuA寫成~A。

高一數學知識點小結大全

知識點總結

本節知識包括函數的單調性、函數的奇偶性、函數的周期性、函數的最值、函數的對稱性和函數的圖象等知識點。函數的單調性、函數的奇偶性、函數的周期性、函數的最值、函數的對稱性是學習函數的圖象的基礎,函數的圖象是它們的綜合。所以理解了前面的幾個知識點,函數的圖象就迎刃而解了。

一、函數的單調性

1、函數單調性的定義

2、函數單調性的判斷和證明:(1)定義法 (2)復合函數分析法 (3)導數證明法 (4)圖象法

二、函數的奇偶性和周期性

1、函數的奇偶性和周期性的定義

2、函數的奇偶性的判定和證明 方法

3、函數的周期性的判定方法

三、函數的圖象

1、函數圖象的作法 (1)描點法 (2)圖象變換法

2、圖象變換包括圖象:平移變換、伸縮變換、對稱變換、翻折變換。

常見考法

本節是段考和高考必不可少的考查內容,是段考和高考考查的重點和難點。選擇題、填空題和解答題都有,並且題目難度較大。在解答題中,它可以和高中數學的每一章聯合考查,多屬於拔高題。多考查函數的單調性、最值和圖象等。

誤區提醒

1、求函數的單調區間,必須先求函數的定義域,即遵循「函數問題定義域優先的原則」。

2、單調區間必須用區間來表示,不能用集合或不等式,單調區間一般寫成開區間,不必考慮端點問題。

3、在多個單調區間之間不能用「或」和「 」連接,只能用逗號隔開。

4、判斷函數的奇偶性,首先必須考慮函數的定義域,如果函數的定義域不關於原點對稱,則函數一定是非奇非偶函數。

5、作函數的圖象,一般是首先化簡解析式,然後確定用描點法或圖象變換法作函數的圖象。

高一數學知識點摘要

集合間的基本關系

1.「包含」關系—子集

注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。 反之: 集合A不包含於集合B,或集合B不包含集合A,記作A B或B A

2.「相等」關系(5≥5,且5≤5,則5=5)

實例:設 A={x|x2-1=0} B={-1,1} 「元素相同」

結論:對於兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時,集合B的任何一個元素都是集合A的元素,我們就說集合A等於集合B,即:A=B

A?① 任何一個集合是它本身的子集。A

B那就說集合A是集合B的真子集,記作A B(或B A)?B,且A?②真子集:如果A

C?C ,那麼 A?B, B?③如果 A

A 那麼A=B?B 同時 B?④ 如果A

3. 不含任何元素的集合叫做空集,記為Φ

規定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

集合的運算

1.交集的定義:一般地,由所有屬於A且屬於B的元素所組成的集合,叫做A,B的交集.

記作A∩B(讀作」A交B」),即A∩B={x|x∈A,且x∈B}.

2、並集的定義:一般地,由所有屬於集合A或屬於集合B的元素所組成的集合,叫做A,B的並集。記作:A∪B(讀作」A並B」),即A∪B={x|x∈A,或x∈B}.

3、交集與並集的性質:A∩A = A, A∩φ= φ, A∩B = B∩A,A∪A = A, A∪φ= A ,A∪B = B∪A.

4、全集與補集

(1)補集:設S是一個集合,A是S的一個子集(即 ),由S中所有不屬於A的元素組成的集合,叫做S中子集A的補集(或余集)

A}?S且 x? x?記作: CSA 即 CSA ={x

(2)全集:如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集。通常用U來表示。

(3)性質:⑴CU(C UA)=A ⑵(C UA)∩A=Φ ⑶(CUA)∪A=U

高一數學知識點歸納梳理相關 文章 :

★ 高一數學第一冊必掌握的知識點歸納

★ 高一數學必會必備知識點總結歸納

★ 高一數學基礎知識

★ 高一學年數學總知識點復習歸納

★ 高一數學必修知識點梳理

★ 高一數學知識點大全

★ 高一數學必修一知識點梳理

★ 高一數學考點知識點總結

★ 高中數學必修一三角函數知識點總結

★ 高中數學演算法初步知識點整理

㈡ 高一數學知識點總結

高一數學的知識掌握較多,高一試題約占高考得分的60%,一學年要學五本書,只要把高一的數學掌握牢靠,高二,高三則只是對高一的復習與補充。以下是我整理的高一數學集合知識點總結,歡迎參考閱讀!

一.知識歸納:

1.集合的有關概念。

1)集合(集):某些指定的對象集在一起就成為一個集合(集).其中每一個對象叫元素

注意:①集合與集合的元素是兩個不同的概念,教科書中是通過描述給出的,這與平面幾何中的點與直線的概念類似。

②集合中的元素具有確定性(aA和aA,二者必居其一)、互異性(若a?A,b?A,則a≠b)和無序性({a,b}與{b,a}表示同一個集合)。

③集合具有兩方面的意義,即:凡是符合條件的對象都是它的元素;只要是它的元素就必須符號條件

2)集合的表示方法:常用的'有列舉法、描述法和圖文法

3)集合的分類:有限集,無限集,空集。

4)常用數集:N,Z,Q,R,N*

2.子集、交集、並集、補集、空集、全集等概念。

1)子集:若對x∈A都有x∈B,則A B(或A B);

2)真子集:A B且存在x0∈B但x0 A;記為A B(或 ,且 )

3)交集:A∩B={x| x∈A且x∈B}

4)並集:A∪B={x| x∈A或x∈B}

5)補集:CUA={x| x A但x∈U}

注意:①? A,若A≠?,則? A ;

②若 , ,則 ;

③若 且 ,則A=B(等集)

3.弄清集合與元素、集合與集合的關系,掌握有關的術語和符號,特別要注意以下的符號:(1) 與 、?的區別;(2) 與 的區別;(3) 與 的區別。

4.有關子集的幾個等價關系

①A∩B=A A B;②A∪B=B A B;③A B C uA C uB;

④A∩CuB = 空集 CuA B;⑤CuA∪B=I A B。

5.交、並集運算的性質

①A∩A=A,A∩? = ?,A∩B=B∩A;②A∪A=A,A∪? =A,A∪B=B∪A;

③Cu (A∪B)= CuA∩CuB,Cu (A∩B)= CuA∪CuB;

6.有限子集的個數:設集合A的元素個數是n,則A有2n個子集,2n-1個非空子集,2n-2個非空真子集。

二.例題講解:

【例1】已知集合M={x|x=m+ ,m∈Z},N={x|x= ,n∈Z},P={x|x= ,p∈Z},則M,N,P滿足關系

A) M=N P B) M N=P C) M N P D) N P M

分析一:從判斷元素的共性與區別入手。

解答一:對於集合M:{x|x= ,m∈Z};對於集合N:{x|x= ,n∈Z}

對於集合P:{x|x= ,p∈Z},由於3(n-1)+1和3p+1都表示被3除餘1的數,而6m+1表示被6除餘1的數,所以M N=P,故選B。

分析二:簡單列舉集合中的元素。

解答二:M={…, ,…},N={…, , , ,…},P={…, , ,…},這時不要急於判斷三個集合間的關系,應分析各集合中不同的元素。

= ∈N, ∈N,∴M N,又 = M,∴M N,

= P,∴N P 又 ∈N,∴P N,故P=N,所以選B。

點評:由於思路二隻是停留在最初的歸納假設,沒有從理論上解決問題,因此提倡思路一,但思路二易人手。

變式:設集合 , ,則( B )

A.M=N B.M N C.N M D.

解:

當 時,2k+1是奇數,k+2是整數,選B

【例2】定義集合A*B={x|x∈A且x B},若A={1,3,5,7},B={2,3,5},則A*B的子集個數為

A)1 B)2 C)3 D)4

分析:確定集合A*B子集的個數,首先要確定元素的個數,然後再利用公式:集合A={a1,a2,…,an}有子集2n個來求解。

解答:∵A*B={x|x∈A且x B}, ∴A*B={1,7},有兩個元素,故A*B的子集共有22個。選D。

變式1:已知非空集合M {1,2,3,4,5},且若a∈M,則6?a∈M,那麼集合M的個數為

A)5個 B)6個 C)7個 D)8個

變式2:已知{a,b} A {a,b,c,d,e},求集合A.

解:由已知,集合中必須含有元素a,b.

集合A可能是{a,b},{a,b,c},{a,b,d},{a,b,e},{a,b,c,d},{a,b,c,e},{a,b,d,e}.

評析 本題集合A的個數實為集合{c,d,e}的真子集的個數,所以共有 個 .

【例3】已知集合A={x|x2+px+q=0},B={x|x2?4x+r=0},且A∩B={1},A∪B={?2,1,3},求實數p,q,r的值。

解答:∵A∩B={1} ∴1∈B ∴12?4×1+r=0,r=3.

∴B={x|x2?4x+r=0}={1,3}, ∵A∪B={?2,1,3},?2 B, ∴?2∈A

∵A∩B={1} ∴1∈A ∴方程x2+px+q=0的兩根為-2和1,

∴ ∴

變式:已知集合A={x|x2+bx+c=0},B={x|x2+mx+6=0},且A∩B={2},A∪B=B,求實數b,c,m的值.

解:∵A∩B={2} ∴1∈B ∴22+m?2+6=0,m=-5

∴B={x|x2-5x+6=0}={2,3} ∵A∪B=B ∴

又 ∵A∩B={2} ∴A={2} ∴b=-(2+2)=4,c=2×2=4

∴b=-4,c=4,m=-5

【例4】已知集合A={x|(x-1)(x+1)(x+2)>0},集合B滿足:A∪B={x|x>-2},且A∩B={x|1

分析:先化簡集合A,然後由A∪B和A∩B分別確定數軸上哪些元素屬於B,哪些元素不屬於B。

解答:A={x|-21}。由A∩B={x|1-2}可知[-1,1] B,而(-∞,-2)∩B=ф。

綜合以上各式有B={x|-1≤x≤5}

變式1:若A={x|x3+2x2-8x>0},B={x|x2+ax+b≤0},已知A∪B={x|x>-4},A∩B=Φ,求a,b。(答案:a=-2,b=0)

點評:在解有關不等式解集一類集合問題,應注意用數形結合的方法,作出數軸來解之。

變式2:設M={x|x2-2x-3=0},N={x|ax-1=0},若M∩N=N,求所有滿足條件的a的集合。

解答:M={-1,3} , ∵M∩N=N, ∴N M

①當 時,ax-1=0無解,∴a=0 ②

綜①②得:所求集合為{-1,0, }

【例5】已知集合 ,函數y=log2(ax2-2x+2)的定義域為Q,若P∩Q≠Φ,求實數a的取值范圍。

分析:先將原問題轉化為不等式ax2-2x+2>0在 有解,再利用參數分離求解。

解答:(1)若 , 在 內有有解

令 當 時,

所以a>-4,所以a的取值范圍是

變式:若關於x的方程 有實根,求實數a的取值范圍。

解答:

點評:解決含參數問題的題目,一般要進行分類討論,但並不是所有的問題都要討論,怎樣可以避免討論是我們思考此類問題的關鍵。

㈢ 高一數學知識點重點大全

總結 是在一段時間內對學習和工作生活等表現加以總結和概括的一種書面材料,它是增長才乾的一種好辦法,讓我們一起認真地寫一份總結吧。總結怎麼寫才能發揮它的作用呢?下面是我給大家帶來的 高一數學 知識點重點大全,以供大家參考!

高一數學知識點重點大全

(1)指數函數的定義域為所有實數的集合,這里的前提是a大於0,對於a不大於0的情況,則必然使得函數的定義域不存在連續的區間,因此我們不予考慮。

(2)指數函數的值域為大於0的實數集合。

(3)函數圖形都是下凹的。

(4)a大於1,則指數函數單調遞增;a小於1大於0,則為單調遞減的。

(5)可以看到一個顯然的規律,就是當a從0趨向於無窮大的過程中(當然不能等於0),函數的曲線從分別接近於Y軸與X軸的正半軸的單調遞減函數的位置,趨向分別接近於Y軸的正半軸與X軸的負半軸的單調遞增函數的位置。其中水平直線y=1是從遞減到遞增的一個過渡位置。

(6)函數總是在某一個方向上無限趨向於X軸,永不相交。

(7)函數總是通過(0,1)這點。

(8)顯然指數函數無界。

奇偶性

定義

一般地,對於函數f(x)

(1)如果對於函數定義域內的任意一個x,都有f(-x)=-f(x),那麼函數f(x)就叫做奇函數。

(2)如果對於函數定義域內的任意一個x,都有f(-x)=f(x),那麼函數f(x)就叫做偶函數。

(3)如果對於函數定義域內的任意一個x,f(-x)=-f(x)與f(-x)=f(x)同時成立,那麼函數f(x)既是奇函數又是偶函數,稱為既奇又偶函數。

(4)如果對於函數定義域內的任意一個x,f(-x)=-f(x)與f(-x)=f(x)都不能成立,那麼函數f(x)既不是奇函數又不是偶函數,稱為非奇非偶函數。

對於a的取值為非零有理數,有必要分成幾種情況來討論各自的特性:

首先我們知道如果a=p/q,q和p都是整數,則x^(p/q)=q次根號(x的p次方),如果q是奇數,函數的定義域是R,如果q是偶數,函數的定義域是[0,+∞)。當指數n是負整數時,設a=-k,則x=1/(x^k),顯然x≠0,函數的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來源於兩點,一是有可能作為分母而不能是0,一是有可能在偶數次的根號下而不能為負數,那麼我們就可以知道:

排除了為0與負數兩種可能,即對於x>0,則a可以是任意實數;

排除了為0這種可能,即對於x<0和x>0的所有實數,q不能是偶數;

排除了為負數這種可能,即對於x為大於且等於0的所有實數,a就不能是負數。

總結起來,就可以得到當a為不同的數值時,冪函數的定義域的不同情況如下:如果a為任意實數,則函數的定義域為大於0的所有實數;

如果a為負數,則x肯定不能為0,不過這時函數的定義域還必須根據q的奇偶性來確定,即如果同時q為偶數,則x不能小於0,這時函數的定義域為大於0的所有實數;如果同時q為奇數,則函數的定義域為不等於0的所有實數。

在x大於0時,函數的值域總是大於0的實數。

在x小於0時,則只有同時q為奇數,函數的值域為非零的實數。

而只有a為正數,0才進入函數的值域。

由於x大於0是對a的任意取值都有意義的,因此下面給出冪函數在第一象限的各自情況.

可以看到:

(1)所有的圖形都通過(1,1)這點。

(2)當a大於0時,冪函數為單調遞增的,而a小於0時,冪函數為單調遞減函數。

(3)當a大於1時,冪函數圖形下凹;當a小於1大於0時,冪函數圖形上凸。

(4)當a小於0時,a越小,圖形傾斜程度越大。

(5)a大於0,函數過(0,0);a小於0,函數不過(0,0)點。

(6)顯然冪函數無界。

定義:

x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規定它的傾斜角為0度。

范圍:

傾斜角的取值范圍是0°≤α<180°。

理解:

(1)注意「兩個方向」:直線向上的方向、x軸的正方向;

(2)規定當直線和x軸平行或重合時,它的傾斜角為0度。

意義:

①直線的傾斜角,體現了直線對x軸正向的傾斜程度;

②在平面直角坐標系中,每一條直線都有一個確定的傾斜角;

③傾斜角相同,未必表示同一條直線。

公式:

k=tanα

k>0時α∈(0°,90°)

k<0時α∈(90°,180°)

k=0時α=0°

當α=90°時k不存在

ax+by+c=0(a≠0)傾斜角為A,

則tanA=-a/b,

A=arctan(-a/b)

當a≠0時,

傾斜角為90度,即與X軸垂直

人教版高一數學必修一知識點梳理

1、柱、錐、台、球的結構特徵

(1)稜柱:

定義:有兩個面互相平行,其餘各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。

分類:以底面多邊形的邊數作為分類的標准分為三稜柱、四稜柱、五稜柱等。

表示:用各頂點字母,如五稜柱或用對角線的端點字母,如五稜柱。

幾何特徵:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行於底面的截面是與底面全等的多邊形。

(2)棱錐

定義:有一個面是多邊形,其餘各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體。

分類:以底面多邊形的邊數作為分類的標准分為三棱錐、四棱錐、五棱錐等

表示:用各頂點字母,如五棱錐

幾何特徵:側面、對角面都是三角形;平行於底面的截面與底 面相 似,其相似比等於頂點到截面距離與高的比的平方。

(3)稜台:

定義:用一個平行於棱錐底面的平面去截棱錐,截面和底面之間的部分。

分類:以底面多邊形的邊數作為分類的標准分為三棱態、四稜台、五稜台等

表示:用各頂點字母,如五稜台

幾何特徵:①上下底面是相似的平行多邊形②側面是梯形③側棱交於原棱錐的頂點

(4)圓柱:

定義:以矩形的一邊所在的直線為軸旋轉,其餘三邊旋轉所成的曲面所圍成的幾何體。

幾何特徵:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側面展開圖是一個矩形。

(5)圓錐:

定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成的曲面所圍成的幾何體。

幾何特徵:①底面是一個圓;②母線交於圓錐的頂點;③側面展開圖是一個扇形。

(6)圓台:

定義:用一個平行於圓錐底面的平面去截圓錐,截面和底面之間的部分

幾何特徵:①上下底面是兩個圓;②側面母線交於原圓錐的頂點;③側面展開圖是一個弓形。

(7)球體:

定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體

幾何特徵:①球的截面是圓;②球面上任意一點到球心的距離等於半徑。

2、空間幾何體的三視圖

定義三視圖:正視圖(光線從幾何體的前面向後面正投影);側視圖(從左向右)、俯視圖(從上向下)

註:正視圖反映了物體上下、左右的位置關系,即反映了物體的高度和長度;

俯視圖反映了物體左右、前後的位置關系,即反映了物體的長度和寬度;

側視圖反映了物體上下、前後的位置關系,即反映了物體的高度和寬度。

3、空間幾何體的直觀圖——斜二測畫法

斜二測畫法特點:

①原來與x軸平行的線段仍然與x平行且長度不變;

②原來與y軸平行的線段仍然與y平行,長度為原來的一半。

高一數學知識點總結歸納

一:集合的含義與表示

1、集合的含義:集合為一些確定的、不同的東西的全體,人們能意識到這些東西,並且能判斷一個給定的東西是否屬於這個整體。

把研究對象統稱為元素,把一些元素組成的總體叫集合,簡稱為集。

2、集合的中元素的三個特性:

(1)元素的確定性:集合確定,則一元素是否屬於這個集合是確定的:屬於或不屬於。

(2)元素的互異性:一個給定集合中的元素是的,不可重復的。

(3)元素的無序性:集合中元素的位置是可以改變的,並且改變位置不影響集合

3、集合的表示:{……}

(1)用大寫字母表示集合:A={我校的 籃球 隊員},B={1,2,3,4,5}

(2)集合的表示 方法 :列舉法與描述法。

a、列舉法:將集合中的元素一一列舉出來{a,b,c……}

b、描述法:

①區間法:將集合中元素的公共屬性描述出來,寫在大括弧內表示集合。

{x?R|x—3>2},{x|x—3>2}

②語言描述法:例:{不是直角三角形的三角形}

③Venn圖:畫出一條封閉的曲線,曲線裡面表示集合。

4、集合的分類:

(1)有限集:含有有限個元素的集合

(2)無限集:含有無限個元素的集合

(3)空集:不含任何元素的集合

5、元素與集合的關系:

(1)元素在集合里,則元素屬於集合,即:a?A

(2)元素不在集合里,則元素不屬於集合,即:a¢A

注意:常用數集及其記法:

非負整數集(即自然數集)記作:N

正整數集N—或N+

整數集Z

有理數集Q

實數集R

6、集合間的基本關系

(1)。「包含」關系(1)—子集

定義:如果集合A的任何一個元素都是集合B的元素,我們說這兩個集合有包含關系,稱集合A是集合B的子集。


高一數學知識點重點大全相關 文章 :

★ 高一數學知識點匯總大全

★ 高一數學知識點大全

★ 高一數學必記知識點概括

★ 高一數學知識點(考前必看)

★ 高一數學必修一知識點匯總

★ 高一數學重點知識點公式總結

★ 高一數學知識點總結歸納

★ 高一數學知識點總結(人教版)

★ 高一數學知識點小歸納

★ 高一數學知識點全面總結

㈣ 高一數學知識梳理

一 集合與簡易邏輯
集合具有四個性質 廣泛性 集合的元素什麼都可以
確定性 集合中的元素必須是確定的,比如說是好學生就不具有這種性質,因為它的概念是模糊不清的
互異性 集合中的元素必須是互不相等的,一個元素不能重復出現
無序性 集合中的元素與順序無關
二 函數
這是個重點,但是說起來也不好說,要作專題訓練,比如說二次函數,指數對數函數等等做這一類型題的時候,要掌握幾個函數思想如 構造函數 函數與方程結合 對稱思想,換元等等
三 數列
這也是個比較重要的題型,做體的時候要有整體思想,整體代換,等比等差要分開來,也要注意聯系,這樣才能做好,注意觀察數列的形式判斷是什麼數列,還要掌握求數列通向公式的幾種方法,和求和公式,求和方法,比如裂項相消,錯位相減,公式法,分組求和法等等
四 三角函數
三角函數不是考試題型,只是個應用的知識點,所以只要記熟特殊角的三角函數值和一些重要的定理就行
五 平面向量
這是個比較抽象的把幾何與代數結合起來的重難點,結體的時候要有技巧,主要就是把基本知識掌握到位,注意拓展,另外要多做題,見的題型多,結體的時候就有思路,能夠把問題簡單化,有利於提高做題效率
高一的數學只是入門,只要把基礎的掌握了,做題就沒什麼大問題了,數學就可以上130

㈤ 高一數學知識點匯總大全

學習任何一門知識點都要學會對該知識點進行 總結 ,這樣可以檢查學生對知識的真正掌握程度以及方便學生日後的復習。下面給大家帶來一些 高一數學 知識點,希望對大家有所幫助。

目錄

高一數學知識點匯總

高一數學知識點

高一數學知識點大全

高一數學知識點匯總合集

高一數學知識點匯總

函數的有關概念

1.函數的概念:設A、B是非空的數集,如果按照某個確定的對應關系f,使對於集合A中的任意一個數x,在集合B中都有唯一確定的數f(x)和它對應,那麼就稱f:A→B為從集合A到集合B的一個函數.記作: y=f(x),x∈A.其中,x叫做自變數,x的取值范圍A叫做函數的定義域;與x的值相對應的y值叫做函數值,函數值的集合{f(x)| x∈A }叫做函數的值域.

注意:

1.定義域:能使函數式有意義的實數x的集合稱為函數的定義域。

求函數的定義域時列不等式組的主要依據是:

(1)分式的分母不等於零;

(2)偶次方根的被開方數不小於零;

(3)對數式的真數必須大於零;

(4)指數、對數式的底必須大於零且不等於1.

(5)如果函數是由一些基本函數通過四則運算結合而成的.那麼,它的定義域是使各部分都有意義的x的值組成的集合.

(6)指數為零底不可以等於零,

(7)實際問題中的函數的定義域還要保證實際問題有意義.

u 相同函數的判斷 方法 :①表達式相同(與表示自變數和函數值的字母無關);②定義域一致 (兩點必須同時具備)

2.值域 : 先考慮其定義域

(1)觀察法

(2)配方法

(3)代換法

3. 函數圖象知識歸納

(1)定義:在平面直角坐標系中,以函數 y=f(x) , (x∈A)中的x為橫坐標,函數值y為縱坐標的點P(x,y)的集合C,叫做函數 y=f(x),(x ∈A)的圖象.C上每一點的坐標(x,y)均滿足函數關系y=f(x),反過來,以滿足y=f(x)的每一組有序實數對x、y為坐標的點(x,y),均在C上 .

(2) 畫法

A、 描點法:

B、 圖象變換法

常用變換方法有三種

1) 平移變換

2) 伸縮變換

3) 對稱變換

4.區間的概念

(1)區間的分類:開區間、閉區間、半開半閉區間

(2)無窮區間

(3)區間的數軸表示.

5.映射

一般地,設A、B是兩個非空的集合,如果按某一個確定的對應法則f,使對於集合A中的任意一個元素x,在集合B中都有唯

通過上面的高一數學必修1知識點總結,同學們已經梳理了一遍高一數學必修1的知識點,也加深了對該知識的更深了解,相信同學們一定能學好這部分知識點,也希望同學們以後的學習中多做總結。


高一數學知識點

集合

(1)含n個元素的集合的子集數為2^n,真子集數為2^n-1;非空真子集的數為2^n-2;

(2)注意:討論的時候不要遺忘了的情況。

(3)

第二部分函數與導數

1.映射:注意①第一個集合中的元素必須有象;②一對一,或多對一。

2.函數值域的求法:①分析法;②配方法;③判別式法;④利用函數單調性;

⑤換元法;⑥利用均值不等式;⑦利用數形結合或幾何意義(斜率、距離、絕對值的意義等);⑧利用函數有界性(、、等);⑨導數法

3.復合函數的有關問題

(1)復合函數定義域求法:

①若f(x)的定義域為〔a,b〕,則復合函數f[g(x)]的定義域由不等式a≤g(x)≤b解出②若f[g(x)]的定義域為[a,b],求f(x)的定義域,相當於x∈[a,b]時,求g(x)的值域。

(2)復合函數單調性的判定:

①首先將原函數分解為基本函數:內函數與外函數;

②分別研究內、外函數在各自定義域內的單調性;

③根據「同性則增,異性則減」來判斷原函數在其定義域內的單調性。

注意:外函數的定義域是內函數的值域。

4.分段函數:值域(最值)、單調性、圖象等問題,先分段解決,再下結論。

5.函數的奇偶性

⑴函數的定義域關於原點對稱是函數具有奇偶性的必要條件;

⑵是奇函數;

⑶是偶函數;

⑷奇函數在原點有定義,則;

⑸在關於原點對稱的單調區間內:奇函數有相同的單調性,偶函數有相反的單調性;

(6)若所給函數的解析式較為復雜,應先等價變形,再判斷其奇偶性;


高一數學知識點大全

1.等差數列的定義

如果一個數列從第2項起,每一項與它的前一項的差等於同一個常數,那麼這個數列就叫做等差數列,這個常數叫做等差數列的公差,通常用字母d表示.

2.等差數列的通項公式

若等差數列{an}的首項是a1,公差是d,則其通項公式為an=a1+(n-1)d.

3.等差中項

如果A=(a+b)/2,那麼A叫做a與b的等差中項.

4.等差數列的常用性質

(1)通項公式的推廣:an=am+(n-m)d(n,m∈N_).

(2)若{an}為等差數列,且m+n=p+q,

則am+an=ap+aq(m,n,p,q∈N_).

(3)若{an}是等差數列,公差為d,則ak,ak+m,ak+2m,…(k,m∈N_)是公差為md的等差數列.

(4)數列Sm,S2m-Sm,S3m-S2m,…也是等差數列.

(5)S2n-1=(2n-1)an.

(6)若n為偶數,則S偶-S奇=nd/2;

若n為奇數,則S奇-S偶=a中(中間項).

注意:

一個推導

利用倒序相加法推導等差數列的前n項和公式:

Sn=a1+a2+a3+…+an,①

Sn=an+an-1+…+a1,②

①+②得:Sn=n(a1+an)/2

兩個技巧

已知三個或四個數組成等差數列的一類問題,要善於設元.

(1)若奇數個數成等差數列且和為定值時,可設為…,a-2d,a-d,a,a+d,a+2d,….

(2)若偶數個數成等差數列且和為定值時,可設為…,a-3d,a-d,a+d,a+3d,…,其餘各項再依據等差數列的定義進行對稱設元.

四種方法

等差數列的判斷方法

(1)定義法:對於n≥2的任意自然數,驗證an-an-1為同一常數;

(2)等差中項法:驗證2an-1=an+an-2(n≥3,n∈N_)都成立;

(3)通項公式法:驗證an=pn+q;

(4)前n項和公式法:驗證Sn=An2+Bn.

註:後兩種方法只能用來判斷是否為等差數列,而不能用來證明等差數列.


高一數學知識點匯總合集

兩個復數相等的定義:

如果兩個復數的實部和虛部分別相等,那麼我們就說這兩個復數相等,即:如果a,b,c,d∈R,那麼a+bi=c+di

a=c,b=d。特殊地,a,b∈R時,a+bi=0

a=0,b=0.

復數相等的充要條件,提供了將復數問題化歸為實數問題解決的途徑。

復數相等特別提醒:

一般地,兩個復數只能說相等或不相等,而不能比較大小。如果兩個復數都是實數,就可以比較大小,也只有當兩個復數全是實數時才能比較大小。

解復數相等問題的方法步驟:

(1)把給的復數化成復數的標准形式;

(2)根據復數相等的充要條件解之。

高中數學知識點總結理科歸納5

定義:

形如y=x^a(a為常數)的函數,即以底數為自變數冪為因變數,指數為常量的函數稱為冪函數。

定義域和值域:

當a為不同的數值時,冪函數的定義域的不同情況如下:如果a為任意實數,則函數的定義域為大於0的所有實數;如果a為負數,則x肯定不能為0,不過這時函數的定義域還必須根[據q的奇偶性來確定,即如果同時q為偶數,則x不能小於0,這時函數的定義域為大於0的所有實數;如果同時q為奇數,則函數的定義域為不等於0的所有實數。當x為不同的數值時,冪函數的值域的不同情況如下:在x大於0時,函數的值域總是大於0的實數。在x小於0時,則只有同時q為奇數,函數的值域為非零的實數。而只有a為正數,0才進入函數的值域。

性質:

對於a的取值為非零有理數,有必要分成幾種情況來討論各自的特性:

首先我們知道如果a=p/q,q和p都是整數,則x^(p/q)=q次根號(x的p次方),如果q是奇數,函數的定義域是R,如果q是偶數,函數的定義域是[0,+∞)。當指數n是負整數時,設a=-k,則x=1/(x^k),顯然x≠0,函數的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來源於兩點,一是有可能作為分母而不能是0,一是有可能在偶數次的根號下而不能為負數,那麼我們就可以知道:

排除了為0與負數兩種可能,即對於x>0,則a可以是任意實數;

排除了為0這種可能,即對於x

排除了為負數這種可能,即對於x為大於且等於0的所有實數,a就不能是負數。


高一數學知識點匯總大全相關 文章 :

★ 高一數學知識點全面總結

★ 高一數學集合知識點匯總

★ 高一數學知識點總結歸納

★ 高一數學知識點總結(考前必看)

★ 高一數學必修一知識點匯總

★ 高一數學知識點總結(人教版)

★ 高一數學常考知識點總結

★ 高一數學知識點總結

★ 高一數學知識點總結期末必備

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

㈥ 高一上數學知識點總結

總結好數學的知識點是非常重要的。下面是我網路收集整理的高一上數學知識點總結以供大家學習。

高一上數學知識點總結(一)

一、集合有關概念

1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。

2、集合的中元素的三個特性:

1.元素的確定性;2.元素的互異性;3.元素的無序性

說明:(1)對於一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。

(2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。

(3)集合中的元素是平等的,沒有先後順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。

(4)集合元素的三個特性使集合本身具有了確定性和整體性。

3、集合的表示:{…}如{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

1.用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

2.集合的表示方法:列舉法與描述法。

二、集合間的基本關系

1.“包含”關系—子集

注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

反之:集合A不包含於集合B,或集合B不包含集合A,記作AB或BA

2.“相等”關系(5≥5,且5≤5,則5=5)

實例:設A={x|x2-1=0}B={-1,1}“元素相同”

結論:對於兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時,集合B的任何一個元素都是集合A的元素,我們就說集合A等於集合B,即:A=B

①任何一個集合是它本身的子集。AíA

②真子集:如果AíB,且A1B那就說集合A是集合B的真子集,記作AB(或BA)

③如果AíB,BíC,那麼AíC

④如果AíB同時BíA那麼A=B

3.不含任何元素的集合叫做空集,記為Φ

規定:空集是任何集合的子集,空集是任何非空集合的真子集。

三、集合的運算

1.交集的定義:一般地,由所有屬於A且屬於B的元素所組成的集合,叫做A,B的交集.

記作A∩B(讀作”A交B”),即A∩B={x|x∈A,且x∈B}.

2、並集的定義:一般地,由所有屬於集合A或屬於集合B的元素所組成的集合,叫做A,B的並集。記作:A∪B(讀作”A並B”),即A∪B={x|x∈A,或x∈B}.

3、交集與並集的性質:A∩A=A,A∩φ=φ,A∩B=B∩A,A∪A=A,A∪φ=A,A∪B=B∪A.

高一上數學知識點總結(二)

1.函數的概念:設A、B是非空的數集,如果按照某個確定的對應關系f,使對於集合A中的任意一個數x,在集合B中都有唯一確定的數f(x)和它對應,那麼就稱f:A→B為從集合A到集合B的一個函數.記作:y=f(x),x∈A.其中,x叫做自變數,x的取值范圍A叫做函數的定義域;與x的值相對應的y值叫做函數值,函數值的集合{f(x)|x∈A}叫做函數的值域.

注意:2如果只給出解析式y=f(x),而沒有指明它的定義域,則函數的定義域即是指能使這個式子有意義的實數的集合;3函數的定義域、值域要寫成集合或區間的形式.

定義域補充

能使函數式有意義的實數x的集合稱為函數的定義域,求函數的定義域時列不等式組的主要依據是:(1)分式的分母不等於零;(2)偶次方根的被開方數不小於零;(3)對數式的真數必須大於零;(4)指數、對數式的底必須大於零且不等於1.(5)如果函數是由一些基本函數通過四則運算結合而成的.那麼,它的定義域是使各部分都有意義的x的值組成的集合.(6)指數為零底不可以等於零(6)實際問題中的函數的定義域還要保證實際問題有意義.

構成函數的三要素:定義域、對應關系和值域

再注意:(1)構成函數三個要素是定義域、對應關系和值域.由於值域是由定義域和對應關系決定的,所以,如果兩個函數的定義域和對應關系完全一致,即稱這兩個函數相等(或為同一函數)(2)兩個函數相等當且僅當它們的定義域和對應關系完全一致,而與表示自變數和函數值的字母無關。相同函數的判斷方法:①表達式相同;②定義域一致(兩點必須同時具備)

值域補充

(1)、函數的值域取決於定義域和對應法則,不論採取什麼方法求函數的值域都應先考慮其定義域.(2).應熟悉掌握一次函數、二次函數、指數、對數函數及各三角函數的值域,它是求解復雜函數值域的基礎。

3.函數圖象知識歸納

(1)定義:在平面直角坐標系中,以函數y=f(x),(x∈A)中的x為橫坐標,函數值y為縱坐標的點P(x,y)的集合C,叫做函數y=f(x),(x∈A)的圖象.

C上每一點的坐標(x,y)均滿足函數關系y=f(x),反過來,以滿足y=f(x)的每一組有序實數對x、y為坐標的點(x,y),均在C上.即記為C={P(x,y)|y=f(x),x∈A}

圖象C一般的是一條光滑的連續曲線(或直線),也可能是由與任意平行與Y軸的直線最多隻有一個交點的若干條曲線或離散點組成。

(2)畫法

A、描點法:根據函數解析式和定義域,求出x,y的一些對應值並列表,以(x,y)為坐標在坐標系內描出相應的點P(x,y),最後用平滑的曲線將這些點連接起來.

B、圖象變換法(請參考必修4三角函數)

常用變換方法有三種,即平移變換、伸縮變換和對稱變換

(3)作用:

1、直觀的看出函數的性質;2、利用數形結合的方法分析解題的思路。提高解題的速度。

高一上數學知識點總結(三)

函數的奇偶性

(1)偶函數

一般地,對於函數f(x)的定義域內的任意一個x,都有f(-x)=f(x),那麼f(x)就叫做偶函數.

(2)奇函數

一般地,對於函數f(x)的定義域內的任意一個x,都有f(-x)=—f(x),那麼f(x)就叫做奇函數.

注意:1函數是奇函數或是偶函數稱為函數的奇偶性,函數的奇偶性是函數的整體性質;函數可能沒有奇偶性,也可能既是奇函數又是偶函數。

2由函數的奇偶性定義可知,函數具有奇偶性的一個必要條件是,對於定義域內的任意一個x,則-x也一定是定義域內的一個自變數(即定義域關於原點對稱).

(3)具有奇偶性的函數的圖象的特徵

偶函數的圖象關於y軸對稱;奇函數的圖象關於原點對稱.

總結:利用定義判斷函數奇偶性的格式步驟:1首先確定函數的定義域,並判斷其定義域是否關於原點對稱;2確定f(-x)與f(x)的關系;3作出相應結論:若f(-x)=f(x)或f(-x)-f(x)=0,則f(x)是偶函數;若f(-x)=-f(x)或f(-x)+f(x)=0,則f(x)是奇函數。

注意啊:函數定義域關於原點對稱是函數具有奇偶性的必要條件.首先看函數的定義域是否關於原點對稱,若不對稱則函數是非奇非偶函數.若對稱,(1)再根據定義判定;(2)有時判定f(-x)=±f(x)比較困難,可考慮根據是否有f(-x)±f(x)=0或f(x)/f(-x)=±1來判定;(3)利用定理,或藉助函數的圖象判定。

9、函數的解析表達式

(1).函數的解析式是函數的一種表示方法,要求兩個變數之間的函數關系時,一是要求出它們之間的對應法則,二是要求出函數的定義域。

(2).求函數的解析式的主要方法有:待定系數法、換元法、消參法等,如果已知函數解析式的構造時,可用待定系數法;已知復合函數f[g(x)]的表達式時,可用換元法,這時要注意元的取值范圍;當已知表達式較簡單時,也可用湊配法;若已知抽象函數表達式,則常用解方程組消參的方法求出f(x)

10.函數最大(小)值(定義見課本p36頁)

1、利用二次函數的性質(配方法)求函數的最大(小)值2、利用圖象求函數的最大(小)值3、利用函數單調性的判斷函數的最大(小)值:如果函數y=f(x)在區間[a,b]上單調遞增,在區間[b,c]上單調遞減則函數y=f(x)在x=b處有最大值f(b);如果函數y=f(x)在區間[a,b]上單調遞減,在區間[b,c]上單調遞增則函數y=f(x)在x=b處有最小值f(b)。

㈦ 高一數學期中知識點總結

知識是取之不盡,用之不竭的。只有限度地挖掘它,才能體會到學習的樂趣。任何一門學科的知識都需要大量的記憶和練習來鞏固。雖然辛苦,但也伴隨著快樂!下面是我給大家整理的一些 高一數學 的知識點,希望對大家有所幫助。

高一數學必修四知識點梳理

1.回歸分析:

就是對具有相關關系的兩個變數之間的關系形式進行測定,確定一個相關的數學表達式,以便進行估計預測的統計分析 方法 。根據回歸分析方法得出的數學表達式稱為回歸方程,它可能是直線,也可能是曲線。

2.線性回歸方程

設x與y是具有相關關系的兩個變數,且相應於n組觀測值的n個點(xi,yi)(i=1,......,n)大致分布在一條直線的附近,則回歸直線的方程為。

其中。

3.線性相關性檢驗

線性相關性檢驗是一種假設檢驗,它給出了一個具體檢驗y與x之間線性相關與否的辦法。

①在課本附表3中查出與顯著性水平0.05與自由度n-2(n為觀測值組數)相應的相關系數臨界值r0.05。

②由公式,計算r的值。

③檢驗所得結果

如果|r|≤r0.05,可以認為y與x之間的線性相關關系不顯著,接受統計假設。

如果|r|>r0.05,可以認為y與x之間不具有線性相關關系的假設是不成立的,即y與x之間具有線性相關關系。

高 一年級數學 必修三知識點

1、演算法概念:

在數學中,演算法通常是指按照一定規則解決某一類問題的明確和有限的步驟.現在,演算法通常可以編成計算機程序,讓計算機執行並解決問題.

2、演算法的特徵

①有限性:演算法中的步驟序列是有限的,必須在有限操作之後停止,不能是無限的。

②確定性:演算法中的每一步應該是確定的並且能有效地執行且得到確定的結果,而不應當是模稜兩可。

③順序性與正確性:演算法從初始步驟開始,分為若干明確的步驟,每一個步驟只能有一個確定的後續步驟,前一步是後一步的前提,只有執行完前一步才能進行下一步,並且每一步都准確無誤,才能完成問題。

④不性:求解某一個問題的解法不一定是的,對於一個問題可以有不同的演算法。

⑤普通性:很多具體的問題,都可以設計合理的演算法去解決,如心算、計算其計算都要經過有限、事先設計好的步驟加以解決。

概率

(1)事件的包含、並事件、交事件、相等事件

(2)若A∩B為不可能事件,即A∩B=ф,即不可能同時發生的兩個事件,稱事件A與事件B互斥;

(3)若A∩B為不可能事件,A∪B為必然事件,即不能同時發生且必有一個發生的兩個事件,稱事件A與事件B互為對立事件;

概率加法公式:當事件A與B互斥時,滿足加法公式:P(A∪B)=P(A)+P(B);若事件A與B為對立事件,則A∪B為必然事件,所以P(A∪B)=P(A)+P(B)=1,於是有P(A)=1—P(B)

高一 數學 學習方法 參考

1.認真研讀《考試說明》和《考綱》

《考試說明》和《考綱》是每位考生必須熟悉的最權威最准確的高考信息,通過研究應明確「考什麼」、「考多難」、「怎樣考」這三個問題。

命題通常注意試題背景,強調數學思想,注重數學應用;試題強調問題性、啟發性,突出基礎性;重視通性通法,淡化特殊技巧,凸顯數學的問題思考;強化主幹知識;關注知識點的銜接,考察創新意識。

《考綱》明確指出「創新意識是 理性思維 的高層次表現」。因此試題都比較新穎活潑。所以復習中你就要加強對新題型的練習,揭示問題的本質,創造性地解決問題。

2.多維審視知識結構

高考數學試題一直注重對思維方法的考查,數學思維和方法是數學知識在更高層次上的抽象和概括。知識是思維能力的載體,因此通過對知識的考察達到考察數學思維的目的。你需要建立各部分內容的知識網路;全面、准確地把握概念,在理解的基礎上加強記憶;加強對易錯、易混知識的梳理;要多角度、多方位地去理解問題的實質;體會數學思想和解題的方法。

3.把答案蓋住看例題

參考書上例題不能看一下就過去了,因為看時往往覺得什麼都懂,其實自己並沒有理解透徹。所以,在看例題時,把解答蓋住,自己去做,做完或做不出時再去看,這時要想一想,自己做的與解答哪裡不同,哪裡沒想到,該注意什麼,哪一種方法更好,還有沒有另外的解法。經過上面的訓練,自己的思維空間擴展了,看問題也全面了。如果把題目的來源搞清了,在題後加上幾個批註,說明此題的.「題眼」及巧妙之處,收益將更大。

4.研究每題都考什麼

數學能力的提高離不開做題,「熟能生巧」這個簡單的道理大家都懂。但做題不是搞題海戰術,要通過一題聯想到多題。你需要著重研究解題的思維過程,弄清基本數學知識和基本數學思想在解題中的意義和作用,研究運用不同的思維方法解決同一數學問題的多條途徑,在分析解決問題的過程中既構建知識的橫向聯系又養成多角度思考問題的習慣。

與其一節課抓緊時間大汗淋淋地做二、三十道考查思路重復的題,不如深入透徹地掌握一道典型題。例如深入理解一個概念的多種內涵,對一個典型題,盡力做到從多條思路用多種方法處理,即一題多解;對具有共性的問題要努力摸索規律,即多題一解;不斷改變題目的條件,從各個側面去檢驗自己的知識,即一題多變。習題的價值不在於做對、做會,而在於你明白了這道題想考你什麼。

5.答題少費時多辦事

解題上要抓好三個字:數,式,形;閱讀、審題和表述上要實現數學的三種語言自如轉化(文字語言、符號語言、圖形語言)。要重視和加強選擇題的訓練和研究。不能僅僅滿足於答案正確,還要學會優化解題過程,追求解題質量,少費時,多辦事,以贏得足夠的時間思考解答高檔題。要不斷積累解選擇題的 經驗 ,盡可能小題小做,除直接法外,還要靈活運用特殊值法、排除法、檢驗法、數形結合法、估計法來解題。在做解答題時,書寫要簡明、扼要、規范,不要「小題大做」,只要寫出「得分點」即可。


高一數學期中知識點 總結 相關 文章 :

★ 高一數學的期中知識點是哪些

★ 高一數學知識點(考前必看)

★ 高一數學知識點匯總大全

★ 高中高一數學知識點總結

★ 高一數學期末知識點總結

★ 高一數學期末考試知識點總結

★ 高一數學知識點總結(人教版)

★ 高一數學知識點總結期末必備

★ 高一數學知識點全面總結

★ 高一數學知識點總結歸納

㈧ 高一函數知識點總結歸納

高中數學的學習難度主要在於概念的深入和 方法 的抽象。高一是數學學習的起步階段,更是重中之重。今天我在這給大家整理了高一函數知識點 總結 ,接下來隨著我一起來看看吧!

高一函數知識點總結

1 高一數學 函數知識點歸納1、函數:設A、B為非空集合,如果按照某個特定的對應關系f,使對於集合A中的任意一個數x,在集合B中都有唯一確定的數f(x)和它對應,那麼就稱f:A→B為從集合A到集合B的一個函數,寫作y=f(x),x∈A,其中,x叫做自變數,x的取值范圍A叫做函數的定義域,與x相對應的y的值叫做函數值,函數值的集合B={f(x)∣x∈A }叫做函數的值域。

2、函數定義域的解題思路:

⑴ 若x處於分母位置,則分母x不能為0。

⑵ 偶次方根的被開方數不小於0。

⑶ 對數式的真數必須大於0。

⑷ 指數對數式的底,不得為1,且必須大於0。

⑸ 指數為0時,底數不得為0。

⑹ 如果函數是由一些基本函數通過四則運算結合而成的,那麼,它的定義域是各個部分都有意義的x值組成的集合。

⑺ 實際問題中的函數的定義域還要保證實際問題有意義。

3、相同函數

⑴ 表達式相同:與表示自變數和函數值的字母無關。

⑵ 定義域一致,對應法則一致。

4、函數值域的求法

⑴ 觀察法:適用於初等函數及一些簡單的由初等函數通過四則運算得到的函數。

⑵ 圖像法:適用於易於畫出函數圖像的函數已經分段函數。

⑶ 配方法:主要用於二次函數,配方成 y=(x-a)2+b 的形式。

⑷ 代換法:主要用於由已知值域的函數推測未知函數的值域。

5、函數圖像的變換

⑴ 平移變換:在x軸上的變換在x上就行加減,在y軸上的變換在y上進行加減。

⑵ 伸縮變換:在x前加上系數。

⑶ 對稱變換:高中階段不作要求。

6、映射:設A、B是兩個非空集合,如果按某一個確定的對應法則f,使對於A中的任意儀的元素x,在集合B中都有唯一的確定的y與之對應,那麼就稱對應f:A→B為從集合A到集合B的映射。

⑴ 集合A中的每一個元素,在集合B中都有象,並且象是唯一的。

⑵ 集合A中的不同元素,在集合B中對應的象可以是同一個。

⑶ 不要求集合B中的每一個元素在集合A中都有原象。

7、分段函數

⑴ 在定義域的不同部分上有不同的解析式表達式。

⑵ 各部分自變數和函數值的取值范圍不同。

⑶ 分段函數的定義域是各段定義域的交集,值域是各段值域的並集。

8、復合函數:如果(u∈M),u=g(x) (x∈A),則,y=f[g(x)]=F(x) (x∈A),稱為f、g的復合函數。

2高一數學函數的性質1、函數的局部性質——單調性

設函數y=f(x)的定義域為I,如果對應定義域I內的某個區間D內的任意兩個變數x1、x2,當x1< x2時,都有f(x1)<f(x2),那麼y=f(x)在區間d上是增函數,d是函數y=f(x)的單調遞增區間;當x1< x2時,都有f(x1)="">f(x2),那麼那麼y=f(x)在區間D上是減函數,D是函數y=f(x)的單調遞減區間。

⑴函數區間單調性的判斷思路

ⅰ在給出區間內任取x1、x2,則x1、x2∈D,且x1< x2。

ⅱ 做差值f(x1)-f(x2),並進行變形和配方,變為易於判斷正負的形式。

ⅲ判斷變形後的表達式f(x1)-f(x2)的符號,指出單調性。

⑵復合函數的單調性

復合函數y=f[g(x)]的單調性與構成它的函數u=g(x),y=f(u)的單調性密切相關,其規律為「同增異減」;多個函數的復合函數,根據原則「減偶則增,減奇則減」。

⑶注意事項

函數的單調區間只能是其定義域的子區間,不能把單調性相同的區間和在一起寫成並集,如果函數在區間A和B上都遞增,則表示為f(x)的單調遞增區間為A和B,不能表示為A∪B。

2、函數的整體性質——奇偶性

對於函數f(x)定義域內的任意一個x,都有f(x) =f(-x),則f(x)就為偶函數;

對於函數f(x)定義域內的任意一個x,都有f(x) =-f(x),則f(x)就為奇函數。

我推薦:高中數學必考知識點歸納總結

⑴奇函數和偶函數的性質

ⅰ無論函數是奇函數還是偶函數,只要函數具有奇偶性,該函數的定義域一定關於原點對稱。

ⅱ奇函數的圖像關於原點對稱,偶函數的圖像關於y軸對稱。

⑵函數奇偶性判斷思路

ⅰ先確定函數的定義域是否關於原點對稱,若不關於原點對稱,則為非奇非偶函數。

ⅱ確定f(x) 和f(-x)的關系:

若f(x) -f(-x)=0,或f(x) /f(-x)=1,則函數為偶函數;

若f(x)+f(-x)=0,或f(x)/ f(-x)=-1,則函數為奇函數。

3、函數的最值問題

⑴對於二次函數,利用配方法,將函數化為y=(x-a)2+b的形式,得出函數的最大值或最小值。

⑵對於易於畫出函數圖像的函數,畫出圖像,從圖像中觀察最值。

⑶關於二次函數在閉區間的最值問題

ⅰ判斷二次函數的頂點是否在所求區間內,若在區間內,則接ⅱ,若不在區間內,則接ⅲ。

ⅱ 若二次函數的頂點在所求區間內,則在二次函數y=ax2+bx+c中,a>0時,頂點為最小值,a<0時頂點為最大值;後判斷區間的兩端點距離頂點的遠近,離頂點遠的端點的函數值,即為a>0時的最大值或a<0時的最小值。

ⅲ 若二次函數的頂點不在所求區間內,則判斷函數在該區間的單調性

若函數在[a,b]上遞增,則最小值為f(a),最大值為f(b);

若函數在[a,b]上遞減,則最小值為f(b),最大值為f(a)。

3高一數學基本初等函數1、指數函數:函數y=ax (a>0且a≠1)叫做指數函數

a 的取值 a>1 0<a<1 定義域 x∈R x∈R 值域 y∈(0,+∞) y∈(0,+∞) 單調性 全定義域單調遞增 全定義域單調遞減 奇偶性 非奇非偶函數 非奇非偶函數 過定點 (0,1) (0,1)

注意:⑴由函數的單調性可以看出,在閉區間[a,b]上,指數函數的最值為:

a>1時,最小值f(a),最大值f(b);0<a<1時,最小值f(b),最大值f(a)。< p="">

⑵ 對於任意指數函數y=ax (a>0且a≠1),都有f(1)=a。

2、對數函數:函數y=logax(a>0且a≠1)),叫做對數函數

a 的取值 a>1 0<a<1 定義域 x∈(0,+∞) x∈(0,+∞) 值域 y∈R y∈R 單調性 全定義域單調遞 全定義域單調遞減 奇偶性 非奇非偶函數 非奇非偶函數 過定點 (1,0) (1,0)

3、冪函數:函數y=xa(a∈R),高中階段,冪函數只研究第I象限的情況。

⑴所有冪函數都在(0,+∞)區間內有定義,而且過定點(1,1)。

⑵a>0時,冪函數圖像過原點,且在(0,+∞)區間為增函數,a越大,圖像坡度越大。

⑶a<0時,冪函數在(0,+∞)區間為減函數。

當x從右側無限接近原點時,圖像無限接近y軸正半軸;

當y無限接近正無窮時,圖像無限接近x軸正半軸。

冪函數總圖見下頁。

4、反函數:將原函數y=f(x)的x和y互換即得其反函數x=f-1(y)。

反函數圖像與原函數圖像關於直線y=x對稱。

高中數學怎麼學?

一、數學的學習時間應該佔全部總學科的50%左右;

數學是一個費時費力的學科,無論文理。對於文科和理科來說,數學的高考成績都是重中之重。比如文科,鮮有聽到一個班文綜成績能差60分以上的,但數學別說60,80都能差出來。對於理科,物理,化學都需要大量的運算,數學的學習又是提供一種工具與思維。因此,對於之前的文理科,抑或是現在取消文理以後的偏文,偏理科來說,數學都是非常重要的。

數學在課下學習的時間,大約應該佔到整體學習的50%左右。比如每天晚上學習3個小時,至少有1個半小時要學習數學。為啥需要這么長時間?主要就是因為,很多數學題需要相對長時間的思考與總結。不過,相信我,當你數學成績顯著提高以後,其他學科成績會非常容易提升。同時,你可以做個小小的調查,但凡是數學學習成績非常好,並且成績很穩定的同學,他的數學相關學習時間也基本符合50%這個比例。

二、每一道數學題都值得做三遍;

對於每一道數學題(特別特別簡單的除外),都要做三遍。

第1遍就是正常做,然後對照參考答案與解題思路,更正答案。

第2遍做一般是隔天效果最好,重新再快速地把之前所有的題目全部都重新做一遍,這個「做」不是和第1遍一樣1字不差,從頭到尾地演算。而是要針對關鍵步驟,關鍵思路進行整理。比如之前看到某一個題目的時候,我們的想法是A,結果正確的解題思路是B,A和B相比差異非常大。這個時候我們就需要通過第2遍做,更正我們的思路,糾正我們的 思維方式 ,改變我們的思考習慣。第2遍做的時候,還是出錯的題目,就一定要用星號重點標注,留備復習使用。

第3遍做,最好是7天以後。時隔七天,這個時候再做一遍,你就會有豁然開朗的感覺。對於90%以上的題目,你基本上就是看到題目就知道思路是什麼,解題步驟是什麼,甚至你都能記得每一步之前計算的結果是什麼,錯在了哪裡。對於之前第2遍做錯了,標注星號的題目一定要認認真真,從頭開始再做1次,這個時候如果還感覺不熟練,還是做錯,那麼就需要請出我們的錯題本了。

三、要有一個自己的錯題記錄本;

錯題本的意義,不是把每一道你做錯的題目都謄寫一遍,而是要把那些反復做不對,反復做都有差錯的題目保存下來。錯題本的本質,是對我們思維方式,思考習慣的一個糾正。在這個錯題本上的題目都應該是做了3遍還會出錯的題目。

而錯題本的記錄內容,至少應該包括下面幾個內容。1是完整的題目信息;2是用自己的方式演算出的正確答案(將參考答案照抄一遍沒有任何意義);3是自己對這個題目的評論,需要重點指出關鍵步驟,以及自己最初的想法與正確做法的差異在哪裡。

此外,錯題本需要長期積累,不要1個月1個本,而是要盡量以年為單位進行更換錯題本。每次考試之前,都認認真真地重做一次錯題本上的題目,你會有「涅槃」的感覺,而這些題目的積累將是你學習過程中最寶貴的財富之一。

四、要看課本;

很多人覺得,數學課本可能是中學階段最「水」的課本了,都覺得課本上的習題都簡單的不行,一眼出答案,怎麼就還需要看課本呢?其實,這些人都是知其然而不知其所以然。我們思考一個問題,高考考什麼?高考是一個劃定了考試大綱的考試,也就是所有的考試范圍你是都知道的。那麼什麼是高考的考試大綱范圍?就是我們的課本呀!!!

在經過一段時間的學習以後,比如是一個章節的學習,就一定要拿出數學課本,找一個連貫的時間,靜靜地讀完數學課本里對應章節的每一段話,每一個字,包括所有的補充材料。當然,課後的習題,也都要通讀。在讀完這些內容以後,最後還要翻開課本的目錄,對應這個章節的每一個小標題,靜心回憶一下每一個小標題的最重要的知識點,你最感興趣的內容等等。

五、要構建自己的知識網路;

很多人覺得,數學的學習就是做題,把能做的題目都做了,把能改的錯誤都改了便能學好數學。我個人認為,這樣做確實能夠提高成績,但僅僅是提高了成績,卻沒有學到知識。人的認知是網狀的,而不是線性的,如果想要把一個東西真的弄懂,內化成自己的知識,就一定要有層級結構記憶的概念。最終要有自己對學科的認知。

比如,我對高中數學的認知:方程,函數,不等式,邏輯命題是基礎;數列是離散化的函數;平面解析幾何本質上是通過條件,列方程,解方程;立體幾何屬於獨立部分;除此以外,還有一些其他邊邊角角的小知識點,比如概率論初步,微積分初步等等。

說這么多,就是希望大家最終學到手的知識,一定要總結,一定要內化,一定要嘗試構建自己的認知體系,一定要有高屋建瓴的感覺。不能專注於某一個細節「流連忘返」,而是要不斷的zoom in, zoom out,平衡整體與部分的關系,建立起自己對整個數學學科的理解。

六、大型考試之前的准備工作

考試之前,需要做好3件事情。1是需要認真閱讀課本目錄,目錄中每個標題對應的知識重點;2是需要把錯題本上的所有錯題全部重新過一遍;3是好好休息,沒必要臨時突擊。

只要能做到以上6點,我相信你能夠收獲一個滿意的成績。


高一函數知識點總結相關 文章 :

★ 高一數學知識點總結(考前必看)

★ 高一數學冪函數知識點總結

★ 高一數學知識點總結歸納

★ 高中數學函數知識歸納總結

★ 2020高一數學知識點總結

★ 高一數學公式知識總結歸納

★ 高一數學重點知識點公式總結

★ 高一數學知識點總結期末必備

★ 高一數學知識點總結(人教版)

★ 高一數學必修一知識點匯總

㈨ 高一數學必修的必會知識難點歸納

數學能力是隨著知識的發生而同時形成的,無論是形成一個概念,掌握一條法則,會做一個習題,都應該從不同的能力角度來培養和提高。以下是我給大家整理的 高一數學 必修的必會知識難點,希望大家能夠喜歡!

高一數學必修的必會知識難點歸納1

直線的斜率

①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。當時,。當時,;當時,不存在。

②過兩點的直線的斜率公式:

注意下面四點:(1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;

(2)k與P1、P2的順序無關;

(3)以後求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;

(4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到。

高一數學必修的必會知識難點歸納2

復數是高中代數的重要內容,在高考試題中約佔8%-10%,一般的出一道基礎題和一道中檔題,經常與三角、解析幾何、方程、不等式等知識綜合.本章主要內容是復數的概念,復數的代數、幾何、三角表示 方法 以及復數的運算.方程、方程組,數形結合,分域討論,等價轉化的數學思想與方法在本章中有突出的體現.而復數是代數,三角,解析幾何知識,相互轉化的樞紐,這對拓寬學生思路,提高學生解綜合習題能力是有益的.數、式的運算和解方程,方程組,不等式是學好本章必須具有的基本技能.簡化運算的意識也應進一步加強.

在本章學習結束時,應該明確對二次三項式的因式分解和解一元二次方程與二項方程可以畫上圓滿的句號了,對向量的運算、曲線的復數形式的方程、復數集中的數列等邊緣性的知識還有待於進一步的研究.

1.知識網路圖

復數知識點網路圖

2.復數中的難點

(1)復數的向量表示法的運算.對於復數的向量表示有些學生掌握得不好,對向量的運算的幾何意義的靈活掌握有一定的困難.對此應認真體會復數向量運算的幾何意義,對其靈活地加以證明.

(2)復數三角形式的乘方和開方.有部分學生對運演算法則知道,但對其靈活地運用有一定的困難,特別是開方運算,應對此認真地加以訓練.

(3)復數的輻角主值的求法.

(4)利用復數的幾何意義靈活地解決問題.復數可以用向量表示,同時復數的模和輻角都具有幾何意義,對他們的理解和應用有一定難度,應認真加以體會.

3.復數中的重點

(1)理解好復數的概念,弄清實數、虛數、純虛數的不同點.

(2)熟練掌握復數三種表示法,以及它們間的互化,並能准確地求出復數的模和輻角.復數有代數,向量和三角三種表示法.特別是代數形式和三角形式的互化,以及求復數的模和輻角在解決具體問題時經常用到,是一個重點內容.

(3)復數的三種表示法的各種運算,在運算中重視共軛復數以及模的有關性質.復數的運算是復數中的主要內容,掌握復數各種形式的運算,特別是復數運算的幾何意義更是重點內容.

(4)復數集中一元二次方程和二項方程的解法.

高一數學必修的必會知識難點歸納3

集合間的基本關系

1.「包含」關系—子集

注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

反之:集合A不包含於集合B,或集合B不包含集合A,記作AB或BA

2.「相等」關系:A=B(5≥5,且5≤5,則5=5)

實例:設A={x|x2-1=0}B={-1,1}「元素相同則兩集合相等」

即:①任何一個集合是它本身的子集。AíA

②真子集:如果AíB,且A1B那就說集合A是集合B的真子集,記作AB(或BA)

③如果AíB,BíC,那麼AíC

④如果AíB同時BíA那麼A=B

3.不含任何元素的集合叫做空集,記為Φ

規定:空集是任何集合的子集,空集是任何非空集合的真子集。

4.子集個數:

有n個元素的集合,含有2n個子集,2n-1個真子集,含有2n-1個非空子集,含有2n-1個非空真子集

三、集合的運算

運算類型交集並集補集

定義由所有屬於A且屬於B的元素所組成的集合,叫做A,B的交集.記作AB(讀作『A交B』),即AB={x|xA,且xB}.

由所有屬於集合A或屬於集合B的元素所組成的集合,叫做A,B的並集.記作:AB(讀作『A並B』),即AB={x|xA,或xB}).


高一數學必修的必會知識難點相關 文章 :

★ 高一數學必修一知識點匯總

★ 高一數學必修1重點知識

★ 高一數學知識點總結(考前必看)

★ 高中數學高一數學必修一知識點

★ 高一數學必背公式及知識匯總

★ 高一數學必修一重點知識點

★ 高一數學必修一知識點總結

★ 高一數學必修一知識整理

★ 高一數學必修1知識點匯總

★ 高一數學必修知識點

㈩ 高一數學必考重要知識點總結

人生要敢於理解挑戰,經受得起挑戰的人才能夠領悟人生非凡的真諦,才能夠實現自我無限的超越,才能夠創造魅力永恆的價值。下面是我給大家帶來的 高一數學 必考重要知識點 總結 ,以供大家參考!

高一數學必考重要知識點總結

反比例函數

形如y=k/x(k為常數且k≠0)的函數,叫做反比例函數。

自變數x的取值范圍是不等於0的一切實數。

反比例函數圖像性質:

反比例函數的圖像為雙曲線。

由於反比例函數屬於奇函數,有f(-x)=-f(x),圖像關於原點對稱。

另外,從反比例函數的解析式可以得出,在反比例函數的圖像上任取一點,向兩個坐標軸作垂線,這點、兩個垂足及原點所圍成的矩形面積是定值,為∣k∣。

如圖,上面給出了k分別為正和負(2和-2)時的`函數圖像。

當K>0時,反比例函數圖像經過一,三象限,是減函數

當K<0時,反比例函數圖像經過二,四象限,是增函數

反比例函數圖像只能無限趨向於坐標軸,無法和坐標軸相交。

知識點:

1.過反比例函數圖象上任意一點作兩坐標軸的垂線段,這兩條垂線段與坐標軸圍成的矩形的面積為|k|。

2.對於雙曲線y=k/x,若在分母上加減任意一個實數(即y=k/(x±m)m為常數),就相當於將雙曲線圖象向左或右平移一個單位。(加一個數時向左平移,減一個數時向右平移)

精選高一數學知識點總結

歸納1

1、「包含」關系—子集

注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

反之:集合A不包含於集合B,或集合B不包含集合A,記作AB或BA

2、「相等」關系(5≥5,且5≤5,則5=5)

實例:設A={x|x2—1=0}B={—1,1}「元素相同」

結論:對於兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時,集合B的任何一個元素都是集合A的元素,我們就說集合A等於集合B,即:A=B

①任何一個集合是它本身的子集。AíA

②真子集:如果AíB,且A1B那就說集合A是集合B的真子集,記作AB(或BA)

③如果AíB,BíC,那麼AíC

④如果AíB同時BíA那麼A=B

3、不含任何元素的集合叫做空集,記為Φ

規定:空集是任何集合的子集,空集是任何非空集合的真子集。

歸納2

形如y=k/x(k為常數且k≠0)的函數,叫做反比例函數。

自變數x的取值范圍是不等於0的一切實數。

反比例函數圖像性質:

反比例函數的圖像為雙曲線。

由於反比例函數屬於奇函數,有f(—x)=—f(x),圖像關於原點對稱。

另外,從反比例函數的解析式可以得出,在反比例函數的圖像上任取一點,向兩個坐標軸作垂線,這點、兩個垂足及原點所圍成的矩形面積是定值,為∣k∣。

上面給出了k分別為正和負(2和—2)時的函數圖像。

當K>0時,反比例函數圖像經過一,三象限,是減函數

當K<0時,反比例函數圖像經過二,四象限,是增函數

反比例函數圖像只能無限趨向於坐標軸,無法和坐標軸相交。

知識點:

1、過反比例函數圖象上任意一點作兩坐標軸的垂線段,這兩條垂線段與坐標軸圍成的矩形的面積為|k|。

2、對於雙曲線y=k/x,若在分母上加減任意一個實數(即y=k/(x±m)m為常數),就相當於將雙曲線圖象向左或右平移一個單位。(加一個數時向左平移,減一個數時向右平移)

歸納3

方程的根與函數的零點

1、函數零點的概念:對於函數,把使成立的實數叫做函數的零點。

2、函數零點的意義:函數的零點就是方程實數根,亦即函數的圖象與軸交點的橫坐標。即:方程有實數根,函數的圖象與坐標軸有交點,函數有零點。

3、函數零點的求法:

(1)(代數法)求方程的實數根;

(2)(幾何法)對於不能用求根公式的方程,可以將它與函數的圖象聯系起來,並利用函數的性質找出零點。

4、二次函數的零點:

(1)△>0,方程有兩不等實根,二次函數的圖象與軸有兩個交點,二次函數有兩個零點。

(2)△=0,方程有兩相等實根(二重根),二次函數的圖象與軸有一個交點,二次函數有一個二重零點或二階零點。

(3)△<0,方程無實根,二次函數的圖象與軸無交點,二次函數無零點。

歸納3

形如y=k/x(k為常數且k≠0)的函數,叫做反比例函數。

自變數x的取值范圍是不等於0的一切實數。

反比例函數圖像性質:

反比例函數的圖像為雙曲線。

由於反比例函數屬於奇函數,有f(—x)=—f(x),圖像關於原點對稱。

另外,從反比例函數的解析式可以得出,在反比例函數的圖像上任取一點,向兩個坐標軸作垂線,這點、兩個垂足及原點所圍成的矩形面積是定值,為∣k∣。

如圖,上面給出了k分別為正和負(2和—2)時的函數圖像。

當K>0時,反比例函數圖像經過一,三象限,是減函數

當K<0時,反比例函數圖像經過二,四象限,是增函數

反比例函數圖像只能無限趨向於坐標軸,無法和坐標軸相交。

知識點:

1、過反比例函數圖象上任意一點作兩坐標軸的垂線段,這兩條垂線段與坐標軸圍成的矩形的面積為|k|。

2、對於雙曲線y=k/x,若在分母上加減任意一個實數(即y=k/(x±m)m為常數),就相當於將雙曲線圖象向左或右平移一個單位。(加一個數時向左平移,減一個數時向右平移)

歸納4

冪函數的性質:

對於a的取值為非零有理數,有必要分成幾種情況來討論各自的特性:

首先我們知道如果a=p/q,q和p都是整數,則x^(p/q)=q次根號(x的p次方),如果q是奇數,函數的定義域是R,如果q是偶數,函數的定義域是[0,+∞)。當指數n是負整數時,設a=—k,則x=1/(x^k),顯然x≠0,函數的定義域是(—∞,0)∪(0,+∞)、因此可以看到x所受到的限制來源於兩點,一是有可能作為分母而不能是0,一是有可能在偶數次的根號下而不能為負數,那麼我們就可以知道:

排除了為0與負數兩種可能,即對於x>0,則a可以是任意實數;

排除了為0這種可能,即對於x<0x="">0的所有實數,q不能是偶數;

排除了為負數這種可能,即對於x為大於且等於0的所有實數,a就不能是負數。

總結起來,就可以得到當a為不同的數值時,冪函數的定義域的不同情況如下:如果a為任意實數,則函數的定義域為大於0的所有實數;

如果a為負數,則x肯定不能為0,不過這時函數的定義域還必須根據q的奇偶性來確定,即如果同時q為偶數,則x不能小於0,這時函數的定義域為大於0的所有實數;如果同時q為奇數,則函數的定義域為不等於0的所有實數。

在x大於0時,函數的值域總是大於0的實數。

在x小於0時,則只有同時q為奇數,函數的值域為非零的實數。

而只有a為正數,0才進入函數的值域。

由於x大於0是對a的任意取值都有意義的,因此下面給出冪函數在第一象限的各自情況、

可以看到:

(1)所有的圖形都通過(1,1)這點。

(2)當a大於0時,冪函數為單調遞增的,而a小於0時,冪函數為單調遞減函數。

(3)當a大於1時,冪函數圖形下凹;當a小於1大於0時,冪函數圖形上凸。

(4)當a小於0時,a越小,圖形傾斜程度越大。

(5)a大於0,函數過(0,0);a小於0,函數不過(0,0)點。

(6)顯然冪函數無界。

解題 方法 :換元法

解數學題時,把某個式子看成一個整體,用一個變數去代替它,從而使問題得到簡化,這種方法叫換元法,換元的實質是轉化,關鍵是構造元和設元,理論依據是等量代換,目的是變換研究對象,將問題移至新對象的知識背景中去研究,從而使非標准型問題標准化、復雜問題簡單化,變得容易處理。

換元法又稱輔助元素法、變數代換法。通過引進新的變數,可以把分散的條件聯系起來,隱含的條件顯露出來,或者把條件與結論聯系起來。或者變為熟悉的形式,把復雜的計算和推證簡化。

它可以化高次為低次、化分式為整式、化無理式為有理式、化超越式為代數式,在研究方程、不等式、函數、數列、三角等問題中有廣泛的應用。

高一數學知識點整合

一、直線與方程

(1)直線的傾斜角

定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規定它的傾斜角為0度。因此,傾斜角的取值范圍是0180

(2)直線的斜率

①定義:傾斜角不是90的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。當時,。當時,;當時,不存在。

②過兩點的直線的斜率公式:

注意下面四點:

(1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90

(2)k與P1、P2的順序無關;

(3)以後求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;

(4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到。

(3)直線方程

①點斜式:直線斜率k,且過點

注意:當直線的斜率為0時,k=0,直線的方程是y=y1。當直線的斜率為90時,直線的斜率不存在,它的方程不能用點斜式表示.但因l上每一點的橫坐標都等於x1,所以它的方程是x=x1。

②斜截式:,直線斜率為k,直線在y軸上的截距為b

③兩點式:()直線兩點,

④截矩式:其中直線與軸交於點,與軸交於點,即與軸、軸的截距分別為。

⑤一般式:(A,B不全為0)

⑤一般式:(A,B不全為0)

注意:○1各式的適用范圍

○2特殊的方程如:平行於x軸的直線:(b為常數);平行於y軸的直線:(a為常數);

(4)直線系方程:即具有某一共同性質的直線

(一)平行直線系

平行於已知直線(是不全為0的常數)的直線系:(C為常數)

(二)過定點的直線系

(ⅰ)斜率為k的直線系:直線過定點;

(ⅱ)過兩條直線,的交點的直線系方程為(為參數),其中直線不在直線系中。

(5)兩直線平行與垂直;

注意:利用斜率判斷直線的平行與垂直時,要注意斜率的存在與否。

(6)兩條直線的交點

相交:交點坐標即方程組的一組解。方程組無解;方程組有無數解與重合

(7)兩點間距離公式:設是平面直角坐標系中的兩個點,則

(8)點到直線距離公式:一點到直線的距離

(9)兩平行直線距離公式:在任一直線上任取一點,再轉化為點到直線的距離進行求解。

高一數學必考知識點總結相關 文章 :

★ 高一數學知識點總結

★ 高一數學常考知識點總結

★ 高一數學重要知識點梳理

★ 高一數學重要知識點整理

★ 高一數學知識點總結【必修一】

★ 高一數學知識點小歸納

★ 高一數學知識點梳理歸納

★ 高一數學重點知識點

★ 高中數學必修一三角函數知識點總結

★ 高中數學演算法初步知識點整理