當前位置:首頁 » 基礎知識 » 小學六年級數學必備知識大全
擴展閱讀
鬧鍾和小愛同學哪個好 2024-11-15 19:57:24
騰訊動漫限時怎麼看 2024-11-15 19:40:26

小學六年級數學必備知識大全

發布時間: 2022-12-16 18:57:28

⑴ 小學六年級數學必考知識點有哪些

小學六年級數學必考知識點有如下:

1、在熟悉的生活情境中初步認識負數,能正確的讀、寫正數和負數,知道0既不是正數也不是負數。

2、初步學會用負數表示一些日常生活中的實際問題,體驗數學與生活的密切聯系。

3、能藉助數軸初步學會比較正數、0和負數之間的大小。

4、16℃讀作十六攝氏度,表示零上16℃;-16℃讀作負十六攝氏度,表示零下16℃。

5、如果2000表示存入2000元,那麼-500表示支出了500元。向東走3m記作+3,向西4m記作-4。

6、在數軸上,從左到右的順序就是數從小到大的順序。0是正數和負數的分界點,所有的負數都在0的左邊,也就是負數都比0小,而正數都比0大,負數都比正數小。負號後面的數越大,這個數就越小。

⑵ 6年級數學知識大全

我為大家收集整理了六年級數學知識大全,供大家學習借鑒參考,希望對你有幫助!

6年級數學知識大全之小學數學圖形計算公式

1、正方形 (C:周長 S:面積 a:邊長 )

周長=邊長×4 C=4a 面積=邊長×邊長 S=a×a

2、正方體 (V:體積 a:棱長 )

表面積=棱長×棱長×6 S表=a×a×6 體積=棱長×棱長×棱長 V=a×a×a

3、長方形( C:周長 S:面積 a:邊長 )

周長=(長+寬)×2 C=2(a+b) 面積=長×寬 S=ab

4、長方體 (V:體積 s:面積 a:長 b: 寬 h:高)

(1)表面積(長×寬+長×高+寬×高)×2 S=2(ab+ah+bh) (2)體積=長×寬×高 V=abh

5、三角形 (s:面積 a:底 h:高)

面積=底×高÷2 s=ah÷2 三角形高=面積 ×2÷底 三角形底=面積 ×2÷高

6、平行四邊形 (s:面積 a:底 h:高)

面積=底×高 s=ah

7、梯形 (s:面積 a:上底 b:下底 h:高)

面積=(上底+下底)×高÷2 s=(a+b)× h÷2

8、圓形 (S:面積 C:周長 л d=直徑 r=半徑)

(1)周長=直徑×л=2×л×半徑 C=лd=2лr (2)面積=半徑×半徑×л

9、圓柱體 (v:體積 h:高 s:底面積 r:底面半徑 c:底面周長)

(1)側面積=底面周長×高=ch(2лr或лd) (2)表面積=側面積+底面積×2

(3)體積=底面積×高 (4)體積=側面積÷2×半徑

10、圓錐體 (v:體積 h:高 s:底面積 r:底面半徑)

體積=底面積×高÷3

11、總數÷總份數=平均數

12、和差問題的公式:(和+差)÷2=大數 (和-差)÷2=小數

13、和倍問題: 和÷(倍數-1)=小數 小數×倍數=大數 (或者 和-小數=大數)

14、差倍問題: 差÷(倍數-1)=小數 小數×倍數=大數 (或 小數+差=大數)

15、相遇問題

相遇路程=速度和×相遇時間; 相遇時間=相遇路程÷速度和; 速度和=相遇路程÷相遇時間

16、濃度問題

溶質的重量+溶劑的重量=溶液的重量 溶質的重量÷溶液的重量×100%=濃度

溶液的重量×濃度=溶質的重量 溶質的重量÷濃度=溶液的重量

17、利潤與折扣問題

利潤=售出價-成本; 利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%

漲跌金額=本金×漲跌百分比; 利息=本金×利率×時間; 稅後利息=本金×利率×時間×(1-20%)

6年級數學知識大全之常用的數量關系式

1、每份數×份數=總數 總數÷每份數=份數 總數÷份數=每份數

2、1倍數×倍數=幾倍數 幾倍數÷1倍數=倍數 幾倍數÷倍數=1倍數

3、速度×時間=路程 路程÷速度=時間 路程÷時間=速度

4、單價×數量=總價 總價÷單價=數量 總價÷數量=單價

5、工作效率×工作時間=工作總量 工作總量÷工作效率=工作時間 工作總量÷工作時間=工作效率

6、加數+加數=和 和-一個加數=另一個加數

7、被減數-減數=差 被減數-差=減數 差+減數=被減數

8、因數×因數=積 積÷一個因數=另一個因數

9、被除數÷除數=商 被除數÷商=除數 商×除數=被除數

6年級數學知識大全之常用單位換算

長度單位換算

1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米

面積單位換算:

1平方千米=100公頃 1公頃=10000平方米 1平方米=100平方分米

1平方分米=100平方厘米 1平方厘米=100平方毫米

體(容)積單位換算:

1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升

1立方厘米=1毫升 1立方米=1000升

重量單位換算: 1噸=1000 千克 1千克=1000克 1千克=1公斤

人民幣單位換算: 1元=10角 1角=10分 1元=100分

時間單位換算:

1世紀=100年 1年=12月 大月(31天)有:135781012月 小月(30天)的有:46911月 平年2月28天, 閏年2月29天 平年全年365天, 閏年全年366天 1日=24小時

1時=60分 1分=60秒 1時=3600秒

6年級數學知識大全之基本概念

第一章 數和數的運算

一 概念

(一)整數

1 整數的意義: 自然數和0都是整數。

2 自然數:

我們在數物體的時候,用來表示物體個數的1,2,3……叫做自然數。

一個物體也沒有,用0表示。0也是自然數。

3計數單位

一(個)、十、百、千、萬、十萬、百萬、千萬、億……都是計數單位。

每相鄰兩個計數單位之間的進率都是10。這樣的計數法叫做十進制計數法。

4 數位: 計數單位按照一定的順序排列起來,它們所佔的位置叫做數位。

5數的整除

整數a除以整數b(b ≠ 0),除得的商是整數而沒有餘數,我們就說a能被b整除,或者說b能整除a 。 如果數a能被數b(b ≠ 0)整除,a就叫做b的倍數,b就叫做a的約數(或a的因數)。倍數和約數是相互依存的。

因為35能被7整除,所以35是7的倍數,7是35的約數。

一個數的約數的個數是有限的,其中最小的約數是1,最大的 約數是它本身。例如:10的約數有1、2、5、10,其中最小的約數是1,最大的約數是10。

一個數的倍數的個數是無限的,其中最小的倍數是它本身。3的倍數有:3、6、9、12……其中最小的倍數是3 ,沒有最大的倍數。

個位上是0、2、4、6、8的數,都能被2整除,例如:202、480、304,都能被2整除。。 個位上是0或5的數,都能被5整除,例如:5、30、405都能被5整除。。

一個數的各位上的數的和能被3整除,這個數就能被3整除,例如:12、108、204都能被3整除。 一個數各位數上的和能被9整除,這個數就能被9整除。

能被3整除的數不一定能被9整除,但是能被9整除的數一定能被3整除。

一個數的末兩位數能被4(或25)整除,這個數就能被4(或25)整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。

一個數的末三位數能被8(或125)整除,這個數就能被8(或125)整除。例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。

能被2整除的數叫做偶數。

不能被2整除的數叫做奇數。

0也是偶數。自然數按能否被2 整除的特徵可分為奇數和偶數。

一個數,如果只有1和它本身兩個約數,這樣的數叫做質數(或素數),100以內的質數有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。 一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數,例如 4、6、8、9、12都是合數。

1不是質數也不是合數,自然數除了1外,不是質數就是合數。如果把自然數按其約數的個數的不同分類,可分為質數、合數和1。

每個合數都可以寫成幾個質數相乘的形式。其中每個質數都是這個合數的因數,叫做這個合數的質因數,例如15=3×5,3和5 叫做15的質因數。

把一個合數用質因數相乘的形式表示出來,叫做分解質因數。

例如把28分解質因數

幾個數公有的約數,叫做這幾個數的公約數。其中最大的一個,叫做這幾個數的最大公約數,例如12的約數有1、2、3、4、6、12;18的約數有1、2、3、6、9、18。其中,1、2、3、6是12和1 8的公約數,6是它們的最大公約數。

公約數只有1的兩個數,叫做互質數,成互質關系的兩個數,有下列幾種情況:

1和任何自然數互質。

相鄰的兩個自然數互質。

兩個不同的質數互質。

當合數不是質數的倍數時,這個合數和這個質數互質。

兩個合數的公約數只有1時,這兩個合數互質,如果幾個數中任意兩個都互質,就說這幾個數兩兩互質。 如果較小數是較大數的約數,那麼較小數就是這兩個數的最大公約數。

如果兩個數是互質數,它們的最大公約數就是1。

幾個數公有的倍數,叫做這幾個數的公倍數,其中最小的一個,叫做這幾個數的最小公倍數,如2的倍數有2、4、6 、8、10、12、14、16、18 ……

3的倍數有3、6、9、12、15、18 …… 其中6、12、18……是2、3的公倍數,6是它們的最小公倍數。。 如果較大數是較小數的倍數,那麼較大數就是這兩個數的最小公倍數。

如果兩個數是互質數,那麼這兩個數的積就是它們的最小公倍數。

幾個數的公約數的個數是有限的,而幾個數的公倍數的個數是無限的。

(二)小數

1 小數的意義

把整數1平均分成10份、100份、1000份…… 得到的十分之幾、百分之幾、千分之幾…… 可以用小數表示。

一位小數表示十分之幾,兩位小數表示百分之幾,三位小數表示千分之幾……

一個小數由整數部分、小數部分和小數點部分組成。數中的圓點叫做小數點,小數點左邊的數叫做整數部分,小數點左邊的數叫做整數部分,小數點右邊的數叫做小數部分。

在小數里,每相鄰兩個計數單位之間的進率都是10。小數部分的最高分數單位“十分之一”和整數部分的最低單位“一”之間的進率也是10。

2小數的分類

純小數:整數部分是零的小數,叫做純小數。例如: 0.25 、 0.368 都是純小數。

帶小數:整數部分不是零的小數,叫做帶小數。 例如: 3.25 、 5.26 都是帶小數。

有限小數:小數部分的數位是有限的小數,叫做有限小數。 例如: 41.7 、 25.3 、 0.23 都是有限小數。

無限小數:小數部分的數位是無限的小數,叫做無限小數。 例如: 4.33 …… 3.1415926 ……

無限不循環小數:一個數的小數部分,數字排列無規律且位數無限,這樣的小數叫做無限不循環小數。 例如:∏

循環小數:一個數的小數部分,有一個數字或者幾個數字依次不斷重復出現,這個數叫做循環小數。 例如: 3.555 …… 0.0333 …… 12.109109 ……

一個循環小數的小數部分,依次不斷重復出現的數字叫做這個循環小數的循環節。 例如: 3.99 ……的循環節是“ 9 ” , 0.5454 ……的循環節是“ 54 ” 。

純循環小數:循環節從小數部分第一位開始的,叫做純循環小數。 例如: 3.111 …… 0.5656 …… 混循環小數:循環節不是從小數部分第一位開始的,叫做混循環小數。 3.1222 …… 0.03333 …… 寫循環小數的時候,為了簡便,小數的循環部分只需寫出一個循環節,並在這個循環節的首、末位數字上各點一個圓點。如果循環 節只有 一個數字,就只在它的上面點一個點。例如: 3.777 …… 簡寫作 0.5302302 …… 簡寫作 。

(三)分數

1 分數的意義

把單位“1”平均分成若干份,表示這樣的一份或者幾份的數叫做分數。

在分數里,中間的橫線叫做分數線;分數線下面的數,叫做分母,表示把單位“1”平均分成多少份;分數線下面的數叫做分子,表示有這樣的多少份。

把單位“1”平均分成若干份,表示其中的一份的數,叫做分數單位。

2 分數的分類

真分數:分子比分母小的分數叫做真分數。真分數小於1。

假分數:分子比分母大或者分子和分母相等的分數,叫做假分數。假分數大於或等於1。

帶分數:假分數可以寫成整數與真分數合成的數,通常叫做帶分數。

3 約分和通分

把一個分數化成同它相等但是分子、分母都比較小的分數 ,叫做約分。

分子分母是互質數的分數,叫做最簡分數。

把異分母分數分別化成和原來分數相等的同分母分數,叫做通分。

(四)百分數

1 表示一個數是另一個數的百分之幾的數 叫做百分數,也叫做百分率 或百分比。百分數通常用"%"來表示。百分號是表示百分數的符號。

6年級數學知識大全之運算定律

1. 加法交換律:

兩個數相加,交換加數的位置,它們的和不變,即a+b=b+a 。

2. 加法結合律:

三個數相加,先把前兩個數相加,再加上第三個數;或者先把後兩個數相加,再和第一個數相加它們的和不變,即(a+b)+c=a+(b+c) 。

3. 乘法交換律:

兩個數相乘,交換因數的位置它們的積不變,即a×b=b×a。

4. 乘法結合律:

三個數相乘,先把前兩個數相乘,再乘以第三個數;或者先把後兩個數相乘,再和第一個數相乘,它們的積不變,即(a×b)×c=a×(b×c) 。

5. 乘法分配律:

兩個數的和與一個數相乘,可以把兩個加數分別與這個數相乘再把兩個積相加,即(a+b)×c=a×c+b×c 。

6. 減法的性質:

從一個數里連續減去幾個數,可以從這個數里減去所有減數的和,差不變,即a-b-c=a-(b+c) 。

⑶ 小學六年級數學必考知識點總結歸納

小學數學是初中數學的基礎,一定要把基本概念牢記,我整理了一些六年級必背的知識點。

數與計算

1、分數乘法:分數乘法的意義與整數乘法的意義相同,就是求幾個相同加數和的簡便運算。

2、分數乘法的計演算法則:分數乘整數,用分數的分子和整數相乘的積作分子,分母不變;分數乘分數,用分子相乘的積作分子,分母相乘的積作分母。但分子分母不能為零.。

3、分數乘法意義分數乘整數的意義與整數乘法的意義相同,就是求幾個相同加數的和的簡便運算。一個數與分數相乘,可以看作是求這個數的幾分之幾是多少。

4、分數乘整數:數形結合、轉化化歸

5、倒數:乘積是1的兩個數叫做互為倒數。

比和比例

1、比的基本性質:比的前項和後項都乘以或除以一個不為零的數。比值不變。

比的性質用於化簡比。

比表示兩個數相除;只有兩個項:比的前項和後項。

2、比和比例的區別

(1)意義、項數、各部分名稱不同。比表示兩個數相除;只有兩個項:比的前項和後項。如:a:b這是比。比例是一個等式,表示兩個比相等;有四個項:兩個外項和兩個內項。a:b=3:4這是比例。

(2)比的基本性質和比例的基本性質意義不同、應用不同。

比的性質:比的前項和後項都乘或除以一個不為零的數。比值不變。

比例的性質:在比例里,兩個外項的乘積等於兩個內項的乘積相等。比例的性質用於解比例。聯系:比例是由兩個相等的比組成。

常用的數量關系

1、每份數×份數=總數;總數÷每份數=份數;總數÷份數=每份數

2、1倍數×倍數=幾倍數;幾倍數÷1倍數=倍數;幾倍數÷倍數=1倍數

3、速度×時間=路程;路程÷速度=時間;路程÷時間=速度

4、單價×數量=總價;總價÷單價=數量;總價÷數量=單價

5、工作效率×工作時間=工作總量;工作總量÷工作效率=工作時間

以上是我整理的六年級必考知識點,希望能幫到你。

⑷ 六年級數學必背公式是什麼

小學六年級上冊數學必背公式大全:

一、用字母表示運算定律或性質。

加法交換律:a+b=b+a。

加法結合律:(a+b)+c=a+(b+c)。

乘法交換律:ab=ba。

乘法結合律:(ab)c=a(bc)。

乘法分配律:a(b+c)=ab+ac。

二、幾何圖形計算公式。

(1)周長:即圍繞物體一周的長度。

①長方形周長=(長+寬)×2,C=(a+b)×2。

②正方形周長=邊長×4,C=4a。

③圓的周長=圓周率×直徑=圓周率×半徑×2,C=πd,C =2πr。

(2)面積:即物體的表面或封閉圖形的大小。

①長方形的面積=長×寬,S=ab。

②正方形的面積=邊長×邊長,S=axa=a2。

③平行四邊形的面積=底×高,S=ah。

④三角形的面積=底×高÷2,S=ah÷2。

⑤梯形的面積=(上底+下底)×高÷2,S=(a+b)h÷2。

⑥圓的面積=圓周率×半徑,S=πr2。

⑦直徑d=2r,徑=直徑÷2,r= d÷2。

⑧環形面積=外圓面積-內圓面積,S環=S外-S內。

【相互聯系】 平面圖形的面積公式是以長方形面積計算公式為基礎的。如兩個完全相同的三角形、梯形可拼成一個平行四邊形。圓拼成長方形的長時1/2C,寬是R。

(3)表面積:立體圖形的所有面的面積之和叫做它的表面積。

①長方體的表面積=(長×寬+長×高+寬×高)×2,S=2(ab+ah+bh)。

②正方體的表面積=棱長×棱長×6,S=a×a×6=6a2。

③圓柱體的側面積=底面周長×高,S=Ch=2πrh。

④圓柱體的表面積=側面積+底面積×2,S=Ch+2πr2= 2πrh+2πr2。

注意:圓柱的底面周長與高相等時側面展開是正方形,C=h2πr。

(4)體積:物體所佔空間的大小叫體積。

①長方體的體積=長×寬×高,V=abh。

②正方體的體積=棱長×棱長×棱長,V=a×a×a=a3。

③圓柱的體積=底面積×高,V=sh=πr2h。

④圓錐的體積=底面積×高÷3,V=1/3sh= 1/3πr2h。

【相互聯系】長方體、正方體和圓柱體的體積公式可統一成:V=sh,即底面積×高。等體積等底的長、正、圓柱體和圓錐體,圓錐高是長方體、正方體、圓柱體高的3倍。

三、數量關系式:

1、每份數×份數=總數。

總數÷每份數=份數。

總數÷份數=每份數。

2 、單價×數量=總價 。

總價÷單價=數量 。

總價÷數量=單價。

3、速度×時間=路程 。

路程÷速度=時間 。

路程÷時間=速度。

4、工效×工時=工作總量 。

工作總量÷工效=工時 。

工作總量÷工時=工效 。

5、 加數+加數=和 。

和-一個加數=另一個加數。

6、 被減數-減數=差 。

被減數-差=減數 。

差+減數=被減數。

7、 因數×因數=積 。

積÷一個因數=另一個因數。

8、 被除數÷除數=商 。

被除數÷商=除數 。

商×除數=被除數 。

被除數=除數×商+余數。

注意:0.3÷0.2=1...0.1,除數與被除數同時擴大100倍,商不變,余數也擴大100倍。

9、 平均數=總數÷總份數 。

平均速度=總路程÷總時間。

10、相遇路程=速度和×相遇時間 。

相遇時間=相遇路程÷速度和 。

速度和=相遇路程÷相遇時間 。

一個人的速度=相遇路程÷相遇時間-另一個人的速度。

11、平均速度=總路程÷(順流時間+逆流時間)。

注意:折(往)返=路程×2。

12、溶質(葯)+溶劑(水)=溶液(葯水),溶質(葯)÷溶液(葯水)=濃度,溶液(葯水)×濃度=溶質(葯),溶質(葯)÷濃度=溶液(葯水)。

13、折扣=現價÷原價 (折扣<1) 。

現價=原價×折扣。

原價=現價÷折扣 。

14、利息=本金×年利率×時間(年)=本金×月利率×時間(月)。

稅後利息=本金×利率×時間×(1-5%)。

15、比例尺=圖上距離÷實際距離。

實際距離=圖上距離÷比例尺 。

圖上距離=實際距離×比例尺 。

16、追及距離=速度差×追及時間 。

追及時間=追及距離÷速度差 。

速度差=追及距離÷追及時間。

小學六年級下冊數學必背公式大全:

負數必背知識點:

1、0既不是正數,也不是負數,它是正數和負數的分界。0大於所有負數,小於所有正數。負數比較大小,不考慮負號,數字大的數反而小。

2、「+」可以省略不寫,「-」不能省略。

3、數軸的要素:正方向(箭頭表示)、原點(0刻度)、單位長度(刻度)。 0左邊的數都是負數,0右邊的數都是正數

百分數(二)知識點:

1、折扣:商品按原定價格的百分之幾出售,叫做折扣。通稱「打折」。幾折就表示十分之幾,也就是百分之幾十。例如八折就表示十分之八,就是按原價的80﹪出售。

2、成數:「幾成」就是十分之幾,也就是百分之幾十。三成五就是十分之三點五,也就是35%

3、應納稅額 = 總收入×稅率 稅率=應納稅額÷總收入 總收入=應納稅額÷稅率

4、利息=本金×利率×存期

5、滿100元減50元,就是在總價中取整百元部分,每個100元減去50元,不滿100元的零頭部分不優惠。

圓、圓柱、圓柱必背公式:

1、在同圓或等圓內,直徑的長度是半徑的2倍,公式d=2r;半徑的長度是直徑的一半,公式r=d÷2。

2、已知直徑求周長:圓的周長=圓周率×直徑,公式C=πd,直徑=周長÷圓周率,公式d=C÷π。

3、已知半徑求周長:圓的周長=2×圓周率×半徑,公式C=2πr,半徑=周長÷圓周率的2倍,公式r=C÷2π。

4、已知半徑求面積:圓的面積=圓周率×半徑的平方,公式S圓=πr2。

5、已知直徑求面積:圓的面積=圓周率×(直徑÷2)的平方,公式S圓 =π(d÷2)2。

6、圓柱的側面積=底面的周長×高,公式S側=Ch;圓柱的底面周長=側面積÷高,公式C=s側÷h;圓柱的高=側面積÷底面周長,公式h=S側÷C。

7、圓柱的表面積=側面積+2×底面積,公式 S表= S側+2S底。

8、圓柱的體積等於底面積乘以高,公式 V圓柱=Sh。圓柱的高等於體積除以底面積,公式h=v÷s;圓柱的底面積等於體積除以高,公式s=v÷h。

9、一個圓錐的體積等於與它等底等高的圓柱體積的三分之一 。圓錐體積公式:V=1 /3Sh。圓錐的高等於體積的3倍除以底面積,公式h=3v÷s;圓錐的底面積等於體積的3倍除以高,公式s=3v÷h。

10、環形的面積=大圓面積-小圓面積,S環 =πR -πr。

11、體積和高相等的圓錐與圓柱之間,圓錐的底面積是圓柱的三倍。即圓錐的底面積=圓柱底面積×3,圓柱底面積=圓錐底面積÷3。

12、體積和底面積相等的圓錐與圓柱之間,圓錐的高是圓柱的三倍。即圓錐的高=圓柱的高×3,圓柱的高=圓錐的高÷3。

比例必背知識點:

1、表示兩個比相等的式子叫做比例。如2:1=6:3。

2、在比例里,兩個外項的積等於兩個兩個內向的積。這叫做比例的基本性質。例如:由3:2=6:4可知3×4=2×6。

3、解比例 :根據比例的基本性質,如果已知比例中的任何三項,就可以求出這個數比例中的另外一個未知項。求比例中的未知項,叫做解比例。例如3:x = 4:8,內項乘內項,外項乘外項,則:4x =3×8,解得x=6。

4、成正比例的量: 兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的比值(也就是商)一定,這兩種量就叫做成正比例的量,他們的關系叫做正比例關系。

用字母表示y/x=k(一定) 例如:速度一定,路程和時間成正比例,因為:路程÷時間=速度(一定)。

5、成反比例的量 :兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,他們的關系叫做反比例關系。 用字母表示x×y=k(一定) 例如:路程一定,速度和時間成反比例,因為:速度×時間=路程(一定)。

6、圖上距離:實際距離=比例尺;實際距離=圖上距離÷比例尺;圖上距離=實際距離×比例尺;

數學廣角---鴿巢問題:

1、物體數÷抽屜數=商……余數 至少數=商+1。

2、只要摸出的球數比它們的顏色種數多1,就能保證有兩個球同色。







⑸ 小學六年級數學必考知識點

小學六年級數學內容多,是小學階段所學數學知識的綜合。本文整理了六年級必背考點,歡迎閱讀。

六年級數學考點

數與計算

(1)分數的乘法和除法,分數乘法的意義,分數乘法,乘法的運算定律推廣到分數,倒數,分數除法的意義,分數除法。

(2)分數四則混合運算,分數四則混合運算。

(3)百分數,百分數的意義和寫法,百分數和分數、小數的互化。

比和比例

比的意義和性質,比例的意義和基本性質,解比例,成正比例的量和成反比例的量。

幾何初步知識

圓的認識,圓周率,畫圓,圓的周長和面積,扇形的認識,軸對稱圖形的初步認識,圓柱的認識,圓柱的表面積和體積,圓錐的認識,圓錐的體積,球和球的半徑、直徑的初步認識。

求倒數地方法

①求分數的倒數:交換分子、分母的位置。

②求整數的倒數:整數分之1。

③求帶分數的倒數:先化成假分數,再求倒數。

④求小數的倒數:先化成分數再求倒數。

按比例分配解題技巧

小技巧:a.把比轉化成為分數,用分數方法解答,即先求出總分數,然後求出各部分量占總量的幾分之幾,最後按照求一個數的幾分之幾多少的解題方法,分別求出各部分的量是多少

b.把比看做分得的分數,先求出各部分的總分數,然後再用「總量總份數=平均每份的量(歸一)」,再用「一份的量各部分量所對應的份數」,求出各部分的量。

c.用比例知識解答:首先設未知量為。再根據題中「已知比等於相對應的量的比」作為等量關系式列出含有x的比例式,再解比例求出x。

用正、反比例知識解答應用題的步驟

小技巧:(1)分析數量關系。判斷成什麼比例。(2)找等量關系。如果成正比例,則按等比找等量關系式;如果成反比例,則按等積找等量關系式。(3)解比例式。設未知數為x,並代入等量關系式,得正比例式或反比例式。(4)解比例。(5)檢驗並寫出答語。

知識體系

一、整除問題:

(1)數的整除的特徵和性質(小學六年級常考內容)

(2)位值原理的應用(用字母和數字混合表示多位數)

二、質數合數:

(1)質數、合數的概念和判斷(2)分解質因數(重點)

三、約數倍數:

(1)最大公約最小公倍數(2)約數個數決定法則(小學六年級常考內容)

四、余數問題:

1、帶余除式的理解和運用;

2、同餘的性質和運用;

3、中國剩餘定理奇偶問題:

(1)奇偶與四則運算;

4、奇偶性質在實際解題過程中的應用完全平方數:

(1)完全平方數的判斷和性質

(2)完全平方數的運用整數及分數的分解與分拆(重點、難點)

⑹ 小學六年級數學畢業考必考的知識點是什麼

一、整數和小數

1、最小的一位數是1,最小的自然數是0。

2、小數的意義:把整數「1」平均分成10份、100份、1000份……這樣的一份或幾份分別是十分之幾、百分之幾、千分之幾……可以用小數來表示。

3、小數點左邊依次是整數部分,小數點右邊是小數部分,依次是十分位、百分位、千分位……

4、整數和小數都是按照十進制計數法寫出的數。

5、小數的性質:小數的末尾添上0或者去掉0,小數的大小不變。

6、小數點向右移動一位、二位、三位……原來的數分別擴大10倍、100倍、1000倍……

小數點向左移動一位、二位、三位……原來的數分別縮小10倍、100倍、1000倍……

二、數的整除

1、倍數、因數:A÷B=C,A、B、C均為整數,我們就說A能被B整除或B能整除A。如果數a能被數b整除,a就叫做b的倍數,b就叫做a的因數。

2、一個數倍數的個數是無限的,最小的倍數是它本身,沒有最大的倍數。一個數因數的個數是有限的,最小的因數是1,最大的因數是它本身。一個數既是它本身的因數,也是它本身的倍數。

3、按能否被2整除,非0的自然數分成偶數和奇數兩類,能被2整除的數叫做偶數,不能被2整除的數叫做奇數。

4、按一個數因數的個數,非0自然數可分為1、質數、合數三類。

質數:一個數,如果只有1和它本身兩個因數,這樣的數叫做質數。質數都有2個因數。合數:一個數,如果除了1和它本身還有別的因數,這樣的數叫做合數。合數至少有3個因數。最小的質數是2,最小的合數是4

5、1~20以內的質數有:2、3、5、7、11、13、17、19

1~20以內的合數有「4、6、8、9、10、12、14、15、16、18

「1」既不是質數,也不是合數。

6、2的倍數的數的特徵:個位上的數是0、2、4、6、8。

5的倍數的數的特徵:個位上的數是0或者5。

3的倍數的數的特徵:各個數位上的數的和是3的倍數。

既是3的倍數又是5的倍數的數的特徵:個位上的數是「5」。

7、公因數、公倍數:幾個數公有的因數,叫做這幾個數的公因數;其中最大的一個,叫做這幾個數的最大公因數。幾個數公有的倍數,叫做這幾個數的公倍數;其中最小的一個,叫做這幾個數的最小公倍數。

8、一般關系的兩個數的最大公因數、最小公倍數用短除法來求;互質關系的兩個數最大公約數是1,最小公倍數是兩數之積;倍數關系的兩個數的最大公因數是小數,最小公倍數是大數。

11、互質數:公因數只有1的兩個數叫做互質數。

12、兩數之積等於最小公倍數和最大公約數的積。

三、四則運算

1、一個加數=和—另一個加數被減數=差+減數減數=被減數-差

一個因數=積÷另一個因數被除數=商×除數除數=被除數÷商

2、在四則運算中,加、減法叫做第一級運算,乘、除法叫做第二級運算。

3、運算定律:

(1)加法交換律:a+b=b+a乘法交換律:a×b=b×a

兩個數相加,交換加數的位置,它們的和不變。

兩個數相加,交換因數的位置,它們的積不變。

(2)加法結合律:(a+b)+c=a+(b+c)乘法結合律:(a×b)×c=a×(b×c)

三個數相加,先把前兩個數相加,再同第三個數相加;或者先把後兩個數相加,再同第一個數相加,它們的和不變。

三個數相乘,先把前兩個數相乘,再同第三個數相乘;或者先把後兩個數相乘,再同第一個數相乘,它們的積不變。

(3)乘法分配律:(a+b)×c=a×c+b×c

兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。

(4)減法的性質:a-b-c=a-(b+c)除法的性質:a÷b÷c=a÷(b×c)

從一個數里連續減去兩個數,等於從這個數里減去兩個減數的和。

一個數連續除以兩個數,等於這個數除以兩個除數的積。

四 、兩個規律

1、除法的商不變規律:被除數和除數同時乘或除以相同的數(0除外),商不變。

2、乘法的積不變規律:如果一個因數乘幾,另一個因數則除以幾,那麼它們的積不變。

3、一個因數乘以比1大的數,積比這個數大,乘以比1小的數,積比這個數小

一個因數除以比1大的數,商比這個數小,除以比1小的數,商比這個數大

五、關系式

速度×時間=路程

路程÷時間=速度

路程÷速度=時間

工作效率×工作時間=工作總量

工作總量÷工作效率=工作時間

工作總量÷工作時間=工作效率

單價×數量=總價

總價÷數量=單價

總價÷單價=數量

⑺ 小學六年級數學必考知識點總結

很多同學都需要整理自己學習過的知識,我整理了一些小學六年級的數學知識點,大家一起來看看吧。

常用的數量關系式

1、每份數×份數=總數總數÷每份數=份數總數÷份數=每份數

2、1倍數×倍數=幾倍數幾倍數÷1倍數=倍數幾倍數÷倍數=1倍數

3、速度×時間=路程路程÷速度=時間路程÷時間=速度

4、單價×數量=總價總價÷單價=數量總價÷數量=單價

5、工作效率×工作時間=工作總量工作總量÷工作效率=工作時間工作總量÷工作時間=工作效率

6、加數+加數=和和-一個加數=另一個加數

7、被減數-減數=差被減數-差=減數差+減數=被減數

8、因數×因數=積積÷一個因數=另一個因數

9、被除數÷除數=商被除數÷商=除數商×除數=被除數

表面積和體積

1.三角形的面積=底×高÷2。公式S=a×h÷2

2.正方形的面積=邊長×邊長公式S=a2

3.長方形的面積=長×寬公式S=a×b

4.平行四邊形的面積=底×高公式S=a×h

5.梯形的面積=(上底+下底)×高÷2公式S=(a+b)h÷2

6.內角和:三角形的內角和=180度。

7.長方體的表面積=(長×寬+長×高+寬×高)×2公式:S=(a×b+a×c+b×c)×2

8.正方體的表面積=棱長×棱長×6公式:S=6a2

9.長方體的體積=長×寬×高公式:V=abh

10.長方體(或正方體)的體積=底面積×高公式:V=abh

11.正方體的體積=棱長×棱長×棱長公式:V=a3

12.圓的周長=直徑×π公式:L=πd=2πr

13.圓的面積=半徑×半徑×π公式:S=πr2

14.圓柱的表(側)面積:圓柱的表(側)面積等於底面的周長乘高。公式:S=ch=πdh=2πrh

15.圓柱的表面積:圓柱的表面積等於底面的周長乘高再加上兩頭的圓的面積。公式:S=ch+2s=ch+2πr2

16.圓柱的體積:圓柱的體積等於底面積乘高。公式:V=Sh

17.圓錐的體積=1/3底面×積高。公式:V=1/3Sh

求倒數的方法

①求分數的倒數:交換分子、分母的位置。

②求整數的倒數:整數分之1。

③求帶分數的倒數:先化成假分數,再求倒數。

④求小數的倒數:先化成分數再求倒數。

以上就是一些小學數學知識點的相關信息,供大家參考。

⑻ 小學六年級數學知識點

知識是一座寶庫,而實踐就是開啟寶庫的鑰匙。數學這門學科,不僅僅需要大量的記憶,還需要大量的練習,從而達到鞏固知識的效果,其他學科也大都雷同。下面是我給大家整理的一些 六年級數學 的知識點,希望對大家有所幫助。

小學6年級 畢業 考試數學重難知識點

行程問題

基本概念:

行程問題是研究物體運動的,它研究的是物體速度、時間、路程三者之間的關系.

基本公式:

路程=速度×時間;路程÷時間=速度;路程÷速度=時間

關鍵問題:

確定運動過程中的位置和方向。

相遇問題:速度和×相遇時間=相遇路程(請寫出其他公式)

追及問題:追及時間=路程差÷速度差(寫出其他公式)

流水問題:順水行程=(船速+水速)×順水時間

逆水行程=(船速-水速)×逆水時間

順水速度=船速+水速

逆水速度=船速-水速

靜水速度=(順水速度+逆水速度)÷2

水 速=(順水速度-逆水速度)÷2

流水問題:關鍵是確定物體所運動的速度,參照以上公式。

過橋問題:關鍵是確定物體所運動的路程,參照以上公式。

主要 方法 :畫線段圖法

基本題型:

已知路程(相遇路程、追及路程)、時間(相遇時間、追及時間)、速度(速度和、速度差)中任意兩個量,求第三個量。

人教版學校六年級上冊數學知識點

百分數應用題

1、求常見的百分率,如:達標率、及格率、成活率、發芽率、出勤率等求百分率就是求一個數是另一個數的百分之幾。

2、求一個數比另一個數多(或少)百分之幾,實際生活中,人們常用增加了百分之幾、減少了百分之幾、節約了百分之幾等來表示增加、或減少的幅度。

求甲比乙多百分之幾:(甲-乙)÷乙

求乙比甲少百分之幾:(甲-乙)÷甲

3、求一個數的百分之幾是多少。一個數(單位「1」)×百分率

4、已知一個數的百分之幾是多少,求這個數。

部分量÷百分率=一個數(單位「1」)

5、折扣、打折的意義:幾折就是十分之幾也就是百分之幾十

折扣、成數=幾分之幾、百分之幾、小數

八折=八成=十分之八=百分之八十=0.8

八五折=八成五=十分之八點五=百分之八十五=0.85

五折=五成=十分之五=百分之五十=0.5=半價

利率

(1)存入銀行的錢叫做本金。

(2)取款時銀行多支付的錢叫做利息。

(3)利息與本金的比值叫做利率。

利息=本金×利率×時間

稅後利息=利息-利息的應納稅額=利息-利息×5%

註:國債和 教育 儲蓄的利息不納稅

百分數應用題型分類

(1)求甲是乙的百分之幾——(甲÷乙)×100%=百分之幾

(2)求甲比乙多百分之幾——(甲-乙)÷乙×100%

(3)求甲比乙少百分之幾——(乙-甲)÷乙×100%

六年級數學位置與方向復習知識點

一、確定物體位置的方法:

1、先找觀測點;

2、再定方向(看方向夾角的度數);

3、最後確定距離(看比例尺)

二、描繪路線圖的關鍵是選好觀測點,建立方向標,確定方向和路程。

三、位置關系的相對性:

1、兩地的位置具有相對性在敘述兩地的位置關系時,觀測點不同,敘述的方向正好相反,而度數和距離正好相等。

四、相對位置:東--西;南--北;南偏東--北偏西。


小學六年級數學知識點相關 文章 :

★ 小學六年級數學知識點總結

★ 六年級數學期末復習知識點匯總

★ 小學六年級數學學習方法和技巧大全

★ 六年級數學上冊知識點復習

★ 一至六年級數學知識點復習資料整合

★ 小學六年級數學知識點盤點

★ 六年級數學總復習知識點整理(完整版)

★ 六年級數學小知識總結

★ 六年級上冊數學知識點整理歸納

⑼ 小學六年級數學都學有哪些知識詳細一點

小學六年級數學學的知識有:
上冊:長方體和正方體、分數乘法、分數除法、解決問題的策略(假設法)、分數四則混合運算、百分數
下冊:圓柱和圓錐、扇形統計圖、正反比例

⑽ 六年級數學基礎知識點總結

學習從來無捷徑,循序漸進登高峰。如果說學習一定有捷徑,那隻能是勤奮,因為努力永遠不會騙人。學習需要勤奮,做任何事情都需要勤奮。下面是我給大家整理的一些 六年級數學 的知識點,希望對大家有所幫助。

小學六年級數學總復習知識點:數的互化

1. 小數化成分數:原來有幾位小數,就在1的後面寫幾個零作分母,把原來的小數去掉小數點作分子,能約分的要約分。

2. 分數化成小數:用分母去除分子。能除盡的就化成有限小數,有的不能除盡,不能化成有限小數的,一般保留三位小數。

3. 一個最簡分數,如果分母中除了2和5以外,不含有其他的質因數,這個分數就能化成有限小數;如果分母中含有2和5 以外的質因數,這個分數就不能化成有限小數。

4. 小數化成百分數:只要把小數點向右移動兩位,同時在後面添上百分號。

5. 百分數化成小數:把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。

6. 分數化成百分數:通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。

7. 百分數化成小數:先把百分數改寫成分數,能約分的要約成最簡分數。

六年級數學知識點:圖形計算公式

1、正方形 (C:周長 S:面積 a:邊長)

周長=邊長×4 C=4a 面積=邊長×邊長 S=a×a

2、正方體 (V:體積 a:棱長 )

表面積=棱長×棱長×6 S表=a×a×6

體積=棱長×棱長×棱長 V=a×a×a

3、長方形( C:周長 S:面積 a:邊長)

周長=(長+寬)×2 C=2(a+b)

面積=長×寬 S=ab

4、長方體 (V:體積 s:面積 a:長 b: 寬 h:高)

(1)表面積(長×寬+長×高+寬×高)×2 S=2(ab+ah+bh)

(2)體積=長×寬×高 V=abh

5、三角形 (s:面積 a:底 h:高)

面積=底×高÷2 s=ah÷2

三角形高=面積 ×2÷底 三角形底=面積 ×2÷高

6、平行四邊形 (s:面積 a:底 h:高)

面積=底×高 s=ah

7、梯形 (s:面積 a:上底 b:下底 h:高)

面積=(上底+下底)×高÷2 s=(a+b)× h÷2

8、圓形 (S:面積 C:周長 л d=直徑 r=半徑)

(1)周長=直徑×л=2×л×半徑 C=лd=2лr

(2)面積=半徑×半徑×л

9、圓柱體 (v:體積 h:高 s:底面積 r:底面半徑 c:底面周長)

(1)側面積=底面周長×高=ch(2лr或лd) (2)表面積=側面積+底面積×2

(3)體積=底面積×高 (4)體積=側面積÷2×半徑

圓錐體 (v:體積 h:高 s:底面積 r:底面半徑)

體積=底面積×高÷3

11、總數÷總份數=平均數

12、和差問題的公式

(和+差)÷2=大數 (和-差)÷2=小數

13、和倍問題

和÷(倍數-1)=小數 小數×倍數=大數 (或者 和-小數=大數)

數學 學習 方法 技巧

一、明確教學目標,制訂復習計劃

小學 畢業 班數學總復習知識容量多、時間跨度大,所學知識的遺忘率高,復習之前教師必須再次鑽研教材,進一步了解教材的知識內容和編排特點,還要重新學習《數學課程標准》,把握好教學要點和數學知識重點,並對學生掌握知識的情況全面摸底,然後確定復習目標,制定復習計劃,主要包括:復習的內容要點,分幾節課完成,設計好每節課的內容和目標。例如,制訂「數的運算」這一單元復習計劃:第一節復習四則運算計算方法及其關系,第二節復習運算定律,第三節復習整數小數分數四則混合運算。這樣才能使復習工作有計劃、有步驟地進行,這種邏輯遞進的 復習方法 可以從根本上克服復習的盲目性、隨意性還有簡單地以教材上的復習題為內容,讓學生照書做完了事的思想。

二、了解學情,制定復習方法

俗話說:「知己知彼,百戰不殆」。這句話雖是用於指揮行軍打仗,但細斟此言,筆者認為它同樣適用於指導教學。作為一名有 經驗 的教師,首先要掌握學生一舉一動,一言一行,及時對教學工作作出調整,以減少無效勞動,確保教學活動不偏離預定的教學目標。了解學情的途徑很多,諸如「教學觀察」、「師生談心法」、「開展第二課堂法」等等,老師可在教學實踐中,多留心觀察,多 總結 經驗,多開動腦筋,把多種的方法靈活運用,以期達到對學生的行為,思想情感,學習情況等做到心中有數,從而進行有的放矢的教學工作,提高課堂教學質量。

三、梳理知識,形成知識網路

小學畢業生通過六年的數學學習,大多都掌握了比較可觀的知識點,如果沒有一個清晰的思路來幫助學生,就好比是一堆貨物,品種繁多,堆放零亂,要想記住特別困難。只有加以整理,有序分類,才能清清楚楚,一目瞭然。因此,在復習時應根據知識的重點、學習的難點和學生的薄弱環節,引導學生把已經學的知識進行梳理、分類、整合,弄清它們的來龍去脈,溝通其縱橫聯系,從整體上把握知識結構。引導學生自主整理,促進知識系統化的目的不僅要構建完整的知識網路,還要在構建知識網路的的同時,使學生對以前所學的知識有新的認識、提高。同時,要重視在復習整理過程中培養學生自主整理的意識,發展學生自主學習的能力。復習時,引導學生將知識分塊,系統整理,按塊復習,一塊一塊復習記憶。如果再將每一小類找出共性,規律,記憶效果就會大大加強。將知識分成大類,以表格形式呈現,細化到每一個知識點,逐一復習,鞏固強化達到熟練,運用時,從塊狀知識記憶中調用,速度也可加快。例如空間與圖形部分,筆者給學生搭建了這樣的框架:點、線、面、體。點有:端點、頂點、起點、垂足等;線有直線、射線、線段等;面有長方形、正方形、三角形、平行四邊形、梯形、圓等;體有長方體、正方體、圓柱、圓錐等。每一點知識都有其自身意義和特點,通過這樣的邏輯順利建構了一種復合學生思維規律的知識脈絡,點是構成線的基礎,點可以連成線,線可構成面,面可圍成體,垂線實際就是面和體的高等等。這些知識即單獨存在,也相互聯系,形成一個體系,易於學生系統掌握。


六年級數學基礎知識點總結相關 文章 :

★ 六年級數學期末復習知識點匯總

★ 小學六年級數學知識點總結

★ 小學六年級數學學習方法和技巧大全

★ 六年級上冊數學知識點整理歸納

★ 六年級數學上冊知識點總結

★ 六年級數學幾何的初步知識知識點總結

★ 六年級上冊數學知識點總結

★ 六年級數學上冊知識點復習

★ 小學數學基礎知識點整理

★ 六年級數學的重難點知識總結