當前位置:首頁 » 基礎知識 » 新教材高二選修一數學知識點總結
擴展閱讀
假期最好看什麼動漫 2024-11-15 11:47:42

新教材高二選修一數學知識點總結

發布時間: 2022-12-15 16:23:41

㈠ 高二數學選修的必學知識點總結

知識掌握的巔峰,應該在一輪復習之後,也就是在你把所有知識重新撿起來之後。這樣看來,應對高二這一變化的較優選擇,是在高二還在學習新知識時,有意識地把高一內容從頭撿起,自己規劃進度,提前復習。我整理的 高二數學 選修的必學知識點 總結 ,希望大家能夠喜歡!

高二數學選修的必學知識點總結1

直線的傾斜角:

定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°

直線的斜率:

①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。

②過兩點的直線的斜率公式。

注意:

(1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;

(2)k與P1、P2的順序無關;

(3)以後求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;

(4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到。

直線方程:

1.點斜式:y-y0=k(x-x0)

(x0,y0)是直線所通過的已知點的坐標,k是直線的已知斜率。x是自變數,直線上任意一點的橫坐標;y是因變數,直線上任意一點的縱坐標。

2.斜截式:y=kx+b

直線的斜截式方程:y=kx+b,其中k是直線的斜率,b是直線在y軸上的截距。該方程叫做直線的斜截式方程,簡稱斜截式。此斜截式類似於一次函數的表達式。

3.兩點式;(y-y1)/(y2-y1)=(x-x1)/(x2-x1)

如果x1=x2,y1=y2,那麼兩點就重合了,相當於只有一個已知點了,這樣不能確定一條直線。

如果x1=x2,y1y2,那麼此直線就是垂直於X軸的一條直線,其方程為x=x1,不能表示成上面的一般式。

如果x1x2,但y1=y2,那麼此直線就是垂直於Y軸的一條直線,其方程為y=y1,也不能表示成上面的一般式。

4.截距式x/a+y/b=1

對x的截距就是y=0時,x的值,對y的截距就是x=0時,y的值。x截距為a,y截距b,截距式就是:x/a+y/b=1下面由斜截式方程推導y=kx+b,-kx=b-y令x=0求出y=b,令y=0求出x=-b/k所以截距a=-b/k,b=b帶入得x/a+y/b=x/(-b/k)+y/b=-kx/b+y/b=(b-y)/b+y/b=b/b=1。

5.一般式;Ax+By+C=0

將ax+by+c=0變換可得y=-x/b-c/b(b不為零),其中-x/b=k(斜率),c/b=『b』(截距)。ax+by+c=0在解析幾何中更常用,用方程處理起來比較方便。

高二數學選修的必學知識點總結2

拋物線的性質:

1.拋物線是軸對稱圖形。對稱軸為直線

x=-b/2a。

對稱軸與拋物線的交點為拋物線的頂點P。

特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)

2.拋物線有一個頂點P,坐標為

P(-b/2a,(4ac-b^2)/4a)

當-b/2a=0時,P在y軸上;當Δ=b^2-4ac=0時,P在x軸上。

3.二次項系數a決定拋物線的開口方向和大小。

當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。

|a|越大,則拋物線的開口越小。

4.一次項系數b和二次項系數a共同決定對稱軸的位置。

當a與b同號時(即ab>0),對稱軸在y軸左;

當a與b異號時(即ab<0),對稱軸在y軸右。

5.常數項c決定拋物線與y軸交點。

拋物線與y軸交於(0,c)

6.拋物線與x軸交點個數

Δ=b^2-4ac>0時,拋物線與x軸有2個交點。

Δ=b^2-4ac=0時,拋物線與x軸有1個交點。

Δ=b^2-4ac<0時,拋物線與x軸沒有交點。X的取值是虛數(x=-b±√b^2-4ac的值的相反數,乘上虛數i,整個式子除以2a)

焦半徑:

焦半徑:拋物線y2=2px(p>0)上一點P(x0,y0)到焦點Fè???÷?

p2,0的距離|PF|=x0+p2.

求拋物線方程的 方法 :

(1)定義法:根據條件確定動點滿足的幾何特徵,從而確定p的值,得到拋物線的標准方程.

(2)待定系數法:根據條件設出標准方程,再確定參數p的值,這里要注意拋物線標准方程有四種形式.從簡單化角度出發,焦點在x軸的,設為y2=ax(a≠0),焦點在y軸的,設為x2=by(b≠0).

高二數學選修的必學知識點總結3

(1)定義:

對於函數y=f(x)(x∈D),把使f(x)=0成立的實數x叫做函數y=f(x)(x∈D)的零點。

(2)函數的零點與相應方程的根、函數的圖象與x軸交點間的關系:

方程f(x)=0有實數根?函數y=f(x)的圖象與x軸有交點?函數y=f(x)有零點。

(3)函數零點的判定(零點存在性定理):

如果函數y=f(x)在區間[a,b]上的圖象是連續不斷的一條曲線,並且有f(a)·f(b)<0,那麼,函數y=f(x)在區間(a,b)內有零點,即存在c∈(a,b),使得f(c)=0,這個c也就是方程f(x)=0的根。

二二次函數y=ax2+bx+c(a>0)的圖象與零點的關系

三二分法

對於在區間[a,b]上連續不斷且f(a)·f(b)<0的函數y=f(x),通過不斷地把函數f(x)的零點所在的區間一分為二,使區間的兩個端點逐步逼近零點,進而得到零點近似值的方法叫做二分法。

1、函數的零點不是點:

函數y=f(x)的零點就是方程f(x)=0的實數根,也就是函數y=f(x)的圖象與x軸交點的橫坐標,所以函數的零點是一個數,而不是一個點.在寫函數零點時,所寫的一定是一個數字,而不是一個坐標。

2、對函數零點存在的判斷中,必須強調:

(1)、f(x)在[a,b]上連續;

(2)、f(a)·f(b)<0;

(3)、在(a,b)內存在零點。

這是零點存在的一個充分條件,但不必要。

3、對於定義域內連續不斷的函數,其相鄰兩個零點之間的所有函數值保持同號。

利用函數零點的存在性定理判斷零點所在的區間時,首先看函數y=f(x)在區間[a,b]上的圖象是否連續不斷,再看是否有f(a)·f(b)<0.若有,則函數y=f(x)在區間(a,b)內必有零點。

四判斷函數零點個數的常用方法

1、解方程法:

令f(x)=0,如果能求出解,則有幾個解就有幾個零點。

2、零點存在性定理法:

利用定理不僅要判斷函數在區間[a,b]上是連續不斷的曲線,且f(a)·f(b)<0,還必須結合函數的圖象與性質(如單調性、奇偶性、周期性、對稱性)才能確定函數有多少個零點。

3、數形結合法:

轉化為兩個函數的圖象的交點個數問題.先畫出兩個函數的圖象,看其交點的個數,其中交點的個數,就是函數零點的個數。

已知函數有零點(方程有根)求參數取值常用的方法

1、直接法:

直接根據題設條件構建關於參數的不等式,再通過解不等式確定參數范圍。

2、分離參數法:

先將參數分離,轉化成求函數值域問題加以解決。

3、數形結合法:

先對解析式變形,在同一平面直角坐標系中,畫出函數的圖象,然後數形結合求解。


高二數學選修的必學知識點總結相關 文章 :

★ 高二數學知識點總結選修2

★ 高二數學必背知識點總結

★ 高二數學選修2至3知識點總結

★ 高二數學知識點歸納總結

★ 高二數學知識點總結

★ 高二數學選修2—1第一章常用邏輯用語知識點復習

★ 高二數學知識點總結歸納

★ 高二數學考點知識點總結復習大綱

★ 高二數學知識點總結人教版

★ 高二數學知識點總結詳細

㈡ 高二數學知識點總結

選修Ⅰ(141個)

一、集合、簡易邏輯(14課時,8個)

1、集合;2、子集;3、補集;4、交集;5、並集;6、邏輯連結詞;7、四種命題;8、充要條件。

二、函數(30課時,12個)

1、映射;2、函數;3、函數的單調性;4、反函數;5、互為反函數的函數圖象間的關系;6、指數概念的擴充;7、有理指數冪的運算;8、指數函數;9、對數;10、對數的運算性質;11、對數函數、12、函數的應用舉例。

三、數列(12課時,5個)

1、數列;2、等差數列及其通項公式;3、等差數列前n項和公式;4、等比數列及其通頂公式;5、等比數列前n項和公式。

四、三角函數(46課時,17個)

1、角的概念的推廣;2、弧度制;3、任意角的三角函數;4、單位圓中的三角函數線;5、同角三角函數的基本關系式;6、正弦、餘弦的誘導公式;7、兩角和與差的正弦、餘弦、正切;8、二倍角的正弦、餘弦、正切;9、正弦函數、餘弦函數的圖象和性質;10、周期函數;11、函數的奇偶性;12、函數的圖象;13、正切函數的圖象和性質;14、已知三角函數值求角;15、正弦定理;16、餘弦定理;17、斜三角形解法舉例。

五、平面向量(12課時,8個)

1、向量;2、向量的加法與減法;3、實數與向量的積;4、平面向量的坐標表示;5、線段的定比分點;6、平面向量的數量積;7、平面兩點間的距離;8、平移、

六、不等式(22課時,5個)

1、不等式;2、不等式的基本性質;3、不等式的證明;4、不等式的解法;5、含絕對值的不等式。

七、直線和圓的方程(22課時,12個)

1、直線的傾斜角和斜率;2、直線方程的點斜式和兩點式;3、直線方程的一般式;4、兩條直線平行與垂直的條件;5、兩條直線的交角;6、點到直線的距離;7、用二元一次不等式表示平面區域;8、簡單線性規劃問題;9、曲線與方程的概念;10、由已知條件列出曲線方程;11、圓的標准方程和一般方程;12、圓的參數方程。

八、圓錐曲線(18課時,7個)

1、橢圓及其標准方程;2、橢圓的簡單幾何性質;3、橢圓的參數方程;4、雙曲線及其標准方程;5、雙曲線的簡單幾何性質;6、拋物線及其標准方程;7、拋物線的簡單幾何性質。

九、直線、平面、簡單何體(36課時,28個)

1、平面及基本性質;2、平面圖形直觀圖的畫法;3、平面直線;4、直線和平面平行的.判定與性質;5、直線和平面垂直的判定與性質;6、三垂線定理及其逆定理;7、兩個平面的位置關系;8、空間向量及其加法、減法與數乘;9、空間向量的坐標表示;10、空間向量的數量積;11、直線的方向向量;12、異面直線所成的角;13、異面直線的公垂線;14、異面直線的距離;15、直線和平面垂直的性質;16、平面的法向量;17、點到平面的距離;18、直線和平面所成的角;19、向量在平面內的射影;20、平面與平面平行的性質;21、平行平面間的距離;22、二面角及其平面角;23、兩個平面垂直的判定和性質;24、多面體;25、稜柱;26、棱錐;27、正多面體;28、球。

十、排列、組合、二項式定理(18課時,8個)

1、分類計數原理與分步計數原理;2、排列;3、排列數公式;4、組合;5、組合數公式;6、組合數的兩個性質;7、二項式定理;8、二項展開式的性質。

十一、概率(12課時,5個)

1、隨機事件的概率;2、等可能事件的概率;3、互斥事件有一個發生的概率;4、相互獨立事件同時發生的概率;5、獨立重復試驗。

選修Ⅱ(24個)

十二、概率與統計(14課時,6個)

1、離散型隨機變數的分布列;2、離散型隨機變數的期望值和方差;3、抽樣方法;4、總體分布的估計;5、正態分布;6、線性回歸。

十三、極限(12課時,6個)

1、數學歸納法;2、數學歸納法應用舉例;3、數列的極限;4、函數的極限;5、極限的四則運算;6、函數的連續性。

十四、導數(18課時,8個)

1、導數的概念;2、導數的幾何意義;3、幾種常見函數的導數;4、兩個函數的和、差、積、商的導數;5、復合函數的導數;6、基本導數公式;7、利用導數研究函數的單調性和極值;8、函數的最大值和最小值。

十五、復數(4課時,4個)

1、復數的概念;2、復數的加法和減法;3、復數的乘法和除法;4、復數的一元二次方程和二項方程的解法。

㈢ 高二數學重要知識點歸納

數學是研究數量、結構、變化、空間以及信息等概念的一門學科,從某種角度看屬於形式科學的一種。下面給大家分享一些 高二數學 重要知識點,希望對大家有所幫助。

高二數學重要知識點1

1.拋物線是軸對稱圖形。對稱軸為直線

x=-b/2a。

對稱軸與拋物線的交點為拋物線的頂點P。

特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)

2.拋物線有一個頂點P,坐標為

P(-b/2a,(4ac-b^2)/4a)

當-b/2a=0時,P在y軸上;當Δ=b^2-4ac=0時,P在x軸上。

3.二次項系數a決定拋物線的開口方向和大小。

當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。

|a|越大,則拋物線的開口越小。

4.一次項系數b和二次項系數a共同決定對稱軸的位置。

當a與b同號時(即ab>0),對稱軸在y軸左;

當a與b異號時(即ab<0),對稱軸在y軸右。

5.常數項c決定拋物線與y軸交點。

拋物線與y軸交於(0,c)

6.拋物線與x軸交點個數

Δ=b^2-4ac>0時,拋物線與x軸有2個交點。

Δ=b^2-4ac=0時,拋物線與x軸有1個交點。

Δ=b^2-4ac<0時,拋物線與x軸沒有交點。X的取值是虛數(x=-b±√b^2-4ac的值的相反數,乘上虛數i,整個式子除以2a)

高二數學重要知識點2

直線、平面、簡單幾何體:

1、學會三視圖的分析:

2、斜二測畫法應注意的地方:

(1)在已知圖形中取互相垂直的軸Ox、Oy。畫直觀圖時,把它畫成對應軸o'x'、o'y'、使∠x'o'y'=45°(或135°);

(2)平行於x軸的線段長不變,平行於y軸的線段長減半.

(3)直觀圖中的45度原圖中就是90度,直觀圖中的90度原圖一定不是90度.

3、表(側)面積與體積公式:

⑴柱體:①表面積:S=S側+2S底;②側面積:S側=;③體積:V=S底h

⑵錐體:①表面積:S=S側+S底;②側面積:S側=;③體積:V=S底h:

⑶台體①表面積:S=S側+S上底S下底②側面積:S側=

⑷球體:①表面積:S=;②體積:V=

4、位置關系的證明(主要 方法 ):注意立體幾何證明的書寫

(1)直線與平面平行:①線線平行線面平行;②面面平行線面平行。

(2)平面與平面平行:①線面平行面面平行。

(3)垂直問題:線線垂直線面垂直面面垂直。核心是線面垂直:垂直平面內的兩條相交直線

5、求角:(步驟-------Ⅰ.找或作角;Ⅱ.求角)

⑴異面直線所成角的求法:平移法:平移直線,構造三角形;

⑵直線與平面所成的角:直線與射影所成的角

高二數學重要知識點3

復合函數定義域

若函數y=f(u)的定義域是B,u=g(x)的定義域是A,則復合函數y=f[g(x)]的定義域是D={x|x∈A,且g(x)∈B}綜合考慮各部分的x的取值范圍,取他們的交集。

求函數的定義域主要應考慮以下幾點:

⑴當為整式或奇次根式時,R的值域;

⑵當為偶次根式時,被開方數不小於0(即≥0);

⑶當為分式時,分母不為0;當分母是偶次根式時,被開方數大於0;

⑷當為指數式時,對零指數冪或負整數指數冪,底不為0。

⑸當是由一些基本函數通過四則運算結合而成的,它的定義域應是使各部分都有意義的自變數的值組成的集合,即求各部分定義域集合的交集。

⑹分段函數的定義域是各段上自變數的取值集合的並集。

⑺由實際問題建立的函數,除了要考慮使解析式有意義外,還要考慮實際意義對自變數的要求

⑻對於含參數字母的函數,求定義域時一般要對字母的取值情況進行分類討論,並要注意函數的定義域為非空集合。

⑼對數函數的真數必須大於零,底數大於零且不等於1。

⑽三角函數中的切割函數要注意對角變數的限制。

復合函數常見題型

(ⅰ)已知f(x)定義域為A,求f[g(x)]的定義域:實質是已知g(x)的范圍為A,以此求出x的范圍。

(ⅱ)已知f[g(x)]定義域為B,求f(x)的定義域:實質是已知x的范圍為B,以此求出g(x)的范圍。

(ⅲ)已知f[g(x)]定義域為C,求f[h(x)]的定義域:實質是已知x的范圍為C,以此先求出g(x)的范圍(即f(x)的定義域);然後將其作為h(x)的范圍,以此再求出x的范圍。

高二數學重要知識點4

1.求函數的單調性:

利用導數求函數單調性的基本方法:設函數yf(x)在區間(a,b)內可導,(1)如果恆f(x)0,則函數yf(x)在區間(a,b)上為增函數;(2)如果恆f(x)0,則函數yf(x)在區間(a,b)上為減函數;(3)如果恆f(x)0,則函數yf(x)在區間(a,b)上為常數函數。

利用導數求函數單調性的基本步驟:①求函數yf(x)的定義域;②求導數f(x);③解不等式f(x)0,解集在定義域內的不間斷區間為增區間;④解不等式f(x)0,解集在定義域內的不間斷區間為減區間。

反過來,也可以利用導數由函數的單調性解決相關問題(如確定參數的取值范圍):設函數yf(x)在區間(a,b)內可導,

(1)如果函數yf(x)在區間(a,b)上為增函數,則f(x)0(其中使f(x)0的x值不構成區間);

(2)如果函數yf(x)在區間(a,b)上為減函數,則f(x)0(其中使f(x)0的x值不構成區間);

(3)如果函數yf(x)在區間(a,b)上為常數函數,則f(x)0恆成立。

2.求函數的極值:

設函數yf(x)在x0及其附近有定義,如果對x0附近的所有的點都有f(x)f(x0)(或f(x)f(x0)),則稱f(x0)是函數f(x)的極小值(或極大值)。

可導函數的極值,可通過研究函數的單調性求得,基本步驟是:

(1)確定函數f(x)的定義域;(2)求導數f(x);(3)求方程f(x)0的全部實根,x1x2xn,順次將定義域分成若干個小區間,並列表:x變化時,f(x)和f(x)值的變化情況:

(4)檢查f(x)的符號並由表格判斷極值。

3.求函數的值與最小值:

如果函數f(x)在定義域I內存在x0,使得對任意的xI,總有f(x)f(x0),則稱f(x0)為函數在定義域上的值。函數在定義域內的極值不一定,但在定義域內的最值是的。

求函數f(x)在區間[a,b]上的值和最小值的步驟:(1)求f(x)在區間(a,b)上的極值;

(2)將第一步中求得的極值與f(a),f(b)比較,得到f(x)在區間[a,b]上的值與最小值。

4.解決不等式的有關問題:

(1)不等式恆成立問題(絕對不等式問題)可考慮值域。

f(x)(xA)的值域是[a,b]時,

不等式f(x)0恆成立的充要條件是f(x)max0,即b0;

不等式f(x)0恆成立的充要條件是f(x)min0,即a0。

f(x)(xA)的值域是(a,b)時,

不等式f(x)0恆成立的充要條件是b0;不等式f(x)0恆成立的充要條件是a0。

(2)證明不等式f(x)0可轉化為證明f(x)max0,或利用函數f(x)的單調性,轉化為證明f(x)f(x0)0。

5.導數在實際生活中的應用:

實際生活求解(小)值問題,通常都可轉化為函數的最值.在利用導數來求函數最值時,一定要注意,極值點的單峰函數,極值點就是最值點,在解題時要加以說明。

高二數學重要知識點歸納相關 文章 :

★ 高二數學知識點總結

★ 高二數學知識點總結(人教版)

★ 高二數學常考知識點總結

★ 高二數學會考知識點總結

★ 高二數學知識點總結歸納

★ 職業高中高二數學知識點

★ 高二數學推理知識點大總結

★ 高二數學知識點小結

★ 高二數學知識點總結選修2

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

㈣ 高中數學選修2-1知識總結

給個郵箱 我給你發一份 這樣有些圖和公式不顯示。

高二數學選修2-1知識點

第一章 常用邏輯用語
1、命題:用語言、符號或式子表達的,可以判斷真假的陳述句.
真命題:判斷為真的語句.
假命題:判斷為假的語句.
2、「若 ,則 」形式的命題中的 稱為命題的條件, 稱為命題的結論.
3、對於兩個命題,如果一個命題的條件和結論分別是另一個命題的結論和條件,則這兩個命題稱為互逆命題.其中一個命題稱為原命題,另一個稱為原命題的逆命題.
若原命題為「若 ,則 」,它的逆命題為「若 ,則 」.
4、對於兩個命題,如果一個命題的條件和結論恰好是另一個命題的條件的否定和結論的否定,則這兩個命題稱為互否命題.中一個命題稱為原命題,另一個稱為原命題的否命題.
若原命題為「若 ,則 」,則它的否命題為「若 ,則 」.
5、對於兩個命題,如果一個命題的條件和結論恰好是另一個命題的結論的否定和條件的否定,則這兩個命題稱為互為逆否命題.其中一個命題稱為原命題,另一個稱為原命題的逆否命題.
若原命題為「若 ,則 」,則它的否命題為「若 ,則 」.
6、四種命題的真假性:
原命題
逆命題
否命題
逆否命題

















四種命題的真假性之間的關系:
兩個命題互為逆否命題,它們有相同的真假性;
兩個命題為互逆命題或互否命題,它們的真假性沒有關系.
7、若 ,則 是 的充分條件, 是 的必要條件.
若 ,則 是 的充要條件(充分必要條件).
8、用聯結詞「且」把命題 和命題 聯結起來,得到一個新命題,記作 .
當 、 都是真命題時, 是真命題;當 、 兩個命題中有一個命題是假命題時, 是假命題.
用聯結詞「或」把命題 和命題 聯結起來,得到一個新命題,記作 .
當 、 兩個命題中有一個命題是真命題時, 是真命題;當 、 兩個命題都是假命題時, 是假命題.
對一個命題 全盤否定,得到一個新命題,記作 .
若 是真命題,則 必是假命題;若 是假命題,則 必是真命題.
9、短語「對所有的」、「對任意一個」在邏輯中通常稱為全稱量詞,用「 」表示.
含有全稱量詞的命題稱為全稱命題.
全稱命題「對 中任意一個 ,有 成立」,記作「 , 」.
短語「存在一個」、「至少有一個」在邏輯中通常稱為存在量詞,用「 」表示.
含有存在量詞的命題稱為特稱命題.
特稱命題「存在 中的一個 ,使 成立」,記作「 , 」.
10、全稱命題 : , ,它的否定 : , .全稱命題的否定是特稱命題.

第二章 圓錐曲線與方程
11、平面內與兩個定點 , 的距離之和等於常數(大於 )的點的軌跡稱為橢圓.這兩個定點稱為橢圓的焦點,兩焦點的距離稱為橢圓的焦距.
12、橢圓的幾何性質:
焦點的位置
焦點在 軸上
焦點在 軸上
圖形

標准方程

范圍


頂點




軸長
短軸的長 長軸的長
焦點


焦距

對稱性
關於 軸、 軸、原點對稱
離心率

准線方程

13、設 是橢圓上任一點,點 到 對應准線的距離為 ,點 到 對應准線的距離為 ,則 .
14、平面內與兩個定點 , 的距離之差的絕對值等於常數(小於 )的點的軌跡稱為雙曲線.這兩個定點稱為雙曲線的焦點,兩焦點的距離稱為雙曲線的焦距.
15、雙曲線的幾何性質:
焦點的位置
焦點在 軸上
焦點在 軸上
圖形

標准方程

范圍
或 ,
或 ,
頂點


軸長
虛軸的長 實軸的長
焦點


焦距

對稱性
關於 軸、 軸對稱,關於原點中心對稱
離心率

准線方程

漸近線方程

16、實軸和虛軸等長的雙曲線稱為等軸雙曲線.
17、設 是雙曲線上任一點,點 到 對應准線的距離為 ,點 到 對應准線的距離為 ,則 .
18、平面內與一個定點 和一條定直線 的距離相等的點的軌跡稱為拋物線.定點 稱為拋物線的焦點,定直線 稱為拋物線的准線.
19、過拋物線的焦點作垂直於對稱軸且交拋物線於 、 兩點的線段 ,稱為拋物線的「通徑」,即 .
20、焦半徑公式:
若點 在拋物線 上,焦點為 ,則 ;
若點 在拋物線 上,焦點為 ,則 ;
若點 在拋物線 上,焦點為 ,則 ;
若點 在拋物線 上,焦點為 ,則 .
21、拋物線的幾何性質:
標准方程

圖形

頂點

對稱軸


焦點

准線方程

離心率

范圍

第三章 空間向量與立體幾何
22、空間向量的概念:
在空間,具有大小和方向的量稱為空間向量.
向量可用一條有向線段來表示.有向線段的長度表示向量的大小,箭頭所指的方向表示向量的方向.
向量 的大小稱為向量的模(或長度),記作 .
模(或長度)為 的向量稱為零向量;模為 的向量稱為單位向量.
與向量 長度相等且方向相反的向量稱為 的相反向量,記作 .
方向相同且模相等的向量稱為相等向量.
23、空間向量的加法和減法:

求兩個向量和的運算稱為向量的加法,它遵循平行四邊形法則.即:在空間以同一點 為起點的兩個已知向量 、 為鄰邊作平行四邊形 ,則以 起點的對角線 就是 與 的和,這種求向量和的方法,稱為向量加法的平行四邊形法則.
求兩個向量差的運算稱為向量的減法,它遵循三角形法則.即:在空間任取一點 ,作 , ,則 .
24、實數 與空間向量 的乘積 是一個向量,稱為向量的數乘運算.當 時, 與 方向相同;當 時, 與 方向相反;當 時, 為零向量,記為 . 的長度是 的長度的 倍.
25、設 , 為實數, , 是空間任意兩個向量,則數乘運算滿足分配律及結合律.
分配律: ;結合律: .
26、如果表示空間的有向線段所在的直線互相平行或重合,則這些向量稱為共線向量或平行向量,並規定零向量與任何向量都共線.
27、向量共線的充要條件:對於空間任意兩個向量 , , 的充要條件是存在實數 ,使 .
28、平行於同一個平面的向量稱為共面向量.
29、向量共面定理:空間一點 位於平面 內的充要條件是存在有序實數對 , ,使 ;或對空間任一定點 ,有 ;或若四點 , , , 共面,則 .
30、已知兩個非零向量 和 ,在空間任取一點 ,作 , ,則 稱為向量 , 的夾角,記作 .兩個向量夾角的取值范圍是: .
31、對於兩個非零向量 和 ,若 ,則向量 , 互相垂直,記作 .
32、已知兩個非零向量 和 ,則 稱為 , 的數量積,記作 .即 .零向量與任何向量的數量積為 .
33、 等於 的長度 與 在 的方向上的投影 的乘積.
34、若 , 為非零向量, 為單位向量,則有 ;
; , , ;
; .
35、向量數乘積的運算律: ; ;

36、若 , , 是空間三個兩兩垂直的向量,則對空間任一向量 ,存在有序實數組 ,使得 ,稱 , , 為向量 在 , , 上的分量.
37、空間向量基本定理:若三個向量 , , 不共面,則對空間任一向量 ,存在實數組 ,使得 .
38、若三個向量 , , 不共面,則所有空間向量組成的集合是
.這個集合可看作是由向量 , , 生成的,
稱為空間的一個基底, , , 稱為基向量.空間任意三個不共面的向量都可以構成空間的一個基底.
39、設 , , 為有公共起點 的三個兩兩垂直的單位向量(稱它們為單位正交基底),以 , , 的公共起點 為原點,分別以 , , 的方向為 軸, 軸, 軸的正方向建立空間直角坐標系 .則對於空間任意一個向量 ,一定可以把它平移,使它的起點與原點 重合,得到向量 .存在有序實數組 ,使得 .把 , , 稱作向量 在單位正交基底 , , 下的坐標,記作 .此時,向量 的坐標是點 在空間直角坐標系 中的坐標 .
40、設 , ,則 .



若 、 為非零向量,則 .
若 ,則 .


, ,則 .
41、在空間中,取一定點 作為基點,那麼空間中任意一點 的位置可以用向量 來表示.向量 稱為點 的位置向量.
42、空間中任意一條直線 的位置可以由 上一個定點 以及一個定方向確定.點 是直線 上一點,向量 表示直線 的方向向量,則對於直線 上的任意一點 ,有 ,這樣點 和向量 不僅可以確定直線 的位置,還可以具體表示出直線 上的任意一點.
43、空間中平面 的位置可以由 內的兩條相交直線來確定.設這兩條相交直線相交於點 ,它們的方向向量分別為 , . 為平面 上任意一點,存在有序實數對 ,使得 ,這樣點 與向量 , 就確定了平面 的位置.
44、直線 垂直 ,取直線 的方向向量 ,則向量 稱為平面 的法向量.
45、若空間不重合兩條直線 , 的方向向量分別為 , ,則
, .
46、若直線 的方向向量為 ,平面 的法向量為 ,且 ,則
, .
47、若空間不重合的兩個平面 , 的法向量分別為 , ,則
, .
48、設異面直線 , 的夾角為 ,方向向量為 , ,其夾角為 ,則有

49、設直線 的方向向量為 ,平面 的法向量為 , 與 所成的角為 , 與 的夾角為 ,則有 .
50、設 , 是二面角 的兩個面 , 的法向量,則向量 , 的夾角(或其補角)就是二面角的平面角的大小.若二面角 的平面角為 ,則 .
51、點 與點 之間的距離可以轉化為兩點對應向量 的模 計算.
52、在直線 上找一點 ,過定點 且垂直於直線 的向量為 ,則定點 到直線 的距離為 .
53、點 是平面 外一點, 是平面 內的一定點, 為平面 的一個法向量,則點 到平面 的距離為 .

n

㈤ 高二數學理科的必會知識點歸納

我們要品格高尚,積極進取;要胸懷大志,勤奮刻苦;要放飛理想,腳踏實地;要開拓創新,精益求精!人生非坦途,學習中一定會有很多困難,拿出你:「天生我才必有用的」的信心,以下是我給大家整理的 高二數學 理科的必會知識點歸納,希望大家能夠喜歡!

高二數學理科的必會知識點歸納1

導數是微積分中的重要基礎概念。當函數y=f(x)的自變數x在一點x0上產生一個增量Δx時,函數輸出值的增量Δy與自變數增量Δx的比值在Δx趨於0時的極限a如果存在,a即為在x0處的導數,記作f'(x0)或df(x0)/dx。

導數是函數的局部性質。一個函數在某一點的導數描述了這個函數在這一點附近的變化率。如果函數的自變數和取值都是實數的話,函數在某一點的導數就是該函數所代表的曲線在這一點上的切線斜率。導數的本質是通過極限的概念對函數進行局部的線性逼近。例如在運動學中,物體的位移對於時間的導數就是物體的瞬時速度。

不是所有的函數都有導數,一個函數也不一定在所有的點上都有導數。若某函數在某一點導數存在,則稱其在這一點可導,否則稱為不可導。然而,可導的函數一定連續;不連續的函數一定不可導。

對於可導的函數f(x),x?f'(x)也是一個函數,稱作f(x)的導函數。尋找已知的函數在某點的導數或其導函數的過程稱為求導。實質上,求導就是一個求極限的過程,導數的四則運演算法則也來源於極限的四則運演算法則。反之,已知導函數也可以倒過來求原來的函數,即不定積分。微積分基本定理說明了求原函數與積分是等價的。求導和積分是一對互逆的操作,它們都是微積分學中最為基礎的概念。

高二數學理科的必會知識點歸納2

基本概念

公理1:如果一條直線上的兩點在一個平面內,那麼這條直線上的所有的點都在這個平面內。

公理2:如果兩個平面有一個公共點,那麼它們有且只有一條通過這個點的公共直線。

公理3:過不在同一條直線上的三個點,有且只有一個平面。

推論1:經過一條直線和這條直線外一點,有且只有一個平面。

推論2:經過兩條相交直線,有且只有一個平面。

推論3:經過兩條平行直線,有且只有一個平面。

公理4:平行於同一條直線的兩條直線互相平行。

等角定理:如果一個角的兩邊和另一個角的兩邊分別平行並且方向相同,那麼這兩個角相等。

空間兩直線的位置關系:

空間兩條直線只有三種位置關系:平行、相交、異面

1、按是否共面可分為兩類:

(1)共面:平行、相交

(2)異面:

異面直線的定義:不同在任何一個平面內的兩條直線或既不平行也不相交。

異面直線判定定理:用平面內一點與平面外一點的直線,與平面內不經過該點的直線是異面直線。

2、若從有無公共點的角度看可分為兩類:

(1)有且僅有一個公共點——相交直線;(2)沒有公共點——平行或異面

高二數學理科的必會知識點歸納3

一、集合、簡易邏輯(14課時,8個)1.集合;2.子集;3.補集;4.交集;5.並集;6.邏輯連結詞;7.四種命題;8.充要條件.

二、函數(30課時,12個)1.映射;2.函數;3.函數的單調性;4.反函數;5.互為反函數的函數圖象間的關系;6.指數概念的擴充;7.有理指數冪的運算;8.指數函數;9.對數;10.對數的運算性質;11.對數函數.12.函數的應用舉例.

三、數列(12課時,5個)1.數列;2.等差數列及其通項公式;3.等差數列前n項和公式;4.等比數列及其通頂公式;5.等比數列前n項和公式.

四、三角函數(46課時17個)1.角的概念的推廣;2.弧度制;3.任意角的三角函數;4,單位圓中的三角函數線;5.同角三角函數的基本關系式;6.正弦、餘弦的誘導公式』7.兩角和與差的正弦、餘弦、正切;8.二倍角的正弦、餘弦、正切;9.正弦函數、餘弦函數的圖象和性質;10.周期函數;11.函數的奇偶性;12.函數的圖象;13.正切函數的圖象和性質;14.已知三角函數值求角;15.正弦定理;16餘弦定理;17斜三角形解法舉例.

五、平面向量(12課時,8個)1.向量2.向量的加法與減法3.實數與向量的積;4.平面向量的坐標表示;5.線段的定比分點;6.平面向量的數量積;7.平面兩點間的距離;8.平移.

六、不等式(22課時,5個)1.不等式;2.不等式的基本性質;3.不等式的證明;4.不等式的解法;5.含絕對值的不等式.

七、直線和圓的方程(22課時,12個)1.直線的傾斜角和斜率;2.直線方程的點斜式和兩點式;3.直線方程的一般式;4.兩條直線平行與垂直的條件;5.兩條直線的交角;6.點到直線的距離;7.用二元一次不等式表示平面區域;8.簡單線性規劃問題.9.曲線與方程的概念;10.由已知條件列出曲線方程;11.圓的標准方程和一般方程;12.圓的參數方程.

八、圓錐曲線(18課時,7個)1橢圓及其標准方程;2.橢圓的簡單幾何性質;3.橢圓的參數方程;4.雙曲線及其標准方程;5.雙曲線的簡單幾何性質;6.拋物線及其標准方程;7.拋物線的簡單幾何性質.

九、(B)直線、平面、簡單何體(36課時,28個)1.平面及基本性質;2.平面圖形直觀圖的畫法;3.平面直線;4.直線和平面平行的判定與性質;5,直線和平面垂直的判與性質;6.三垂線定理及其逆定理;7.兩個平面的位置關系;8.空間向量及其加法、減法與數乘;9.空間向量的坐標表示;10.空間向量的數量積;11.直線的方向向量;12.異面直線所成的角;13.異面直線的公垂線;14異面直線的距離;15.直線和平面垂直的性質;16.平面的法向量;17.點到平面的距離;18.直線和平面所成的角;19.向量在平面內的射影;20.平面與平面平行的性質;21.平行平面間的距離;22.二面角及其平面角;23.兩個平面垂直的判定和性質;24.多面體;25.稜柱;26.棱錐;27.正多面體;28.球.

十、排列、組合、二項式定理(18課時,8個)1.分類計數原理與分步計數原理.2.排列;3.排列數公式』4.組合;5.組合數公式;6.組合數的兩個性質;7.二項式定理;8.二項展開式的性質.

十一、概率(12課時,5個)1.隨機事件的概率;2.等可能事件的概率;3.互斥事件有一個發生的概率;4.相互獨立事件同時發生的概率;5.獨立重復試驗.選修Ⅱ(24個)

十二、概率與統計(14課時,6個)1.離散型隨機變數的分布列;2.離散型隨機變數的期望值和方差;3.抽樣 方法 ;4.總體分布的估計;5.正態分布;6.線性回歸.

十三、極限(12課時,6個)1.數學歸納法;2.數學歸納法應用舉例;3.數列的極限;4.函數的極限;5.極限的四則運算;6.函數的連續性.

十四、導數(18課時,8個)1.導數的概念;2.導數的幾何意義;3.幾種常見函數的導數;4.兩個函數的和、差、積、商的導數;5.復合函數的導數;6.基本導數公式;7.利用導數研究函數的單調性和極值;8函數的值和最小值.

十五、復數(4課時,4個)1.復數的概念;2.復數的加法和減法;3.復數的乘法和除法答案補充高中數學有130個知識點,從前一份試卷要考查90個知識點,覆蓋率達70%左右,而且把這一項作為衡量試捲成功與否的標准之一.這一傳統近年被打破,取而代之的是關注思維,突出能力,重視思想方法和思維能力的考查.現在的我們學數學比前人幸福啊!!相信對你的學習會有幫助的,祝你成功!答案補充一試全國高中數_賽的一試競賽大綱,完全按照全日制中學《數學教學大綱》中所規定的教學要求和內容,即高考所規定的知識范圍和方法,在方法的要求上略有提高,其中概率和微積分初步不考。二試1、平面幾何基本要求:掌握初中數學競賽大綱所確定的所有內容。補充要求:面積和面積方法。幾個重要定理:梅涅勞斯定理、塞瓦定理、托勒密定理、西姆松定理。幾個重要的極值:到三角形三頂點距離之和最小的點--費馬點。到三角形三頂點距離的平方和最小的點,重心。三角形內到三邊距離之積的點,重心。幾何不等式。簡單的等周問題。了解下述定理:在周長一定的n邊形的集合中,正n邊形的面積。在周長一定的簡單閉曲線的集合中,圓的面積。在面積一定的n邊形的集合中,正n邊形的周長最小。在面積一定的簡單閉曲線的集合中,圓的周長最小。幾何中的運動:反射、平移、旋轉。復數方法、向量方法。平面凸集、凸包及應用。答案補充第二數學歸納法。遞歸,一階、二階遞歸,特徵方程法。函數迭代,求n次迭代,簡單的函數方程。n個變元的平均不等式,柯西不等式,排序不等式及應用。復數的指數形式,歐拉公式,棣莫佛定理,單位根,單位根的應用。圓排列,有重復的排列與組合,簡單的組合恆等式。一元n次方程(多項式)根的個數,根與系數的關系,實系數方程虛根成對定理。簡單的初等數論問題,除初中大綱中所包括的內容外,還應包括無窮遞降法,同餘,歐幾里得除法,非負最小完全剩餘類,高斯函數,費馬小定理,歐拉函數,孫子定理,格點及其性質。3、立體幾何多面角,多面角的性質。三面角、直三面角的基本性質。正多面體,歐拉定理。體積證法。截面,會作截面、表面展開圖。4、平面解析幾何直線的法線式,直線的極坐標方程,直線束及其應用。二元一次不等式表示的區域。三角形的面積公式。圓錐曲線的切線和法線。圓的冪和根軸。


高二數學理科的必會知識點歸納相關 文章 :

★ 高二理科數學知識點

★ 高二數學知識點整理

★ 高二數學推理知識點大總結

★ 高二數學整體知識總結

★ 理科數學高二都要學習哪些內容

★ 高中理科數學公式知識點總結

★ 高中數學必考知識點歸納

★ 高二數學復數知識點整理

★ 高二數學理科生期末復習方法

㈥ 高二數學知識點筆記

課堂臨時報佛腳,不如 課前預習 好。其實任何學科的知識都是一樣的,學習任何一門學科,勤奮都是最好的 學習 方法 ,沒有之一,書山有路勤為徑。下面是我給大家整理的一些 高二數學 的知識點,希望對大家有所幫助。

高 二年級數學 重要知識點歸納

正弦定理a/sinA=b/sinB=c/sinC=2R註:其中R表示三角形的外接圓半徑

餘弦定理b2=a2+c2-2accosB註:角B是邊a和邊c的夾角

圓的標准方程(x-a)2+(y-b)2=r2註:(a,b)是圓心坐標

圓的一般方程x2+y2+Dx+Ey+F=0註:D2+E2-4F>0

拋物線標准方程y2=2pxy2=-2p_2=2pyx2=-2py

直稜柱側面積S=c_h斜稜柱側面積S=c'_h

正棱錐側面積S=1/2c_h'正稜台側面積S=1/2(c+c')h'

圓台側面積S=1/2(c+c')l=pi(R+r)l球的表面積S=4pi_r2

圓柱側面積S=c_h=2pi_h圓錐側面積S=1/2_c_l=pi_r_l

弧長公式l=a_ra是圓心角的弧度數r>0扇形面積公式s=1/2_l_r

錐體體積公式V=1/3_S_H圓錐體體積公式V=1/3_pi_r2h

斜稜柱體積V=S'L註:其中,S'是直截面面積,L是側棱長

柱體體積公式V=s_h圓柱體V=p_r2h

乘法與因式分a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)

三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b

|a-b|≥|a|-|b|-|a|≤a≤|a|

一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a

根與系數的關系X1+X2=-b/aX1_X2=c/a註:韋達定理

判別式

b2-4ac=0註:方程有兩個相等的實根

b2-4ac>0註:方程有兩個不等的實根

b2-4ac<0註:方程沒有實根,有共軛復數根

高二年級數學必修三知識點

(1)演算法概念:在數學上,現代意義上的演算法通常是指可以用計算機來解決的`某一類問題是程序或步驟,這些程序或步驟必須是明確和有效的,而且能夠在有限步之內完成.

(2)演算法的特點:

①有限性:一個演算法的步驟序列是有限的,必須在有限操作之後停止,不能是無限的.

②確定性:演算法中的每一步應該是確定的並且能有效地執行且得到確定的結果,而不應當是模稜兩可.

③順序性與正確性:演算法從初始步驟開始,分為若干明確的步驟,每一個步驟只能有一個確定的後繼步驟,前一步是後一步的前提,只有執行完前一步才能進行下一步,並且每一步都准確無誤,才能完成問題.

④不性:求解某一個問題的解法不一定是的,對於一個問題可以有不同的演算法.

⑤普遍性:很多具體的問題,都可以設計合理的演算法去解決,如心算、計算器計算都要經過有限、事先設計好的步驟加以解決.

高二上冊數學必修二知識點

用樣本的數字特徵估計總體的數字特徵

1、本均值:

2、樣本標准差:

3.用樣本估計總體時,如果抽樣的方法比較合理,那麼樣本可以反映總體的信息,但從樣本得到的信息會有偏差。在隨機抽樣中,這種偏差是不可避免的。

雖然我們用樣本數據得到的分布、均值和標准差並不是總體的真正的分布、均值和標准差,而只是一個估計,但這種估計是合理的,特別是當樣本量很大時,它們確實反映了總體的信息。

4.(1)如果把一組數據中的每一個數據都加上或減去同一個共同的常數,標准差不變

(2)如果把一組數據中的每一個數據乘以一個共同的常數k,標准差變為原來的k倍

(3)一組數據中的值和最小值對標准差的影響,區間的應用;

「去掉一個分,去掉一個最低分」中的科學道理

高二數學知識點筆記相關 文章 :

★ 高二數學知識點總結

★ 高二數學選修的必學知識點總結

★ 高二數學考點知識點總結復習大綱

★ 高二數學知識點全總結

★ 高二數學知識點總結(人教版)

★ 高二數學必背知識點總結

★ 高二數學知識點總結歸納

★ 高二數學知識點復習總結

★ 高二數學知識點總結人教版

★ 高二數學知識點歸納

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

㈦ 高二數學選修1-1知識點 發過來

高二數學選修1-1知識點
1、命題:用語言、符號或式子表達的,可以判斷真假的陳述句.
真命題:判斷為真的語句.
假命題:判斷為假的語句.
2、「若 ,則 」形式的命題中的 稱為命題的條件, 稱為命題的結論.
3、對於兩個命題,如果一個命題的條件和結論分別是另一個命題的結論和條件,則這兩個命題稱為互逆命題.其中一個命題稱為原命題,另一個稱為原命題的逆命題.
若原命題為「若 ,則 」,它的逆命題為「若 ,則 」.
4、對於兩個命題,如果一個命題的條件和結論恰好是另一個命題的條件的否定和結論的否定,則這兩個命題稱為互否命題.中一個命題稱為原命題,另一個稱為原命題的否命題.
若原命題為「若 ,則 」,則它的否命題為「若 ,則 」.
5、對於兩個命題,如果一個命題的條件和結論恰好是另一個命題的結論的否定和條件的否定,則這兩個命題稱為互為逆否命題.其中一個命題稱為原命題,另一個稱為原命題的逆否命題.
若原命題為「若 ,則 」,則它的否命題為「若 ,則 」.
6、四種命題的真假性:
原命題 逆命題 否命題 逆否命題
真 真 真 真
真 假 假 真
假 真 真 真
假 假 假 假
四種命題的真假性之間的關系:
兩個命題互為逆否命題,它們有相同的真假性;
兩個命題為互逆命題或互否命題,它們的真假性沒有關系.
7、若 ,則 是 的充分條件, 是 的必要條件.
若 ,則 是 的充要條件(充分必要條件).
8、用聯結詞「且」把命題 和命題 聯結起來,得到一個新命題,記作 .
當 、 都是真命題時, 是真命題;當 、 兩個命題中有一個命題是假命題時, 是假命題.
用聯結詞「或」把命題 和命題 聯結起來,得到一個新命題,記作 .
當 、 兩個命題中有一個命題是真命題時, 是真命題;當 、 兩個命題都是假命題時, 是假命題.
對一個命題 全盤否定,得到一個新命題,記作 .
若 是真命題,則 必是假命題;若 是假命題,則 必是真命題.
9、短語「對所有的」、「對任意一個」在邏輯中通常稱為全稱量詞,用「 」表示.
含有全稱量詞的命題稱為全稱命題.
全稱命題「對 中任意一個 ,有 成立」,記作「 , 」.
短語「存在一個」、「至少有一個」在邏輯中通常稱為存在量詞,用「 」表示.
含有存在量詞的命題稱為特稱命題.
特稱命題「存在 中的一個 ,使 成立」,記作「 , 」.
10、全稱命題 : , ,它的否定 : , .全稱命題的否定是特稱命題.
11、平面內與兩個定點 , 的距離之和等於常數(大於 )的點的軌跡稱為橢圓.這兩個定點稱為橢圓的焦點,兩焦點的距離稱為橢圓的焦距.
12、橢圓的幾何性質:
焦點的位置 焦點在 軸上
焦點在 軸上
圖形
標准方程

范圍 且

頂點 、



軸長 短軸的長 長軸的長
焦點 、

焦距
對稱性 關於 軸、 軸、原點對稱
離心率
准線方程

13、設 是橢圓上任一點,點 到 對應准線的距離為 ,點 到 對應准線的距離為 ,則 .
14、平面內與兩個定點 , 的距離之差的絕對值等於常數(小於 )的點的軌跡稱為雙曲線.這兩個定點稱為雙曲線的焦點,兩焦點的距離稱為雙曲線的焦距.
15、雙曲線的幾何性質:
焦點的位置 焦點在 軸上
焦點在 軸上
圖形
標准方程

范圍 或 ,
或 ,
頂點 、

軸長 虛軸的長 實軸的長
焦點 、

焦距
對稱性 關於 軸、 軸對稱,關於原點中心對稱
離心率
准線方程

漸近線方程

16、實軸和虛軸等長的雙曲線稱為等軸雙曲線.
17、設 是雙曲線上任一點,點 到 對應准線的距離為 ,點 到 對應准線的距離為 ,則 .
18、平面內與一個定點 和一條定直線 的距離相等的點的軌跡稱為拋物線.定點 稱為拋物線的焦點,定直線 稱為拋物線的准線.
19、拋物線的幾何性質:
標准方程

圖形
頂點
對稱軸 軸

焦點

准線方程

離心率
范圍

20、過拋物線的焦點作垂直於對稱軸且交拋物線於 、 兩點的線段 ,稱為拋物線的「通徑」,即 .
21、焦半徑公式:
若點 在拋物線 上,焦點為 ,則 ;
若點 在拋物線 上,焦點為 ,則 ;
若點 在拋物線 上,焦點為 ,則 ;
若點 在拋物線 上,焦點為 ,則 .
22、若某個問題中的函數關系用 表示,問題中的變化率用式子
表示,則式子 稱為函數 從 到 的平均變化率.
23、函數 在 處的瞬時變化率是 ,則稱它為函數 在 處的導數,記作 或 ,即

24、函數 在點 處的導數的幾何意義是曲線 在點 處的切線的斜率.曲線 在點 處的切線的斜率是 ,切線的方程為 .若函數在 處的導數不存在,則說明斜率不存在,切線的方程為 .
25、若當 變化時, 是 的函數,則稱它為 的導函數(導數),記作 或 ,即 .
26、基本初等函數的導數公式:
若 ,則 ; 若 ,則 ;
若 ,則 ; 若 ,則 ;
若 ,則 ; 若 ,則 ;
若 ,則 ; 若 ,則 .
27、導數運演算法則:



28、對於兩個函數 和 ,若通過變數 , 可以表示成 的函數,則稱這個函數為函數 和 的復合函數,記作 .
復合函數 的導數與函數 , 的導數間的關系是

29、在某個區間 內,若 ,則函數 在這個區間內單調遞增;若 ,則函數 在這個區間內單調遞減.
30、點 稱為函數 的極小值點, 稱為函數 的極小值;點 稱為函數 的極大值點, 稱為函數 的極大值.極小值點、極大值點統稱為極值點,極大值和極小值統稱為極值.
31、求函數 的極值的方法是:解方程 .當 時:
如果在 附近的左側 ,右側 ,那麼 是極大值;
如果在 附近的左側 ,右側 ,那麼 是極小值.
32、求函數 在 上的最大值與最小值的步驟是:
求函數 在 內的極值;
將函數 的各極值與端點處的函數值 , 比較,其中最大的一個是最大值,最小的一個是最小值.

㈧ 高二數學下冊知識點總結

我們對於數學的學習,最容易記住的就是做題,背公式,通過做一題多解、多題一解、一題多變對知識點深入和透徹的理解,達到一個能靈活和綜合應用的高度。這樣才能提高你的數學知識,幫助你在考試中更容易拿到名次。下面是我給大家帶來的 高二數學 下冊知識點 總結 ,希望能幫助到你!

高二數學下冊知識點總結1

1.拋物線是軸對稱圖形。對稱軸為直線

x=-b/2a。

對稱軸與拋物線的交點為拋物線的頂點P。

特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)

2.拋物線有一個頂點P,坐標為

P(-b/2a,(4ac-b^2)/4a)

當-b/2a=0時,P在y軸上;當Δ=b^2-4ac=0時,P在x軸上。

3.二次項系數a決定拋物線的開口方向和大小。

當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。

|a|越大,則拋物線的開口越小。

4.一次項系數b和二次項系數a共同決定對稱軸的位置。

當a與b同號時(即ab>0),對稱軸在y軸左;

當a與b異號時(即ab<0),對稱軸在y軸右。

5.常數項c決定拋物線與y軸交點。

拋物線與y軸交於(0,c)

6.拋物線與x軸交點個數

Δ=b^2-4ac>0時,拋物線與x軸有2個交點。

Δ=b^2-4ac=0時,拋物線與x軸有1個交點。

Δ=b^2-4ac<0時,拋物線與x軸沒有交點。X的取值是虛數(x=-b±√b^2-4ac的值的相反數,乘上虛數i,整個式子除以2a)

高二數學下冊知識點總結2

一、集合、簡易邏輯(14課時,8個)

1.集合;2.子集;3.補集;4.交集;5.並集;6.邏輯連結詞;7.四種命題;8.充要條件。

二、函數(30課時,12個)

1.映射;2.函數;3.函數的單調性;4.反函數;5.互為反函數的函數圖象間的關系;6.指數概念的擴充;7.有理指數冪的運算;8.指數函數;9.對數;10.對數的運算性質;11.對數函數.12.函數的應用舉例。

三、數列(12課時,5個)

1.數列;2.等差數列及其通項公式;3.等差數列前n項和公式;4.等比數列及其通頂公式;5.等比數列前n項和公式。

四、三角函數(46課時,17個)

1.角的概念的推廣;2.弧度制;3.任意角的三角函數;4.單位圓中的三角函數線;5.同角三角函數的基本關系式;6.正弦、餘弦的誘導公式;7.兩角和與差的正弦、餘弦、正切;8.二倍角的正弦、餘弦、正切;9.正弦函數、餘弦函數的圖象和性質;10.周期函數;11.函數的奇偶性;12.函數的圖象;13.正切函數的圖象和性質;14.已知三角函數值求角;15.正弦定理;16.餘弦定理;17.斜三角形解法舉例。

五、平面向量(12課時,8個)

1.向量;2.向量的加法與減法;3.實數與向量的積;4.平面向量的坐標表示;5.線段的定比分點;6.平面向量的數量積;7.平面兩點間的距離;8.平移。

六、不等式(22課時,5個)

1.不等式;2.不等式的基本性質;3.不等式的證明;4.不等式的解法;5.含絕對值的不等式。

七、直線和圓的方程(22課時,12個)

1.直線的傾斜角和斜率;2.直線方程的點斜式和兩點式;3.直線方程的一般式;4.兩條直線平行與垂直的條件;5.兩條直線的交角;6.點到直線的距離;7.用二元一次不等式表示平面區域;8.簡單線性規劃問題;9.曲線與方程的概念;10.由已知條件列出曲線方程;11.圓的標准方程和一般方程;12.圓的參數方程。

八、圓錐曲線(18課時,7個)

1.橢圓及其標准方程;2.橢圓的簡單幾何性質;3.橢圓的參數方程;4.雙曲線及其標准方程;5.雙曲線的簡單幾何性質;6.拋物線及其標准方程;7.拋物線的簡單幾何性質。

九、直線、平面、簡單何體(36課時,28個)

1.平面及基本性質;2.平面圖形直觀圖的畫法;3.平面直線;4.直線和平面平行的判定與性質;5.直線和平面垂直的判定與性質;6.三垂線定理及其逆定理;7.兩個平面的位置關系;8.空間向量及其加法、減法與數乘;9.空間向量的坐標表示;10.空間向量的數量積;11.直線的方向向量;12.異面直線所成的角;13.異面直線的公垂線;14.異面直線的距離;15.直線和平面垂直的性質;16.平面的法向量;17.點到平面的距離;18.直線和平面所成的角;19.向量在平面內的射影;20.平面與平面平行的性質;21.平行平面間的距離;22.二面角及其平面角;23.兩個平面垂直的判定和性質;24.多面體;25.稜柱;26.棱錐;27.正多面體;28.球。

十、排列、組合、二項式定理(18課時,8個)

1.分類計數原理與分步計數原理;2.排列;3.排列數公式;4.組合;5.組合數公式;6.組合數的兩個性質;7.二項式定理;8.二項展開式的性質。

十一、概率(12課時,5個)

1.隨機事件的概率;2.等可能事件的概率;3.互斥事件有一個發生的概率;4.相互獨立事件同時發生的概率;5.獨立重復試驗。

選修Ⅱ(24個)

十二、概率與統計(14課時,6個)

1.離散型隨機變數的分布列;2.離散型隨機變數的期望值和方差;3.抽樣 方法 ;4.總體分布的估計;5.正態分布;6.線性回歸。

十三、極限(12課時,6個)

1.數學歸納法;2.數學歸納法應用舉例;3.數列的極限;4.函數的極限;5.極限的四則運算;6.函數的連續性。

十四、導數(18課時,8個)

1.導數的概念;2.導數的幾何意義;3.幾種常見函數的導數;4.兩個函數的和、差、積、商的導數;5.復合函數的導數;6.基本導數公式;7.利用導數研究函數的單調性和極值;8.函數的值和最小值。

十五、復數(4課時,4個)

1.復數的概念;2.復數的加法和減法;3.復數的乘法和除法;4.復數的一元二次方程和二項方程的解法。

高二數學下冊知識點總結3

1.萬能公式令tan(a/2)=tsina=2t/(1+t^2)cosa=(1-t^2)/(1+t^2)tana=2t/(1-t^2)

2.輔助角公式asint+bcost=(a^2+b^2)^(1/2)sin(t+r)cosr=a/[(a^2+b^2)^(1/2)]sinr=b/[(a^2+b^2)^(1/2)]tanr=b/a

3.三倍角公式sin(3a)=3sina-4(sina)^3cos(3a)=4(cosa)^3-3cosatan(3a)=[3tana-(tana)^3]/[1-3(tana^2)]sina_cosb=[sin(a+b)+sin(a-b)]/2cosa_sinb=[sin(a+b)-sin(a-b)]/2cosa_cosb=[cos(a+b)+cos(a-b)]/2sina_sinb=-[cos(a+b)-cos(a-b)]/2sina+sinb=2sin[(a+b)/2]cos[(a-b)/2]sina-sinb=2sin[(a-b)/2]cos[(a+b)/2]cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2]cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2]

向量公式:

1.單位向量:單位向量a0=向量a/|向量a|

2.P(x,y)那麼向量OP=x向量i+y向量j|向量OP|=根號(x平方+y平方)

3.P1(x1,y1)P2(x2,y2)那麼向量P1P2={x2-x1,y2-y1}|向量P1P2|=根號[(x2-x1)平方+(y2-y1)平方]

4.向量a={x1,x2}向量b={x2,y2}向量a_向量b=|向量a|_|向量b|_Cosα=x1x2+y1y2Cosα=向量a_向量b/|向量a|_|向量b|(x1x2+y1y2)根號(x1平方+y1平方)_根號(x2平方+y2平方)

5.空間向量:同上推論(提示:向量a={x,y,z})

6.充要條件:如果向量a向量b那麼向量a_向量b=0如果向量a//向量b那麼向量a_向量b=|向量a|_|向量b|或者x1/x2=y1/y2

7.|向量a向量b|平方=|向量a|平方+|向量b|平方2向量a_向量b=(向量a向量b)平方

高二數學下冊知識點總結相關 文章 :

★ 人教版高二數學下冊知識點歸納,人教版高二數學下冊知識點歸納

★ 高二數學下學期知識點總結

★ 高二數學知識點總結

★ 高二數學知識點歸納總結

★ 高二數學下冊知識點總結(2)

★ 高二數學知識點總結歸納

★ 高二數學下冊期末考試知識點總結

★ 高二數學知識點總結(人教版)

★ 高二數學知識點新總結2020

★ 高二數學知識點總結人教版

㈨ 新課標高中數學必修一知識點總結

新課標數學必修1知識點總結 第一章 集合與函數概念
一、集合有關概念
1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。
2、集合的中元素的三個特性:
1.元素的確定性; 2.元素的互異性; 3.元素的無序性
說明:(1)對於一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。
(2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。
(3)集合中的元素是平等的,沒有先後順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。
(4)集合元素的三個特性使集合本身具有了確定性和整體性。
3、集合的表示:{ … } 如{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}
1. 用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
2.集合的表示方法:列舉法與描述法。
注意啊:常用數集及其記法:
非負整數集(即自然數集) 記作:N
正整數集 N*或 N+ 整數集Z 有理數集Q 實數集R
關於「屬於」的概念
集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬於集合A 記作 a∈A ,相反,a不屬於集合A 記作 aA
列舉法:把集合中的元素一一列舉出來,然後用一個大括弧括上。
描述法:將集合中的元素的公共屬性描述出來,寫在大括弧內表示集合的方法。用確定的條件表示某些對象是否屬於這個集合的方法。
①語言描述法:例:{不是直角三角形的三角形}
②數學式子描述法:例:不等式x-3>2的解集是{xR| x-3>2}或{x| x-3>2}
4、集合的分類:
1.有限集 含有有限個元素的集合
2.無限集 含有無限個元素的集合
3.空集 不含任何元素的集合例:{x|x2=-5}<br>二、集合間的基本關系<br>1.「包含」關系—子集<br>注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。<br>反之: 集合A不包含於集合B,或集合B不包含集合A,記作A B或B A<br>2.「相等」關系(5≥5,且5≤5,則5=5)<br>實例:設 A={x|x2-1=0} B={-1,1} 「元素相同」
結論:對於兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時,集合B的任何一個元素都是集合A的元素,我們就說集合A等於集合B,即:A=B
① 任何一個集合是它本身的子集。AA
②真子集:如果AB,且A B那就說集合A是集合B的真子集,記作A B(或B A)
③如果 AB, BC ,那麼 AC
④ 如果AB 同時 BA 那麼A=B
3. 不含任何元素的集合叫做空集,記為Φ
規定: 空集是任何集合的子集, 空集是任何非空集合的真子集。
三、集合的運算
1.交集的定義:一般地,由所有屬於A且屬於B的元素所組成的集合,叫做A,B的交集.
記作A∩B(讀作"A交B"),即A∩B={x|x∈A,且x∈B}.
2、並集的定義:一般地,由所有屬於集合A或屬於集合B的元素所組成的集合,叫做A,B的並集。記作:A∪B(讀作"A並B"),即A∪B={x|x∈A,或x∈B}.
3、交集與並集的性質:A∩A = A, A∩φ= φ, A∩B = B∩A,A∪A = A,
A∪φ= A ,A∪B = B∪A.
4、全集與補集
(1)補集:設S是一個集合,A是S的一個子集(即 ),由S中所有不屬於A的元素組成的集合,叫做S中子集A的補集(或余集)
記作: CSA 即 CSA ={x  xS且 xA}
(2)全集:如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集。通常用U來表示。
(3)性質:⑴CU(C UA)=A ⑵(C UA)∩A=Φ ⑶(CUA)∪A=U二、函數的有關概念
1.函數的概念:設A、B是非空的數集,如果按照某個確定的對應關系f,使對於集合A中的任意一個數x,在集合B中都有唯一確定的數f(x)和它對應,那麼就稱f:A→B為從集合A到集合B的一個函數.記作: y=f(x),x∈A.其中,x叫做自變數,x的取值范圍A叫做函數的定義域;與x的值相對應的y值叫做函數值,函數值的集合{f(x)| x∈A }叫做函數的值域.
注意:○2如果只給出解析式y=f(x),而沒有指明它的定義域,則函數的定義域即是指能使這個式子有意義的實數的集合;○3 函數的定義域、值域要寫成集合或區間的形式.
定義域補充
能使函數式有意義的實數x的集合稱為函數的定義域,求函數的定義域時列不等式組的主要依據是:(1)分式的分母不等於零; (2)偶次方根的被開方數不小於零; (3)對數式的真數必須大於零;(4)指數、對數式的底必須大於零且不等於1. (5)如果函數是由一些基本函數通過四則運算結合而成的.那麼,它的定義域是使各部分都有意義的x的值組成的集合.(6)指數為零底不可以等於零 (6)實際問題中的函數的定義域還要保證實際問題有意義.
(又注意:求出不等式組的解集即為函數的定義域。)
構成函數的三要素:定義域、對應關系和值域
再注意:(1)構成函數三個要素是定義域、對應關系和值域.由於值域是由定義域和對應關系決定的,所以,如果兩個函數的定義域和對應關系完全一致,即稱這兩個函數相等(或為同一函數)(2)兩個函數相等當且僅當它們的定義域和對應關系完全一致,而與表示自變數和函數值的字母無關。相同函數的判斷方法:①表達式相同;②定義域一致 (兩點必須同時具備)
(見課本21頁相關例2)
值域補充
(1)、函數的值域取決於定義域和對應法則,不論採取什麼方法求函數的值域都應先考慮其定義域. (2).應熟悉掌握一次函數、二次函數、指數、對數函數及各三角函數的值域,它是求解復雜函數值域的基礎。
3. 函數圖象知識歸納
(1)定義:在平面直角坐標系中,以函數 y=f(x) , (x∈A)中的x為橫坐標,函數值y為縱坐標的點P(x,y)的集合C,叫做函數 y=f(x),(x ∈A)的圖象.
C上每一點的坐標(x,y)均滿足函數關系y=f(x),反過來,以滿足y=f(x)的每一組有序實數對x、y為坐標的點(x,y),均在C上 . 即記為C={ P(x,y) | y= f(x) , x∈A }
圖象C一般的是一條光滑的連續曲線(或直線),也可能是由與任意平行與Y軸的直線最多隻有一個交點的若干條曲線或離散點組成。
(2) 畫法
A、描點法:根據函數解析式和定義域,求出x,y的一些對應值並列表,以(x,y)為坐標在坐標系內描出相應的點P(x, y),最後用平滑的曲線將這些點連接起來.
B、圖象變換法(請參考必修4三角函數)
常用變換方法有三種,即平移變換、伸縮變換和對稱變換
(3)作用:
1、直觀的看出函數的性質;2、利用數形結合的方法分析解題的思路。提高解題的速度。
發現解題中的錯誤。
4.快去了解區間的概念
(1)區間的分類:開區間、閉區間、半開半閉區間;(2)無窮區間;(3)區間的數軸表示.
5.什麼叫做映射
一般地,設A、B是兩個非空的集合,如果按某一個確定的對應法則f,使對於集合A中的任意一個元素x,在集合B中都有唯一確定的元素y與之對應,那麼就稱對應f:A B為從集合A到集合B的一個映射。記作「f:A B」
給定一個集合A到B的映射,如果a∈A,b∈B.且元素a和元素b對應,那麼,我們把元素b叫做元素a的象,元素a叫做元素b的原象
說明:函數是一種特殊的映射,映射是一種特殊的對應,①集合A、B及對應法則f是確定的;②對應法則有「方向性」,即強調從集合A到集合B的對應,它與從B到A的對應關系一般是不同的;③對於映射f:A→B來說,則應滿足:(Ⅰ)集合A中的每一個元素,在集合B中都有象,並且象是唯一的;(Ⅱ)集合A中不同的元素,在集合B中對應的象可以是同一個;(Ⅲ)不要求集合B中的每一個元素在集合A中都有原象。
常用的函數表示法及各自的優點:
○1 函數圖象既可以是連續的曲線,也可以是直線、折線、離散的點等等,注意判斷一個圖形是否是函數圖象的依據;○2 解析法:必須註明函數的定義域;○3 圖象法:描點法作圖要注意:確定函數的定義域;化簡函數的解析式;觀察函數的特徵;○4 列表法:選取的自變數要有代表性,應能反映定義域的特徵.
注意啊:解析法:便於算出函數值。列表法:便於查出函數值。圖象法:便於量出函數值
補充一:分段函數 (參見課本P24-25)
在定義域的不同部分上有不同的解析表達式的函數。在不同的范圍里求函數值時必須把自變數代入相應的表達式。分段函數的解析式不能寫成幾個不同的方程,而就寫函數值幾種不同的表達式並用一個左大括弧括起來,並分別註明各部分的自變數的取值情況.(1)分段函數是一個函數,不要把它誤認為是幾個函數;(2)分段函數的定義域是各段定義域的並集,值域是各段值域的並集.
補充二:復合函數
如果y=f(u),(u∈M),u=g(x),(x∈A),則 y=f[g(x)]=F(x),(x∈A) 稱為f、g的復合函數。
例如: y=2sinX y=2cos(X2+1)
7.函數單調性
(1).增函數
設函數y=f(x)的定義域為I,如果對於定義域I內的某個區間D內的任意兩個自變數x1,x2,當x1<x2時,都有f(x1)<f(x2),那麼就說f(x)在區間D上是增函數。區間D稱為y=f(x)的單調增區間 (睇清楚課本單調區間的概念)
如果對於區間D上的任意兩個自變數的值x1,x2,當x1<x2 時,都有f(x1)>f(x2),那麼就說f(x)在這個區間上是減函數.區間D稱為y=f(x)的單調減區間.
注意:○1 函數的單調性是在定義域內的某個區間上的性質,是函數的局部性質;
○2 必須是對於區間D內的任意兩個自變數x1,x2;當x1<x2時,總有f(x1)<f(x2) 。
(2) 圖象的特點
如果函數y=f(x)在某個區間是增函數或減函數,那麼說函數y=f(x)在這一區間上具有(嚴格的)單調性,在單調區間上增函數的圖象從左到右是上升的,減函數的圖象從左到右是下降的.
(3).函數單調區間與單調性的判定方法
(A) 定義法:
○1 任取x1,x2∈D,且x1<x2;○2 作差f(x1)-f(x2);○3 變形(通常是因式分解和配方);○4 定號(即判斷差f(x1)-f(x2)的正負);○5 下結論(指出函數f(x)在給定的區間D上的單調性).
(B)圖象法(從圖象上看升降)_
(C)復合函數的單調性
復合函數f[g(x)]的單調性與構成它的函數u=g(x),y=f(u)的單調性密切相關,其規律如下:
函數 單調性
u=g(x) 增 增 減 減
y=f(u) 增 減 增 減
y=f[g(x)] 增 減 減 增
注意:1、函數的單調區間只能是其定義域的子區間 ,不能把單調性相同的區間和在一起寫成其並集. 2、還記得我們在選修里學習簡單易行的導數法判定單調性嗎?8.函數的奇偶性
(1)偶函數
一般地,對於函數f(x)的定義域內的任意一個x,都有f(-x)=f(x),那麼f(x)就叫做偶函數.
(2).奇函數
一般地,對於函數f(x)的定義域內的任意一個x,都有f(-x)=—f(x),那麼f(x)就叫做奇函數.
注意:○1 函數是奇函數或是偶函數稱為函數的奇偶性,函數的奇偶性是函數的整體性質;函數可能沒有奇偶性,也可能既是奇函數又是偶函數。
○2 由函數的奇偶性定義可知,函數具有奇偶性的一個必要條件是,對於定義域內的任意一個x,則-x也一定是定義域內的一個自變數(即定義域關於原點對稱).
(3)具有奇偶性的函數的圖象的特徵
偶函數的圖象關於y軸對稱;奇函數的圖象關於原點對稱.
總結:利用定義判斷函數奇偶性的格式步驟:○1 首先確定函數的定義域,並判斷其定義域是否關於原點對稱;○2 確定f(-x)與f(x)的關系;○3 作出相應結論:若f(-x) = f(x) 或 f(-x)-f(x) = 0,則f(x)是偶函數;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,則f(x)是奇函數.
注意啊:函數定義域關於原點對稱是函數具有奇偶性的必要條件.首先看函數的定義域是否關於原點對稱,若不對稱則函數是非奇非偶函數.若對稱,(1)再根據定義判定; (2)有時判定f(-x)=眆(x)比較困難,可考慮根據是否有f(-x)眆(x)=0或f(x)/f(-x)=?來判定; (3)利用定理,或藉助函數的圖象判定 .
9、函數的解析表達式
(1).函數的解析式是函數的一種表示方法,要求兩個變數之間的函數關系時,一是要求出它們之間的對應法則,二是要求出函數的定義域.
(2).求函數的解析式的主要方法有:待定系數法、換元法、消參法等,如果已知函數解析式的構造時,可用待定系數法;已知復合函數f[g(x)]的表達式時,可用換元法,這時要注意元的取值范圍;當已知表達式較簡單時,也可用湊配法;若已知抽象函數表達式,則常用解方程組消參的方法求出f(x)
10.函數最大(小)值(定義見課本p36頁)
○1 利用二次函數的性質(配方法)求函數的最大(小)值○2 利用圖象求函數的最大(小)值○3 利用函數單調性的判斷函數的最大(小)值:如果函數y=f(x)在區間[a,b]上單調遞增,在區間[b,c]上單調遞減則函數y=f(x)在x=b處有最大值f(b);如果函數y=f(x)在區間[a,b]上單調遞減,在區間[b,c]上單調遞增則函數y=f(x)在x=b處有最小值f(b); 第二章 基本初等函數
一、指數函數
(一)指數與指數冪的運算
1.根式的概念:一般地,如果 ,那麼 叫做 的 次方根(n th root),其中 >1,且 ∈ *.
當 是奇數時,正數的 次方根是一個正數,負數的 次方根是一個負數.此時, 的 次方根用符號 表示.式子 叫做根式(radical),這里 叫做根指數(radical exponent), 叫做被開方數(radicand).
當 是偶數時,正數的 次方根有兩個,這兩個數互為相反數.此時,正數 的正的 次方根用符號 表示,負的 次方根用符號- 表示.正的 次方根與負的 次方根可以合並成?( >0).由此可得:負數沒有偶次方根;0的任何次方根都是0,記作 。
注意:當 是奇數時, ,當 是偶數時,
2.分數指數冪
正數的分數指數冪的意義,規定:

0的正分數指數冪等於0,0的負分數指數冪沒有意義
指出:規定了分數指數冪的意義後,指數的概念就從整數指數推廣到了有理數指數,那麼整數指數冪的運算性質也同樣可以推廣到有理數指數冪.
3.實數指數冪的運算性質
(1) • ;
(2) ;
(3) .
(二)指數函數及其性質
1、指數函數的概念:一般地,函數 叫做指數函數(exponential function),其中x是自變數,函數的定義域為R.
注意:指數函數的底數的取值范圍,底數不能是負數、零和1.
2、指數函數的圖象和性質
a>1 0<a<1圖象特徵 函數性質向x、y軸正負方向無限延伸 函數的定義域為R
圖象關於原點和y軸不對稱 非奇非偶函數
函數圖象都在x軸上方 函數的值域為R+
函數圖象都過定點(0,1)自左向右看,
圖象逐漸上升 自左向右看,
圖象逐漸下降 增函數 減函數
在第一象限內的圖象縱坐標都大於1 在第一象限內的圖象縱坐標都小於1
在第二象限內的圖象縱坐標都小於1 在第二象限內的圖象縱坐標都大於1
圖象上升趨勢是越來越陡 圖象上升趨勢是越來越緩 函數值開始增長較慢,到了某一值後增長速度極快; 函數值開始減小極快,到了某一值後減小速度較慢;
注意:利用函數的單調性,結合圖象還可以看出:
(1)在[a,b]上,值域是 或 ;
(2)若 ,則 ; 取遍所有正數當且僅當 ;
(3)對於指數函數 ,總有 ;
(4)當 時,若 ,則 ;二、對數函數
(一)對數
1.對數的概念:一般地,如果 ,那麼數 叫做以 為底 的對數,記作: ( — 底數, — 真數, — 對數式)
說明:○1 注意底數的限制 ,且 ;
○2 ;
○3 注意對數的書寫格式.
兩個重要對數:
○1 常用對數:以10為底的對數 ;
○2 自然對數:以無理數 為底的對數的對數 .
對數式與指數式的互化(二)對數的運算性質
如果 ,且 , , ,那麼:
○1 • + ;
○2 - ;
○3 .
注意:換底公式
( ,且 ; ,且 ; ).
利用換底公式推導下面的結論(1) ;(2) .
(二)對數函數
1、對數函數的概念:函數 ,且 叫做對數函數,其中 是自變數,函數的定義域是(0,+∞).
注意:○1 對數函數的定義與指數函數類似,都是形式定義,注意辨別。
如: , 都不是對數函數,而只能稱其為對數型函數.
○2 對數函數對底數的限制: ,且 .
2、對數函數的性質:
a>1 0<a<1圖象特徵 函數性質函數圖象都在y軸右側 函數的定義域為(0,+∞)
圖象關於原點和y軸不對稱 非奇非偶函數
向y軸正負方向無限延伸 函數的值域為R
函數圖象都過定點(1,0)自左向右看,
圖象逐漸上升 自左向右看,
圖象逐漸下降 增函數 減函數
第一象限的圖象縱坐標都大於0 第一象限的圖象縱坐標都大於0
第二象限的圖象縱坐標都小於0 第二象限的圖象縱坐標都小於0
(三)冪函數
1、冪函數定義:一般地,形如 的函數稱為冪函數,其中 為常數.
2、冪函數性質歸納.
(1)所有的冪函數在(0,+∞)都有定義,並且圖象都過點(1,1);
(2) 時,冪函數的圖象通過原點,並且在區間 上是增函數.特別地,當 時,冪函數的圖象下凸;當 時,冪函數的圖象上凸;
(3) 時,冪函數的圖象在區間 上是減函數.在第一象限內,當 從右邊趨向原點時,圖象在 軸右方無限地逼近軸正半軸,當 趨於 時,圖象在 軸上方無限地逼近 軸正半軸.第三章 函數的應用
一、方程的根與函數的零點
1、函數零點的概念:對於函數 ,把使 成立的實數 叫做函數 的零點。
2、函數零點的意義:函數 的零點就是方程 實數根,亦即函數 的圖象與 軸交點的橫坐標。即:
方程 有實數根 函數 的圖象與 軸有交點 函數 有零點.
3、函數零點的求法:
求函數 的零點:
○1 (代數法)求方程 的實數根;
○2 (幾何法)對於不能用求根公式的方程,可以將它與函數 的圖象聯系起來,並利用函數的性質找出零點.
4、二次函數的零點:
二次函數 .
1)△>0,方程 有兩不等實根,二次函數的圖象與 軸有兩個交點,二次函數有兩個零點.
2)△=0,方程 有兩相等實根(二重根),二次函數的圖象與 軸有一個交點,二次函數有一個二重零點或二階零點.
3)△<0,方程 無實根,二次函數的圖象與 軸無交點,二次函數無零點.呵呵,要採納哦~

㈩ 高二數學選修一重要知識點分析

數學習題無非就是數學概念和數學思想的組合應用,弄清數學基本概念、基本定理、基本 方法 是判斷題目類型、知識范圍的前提,是正確把握解題方法的依據。以下是我給大家整理的 高二數學 選修一重要知識點分析,希望大家能夠喜歡!

高二數學選修一重要知識點分析1

1、圓的定義

平面內到一定點的距離等於定長的點的集合叫圓,定點為圓心,定長為圓的半徑。

2、圓的方程

(x-a)^2+(y-b)^2=r^2

(1)標准方程,圓心(a,b),半徑為r;

(2)求圓方程的方法:

一般都採用待定系數法:先設後求。確定一個圓需要三個獨立條件,若利用圓的標准方程,

需求出a,b,r;若利用一般方程,需要求出D,E,F;

另外要注意多利用圓的幾何性質:如弦的中垂線必經過原點,以此來確定圓心的位置。

3、直線與圓的位置關系

直線與圓的位置關系有相離,相切,相交三種情況:

(1)設直線,圓,圓心到l的距離為,則有;;

(2)過圓外一點的切線:①k不存在,驗證是否成立②k存在,設點斜式方程,用圓心到該直線距離=半徑,求解k,得到方程【一定兩解】

(3)過圓上一點的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點為(x0,y0),則過此點的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r2

練習題:

2.若圓(x-a)2+(y-b)2=r2過原點,則()

A.a2-b2=0B.a2+b2=r2

C.a2+b2+r2=0D.a=0,b=0

【解析】選B.因為圓過原點,所以(0,0)滿足方程,

即(0-a)2+(0-b)2=r2,

所以a2+b2=r2.

高二數學選修一重要知識點分析2

一、隨機事件

主要掌握好(三四五)

(1)事件的三種運算:並(和)、交(積)、差;注意差A-B可以表示成A與B的逆的積。

(2)四種運算律:交換律、結合律、分配律、德莫根律。

(3)事件的五種關系:包含、相等、互斥(互不相容)、對立、相互獨立。

二、概率定義

(1)統計定義:頻率穩定在一個數附近,這個數稱為事件的概率;(2)古典定義:要求樣本空間只有有限個基本事件,每個基本事件出現的可能性相等,則事件A所含基本事件個數與樣本空間所含基本事件個數的比稱為事件的古典概率;

(3)幾何概率:樣本空間中的元素有無窮多個,每個元素出現的可能性相等,則可以將樣本空間看成一個幾何圖形,事件A看成這個圖形的子集,它的概率通過子集圖形的大小與樣本空間圖形的大小的比來計算;

(4)公理化定義:滿足三條公理的任何從樣本空間的子集集合到[0,1]的映射。

三、概率性質與公式

(1)加法公式:P(A+B)=p(A)+P(B)-P(AB),特別地,如果A與B互不相容,則P(A+B)=P(A)+P(B);

(2)差:P(A-B)=P(A)-P(AB),特別地,如果B包含於A,則P(A-B)=P(A)-P(B);

(3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特別地,如果A與B相互獨立,則P(AB)=P(A)P(B);

(4)全概率公式:P(B)=∑P(Ai)P(B|Ai).它是由因求果,

貝葉斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai).它是由果索因;

如果一個事件B可以在多種情形(原因)A1,A2,....,An下發生,則用全概率公式求B發生的概率;如果事件B已經發生,要求它是由Aj引起的概率,則用貝葉斯公式.

(5)二項概率公式:Pn(k)=C(n,k)p^k(1-p)^(n-k),k=0,1,2,....,n.當一個問題可以看成n重貝努力試驗(三個條件:n次重復,每次只有A與A的逆可能發生,各次試驗結果相互獨立)時,要考慮二項概率公式.

高二數學選修一重要知識點分析3

導數是微積分中的重要基礎概念。當函數y=f(x)的自變數x在一點x0上產生一個增量Δx時,函數輸出值的增量Δy與自變數增量Δx的比值在Δx趨於0時的極限a如果存在,a即為在x0處的導數,記作f'(x0)或df(x0)/dx。

導數是函數的局部性質。一個函數在某一點的導數描述了這個函數在這一點附近的變化率。如果函數的自變數和取值都是實數的話,函數在某一點的導數就是該函數所代表的曲線在這一點上的切線斜率。導數的本質是通過極限的概念對函數進行局部的線性逼近。例如在運動學中,物體的位移對於時間的導數就是物體的瞬時速度。

不是所有的函數都有導數,一個函數也不一定在所有的點上都有導數。若某函數在某一點導數存在,則稱其在這一點可導,否則稱為不可導。然而,可導的函數一定連續;不連續的函數一定不可導。

對於可導的函數f(x),x?f'(x)也是一個函數,稱作f(x)的導函數。尋找已知的函數在某點的導數或其導函數的過程稱為求導。實質上,求導就是一個求極限的過程,導數的四則運演算法則也來源於極限的四則運演算法則。反之,已知導函數也可以倒過來求原來的函數,即不定積分。微積分基本定理說明了求原函數與積分是等價的。求導和積分是一對互逆的操作,它們都是微積分學中最為基礎的概念。


高二數學選修一重要知識點分析相關 文章 :

★ 高二數學知識點總結選修2

★ 高二數學選修1-1圓錐曲線知識點

★ 高二數學考點知識點總結復習大綱

★ 高二數學知識點歸納總結

★ 高二數學選修2—1第一章常用邏輯用語知識點復習

★ 高二數學學習方法指導與學習方法總結

★ 高二數學選修2-1拋物線知識點總結

★ 高二數學知識點總結(人教版)

★ 高二數學知識點總結人教版

★ 高中數學知識點總結