當前位置:首頁 » 基礎知識 » 七年級上冊數學全部知識點和公式
擴展閱讀
鬧鍾和小愛同學哪個好 2024-11-15 19:57:24
騰訊動漫限時怎麼看 2024-11-15 19:40:26

七年級上冊數學全部知識點和公式

發布時間: 2022-12-16 16:09:29

『壹』 初一上冊數學必背公式

三角形的面積=底×高÷2。 公式 S= a×h÷2
正方形的面積=邊長×邊長 公式 S= a×a
長方形的面積=長×寬 公式 S= a×b
平行四邊形的面積=底×高 公式 S= a×h
梯形的面積=(上底+下底)×高÷2 公式 S=(a+b)h÷2
內角和:三角形的內角和=180度。
長方體的體積=長×寬×高 公式:V=abh
長方體(或正方體)的體積=底面積×高 公式:V=abh
正方體的體積=棱長×棱長×棱長 公式:V=aaa
圓的周長=直徑×π 公式:L=πd=2πr
圓的面積=半徑×半徑×π 公式:S=πr2
圓柱的表(側)面積:圓柱的表(側)面積等於底面的周長乘高。公式:S=ch=πdh=2πrh
圓柱的表面積:圓柱的表面積等於底面的周長乘高再加上兩頭的圓的面積。 公式:S=ch+2s=ch+2πr2
圓柱的體積:圓柱的體積等於底面積乘高。公式:V=Sh
圓錐的體積=1/3底面×積高。公式:V=1/3Sh
分數的加、減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
分數的乘法則:用分子的積做分子,用分母的積做分母。
分數的除法則:除以一個數等於乘以這個數的倒數。
讀懂理解會應用以下定義定理性質公式
一、算術方面
1、加法交換律:兩數相加交換加數的位置,和不變。
2、加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第三個數相加,和不變。
3、乘法交換律:兩數相乘,交換因數的位置,積不變。
4、乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。
5、乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。
如:(2+4)×5=2×5+4×5
6、除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。 O除以任何不是O的數都得O。
簡便乘法:被乘數、乘數末尾有O的乘法,可以先把O前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。
7、么叫等式?等號左邊的數值與等號右邊的數值相等的式子
叫做等式。
等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,
等式仍然成立。
8、什麼叫方程式?答:含有未知數的等式叫方程式。
9、 什麼叫一元一次方程式?答:含有一個未知數,並且未知數的次 數是一次的等式叫做一元一次方程式。
學會一元一次方程式的例法及計算。即例出代有χ的算式並計算。
10、分數:把單位「1」平均分成若干份,表示這樣的一份或幾分的數,叫做分數。
11、分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
12、分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。異分母的分數相比較,先通分然後再比較;若分子相同,分母大的反而小。
13、分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。
14、分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。
15、分數除以整數(0除外),等於分數乘以這個整數的倒數。
16、真分數:分子比分母小的分數叫做真分數。
17、假分數:分子比分母大或者分子和分母相等的分數叫做假分數。假分數大於或等於1。
18、帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。
19、分數的基本性質:分數的分子和分母同時乘以或除以同一個數
(0除外),分數的大小不變。
20、一個數除以分數,等於這個數乘 ...
追問追答
0

『貳』 初一數學知識點公式定理大全

初中數學是由簡單明了的事項一步一步地發展而來,所以,只要學習數學的人老老實實地、一步一步地去理解,並同時記住其要點,以備以後之需用,就一定能理解其全部內容。我在此整理了初一數學知識點公式定理大全,希望能幫助到您。

目錄

數學公式定理大全

初一 數學 學習 方法

初中數學解題方法與技巧

數學公式定理大全

1 過兩點有且只有一條直線

2 兩點之間線段最短

3 同角或等角的補角相等

4 同角或等角的餘角相等

5 過一點有且只有一條直線和已知直線垂直

6 直線外一點與直線上各點連接的所有線段中,垂線段最短

7 平行公理 經過直線外一點,有且只有一條直線與這條直線平行

8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行

9 同位角相等,兩直線平行

10 內錯角相等,兩直線平行

11 同旁內角互補,兩直線平行

12 兩直線平行,同位角相等

13 兩直線平行,內錯角相等

14 兩直線平行,同旁內角互補

15 定理 三角形兩邊的和大於第三邊

16 推論 三角形兩邊的差小於第三邊

17 三角形內角和定理 三角形三個內角的和等於180°

18 推論1 直角三角形的兩個銳角互余

19 推論2 三角形的一個外角等於和它不相鄰的兩個內角的和

20 推論3 三角形的一個外角大於任何一個和它不相鄰的內角

21 全等三角形的對應邊、對應角相等

22 邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等

23 角邊角公理( ASA)有兩角和它們的夾邊對應相等的兩個三角形全等

24 推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等

25 邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等

26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等 27 定理1 在角的平分線上的點到這個角的兩邊的距離相等

28 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上

29 角的平分線是到角的兩邊距離相等的所有點的集合

30 等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角)

31 推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊

32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合

33 推論3 等邊三角形的各角都相等,並且每一個角都等於60°

34 等腰三角形的判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)

35 推論1 三個角都相等的三角形是等邊三角形

36 推論 2 有一個角等於60°的等腰三角形是等邊三角形

37 在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半

38 直角三角形斜邊上的中線等於斜邊上的一半

39 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等

40 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上

41 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合

42 定理1 關於某條直線對稱的兩個圖形是全等形

43 定理 2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線

44 定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上

45 逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱

46 勾股定理 直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a^2+b^2=c^2

47 勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a^2+b^2=c^2 ,那麼這個三角形是直角三角形

48 定理 四邊形的內角和等於360°

49 四邊形的外角和等於360°

50 多邊形內角和定理 n邊形的內角的和等於(n-2)×180°

51 推論 任意多邊的外角和等於360°

52 平行四邊形性質定理1 平行四邊形的對角相等

53 平行四邊形性質定理2 平行四邊形的對邊相等

54 推論 夾在兩條平行線間的平行線段相等

55 平行四邊形性質定理3 平行四邊形的對角線互相平分

56 平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形

57 平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形

58 平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形

59 平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形

60 矩形性質定理1 矩形的四個角都是直角

61 矩形性質定理2 矩形的對角線相等

62 矩形判定定理1 有三個角是直角的四邊形是矩形

63 矩形判定定理2 對角線相等的平行四邊形是矩形

64 菱形性質定理1 菱形的四條邊都相等

65 菱形性質定理2 菱形的對角線互相垂直,並且每一條對角線平分一組對角

66 菱形面積=對角線乘積的一半,即S=(a×b)÷2

67 菱形判定定理1 四邊都相等的四邊形是菱形

68 菱形判定定理2 對角線互相垂直的平行四邊形是菱形

69 正方形性質定理1 正方形的四個角都是直角,四條邊都相等

70 正方形性質定理2正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角

71 定理1 關於中心對稱的兩個圖形是全等的

72 定理2 關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分 73逆定理 如果兩個圖形的對應點連線都經過某一點,並且被這一 點平分,那麼這兩個圖形關於這一點對稱 74等腰梯形性質定理 等腰梯形在同一底上的兩個角相等

75 等腰梯形的兩條對角線相等

76 等腰梯形判定定理 在同一底上的兩個角相等的梯形是等腰梯形

77 對角線相等的梯形是等腰梯形

78 平行線等分線段定理 如果一組平行線在一條直線上截得的線段 相等,那麼在其他直線上截得的線段也相等

79 推論1 經過梯形一腰的中點與底平行的直線,必平分另一腰

80 推論2 經過三角形一邊的中點與另一邊平行的直線,必平分第 三邊

81 三角形中位線定理 三角形的中位線平行於第三邊,並且等於它 的一半

82 梯形中位線定理 梯形的中位線平行於兩底,並且等於兩底和的 一半 L=(a+b)÷2 S=L×h

83 (1)比例的基本性質 如果a:b=c:d,那麼ad=bc 如果ad=bc,那麼a:b=c:d

84 (2)合比性質 如果a/b=c/d,那麼(a±b)/b=(c±d)/d

85 (3)等比性質 如果a/b=c/d=…=m/n(b+d+…+n≠0),那麼 (a+c+…+m)/(b+d+…+n)=a/b

86 平行線分線段成比例定理 三條平行線截兩條直線,所得的對應 線段成比例

87 推論 平行於三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例

88 定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那麼這條直線平行於三角形的第三邊

89 平行於三角形的一邊,並且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例

90 定理 平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似

91 相似三角形判定定理1 兩角對應相等,兩三角形相似(ASA)

92 直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似

93 判定定理2 兩邊對應成比例且夾角相等,兩三角形相似(SAS)

94 判定定理3 三邊對應成比例,兩三角形相似(SSS)

95 定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三 角形的斜邊和一條直角邊對應成比例,那麼這兩個直角三角形相似

96 性質定理1 相似三角形對應高的比,對應中線的比與對應角平 分線的比都等於相似比

97 性質定理2 相似三角形周長的比等於相似比

98 性質定理3 相似三角形面積的比等於相似比的平方

99 任意銳角的正弦值等於它的餘角的餘弦值,任意銳角的餘弦值等 於它的餘角的正弦值

100 任意銳角的正切值等於它的餘角的餘切值,任意銳角的餘切值等 於它的餘角的正切值

101 圓是定點的距離等於定長的點的集合

102 圓的內部可以看作是圓心的距離小於半徑的點的集合

103 圓的外部可以看作是圓心的距離大於半徑的點的集合

104 同圓或等圓的半徑相等

105 到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓

106 和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線

107 到已知角的兩邊距離相等的點的軌跡,是這個角的平分線

108 到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線

109 定理 不在同一直線上的三點確定一個圓。

110 垂徑定理 垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧

111 推論1 ①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧 ②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧 ③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧

112 推論2 圓的兩條平行弦所夾的弧相等

113 圓是以圓心為對稱中心的中心對稱圖形

114 定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦 相等,所對的弦的弦心距相等

115 推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那麼它們所對應的其餘各組量都相等

116 定理 一條弧所對的圓周角等於它所對的圓心角的一半 117推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

118 推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所 對的弦是直徑

119 推論3 如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形

120 定理 圓的內接四邊形的對角互補,並且任何一個外角都等於它的內對角

121 ①直線L和⊙O相交 dr

122 切線的判定定理 經過半徑的外端並且垂直於這條半徑的直線是圓的切線

123 切線的性質定理 圓的切線垂直於經過切點的半徑

124 推論1 經過圓心且垂直於切線的直線必經過切點

125 推論2 經過切點且垂直於切線的直線必經過圓心

126 切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等, 圓心和這一點的連線平分兩條切線的夾角

127 圓的外切四邊形的兩組對邊的和相等

128 弦切角定理 弦切角等於它所夾的弧對的圓周角

129 推論 如果兩個弦切角所夾的弧相等,那麼這兩個弦切角也相等

130 相交弦定理 圓內的兩條相交弦,被交點分成的兩條線段長的積等

131 推論 如果弦與直徑垂直相交,那麼弦的一半是它分直徑所成的 兩條線段的比例中項

132 切割線定理從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項

133 推論 從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等

134 如果兩個圓相切,那麼切點一定在連心線上

135 ①兩圓外離 d>R+r ②兩圓外切 d=R+r ③兩圓相交 R-rr) ④兩圓內切 d=R-r(R>r) ⑤兩圓內含dr)

136 定理 相交兩圓的連心線垂直平分兩圓的公共弦

137 定理 把圓分成n(n≥3): ⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形 ⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形

138 定理 任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓

139 正n邊形的每個內角都等於(n-2)×180°/n

140 定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形

141 正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長

142 正三角形面積√3a/4 a表示邊長

143 如果在一個頂點周圍有k個正n邊形的角,由於這些角的和應為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4

144 弧長計算公式:L=n兀R/180 145扇形面積公式:S扇形=n兀R^2/360=LR/2 146內公切線長= d-(R-r) 外公切線長= d-(R+r)


初一數學學習方法

學習數學應該按照五個步驟進行:

一預習

對於理科學習,預習是必不可少的。我們在預習中,應該把書上的內容看一遍,盡力去理解,對解決不了的問題適當作出標記,請教老師或課上聽講解決,並試著做一做書後的習題檢驗預習效果。

二聽講

這一環節最為重要,因為老師把知識的精華都濃縮在課堂上,聽數學課時應做到抓住老師講題的思路,方法。有問題記下來,課下整理,解決,數學課上一定要積極思考,跟著老師的思路走。

三復習

體會老師課上的例題,整理思維,想想自己是怎麼想的,與老師的思路有何異同,想想每一道題的考點,並試著一題多解,做到舉一反三。

四作業

認真完成老師留的習題,適當挑選一些課外習題作為練習,但切忌一味追求偏題,怪題,更不要打「題海戰術」。

五 總結

這一步是為了更好的掌握所學知識。在學完一段知識或做了一道典型題後可總結:總結專題的數學知識;總結自己卡殼的地方;總結自己是怎麼錯的,錯在哪裡,總結題目的「陷阱」設在哪裡及總結自己或他人的想法。


初中數學解題方法與技巧

1、配方法;所謂配方,就是把一個解析式利用恆等變形的方法,把其中的某些項配成—個或幾個多項式正整數次冪的和形式。通過配方解決數學問題的方法叫配方法。

2、因式分解法,就是把一個多項式化成幾個整式乘積的形式。因式分解是恆等變形的基礎,它作為數學的一個有力工具、一種數學方法在代數、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,中學課本上介紹有提取公因式法、公式法、分組分解法、十字相乘法等都是因式分解的常用手段。

3、換元法是數學中一個非常重要而且應用十分廣泛的解題方法。我們通常把未知數或變數稱為元,所謂換元法,就是在一個比較復雜的數學式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易於解決。

4、構造法;在解題時,我們常常會採用這樣的方法,通過對條件和結論的分析,構造輔助元素,它可以是一個圖形、一個方程(組)、一個等式、一個函數、一個等價命題等,架起—座連接條件和結論的橋梁,從而使問題得以解決,這種解題的數學方法,我們稱為構造法。運用構造法解題,可以使代數、三角、幾何等各種數學知識互相滲透,有利於問題的解決。

5、反證法是一種間接證法,它是先提出一個與命題的結論相反的假設,然後,從這個假設出發,經過正確的推理,導致矛盾,從而否定相反的假設,達到肯定原命題正確的一種方法。反證法可以分為兩種:一種是相反的結論只有一種,另一種是相反的結論有無數種。前者需要把相反的結論推翻,後者只要舉出一個反例,就達到了證明的目的。


初一數學知識點公式定理大全相關 文章 :

★ 初一數學知識點梳理

★ 初中七年級數學知識點歸納整理

★ 初中七年級數學知識點總結

★ 七年級數學重點知識點歸納

★ 初一數學重要知識點總結

★ 初一數學下冊重要知識點

★ 七年級數學基本知識點

★ 初一數學下冊知識點匯總

★ 初一數學下冊基本知識點總結

★ 七年級數學基礎知識點總結

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

『叄』 人教版七年級上冊數學知識點整理

馬上寒假了,為了幫助大家更好的學習初中數學。下面我整理了人教版七年級上冊數學知識點,供大家參考。

一、整式的加減

1.單項式:表示數字或字母乘積的式子,單獨的一個數字或字母也叫單項式。

2.單項式的系數與次數:單項式中的數字因數,稱單項式的系數;單項式中所有字母指數的和,叫單項式的次數。

3.多項式:幾個單項式的和叫多項式。

4.多項式的項數與次數:多項式中所含單項式的個數就是多項式的項數,每個單項式叫多項式的項;多項式里,次數最高項的次數叫多項式的次數。

5.整式:①單項式②多項式。

6.同類項:所含字母相同,並且相同字母的指數也相同的單項式是同類項。

7.合並同類項法則:系數相加,字母與字母的指數不變。

8.去(添)括弧法則:去(添)括弧時,若括弧前邊是「+」號,括弧里的各項都不變號;若括弧前邊是「-」號,括弧里的各項都要變號。

9.整式的加減:

一找:(劃線);

二「+」:(務必用+號開始合並);

三合:(合並)。

10.多項式的升冪和降冪排列:把一個多項式的各項按某個字母的指數從小到大(或從大到小)排列起來,叫做按這個字母的升冪排列(或降冪排列)。

二、一元一次方程

1.等式:用「=」號連接而成的式子叫等式。

2.等式的性質:

等式性質1:等式兩邊都加上(或減去)同一個數或同一個整式,所得結果仍是等式;

等式性質2:等式兩邊都乘以(或除以)同一個不為零的數,所得結果仍是等式。

3.方程:含未知數的等式,叫方程。

4.方程的解:使等式左右兩邊相等的未知數的值叫方程的解;

注意:「方程的解就能代入」。

5.移項:改變符號後,把方程的項從一邊移到另一邊叫移項.移項的依據是等式性質1。

6.一元一次方程:只含有一個未知數,並且未知數的次數是1,並且含未知數項的系數不是零的整式方程是一元一次方程。

7.一元一次方程的標准形式:ax+b=0(x是未知數,a、b是已知數,且a≠0)。

8.一元一次方程解法的一般步驟:

化簡方程----------分數基本性質。

去分母----------同乘(不漏乘)最簡公分母。

去括弧----------注意符號變化。

移項----------變號(留下靠前)。

合並同類項--------合並後符號。

系數化為1---------除前面。

9.列一元一次方程解應用題:

(1)讀題分析法:…………多用於「和,差,倍,分問題」。

仔細讀題,找出表示相等關系的關鍵字,例如:「大,小,多,少,是,共,合,為,完成,增加,減少,配套-----」,利用這些關鍵字列出文字等式,並且據題意設出未知數,最後利用題目中的量與量的關系填入代數式,得到方程。

(2)畫圖分析法:…………多用於「行程問題」。

利用圖形分析數學問題是數形結合思想在數學中的體現,仔細讀題,依照題意畫出有關圖形,使圖形各部分具有特定的含義,通過圖形找相等關系是解決問題的關鍵,從而取得布列方程的依據,最後利用量與量之間的關系(可把未知數看做已知量),填入有關的代數式是獲得方程的基礎。

三、絕對值

1、絕對值的幾何定義:一般地,數軸上表示數a的點與原點的距離叫做a的絕對值,記作|a|。

2、絕對值的代數定義

(1)一個正數的絕對值是它本身;

(2)一個負數的絕對值是它的相反數;

(3)0的絕對值是0。

3、可用字母表示為

(1)如果a>0,那麼|a|=a;

(2)如果a<0,那麼|a|=-a;

(3)如果a=0,那麼|a|=0。

4、可歸納為

(1)a≥0,<═>|a|=a(非負數的絕對值等於本身;絕對值等於本身的數是非負數。)

(2)a≤0,<═>|a|=-a(非正數的絕對值等於其相反數;絕對值等於其相反數的數是非正數。)

5、絕對值的性質

任何一個有理數的絕對值都是非負數,也就是說絕對值具有非負性。所以,a取任何有理數,都有|a|≥0。即

(1)0的絕對值是0;絕對值是0的數是0.即:a=0<═>|a|=0;

(2)一個數的絕對值是非負數,絕對值最小的數是0.即:|a|≥0;

(3)任何數的絕對值都不小於原數。即:|a|≥a;

(4)絕對值是相同正數的數有兩個,它們互為相反數。即:若|x|=a(a>0),則x=±a;

(5)互為相反數的兩數的絕對值相等。即:|-a|=|a|或若a+b=0,則|a|=|b|;

(6)絕對值相等的兩數相等或互為相反數。即:|a|=|b|,則a=b或a=-b;

(7)若幾個數的絕對值的和等於0,則這幾個數就同時為0。即|a|+|b|=0,則a=0且b=0。(非負數的常用性質:若幾個非負數的和為0,則有且只有這幾個非負數同時為0)。

6、有理數大小的比較

(1)利用數軸比較兩個數的大小:數軸上的兩個數相比較,左邊的總比右邊的小;

(2)利用絕對值比較兩個負數的大小:兩個負數比較大小,絕對值大的反而小;異號兩數比較大小,正數大於負數。

四、代數式

1、代數式:用基本運算符號把數和字母連接而成的式子叫做代數式,如n,-1,2n+500,abc。單獨的一個數或一個字母也是代數式。

2、單項式:表示數與字母的乘積的代數式叫單項式。單獨的一個數或一個字母也是代數式。

3、單項式的系數:單項式中的數字因數。

4、單項式的次數:一個單項式中,所有字母的指數和。

5、多項式:

幾個單項式的和叫做多項式。每個單項式叫做多項式的項,不含字母的項叫做常數項。

多項式里次數最高項的次數,叫做這個多項式的次數。常數項的次數為0。

6、整式:

單項式和多項式統稱為整式。

注意:分母上含有字母的不是整式。

7、代數式書寫規范:

(1)數與字母、字母與字母中的乘號可以省略不寫或用「·」表示,並把數字放到字母前;

(2)出現除式時,用分數表示;

(3)帶分數與字母相乘時,帶分數要化成假分數;

(4)若運算結果為加減的式子,當後面有單位時,要用括弧把整個式子括起來。

『肆』 初一數學全冊知識點歸納

知識是一座寶庫,而實踐就是開啟寶庫的鑰匙。學習任何學科,不僅需要大量的記憶,還需要大量的練習,從而達到鞏固知識的效果。下面是我給大家整理的一些初一數學的知識點,希望對大家有所幫助。

初一下冊數學知識點 總結

1、單項式:數字與字母的積,叫做單項式。

2、多項式:幾個單項式的和,叫做多項式。

3、整式:單項式和多項式統稱整式。

4、單項式的次數:單項式中所有字母的指數的和叫單項式的次數。

5、多項式的次數:多項式中次數的項的次數,就是這個多項式的次數。

6、餘角:兩個角的和為90度,這兩個角叫做互為餘角。

7、補角:兩個角的和為180度,這兩個角叫做互為補角。

8、對頂角:兩個角有一個公共頂點,其中一個角的兩邊是另一個角兩邊的反向延長線。這兩個角就是對頂角。

9、同位角:在「三線八角」中,位置相同的角,就是同位角。

10、內錯角:在「三線八角」中,夾在兩直線內,位置錯開的角,就是內錯角。

11、同旁內角:在「三線八角」中,夾在兩直線內,在第三條直線同旁的角,就是同旁內角。

12、有效數字:一個近似數,從左邊第一個不為0的數開始,到精確的那位止,所有的數字都是有效數字。

13、概率:一個事件發生的可能性的大小,就是這個事件發生的概率。

14、三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。

15、三角形的角平分線:在三角形中,一個內角的角平分線與它的對邊相交,這個角的頂點與交點之間的線段叫做三角形的角平分線。

16、三角形的中線:在三角形中連接一個頂點與它的對邊中點的線段,叫做這個三角形的中線。

17、全等圖形:兩個能夠重合的圖形稱為全等圖形。

18、變數:變化的數量,就叫變數。

19、自變數:在變化的量中主動發生變化的,變叫自變數。

20、因變數:隨著自變數變化而被動發生變化的量,叫因變數。

21、軸對稱圖形:如果一個圖形沿一條直線折疊後,直線兩旁的部分能夠互相重合,那麼這個圖形叫做軸對稱圖形。

22、對稱軸:軸對稱圖形中對折的直線叫做對稱軸。

初一下冊數學知識點

一、同底數冪的乘法

(m,n都是整數)是冪的運算中最基本的法則,在應用法則運算時,要注意以下幾點:

a)法則使用的前提條件是:冪的底數相同而且是相乘時,底數a可以是一個具體的數字式字母,也可以是一個單項或多項式;

b)指數是1時,不要誤以為沒有指數;

c)不要將同底數冪的乘法與整式的加法相混淆,對乘法,只要底數相同指數就可以相加;而對於加法,不僅底數相同,還要求指數相同才能相加;

二、冪的乘方與積的乘方

三、同底數冪的除法

(1)運用法則的前提是底數相同,只有底數相同,才能用此法則

(2)底數可以是具體的數,也可以是單項式或多項式

(3)指數相減指的是被除式的指數減去除式的指數,要求差不為負

四、整式的乘法

1、單項式的概念:由數與字母的乘積構成的代數式叫做單項式。單獨的一個數或一個字母也是單項式。單項式的數字因數叫做單項式的系數,所有字母指數和叫單項式的次數。

如:bca22-的系數為2-,次數為4,單獨的一個非零數的次數是0。

2、多項式:幾個單項式的和叫做多項式。多項式中每個單項式叫多項式的項,次數項的次數叫多項式的次數。

五、平方差公式

表達式:(a+b)(a-b)=a^2-b^2,兩個數的和與這兩個數差的積,等於這兩個數的平方差,這個公式就叫做乘法的平方差公式

公式運用

可用於某些分母含有根號的分式:

1/(3-4倍根號2)化簡:

六、完全平方公式

完全平方公式中常見錯誤有:

①漏下了一次項

②混淆公式

③運算結果中符號錯誤

④變式應用難於掌握。

七、整式的除法

1、單項式的除法法則

單項式相除,把系數、同底數冪分別相除,作為商的因式,對於只在被除式里含有的字母,則連同它的指數作為商的一個因式。

注意:首先確定結果的系數(即系數相除),然後同底數冪相除,如果只在被除式里含有的字母,則連同它的指數作為商的一個因式。

初一數學知識點

一元一次方程

一元一次方程:只含有一個未知數,並且未知數的次數是1,並且含未知數項的系數不是零的整式方程是一元一次方程.

一元一次方程的標准形式: ax+b=0(x是未知數,a、b是已知數,且a≠0).

一元一次方程的最簡形式: ax=b(x是未知數,a、b是已知數,且a≠0).

一元一次方程解法的一般步驟: 整理方程 …… 去分母 …… 去括弧 …… 移項 …… 合並同類項 …… 系數化為1 …… (檢驗方程的解).

列方程解應用題的常用公式:

(1)行程問題:距離=速度·時間;

(2)工程問題:工作量=工效·工時;

(3)比率問題:部分=全體·比率;

(4)順逆流問題:順流速度=靜水速度+水流速度,逆流速度=靜水速度-水流速度;

(5)商品價格問題:售價=定價·折·0.1 ,利潤=售價-成本;

(6)周長、面積、體積問題:C圓=2πR,S圓=πR2,C長方形=2(a+b),S長方形=ab, C正方形=4a,S正方形=a2,S環形=π(R2-r2),V長方體=abc ,V正方體=a3,V圓柱=πR2h ,V圓錐=1/3πR2h.


初一數學全冊知識點歸納相關 文章 :

★ 初一數學上冊知識點歸納

★ 初一數學上冊知識點匯總歸納

★ 初一數學知識點小歸納

★ 初一數學知識點梳理歸納

★ 初一數學人教版知識點歸納

★ 初一數學知識點歸納與學習方法

★ 初一上冊數學知識點歸納整理

★ 初一數學部編版知識點歸納

★ 初中七年級數學知識點歸納整理

★ 七年級數學知識點整理大全

『伍』 初一數學上冊知識點總結

= 總結 所學內容,進行學法的理性 反思 ,強化並進行遷移運用,在訓練中掌握學法。下面給大家帶來一些關於初一數學上冊知識點總結,希望對大家有所幫助。

初一數學上冊知識點1

正負數

1.正數:大於0的數。

2.負數:小於0的數。

3.0即不是正數也不是負數。

4.正數大於0,負數小於0,正數大於負數。

(二)有理數

1.有理數:由整數和分數組成的數。包括:正整數、0、負整數,正分數、負分數。可以寫成兩個整之比的形式。(無理數是不能寫成兩個整數之比的形式,它寫成小數形式,小數點後的數字是無限不循環的。如:π)

2.整數:正整數、0、負整數,統稱整數。

3.分數:正分數、負分數。

(三)數軸

1.數軸:用直線上的點表示數,這條直線叫做數軸。(畫一條直線,在直線上任取一點表示數0,這個零點叫做原點,規定直線上從原點向右或向上為正方向;選取適當的長度為單位長度,以便在數軸上取點。)

2.數軸的三要素:原點、正方向、單位長度。

3.相反數:只有符號不同的兩個數叫做互為相反數。0的相反數還是0。

4.絕對值:正數的絕對值是它本身,負數的絕對值是它的相反數;0的絕對值是0,兩個負數,絕對值大的反而小。

(四)有理數的加減法

1.先定符號,再算絕對值。

2.加法運演算法則:同號相加,到相同符號,並把絕對值相加。異號相加,取絕對值大的加數的符號,並用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0。一個數同0相加減,仍得這個數。

3.加法交換律:a+b=b+a兩個數相加,交換加數的位置,和不變。

4.加法結合律:(a+b)+c=a+(b+c)三個數相加,先把前兩個數相加,或者先把後兩個數相加,和不變。5.a?b=a+(?b)減去一個數,等於加這個數的相反數。

(五)有理數乘法(先定積的符號,再定積的大小)

1.同號得正,異號得負,並把絕對值相乘。任何數同0相乘,都得0。

2.乘積是1的兩個數互為倒數。

3.乘法交換律:ab=ba

4.乘法結合律:(ab)c=a(bc)

5.乘法分配律:a(b+c)=ab+ac

(六)有理數除法

1.先將除法化成乘法,然後定符號,最後求結果。

2.除以一個不等於0的數,等於乘這個數的倒數。

3.兩數相除,同號得正,異號得負,並把絕對值相除,0除以任何一個不等於0的數,都得0。(七)乘方1.求n個相同因數的積的運算,叫做乘方。寫作an。(乘方的結果叫冪,a叫底數,n叫指數)2.負數的奇數次冪是負數,負數的偶次冪是正數;0的任何正整數次冪都是0。3.同底數冪相乘,底不變,指數相加。

4.同底數冪相除,底不變,指數相減。

(八)有理數的加減乘除混合運演算法則

1.先乘方,再乘除,最後加減。

2.同級運算,從左到右進行。

3.如有括弧,先做括弧內的運算,按小括弧、中括弧、大括弧依次進行。

(九)科學記數法、近似數、有效數字。

初一數學上冊知識點2

1.有理數:

(1)凡能寫成 形式的數,都是有理數,整數和分數統稱有理數.

注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;?不是有理數;

(2)有理數的分類: ① ②

(3)注意:有理數中,1、0、-1是三個特殊的數,它們有自己的特性;這三個數把數軸上的數分成四個區域,這四個區域的數也有自己的特性;

(4)自然數? 0和正整數; a>0 ? a是正數; a<0 ? a是負數;

a≥0 ? a是正數或0 ? a是非負數; a≤ 0 ? a是負數或0 ? a是非正數.

2.數軸:數軸是規定了原點、正方向、單位長度的一條直線.

3.相反數:(1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0; (2)注意: a-b+c的相反數是-a+b-c;a-b的相反數是b-a;a+b的相反數是-a-b;

(3)相反數的和為0 ? a+b=0 ? a、b互為相反數.

(4)相反數的商為-1.

(5)相反數的絕對值相等

4.絕對值:

(1)正數的絕對值等於它本身,0的絕對值是0,負數的絕對值等於它的相反數;

注意:絕對值的意義是數軸上表示某數的點離開原點的距離;

(2) 絕對值可表示為: 或 ;

(3) ; ;

(4) |a|是重要的非負數,即|a|≥0;

5.有理數比大小:

(1)正數永遠比0大,負數永遠比0小;

(2)正數大於一切負數;

(3)兩個負數比較,絕對值大的反而小;

(4)數軸上的兩個數,右邊的數總比左邊的數大;

(5)-1,-2,+1,+4,-0.5,以上數據表示與標准質量的差, 絕對值越小,越接近標准。

6.倒數:乘積為1的兩個數互為倒數;

注意:0沒有倒數; 若ab=1? a、b互為倒數; 若ab=-1? a、b互為負倒數.

等於本身的數匯總:

相反數等於本身的數:0

倒數等於本身的數:1,-1

絕對值等於本身的數:正數和0

平方等於本身的數:0,1

立方等於本身的數:0,1,-1.

7. 有理數加法法則:

(1)同號兩數相加,取相同的符號,並把絕對值相加;

(2)異號兩數相加,取絕對值較大加數的符號,並用較大的絕對值減去較小的絕對值;

(3)一個數與0相加,仍得這個數.

8.有理數加法的運算律:

(1)加法的交換律:a+b=b+a ;(2)加法的結合律:(a+b)+c=a+(b+c).

9.有理數減法法則:減去一個數,等於加上這個數的相反數;即a-b=a+(-b).

10 有理數乘法法則:(1)兩數相乘,同號得正,異號得負,並把絕對值相乘;

(2)任何數同零相乘都得零;

(3)幾個因式都不為零,積的符號由負因式的個數決定.奇數個負數為負,偶數個負數為正。

11 有理數乘法的運算律:

(1)乘法的交換律:ab=ba;(2)乘法的結合律:(ab)c=a(bc);

(3)乘法的分配律:a(b+c)=ab+ac .(簡便運算)

12.有理數除法法則:除以一個數等於乘以這個數的倒數;注意:零不能做除數, .

13.有理數乘方的法則:(1)正數的任何次冪都是正數;

(2)負數的奇次冪是負數;負數的偶次冪是正數;

14.乘方的定義:(1)求相同因式積的運算,叫做乘方;

(2)乘方中,相同的因式叫做底數,相同因式的個數叫做指數,乘方的結果叫做冪;

(3)a2是重要的非負數,即a2≥0;若a2+|b|=0 ? a=0,b=0;

(4)據規律 底數的小數點移動一位,平方數的小數點移動二位.

15.科學記數法:把一個大於10的數記成a×10n的形式,其中a是整數數位只有一位的數,這種記數法叫科學記數法.

16.近似數的精確位:一個近似數,四捨五入到那一位,就說這個近似數的精確到那一位.

17.混合運演算法則:先乘方,後乘除,最後加減; 注意:不省過程,不跳步驟。

18.特殊值法:是用符合題目要求的數代入,並驗證題設成立而進行猜想的一種 方法 ,但不能用於證明.常用於填空,選擇。

初一數學上冊知識點3

實數:

—有理數與無理數統稱為實數。

有理數:

整數和分數統稱為有理數。

無理數:

無理數是指無限不循環小數。

自然數:

表示物體的個數0、1、2、3、4~(0包括在內)都稱為自然數。

數軸:

規定了圓點、正方向和單位長度的直線叫做數軸。

相反數:

符號不同的兩個數互為相反數。

倒數:

乘積是1的兩個數互為倒數。

絕對值:

數軸上表示數a的點與圓點的距離稱為a的絕對值。一個正數的絕對值是本身,一個負數的絕對值是它的相反數,0的絕對值是0。

數學定理公式

有理數的運演算法則

⑴加法法則:同號兩數相加,取相同的符號,並把絕對值相加;異號兩數相加,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值,互為相反數的兩個數相加得0。

⑵減法法則:減去一個數,等於加上這個數的相反數。

⑶乘法法則:兩數相乘,同號得正,異號得負,並把絕對值相乘;任何數與0相乘都得0。

⑷除法法則:除以一個數等於乘上這個數的倒數;兩數相除,同號得正,異號得負,並把絕對值相除;0除以任何一個不等於0的數,都得0。

角的平分線:從角的一個頂點引出一條射線,能把這個角平均分成兩份,這條射線叫做這個角的角平分線。

數學第一章相交線

一、鄰補角:兩條直線相交所成的四個角中,有公共頂點,並且有一條公共邊,這樣的角叫做鄰補角。鄰補角是一種特殊位置關系和數量關系的角,即鄰補角一定是補角,但補角不一定是鄰補角。

二、對頂角:是兩條直線相交形成的。兩個角的兩邊互為反向延長線,因此對頂角也可以說成「把一個角的兩邊反向延長而形成的兩個角叫做對頂角」。

初一數學上冊知識點4

多項式除以單項式

一、單項式

1、都是數字與字母的乘積的代數式叫做單項式。

2、單項式的數字因數叫做單項式的系數。

3、單項式中所有字母的指數和叫做單項式的次數。

4、單獨一個數或一個字母也是單項式。

5、只含有字母因式的單項式的系數是1或―1。

6、單獨的一個數字是單項式,它的系數是它本身。

7、單獨的一個非零常數的次數是0。

8、單項式中只能含有乘法或乘方運算,而不能含有加、減等其他運算。

9、單項式的系數包括它前面的符號。

10、單項式的系數是帶分數時,應化成假分數。

11、單項式的系數是1或―1時,通常省略數字「1」。

12、單項式的次數僅與字母有關,與單項式的系數無關。

二、多項式

1、幾個單項式的和叫做多項式。

2、多項式中的每一個單項式叫做多項式的項。

3、多項式中不含字母的項叫做常數項。

4、一個多項式有幾項,就叫做幾項式。

5、多項式的每一項都包括項前面的符號。

6、多項式沒有系數的概念,但有次數的概念。

7、多項式中次數的項的次數,叫做這個多項式的次數。

三、整式

1、單項式和多項式統稱為整式。

2、單項式或多項式都是整式。

3、整式不一定是單項式。

4、整式不一定是多項式。

5、分母中含有字母的代數式不是整式;而是今後將要學習的分式。

四、整式的加減

1、整式加減的理論根據是:去括弧法則,合並同類項法則,以及乘法分配率。

2、幾個整式相加減,關鍵是正確地運用去括弧法則,然後准確合並同類項。

3、幾個整式相加減的一般步驟:

(1)列出代數式:用括弧把每個整式括起來,再用加減號連接。

(2)按去括弧法則去括弧。

(3)合並同類項。

4、代數式求值的一般步驟:

(1)代數式化簡。

(2)代入計算

(3)對於某些特殊的代數式,可採用「整體代入」進行計算。

五、同底數冪的乘法

1、n個相同因式(或因數)a相乘,記作an,讀作a的n次方(冪),其中a為底數,n為指數,an的結果叫做冪。

2、底數相同的冪叫做同底數冪。

3、同底數冪乘法的運演算法則:同底數冪相乘,底數不變,指數相加。即:am﹒an=am+n。

4、此法則也可以逆用,即:am+n=am﹒an。

5、開始底數不相同的冪的乘法,如果可以化成底數相同的冪的乘法,先化成同底數冪再運用法則。

六、冪的乘方

1、冪的乘方是指幾個相同的冪相乘。(am)n表示n個am相乘。

2、冪的乘方運演算法則:冪的乘方,底數不變,指數相乘。(am)n=amn。

3、此法則也可以逆用,即:amn=(am)n=(an)m。

七、積的乘方

1、積的乘方是指底數是乘積形式的乘方。

2、積的乘方運演算法則:積的乘方,等於把積中的每個因式分別乘方,然後把所得的冪相乘。即(ab)n=anbn。

3、此法則也可以逆用,即:anbn=(ab)n。

八、三種「冪的運演算法則」異同點

1、共同點:

(1)法則中的底數不變,只對指數做運算。

(2)法則中的底數(不為零)和指數具有普遍性,即可以是數,也可以是式(單項式或多項式)。

(3)對於含有3個或3個以上的運算,法則仍然成立。

2、不同點:

(1)同底數冪相乘是指數相加。

(2)冪的乘方是指數相乘。

(3)積的乘方是每個因式分別乘方,再將結果相乘。

九、同底數冪的除法

1、同底數冪的除法法則:同底數冪相除,底數不變,指數相減,即:am÷an=am-n(a≠0)。

2、此法則也可以逆用,即:am-n=am÷an(a≠0)。

十、零指數冪

1、零指數冪的意義:任何不等於0的數的0次冪都等於1,即:a0=1(a≠0)。

十一、負指數冪

1、任何不等於零的數的―p次冪,等於這個數的p次冪的倒數,即:

註:在同底數冪的除法、零指數冪、負指數冪中底數不為0。

十二、整式的乘法

(一)單項式與單項式相乘

1、單項式乘法法則:單項式與單項式相乘,把它們的系數、相同字母的冪分別相乘,其餘字母連同它的指數不變,作為積的因式。

2、系數相乘時,注意符號。

3、相同字母的冪相乘時,底數不變,指數相加。

4、對於只在一個單項式中含有的字母,連同它的指數一起寫在積里,作為積的因式。

5、單項式乘以單項式的結果仍是單項式。

6、單項式的乘法法則對於三個或三個以上的單項式相乘同樣適用。

(二)單項式與多項式相乘

1、單項式與多項式乘法法則:單項式與多項式相乘,就是根據分配率用單項式去乘多項式中的每一項,再把所得的積相加。即:m(a+b+c)=ma+mb+mc。

2、運算時注意積的符號,多項式的每一項都包括它前面的符號。

3、積是一個多項式,其項數與多項式的項數相同。

4、混合運算中,注意運算順序,結果有同類項時要合並同類項,從而得到最簡結果。

(三)多項式與多項式相乘

1、多項式與多項式乘法法則:多項式與多項式相乘,先用一個多項式的每一項乘另一個多項式的每一項,再把所得的積相加。即:(m+n)(a+b)=ma+mb+na+nb。

2、多項式與多項式相乘,必須做到不重不漏。相乘時,要按一定的順序進行,即一個多項式的每一項乘以另一個多項式的每一項。在未合並同類項之前,積的項數等於兩個多項式項數的積。

3、多項式的每一項都包含它前面的符號,確定積中每一項的符號時應用「同號得正,異號得負」。

4、運算結果中有同類項的要合並同類項。

5、對於含有同一個字母的一次項系數是1的兩個一次二項式相乘時,可以運用下面的公式簡化運算:(x+a)(x+b)=x2+(a+b)x+ab。

十三、平方差公式

1、(a+b)(a-b)=a2-b2,即:兩數和與這兩數差的積,等於它們的平方之差。

2、平方差公式中的a、b可以是單項式,也可以是多項式。

3、平方差公式可以逆用,即:a2-b2=(a+b)(a-b)。

4、平方差公式還能簡化兩數之積的運算,解這類題,首先看兩個數能否轉化成

(a+b)?(a-b)的形式,然後看a2與b2是否容易計算。


初一數學上冊知識點總結相關 文章 :

★ 初一數學上冊知識點歸納

★ 初一上冊數學知識點歸納整理

★ 初一數學上冊重點知識整理

★ 七年級上冊數學知識點總結三篇

★ 七年級上冊數學月考知識點整理

★ 七年級英語上冊各單元知識點匯總

★ 初一年級上冊數學的21個熱門知識點

★ 初一上冊數學知識點手抄報

★ 初一上冊數學合並同類項教案

★ 初中七年級上冊數學《整式》教案優質範文五篇

『陸』 七年級數學上冊知識點匯總

一個沒有幾分詩人氣的數學家永遠成不了一個完全的數學家.下面給大家帶來一些關於 七年級數學 上冊知識點匯總,希望對大家有所幫助。

1、有理數減法法則:減去一個數等於加上這個數的相反數,即:a-b=a+(-b).

2、加減法統一成加法:有理數的加減法運算可以通過有理數的減法法則將減法轉化為加法,統一成只有加法運算的和式.

3、和式的寫法:在和式里,通常把各個加數的括弧和它前面的加號省略不寫,寫成省略加

號的和的形式.

4、加減混合運算的 方法 和步驟

(1)將減法統一成加法,並寫成省略加號的和的形式;

(2)運用加法的交換律和結合律,簡化運算.

5、有理數乘法法則:兩數相乘,同號得正,異號得負,並把絕對值相乘;任何數與零相乘,都得0.

6、有理數乘法步驟:先確定積的符號;再計算絕對值的積.

7、倒數:乘積是1的兩個數互為倒數.

8、有理數的除法法則

(1)除以一個數等於乘以這個數的倒數;

(2)兩數相除,同號得正,異號得負,並把絕對值相除;

(3)0除以任何一個不等於零的數,都得0.

9、乘方的有關概念

(1)求n個相同因數的積的運算叫乘方,乘方的結果叫冪,a叫底,n叫指數,a n讀作:a的n 次方(或a的n次冪).

(2)正數的任何次冪都是正數;負數的奇次方冪是負數,偶次方冪是正數.

10、科學計數法

把一個大於10的數記成a×10n的形式,其中0≤a<10,n是正數,這種計數法叫做科學計數法.

11、有理數的混合運算順序

(1)先算乘方,再算乘除,最後算加減;

(2)同級運算,按照從左至右的順序依次進行;

(3)如果有括弧,就先算小括弧,再算中括弧,然後算大括弧.

12、近似數:與實際很接近的數.

13、精確度:反映近似數的精確程度的量.一般地,一個近似數四捨五入到某一位,就說這個

近似數精確到那一位.

14、計算器的組成:計算器的面板由 顯示器 和按鍵組成.

第3章整式的加減

1、用字母表示數後,有些數量之間的關系用含有字母的式子表示,看上去更加簡明,更具有普

遍意義.

2、用字母表示數後,字母的取值要根據實際情景來確定.

3、用運算符號把數或表示數的字母連接而成的式子,稱為代數式.

4、單獨一個數或單獨一個字母也是代數式.

5、列代數式的實質就是把文字語言轉化為符號語言.

6、列代數式的一般方法有:

(1)抓住關鍵詞,由關鍵詞確定相應的運算符號;

(2)理清運算順序,一般是先讀的先算,必要時添上括弧;

(3)較復雜的數量關系,可分段處理;

(4)根據實際問題中的基本數量關系或公式列代數式.

7、用數值代替代數式中的字母,按照代數式中的運算關系計算得出結果,叫做代數式的值.

8、求代數式的值的步驟:先代入,再求值.

9、數與字母的乘積所組成的代數式叫做單項式,單獨的數或字母也是單項式.

10、單項式中的數字因數叫做這個單項式的系數,所有字母指數之和叫做這個單項式的次數.

11、幾個單項式的和叫做多項式,在多項式中,每個單項式叫做多項式的項,其中不含字母

的項叫做常數項.

12、在多項式里,最高次項的次數就是這個多項式的次數.

13、單項式和多項式統稱為整式.

14、把一個多項式按某一個字母的指數從大到小的順序排列起來,叫做把這個多項式按這個

字母的降冪排列.

15、把一個多項式按某一個字母的指數從小到大的順序排列起來,叫做把這個多項式按這個

字母的升冪排列.

16、所含字母相同,並且相同字母的指數也相等的項叫做同類項,所有的常數項都是同類項.

17、把多項式中的同類項合並成一項,叫做合並同類項.

18、合並同類項的法則:把同類項的系數相加,所得結果作為系數,字母和字母的指數不變.

19、去括弧法則:

(1)括弧前面是「+」,把括弧和它前面的「+」號去掉,括弧里各項不改變正負號;

(2)括弧前面是「—」,把括弧和它前面的「—」號去掉,括弧里各項改變正負號;

20、添括弧法則:

(1)所添括弧前面是「+」號,括到括弧里的各項不改變正負號;

(2)所添括弧前面是「—」號,括到括弧里的各項改變正負號;

21、整式加減的一般步驟:先去括弧,再合並同類項.

第4章生活中的立體圖形

1、生活中的立體圖形有很多,常見的有柱體、錐體和球體,其中柱體分為圓柱和稜柱,錐體分

為圓錐和棱錐

2、從正面、上面和側面(左面或右面)三個不同的方向看一個物體,然後描繪出三幅所看到的

圖,即視圖.

3、從正面看到的圖形,稱為主視圖;從上面看到的圖形,稱為俯視圖;從側面看到的圖形,稱

為側視圖,依觀看的方向不同,有左視圖和右視圖.

4、單一的規則的立體圖形的三視圖,如果主視圖和側視圖是三角形,一般和錐體有關,可根據

俯視圖是圓形或n邊形,可以判斷是圓錐或,n棱錐;對於主視圖和側視圖是長方形的,一般和柱體有關,再觀察俯視圖是圓形或n邊形,可以判斷是圓柱或n稜柱.

5、圓柱的側面展開圖是矩形(長方形或正方形),圓錐的側面展開圖是扇形.

6、同一個立體圖形,按不同的方式展開得到的平面展開圖是不同的.

7、圓是由曲面圍成的封閉圖形;多邊形是由線段圍成的封閉圖形.

8、在多邊形中,最基本的圖形是三角形.

9、兩點之間線段最短.

10、經過兩點有1條直線,並且只有1條直線,即兩點確定一條直線.

11、線段的長短比較有兩種方法:一種是度量的方法;一種是疊合的方法.

12、把一條線段分成兩條相等線段的點,叫做這條線段的中點.

13、角是由兩條有公共端點的射線組成的圖形,角也可以看做是一條射線繞著它的端點旋轉

而成的圖形.

14、角的表示方法

(1)當頂點處只有一個角時,用一個大寫字母表示;

(2)用三個大寫字母表示,注意頂點字母必須寫在中間;

(3)用希臘字母或阿拉伯數字表示.

15、角的大小比較:

(1)「形的比較」——疊合法;

(2)「數的比較」——度量法.

16、從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的

角平分線.

17、兩個角的和等於90°(直角),就說這兩個角互為餘角;兩個角的和等於180°(平角),

就說這兩個角互為補角.

18、同角(或等角)的餘角相等;同角(或等角)的補角相等.

第5章相交線與平行線

1、對頂角相等.

2、在同一平面內,經過直線外或直線上一點,有且只有1條直線與已知直線垂直.

3、直線外一點與直線上各點連接的所有線段中,垂線段最短.

4、兩條直線被第三條直線所截,位於截線的同側,被截直線的同一方的兩個角叫做同位角;位

於截線的兩側,被截直線之間的兩個角叫做內錯角;位於截線的同側,被截直線之間的兩個角叫做同旁內角.

5、在同一平面內不相交的兩條直線叫做平行線.

6、經過直線外一點,有1條直線與這條直線平行.

7、如果兩條直線都和第三條直線平行,那麼這兩條直線也互相平行.

8、平行線的判定方法

(1)同位角相等,兩直線平行;

(2)內錯角相等,兩直線平行;

(3)同旁內角互補,兩直線平行;

(4)如果有兩條直線與第三條直線平行,那麼這兩條直線也互相平行;

(5)在同一平面內,垂直於同一條直線的兩條直線互相平行.

9、平行線的性質

(1)兩直線平行,同位角相等;

(2)兩直線平行,內錯角相等;

(3)兩直線平行,同旁內角互補.

第1章走進數學世界

1、數學伴我們成長,測量、稱重、計算等都與數學有關.

2、數學與現實生活密切聯系,人類離不開數學.

3、人人都能學好數學.

第2章有理數

1、相反意義的量:像向東和向西、零上和零下、收入和支出、升高和降低、買入和賣出等都表

示具有相反意義的量.

2、正數和負數

(1)正數都大於零;

(2)在正數前面加上一個「—」號的數叫做負數,負數都小於零;

(3)0既不是正數也不是負數,它是正數和負數的分界點.

3、有理數

(4)有理數:正數和分數統稱為有理數;

(5)整數包括正整數、0、負整數;

(6)分數包括正分數、負分數.

4、有理數的分類:0和正數統稱為非負數,0和負數統稱為非正數.

5、數軸的概念:規定了正方向、原點和單位長度的直線叫做數軸.

6、有理數的大小比較

(1)利用數軸:在數軸上表示兩個數,右邊的數總比左邊的數大;

(2)利用比較法則:正數都大於零,負數都小於零,正數大於負數.

7、相反數的意義

(1)代數意義:只有符號不同的兩個數稱互為相反數,零的相反數是0;

(2)幾何意義:在數軸上表示互為相反數的兩個點分別位於原點的兩側,且與原點的距離相等.

8、相反數的表示方法:數a的相反數是-a,這里的a可以表示任何一個數.

9、絕對值的意義

(1)幾何意義:把數軸上表示數a的點與原點的距離叫做數a的絕對值,記做|a|;

(2)代數意義:一個正數的絕對值等於本身,零的絕對值是0,一個負數的絕對值等於相反數.

10、絕對值的非負性:對於任何有理數a,都有|a|≥0.

11、兩個負數的大小比較法則:兩個負數,絕對值大的反而小.

12、有理數大小的比較方法

(1)利用數軸:在數軸上表示兩個數,右邊的數總比左邊的數大;

(2)利用比較法則:正數都大於零,負數都小於零,正數大於負數.

兩個正數,絕對值大的數大;兩個負數絕對值大的數反而小.

13、有理數的加法法則

(1)同號兩數相加,取加數的符號,並把絕對值相加;

(2)絕對值不相等的異號兩數相加,取絕對值較大加數的符號,並用較大的絕對值減較小的絕對值;

(3)互為相反數的兩個數相加得0;

(4)一個數同0相加仍得這個數.

14、在進行有理數的加法運算時,應分兩步:首先,判斷符號;然後,再計算絕對值.

15、有理數的加法運算律

(1)交換律:兩個數相加,交換加數的位置,和不變,即:a+b=b+a;(用字母表示)

(2)結合律:三個數相加,先把前面兩個數相加,或者先把後兩個數相加,和不變,即:(a+b)+c=a+(b+c).(用字母表示)

16、運用加法運算律的技巧:正負結合;湊整結合;相反數結合;同分母結合;整分結合.

七年級數學上冊知識點匯總相關 文章 :

★ 初一數學上冊知識點歸納

★ 初一上冊數學知識點歸納整理

★ 初一數學上冊重點知識整理

★ 初一數學上冊基本概念匯總與學習方法

★ 七年級上冊數學知識點總結三篇

★ 七年級數學知識點整理大全

★ 初中七年級數學知識點歸納整理

★ 初一數學有理數知識點

★ 七年級上冊數學全冊概念總結復習

★ 初一年級上冊數學的21個熱門知識點

『柒』 初一上冊數學必背公式是什麼

初一上冊數學必背公式是如下:

一、長方形的周長=(長+寬)×2 ,C=(a+b)×2

二、正方形的周長=邊長×4, C=4a

三、長方形的面積=長×寬 ,S=ab

四、正方形的面積=邊長×邊長 ,S=a.a=a^2

五、三角形的面積=底×高÷2 ,S=ah÷2

六、平行四邊形的面積=底×高, S=ah

七、梯形的面積=(上底+下底)×高÷2, S=(a+b)h÷2

八、圓的周長=圓周率×直徑=圓周率×半徑×2, c=πd=2πr

九、圓的面積=圓周率×半徑×半徑πr ^2

『捌』 初一數學上冊知識點梳理

每一門科目都有自己的 學習 方法 ,數學作為最燒腦的科目之一,需要不斷的練習。 下面是我給大家整理的初一數學知識點,歡迎閱讀,希望對大家有所幫助。

七年級數學 知識點

【生活中的軸對稱】

1、軸對稱圖形:如果一個圖形沿一條直線折疊後,直線兩旁的部分能夠完全重合,那麼這個圖形叫做軸對稱圖形,這條直線叫做對稱軸。

2、軸對稱:對於兩個圖形,如果沿一條直線對折後,它們能互相重合,那麼稱這兩個圖形成軸對稱,這條直線就是對稱軸。可以說成:這兩個圖形關於某條直線對稱。

3、軸對稱圖形與軸對稱的區別:軸對稱圖形是一個圖形,軸對稱是兩個圖形的關系。

聯系:它們都是圖形沿某直線折疊可以相互重合。

2、成軸對稱的兩個圖形一定全等。

3、全等的兩個圖形不一定成軸對稱。

4、對稱軸是直線。

5、角平分線的性質

1、角平分線所在的直線是該角的對稱軸。

2、性質:角平分線上的點到這個角的兩邊的距離相等。

6、線段的垂直平分線

1、垂直於一條線段並且平分這條線段的直線叫做這條線段的垂直平分線,又叫線段的中垂線。

2、性質:線段垂直平分線上的點到這條線段兩端點的距離相等。

7、軸對稱圖形有:

等腰三角形(1條或3條)、等腰梯形(1條)、長方形(2條)、菱形(2條)、正方形(4條)、圓(無數條)、線段(1條)、角(1條)、正五角星。

8、等腰三角形性質:

①兩個底角相等。②兩個條邊相等。③「三線合一」。④底邊上的高、中線、頂角的平分線所在直線是它的對稱軸。

9、①「等角對等邊」∵∠B=∠C∴AB=AC

②「等邊對等角」∵AB=AC∴∠B=∠C

10、角平分線性質:

角平分線上的點到角兩邊的距離相等。

∵OA平分∠CADOE⊥AC,OF⊥AD∴OE=OF

11、垂直平分線性質:垂直平分線上的點到線段兩端點的距離相等。

∵OC垂直平分AB∴AC=BC

12、軸對稱的性質

1、兩個圖形沿一條直線對折後,能夠重合的點稱為對應點(對稱點),能夠重合的線段稱為對應線段,能夠重合的角稱為對應角。2、關於某條直線對稱的兩個圖形是全等圖形。

2、如果兩個圖形關於某條直線對稱,那麼對應點所連的線段被對稱軸垂直平分。

3、如果兩個圖形關於某條直線對稱,那麼對應線段、對應角都相等。

13、鏡面對稱

1.當物體正對鏡面擺放時,鏡面會改變它的左右方向;

2.當垂直於鏡面擺放時,鏡面會改變它的上下方向;

3.如果是軸對稱圖形,當對稱軸與鏡面平行時,其鏡子中影像與原圖一樣;

學生通過討論,可能會找出以下解決物體與像之間相互轉化問題的辦法:

(1)利用鏡子照(注意鏡子的位置擺放);(2)利用軸對稱性質;

(3)可以把數字左右顛倒,或做簡單的軸對稱圖形;

(4)可以看像的背面;(5)根據前面的結論在頭腦中想像。

初一數學《三角形》知識點

一、目標與要求

1.認識三角形,了解三角形的意義,認識三角形的邊、內角、頂點,能用符號語言表示三角形。

2.經歷度量三角形邊長的實踐活動中,理解三角形三邊不等的關系。

3.懂得判斷三條線段可否構成一個三角形的方法,並能運用它解決有關的問題。

4.三角形的內角和定理,能用平行線的性質推出這一定理。

5.能應用三角形內角和定理解決一些簡單的實際問題。

二、重點

三角形內角和定理;

對三角形有關概念的了解,能用符號語言表示三條形。

三、難點

三角形內角和定理的推理的過程;

在具體的圖形中不重復,且不遺漏地識別所有三角形;

用三角形三邊不等關系判定三條線段可否組成三角形。

四、知識框架

五、知識點、概念 總結

1.三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。

2.三角形的分類

3.三角形的三邊關系:三角形任意兩邊的和大於第三邊,任意兩邊的差小於第三邊。

4.高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。

5.中線:在三角形中,連接一個頂點和它的對邊中點的線段叫做三角形的中線。

6.角平分線:三角形的一個內角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。

7.高線、中線、角平分線的意義和做法

8.三角形的穩定性:三角形的形狀是固定的,三角形的這個性質叫三角形的穩定性。

9.三角形內角和定理:三角形三個內角的和等於180°

推論1直角三角形的兩個銳角互余;

推論2三角形的一個外角等於和它不相鄰的兩個內角和;

推論3三角形的一個外角大於任何一個和它不相鄰的內角;

三角形的內角和是外角和的一半。

10.三角形的外角:三角形的一條邊與另一條邊延長線的夾角,叫做三角形的外角。

11.三角形外角的性質

(1)頂點是三角形的一個頂點,一邊是三角形的一邊,另一邊是三角形的一邊的延長線;

(2)三角形的一個外角等於與它不相鄰的兩個內角和;

(3)三角形的一個外角大於與它不相鄰的任一內角;

(4)三角形的外角和是360°。

12.多邊形:在平面內,由一些線段首尾順次相接組成的圖形叫做多邊形。

13.多邊形的內角:多邊形相鄰兩邊組成的角叫做它的內角。

14.多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角。

15.多邊形的對角線:連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線。

16.多邊形的分類:分為凸多邊形及凹多邊形,凸多邊形又可稱為平面多邊形,凹多邊形又稱空間多邊形。多邊形還可以分為正多邊形和非正多邊形。正多邊形各邊相等且各內角相等。

17.正多邊形:在平面內,各個角都相等,各條邊都相等的多邊形叫做正多邊形。

18.平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面。

七年級數學公式大全(下學期)

1 每份數×份數=總數 總數÷每份數=份數 總數÷份數=每份數 2 1倍數×倍數=幾倍數 幾倍數÷1倍數=倍數 幾倍數÷倍數=1倍數 3 速度×時間=路程 路程÷速度=時間 路程÷時間=速度 4 單價×數量=總價 總價÷單價=數量 總價÷數量=單價

5 工作效率×工作時間=工作總量 工作總量÷工作效率=工作時間 工作總量÷工作時間=工作效率 6 加數+加數=和 和-一個加數=另一個加數 7 被減數-減數=差 被減數-差=減數 差+減數=被減數 8 因數×因數=積 積÷一個因數=另一個因數 9 被除數÷除數=商 被除數÷商=除數 商×除數=被除數 小學數學圖形計算公式 1 正方形

C周長 S面積 a邊長 周長=邊長×4 C=4a

面積=邊長×邊長 S=a×a 2 正方體 V:體積 a:棱長 表面積=棱長×棱長×6 S表=a×a×6

體積=棱長×棱長×棱長 V=a×a×a 3 長方形

C周長 S面積 a邊長 周長=(長+寬)×2 C=2(a+b) 面積=長×寬 S=ab 4 長方體

V:體積 s:面積 a:長 b: 寬 h:高 (1)表面積(長×寬+長×高+寬×高)×2 S=2(ab+ah+bh) (2)體積=長×寬×高 V=abh 5 三角形 s面積 a底 h高 面積=底×高÷2 s=ah÷2

三角形高=面積 ×2÷底 三角形底=面積 ×2÷高 6 平行四邊形 s面積 a底 h高 面積=底×高 s=ah 7 梯形

s面積 a上底 b下底 h高 面積=(上底+下底)×高÷2 s=(a+b)× h÷2 8 圓形

S面積 C周長 ∏ d=直徑 r=半徑 (1)周長=直徑×∏=2×∏×半徑 C=∏d=2∏r

(2)面積=半徑×半徑×∏ 9 圓柱體

v:體積 h:高 s;底面積 r:底面半徑 c:底面周長

(1)側面積=底面周長×高 (2)表面積=側面積+底面積×2 (3)體積=底面積×高 (4)體積=側面積÷2×半徑 10 圓錐體

v:體積 h:高 s;底面積 r:底面半徑

體積=底面積×高÷3 總數÷總份數=平均數 和差問題的公式 (和+差)÷2=大數 (和-差)÷2=小數 和倍問題

和÷(倍數-1)=小數 小數×倍數=大數 (或者 和-小數=大數) 差倍問題

差÷(倍數-1)=小數 小數×倍數=大數 (或 小數+差=大數) 植樹問題

1 非封閉線路上的植樹問題主要可分為以下三種情形:

⑴如果在非封閉線路的兩端都要植樹,那麼: 株數=段數+1=全長÷株距-1 全長=株距×(株數-1) 株距=全長÷(株數-1)

⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那麼:

株數=段數=全長÷株距 全長=株距×株數 株距=全長÷株數

⑶如果在非封閉線路的兩端都不要植樹,那麼:

株數=段數-1=全長÷株距-1 全長=株距×(株數+1) 株距=全長÷(株數+1)

2 封閉線路上的植樹問題的數量關系如下 株數=段數=全長÷株距 全長=株距×株數 株距=全長÷株數 盈虧問題

(盈+虧)÷兩次分配量之差=參加分配的份數

(大盈-小盈)÷兩次分配量之差=參加分配的份數

(大虧-小虧)÷兩次分配量之差=參加分配的份數 相遇問題

相遇路程=速度和×相遇時間 相遇時間=相遇路程÷速度和 速度和=相遇路程÷相遇時間 追及問題

追及距離=速度差×追及時間 追及時間=追及距離÷速度差 速度差=追及距離÷追及時間 流水問題

順流速度=靜水速度+水流速度 逆流速度=靜水速度-水流速度 靜水速度=(順流速度+逆流速度)÷2 水流速度=(順流速度-逆流速度)÷2 濃度問題

溶質的重量+溶劑的重量=溶液的重量 溶質的重量÷溶液的重量×100%=濃度 溶液的重量×濃度=溶質的重量 溶質的重量÷濃度=溶液的重量 利潤與折扣問題 利潤=售出價-成本

利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%

漲跌金額=本金×漲跌百分比

折扣=實際售價÷原售價×100%(折扣<1) 利息=本金×利率×時間 長度單位換算

1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米 面積單位換算 1平方千米=100公頃 1公頃=10000平方米 1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米 體(容)積單位換算 1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升 1立方厘米=1毫升 1立方米=1000升

初中 數學學習方法

一、主動預習

預習的目的是主動獲取新知識的過程,有助於調動學習積極主動性,新知識在未講解之前,認真閱讀教材,養成主動預習的習慣,是獲得數學知識的重要手段。

因此,培養自學能力,在老師的引導下學會看書,帶著老師精心設計的思考題去預習。如自學例題時,要弄清例題講的什麼內容,告訴了哪些條件,求什麼,書上怎麼解答的,為什麼要這樣解答,還有沒有新的解法,解題步驟是怎樣的。抓住這些重要問題,動腦思考,步步深入,學會運用已有的知識去獨立探究新的知識。

二、主動思考

很多同學在聽課的過程中,只是簡簡單單的聽,不能主動思考,這樣遇到實際問題時,會無從下手,不知如何應用所學的知識去解答問題。主要原因還是聽課過程中不思考惹的禍。除了我們跟著老師的思路走,還要多想想為什麼要這么定義,這樣解題的好處是什麼,這樣主動去想,不僅能讓我們更加認真的聽課,也能激發對某些知識的興趣,更有助於學習。靠著老師的引導,去思考解題的思路;答案真的不重要;重要的是方法!

三、善於總結規律

解答數學問題總的講是有規律可循的。在解題時,要注意總結解題規律,在解決每一道練習題後,要注意回顧以下問題:

(1)本題最重要的特點是什麼?

(2)解本題用了哪些基本知識與基本圖形?

(3)本題你是怎樣觀察、聯想、變換來實現轉化的?

(4)解本題用了哪些數學思想、方法?

(5)解本題最關鍵的一步在那裡?

(6)你做過與本題類似的題目嗎?在解法、思路上有什麼異同?

(7)本題你能發現幾種解法?其中哪一種最優?那種解法是特殊技巧?你能總結在什麼情況下採用嗎?

把這一連串的問題貫穿於解題各環節中,逐步完善,持之以恆,孩子解題的心理穩定性和應變能力就可以不斷提高,思維能力就會得到鍛煉和發展。

四、拓寬解題思路

數學解題不要局限於本題,而要做到舉一反三、多思多想,解答完一個題目,要想想有沒有其他更加簡便的方法,這樣能夠幫助大家拓寬思路,這樣在以後的做題過程中就會有更多的選擇。

五、必須要有錯題本

說到錯題本不少同學都覺的自己的 記憶力 好,不需要錯題本就能記住,這是一種「錯覺」,每個人都有這種感覺,等到題目增多,學習內容加深,這時就會發現自己力不從心了,因此,錯題本能夠隨時記錄自己的知識短板,幫助強化知識體系,有助於提升學習效率。有很多學霸都是因為積極使用了錯題本,而考取了高分。

六、五個方面思考

「1×5」學習法,就是做一道題,要從五個方面思考,這點可以結合前面說到的「總結規律」「拓展思路」。五個方面分別為:

①這道題考查的知識點是什麼。

②為什麼要這樣做。

③我是如何想到的。

④還可以怎樣做,有 其它 方法嗎?

⑤一題多變看看它有幾種變化的形式

千萬不要覺得麻煩,學習習慣的培養最難的就是最初的一個月,這就像火箭升空一樣,最難的就是點火起飛階段,所以,一旦養成了良好的數學學習習慣和 思維方式 ,在今後的學習中就會非常的輕松。

七、獨立完成作業

現在很多學生用一些APP來幫助寫作業,找個照片就有答案,或者是抄襲其他同學的作業,這可以分兩種情況來說,一種是為了圖快、求速度,如果經常這樣會養成不良的審題習慣,容易走馬觀花、粗心大意。還有一種是為了圖方便,這會導致同學們養成「怕麻煩」的心理,一旦題目有些難度,自己就開始心煩意亂,思路模糊,因此,大家一定要養成良好的獨立完成作業的習慣。

初一數學上冊知識點梳理相關 文章 :

★ 初一數學上冊知識點歸納

★ 初一數學上冊重點知識整理

★ 初一數學上冊知識點匯總歸納

★ 初一數學上冊知識點總結

★ 初一數學上冊知識點歸納總結

★ 初一數學上冊知識點

★ 初一上冊數學知識點歸納整理

★ 初一人教版數學上冊知識點總結歸納

★ 初一數學上冊知識點大全

★ 七年級數學上冊知識歸納

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

『玖』 初一數學上冊知識點全總結

掌握好知識點才能把數學學得更好,下面是我整理的初一數學上冊知識點全總結,希望對大家有幫助!

第一單元小數乘法

1、小數乘整數:

@意義——求幾個相同加數的和的簡便運算。

如:1.5×3表示求3個1.5的和的簡便運算(或1.5的3倍是多少)。

@計算方法:先把小數擴大成整數;按整數乘法的法則算出積;再看因數中一共有幾位小數,就從積的右邊起數出幾位點上小數點。

2、小數乘小數:

@意義——就是求這個數的幾分之幾是多少。

如:1.5×0.8就是求1.5的十分之八是多少(或求1.5的1.8倍是多少)。@計算方法:先把小數擴大成整數;按整數乘法的法則算出積;再看因數中一共有幾位小數,就從積的右邊起數出幾位點上小數點。

注意:按整數算出積後,小數末尾的0要去掉,也就是把小數化簡;位數不夠時,要用0佔位。

3、規律:0除外)乘大於

1的數,積比原來的數大;

0除外)乘小於1的數,積比原來的數小。

4、求近似數的方法一般有三種:

⑴四捨五入法;⑵進一法;⑶去尾法

5、計算錢數,保留兩位小數,表示計算到分;保留一位小數,表示計算到角。

6、小數四則運算順序和運算定律跟整數是一樣的。

7、運算定律和性質:

@加法:

加法交換律:a+b=b+a

加法結合律:(a+b)+c=a+(b+c)

減法:

@乘法:

乘法交換律:a×b=b×a

乘法結合律:(a×b)×c=a×(b×c)

乘法分配律:(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】

@除法:

÷b÷c=a÷(b×c)

a÷(b×c)=a÷b÷c

第二單元位置

1、數對:由兩個數組成,中間用逗號隔開,用括弧括起來。括弧裡面的數由左至右分別為列數和行數,即「先列後行」。

2、作用:一組數對確定唯一一個點的位置。經度和緯度就是這個原理。例:在方格圖(平面直角坐標系)中用數對(3,5)表示(第三列,第五行)。註:

(1)在平面直角坐標系中X軸上的坐標表示列,y軸上的坐標表示行。如:數對(3,2)表示第三列,第二行。

(2)數對(X,5)的行號不變,表示一條橫線,(5,Y)的列號不變,表示一條豎線。(有一個數不確定,不能確定一個點)

2、圖形左右平移行數不變;圖形上下平移列數不變。

第三單元小數除法

1、小數除法的意義:已知兩個因數的積與其中的一個因數,求另一個因數的運算。

如:0.6÷0.3表示已知兩個因數的積0.6與其中的一個因數0.3,求另一個因數的運算。

2、小數除以整數的計算方法:小數除以整數,按整數除法的方法去除。商的小數點要和被除數的小數點對齊。整數部分不夠除,商0,點上小數點。如果有餘數,要添0再除。

3、除數是小數的除法的計算方法:先將除數和被除數擴大相同的倍數,使除數變成整數,再按「除數是整數的小數除法」的法則進行計算。

注意:如果被除數的位數不夠,在被除數的末尾用0補足。

4、在實際應用中,小數除法所得的商也可以根據需要用「四捨五入」法保留一定的小數位數,求出商的近似數。

5、除法中的變化規律:

①商不變:被除數和除數同時擴大或縮小相同的倍數(0除外),商不變。②除數不變,被除數擴大,商隨著擴大。

③被除數不變,除數縮小,商擴大。

6、循環小數:一個數的小數部分,從某一位起,一個數字或者幾個數字依次不斷重復出現,這樣的小數叫做循環小數。

@循環節:一個循環小數的小數部分,依次不斷重復出現的數字。如:6.3232的循環節是32。

7、小數部分的位數是有限的小數,叫做有限小數。小數部分的位數是無限的小數,叫做無限小數。

第四單元可能性

1、有些事件的發生是確定的,有些是不確定的。

可能

可能性不可能(確定)一定

2、事件發生的機會(或概率)有大小。

大數量多小數量少

第五單元簡易方程

1、在含有字母的式子里,字母中間的乘號可以記作「·」,也可以省略不寫。註:加號、減號除號以及數與數之間的乘號不能省略。

22、a×a可以寫作a·a或a讀作a的'平方。

2、註:2a表示a+a;a表示a×a

3、方程:含有未知數的等式稱為方程。

4、使方程左右兩邊相等的未知數的值,叫做方程的解。

5、求方程的解的過程叫做解方程。

6、解方程原理:天平平衡。

等式左右兩邊同時加、減、乘、除相同的數(0除外),等式依然成立。

7、10個數量關系式:

@加法;

和=加數+加數;

=和-兩一個加數

@減法:

=被減數-減數;

=差+減數;

減數=被減數-差

@乘法:

積=因數×因數;

一個因數=積÷另一個因數

@除法:

商=被除數÷除數;

=商×除數;

除數=被除數÷商

第六單元多邊形的面積

1、長方形:

@周長=(長+寬)×2——【長=周長÷2-寬;寬=周長÷2-長】

字母表示:C=(a+b)×2

@面積=長×寬

字母表示:S=ab

2、正方形:

@周長=邊長×4

字母表示:C=4a

@面積=邊長×邊長

2字母表示:S=a

3、平行四邊形的面積=底×高

字母表示:S=ah

4、三角形的面積=底×高÷2——【底=面積×2÷高;高=面積×2÷底】

字母表示:S=ah÷2

5、梯形的面積=(上底+下底)×高÷2

字母表示:S=(a+b)h÷2=面積×2÷高-下底,

下底=面積×2÷高-上底;

=面積×2÷(上底+下底)

6、平行四邊形面積公式推導:剪拼、平移、割補法

7、三角形面積公式推導:旋轉、拼湊法

平行四邊形可以轉化成一個長方形;

兩個完全一樣的三角形可以拼成一個平行四邊形,

長方形的長相當於平行四邊形的底;

平行四邊形的底相當於三角形的底;

長方形的寬相當於平行四邊形的高;

平行四邊形的高相當於三角形的高;

長方形的面積等於平行四邊形的面積,

平行四邊形的面積等於三角形面積的2倍,

因為長方形面積=長×寬,所以平行四邊形面積=底×高。因為平行四邊形面積=底×高,所以三角形面積=底×高÷2。

8、梯形面積公式推導:旋轉、拼湊法

9、兩個完全一樣的梯形可以拼成一個平行四邊形;

平行四邊形的底相當於梯形的上下底之和;

平行四邊形的高相當於梯形的高;

平行四邊形面積等於梯形面積的2倍,

因為平行四邊形面積=底×高,所以梯形面積=(上底+下底)×高÷2。

10、等底等高的平行四邊形面積相等;等底等高的三角形面積相等;等底等高的平行四邊形面積是三角形面積的2倍。

11、長方形框架拉成平行四邊形,周長不變,面積變小。

12、組合圖形面積(或陰影部分面積):轉化成已學的簡單圖形,通過加、減進行計算(整體-部分=另一部分)。