當前位置:首頁 » 基礎知識 » 總結小學所有數學知識
擴展閱讀
什麼教育游戲最好 2024-11-15 09:43:10

總結小學所有數學知識

發布時間: 2022-12-15 11:50:28

Ⅰ 小學數學知識總結歸納

小學數學知識總結歸納

總結就是把一個時段的學習、工作或其完成情況進行一次全面系統的總結,它是增長才乾的一種好辦法,讓我們一起認真地寫一份總結吧。如何把總結做到重點突出呢?以下是我精心整理的小學數學知識總結歸納,歡迎大家借鑒與參考,希望對大家有所幫助。

【自然數】我們在數物體的時候,用來表示物體個數的1,2,3,4,5叫做自然數。一個物體也沒有,用「0」表示,「0」也是自然數,它是最小的自然數,沒有最大的自然數,自然數是無限的。

【整數】在小學階段,整數通常指自然數。

【數字】表示數目的符號叫做數字,通常把數字叫做數碼。

【加法】把兩個數合並成一個數的運算,叫做加法。

【加數】在加法中相加的兩個數,叫做加數。

【和】在加法中兩個加數相加得到的數叫做和。

【減法】已知兩個數的和與其中一個數,求另一個加數的運算,叫做減法。

【被減數】在減法中,已知的和叫做被減數。

【減數】在減法中,減去的已知加數叫做減數。

【差】在減法中,求出的未知加數叫做差。

【乘法】求幾個相同加數的和的簡便運算,叫做乘法。

【因數】在乘法中,相乘的兩個數都叫做積的因數。

【積】在乘法中,乘得的結果叫做積。

【除法】已知兩個因數的積,與其中一個因數,求另一個因數的運算,叫做除法。

【被除數】在除法中已知的積叫做被除數。

【除數】在除法中,已知的一個因數叫做除數。

【商】在除法中,未知的因數叫做商。

【計數單位】一,十,百,千,萬,十萬,百萬,千萬,億都叫做計數單位。

【十進制計數法】每相鄰的兩個計數單位間的.進率是十。這種計數方法叫做十進制計數法。

【數位】寫數的時候,把計數單位按照一定的順序排列起來,它們所佔的位置叫做數位。一個數字所在的數位不同,表示的數的大小也不同。第一個數位稱為個位,依次是十位,百位,千位,萬位,十萬位。

【有餘數除法】一個整數除以另一個不為零的整數,得到整數的商以後還有餘數,這樣的除法叫做有餘數的除法。余數比除數小。

【整數四則混合運算】我們學過的加減乘除四種運算,統稱為四則運算。

【第一級運算】在四則運算中,加法和減法叫做第一級運算。

【第二級運算】在四則運算中,乘法和除法叫做第二級運算。

【整除】兩個整數相除,如果用字母表示可以這樣說:整數a除以整數b(b不等於0)除得的商正好是整數而沒有餘數,我們就說a能被b整除,也可以說b能整除a。

【約數和倍數】如果數a能被b(b不等於0)整除,a叫做b的倍數,b叫做a的約數或a的因數。倍數和約數是相互依存的。一個數的約數的個數是有限的,其中最小的約數是1,最大的約數是它本身。一個數的倍數的個數是無限的,其中最小的倍數是它本身。例如,15能被3整除,我們就說15是3的倍數,3是15的約數。

【偶數】能被2整除的數叫做偶數,因為0也能被2整除,所以0也是偶數。

【奇數】不能被2整除的數叫做奇數。例如 1、3、5、7

【質數】一個數,如果只有1和它本身兩個約數,這樣的數叫做質數或者素數。例如2、3、5、7、11都是質數。

【素數】素數就是質數。

【合數】一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數。1不是質數,也不是合數。例如4、6、8、9、10、12都是合數。

【質因數】每個合數都可以寫成幾個質數相乘的形式。其中每個質數都是這個合數的因數,叫做這個合數的質因數。

【分解質因數】把一個合數用質因數相乘的形式表示出來,叫做分解質因數。例如:12=3x2x2

【公約數】幾個數公有的約數,叫做這幾個數的公約數。

【最大公約數】在幾個數的公約數中最大的一個,叫做這幾個數的最大公約數。例如1,2,4是8和12的公約數;4是8和12的最大公約數。

【互質數】公約數只有1的兩個數,叫做互質數。例如5和7是互質數,8和9也是互質數。

【公倍數】幾個數公用的倍數,叫做這幾個數的公倍數。

【最小公倍數】在幾個數的公倍數中最小的一個,叫做這幾個數的最小公倍數。例如12,24,36都是4和6的公倍數,12是4和6的最小公倍數。

【單價數量總價】每件商品的價錢,我們叫它單價,買了多少,叫做數量,一共用了多少錢,叫總價。總價=單價×數量

【速度、時間、路程】每小時(或每分鍾或者每天)行進的路程,我們叫它速度,行進了幾小時(或幾分鍾或幾天)我們叫它時間,一共行進多少路,我們叫它路程。路程=速度×時間

【加法交換律】兩個數相加,交換加數的位置,它們的和不變,這叫做加法交換律。字母表示:a+b=b+a

【加法結合律】三個數相加,先把前兩個數相加,再同第三個數相加;或先把後兩個數相加,再同第一個數相加,它們的和不變。這叫做加法結合律。字母表示:(a+b)+c=a+(b+c)

【乘法交換律】兩個數相乘,交換因數的位置,它們的積不變。這叫做乘法交換律。字母表示:a×b = b×a

【乘法結合律】三個數相乘,先把前兩者相乘,再同第三個數相乘;或者先把後兩個數相乘,再同第一個數相乘,它們的積不變,這叫做乘法結合律。字母表示:(a×b)×c=a×(b×c)

【乘法分配律】兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。這叫做乘法分配率。字母表示:(a+b)×c=a×c+b×c

【三、四位數的加法法則】

(1)相同數位對齊;

(2)從個位加起;

(3)哪一位上的數相加滿十,要向前一位進一。

【乘數是一位數的乘法法則】

(1)從個位起,用乘數依次乘被乘數的每一位數;

(2)哪一位上乘得的積滿幾十,就向前一位進幾。0和任何數相乘都得0。

【兩個因數和積的變化規律】一個因數不變,另一個因數擴大(或縮小)若干倍,積也擴大(或縮小)若干倍。

【除法中商不變的性質】在除法里,被除數和除數同時擴大(或縮小)相同的倍數(零除外),商不變。

【乘法各部分間的關系】因數×因數=積 一個因數=積÷另一個因數

【除法各部分間的關系】被除數÷除數=商 除數=被除數÷商 被除數=商×除數

【乘法的驗算方法】用所得的積除以一個因數,如果得到另一個因數,就是乘法做對了。

【除法的驗算方法】用除數和商相乘,如果得到被除數,或者用被除數除以商,如果得到除數,就是除法做對了。

【乘法的簡便演算法】三個數相乘,可以先把後面兩個數相乘,再和第一個數相乘,結果不變。利用這個規律,有時一個數連續乘以兩個一位數,改成乘以兩個一位數的積,比較簡便;有時一個數乘以兩位數,改成連續乘以兩個一位數,計算比較簡便。

例如:

6×12×5=6×(12×5)

25×16=25×(4×4)=25×4×4

【除法的簡便演算法】一個數連續用兩個數除,每次都能除盡的時候,可以先把兩個除數相乘,用它們的積去除這個數,結果不變。利用這個規律,有時一個數連續除以2個一位數,改成除以這2個一位數的積,比較簡便;有時一個數除以兩位數,改成連續除以2個一位數,比較簡便。

例如:

1000÷25÷4=1000÷(25×4)

420÷35=420÷7÷5

【解答應用題的步驟】

(1)弄清題意,並找出已知條件和所求問題;

(2)分析題里數量間的關系,確定先算什麼,再算什麼,最後算什麼;

(3)確定每一步該怎樣算,列出算式,算出得數;

(4)進行檢驗,寫出答案。

【檢驗應用題】

(1)按照原來的題意,依次檢查每一步列式和計算,看是否正確;

(2)把得數當作已知條件,按照題意倒看一步一步地計算,看結果是不是符合原來的一個已知條件。

【多位數的寫法】

(1)從高位起,一級一級地往下寫;

(2)哪個數位上一個數也沒有,就在哪個數位上寫0。

例如:七千零三億零二十萬寫作700300200000

【加法各部分間的關系】和=加數+加數 加數=和—另一個加數

【減法各部分間的關系】差=被減數—減數 減數=被減數—差 被減數=減數+差

【加減法的簡便運算】一個數連續減去兩個數,等於這個數減去兩個數的和。

例如130—46—34=130—80=50

【有餘數除法各部分間的關系】被除數=商×除數+余數

【同級運算的順序】一個算式里,如果只含有同一級運算,要從左往右依次計算。

【不同級運算的運算順序】一個算式里,如果含有兩級運算,要先做第二級運算,後做第一級運算。

例如100—7×5=100—35=65

Ⅱ 小學數學重要知識點匯總

小學數學重點知識點有哪些?哪些是一定要掌握點?下面是我為大家整理的關於小學數學重要知識點匯總,希望對您有所幫助。歡迎大家閱讀參考學習!

目錄

小學生數學法則知識歸類

小學數學口決定義歸類

小學數學量的計算單位及進率歸類

常用計算公式表

小學生數學法則知識歸類

(1)筆算兩位數加法,要記三條

1、相同數位對齊;

2、從個位加起;

3、個位滿10向十位進1。

(2)筆算兩位數減法,要記三條

1、相同數位對齊;

2、從個位減起;

3、個位不夠減從十位退1,在個位加10再減。

(3)混合運算計演算法則

1、在沒有括弧的算式里,只有加減法或只有乘除法的,都要從左往右按順序運算;

2、在沒有括弧的算式里,有乘除法和加減法的,要先算乘除再算加減;

3、算式里有括弧的要先算括弧裡面的。

(4)四位數的讀法

1、從高位起按順序讀,千位上是幾讀幾千,百位上是幾讀幾百,依次類推;

2、中間有一個0或兩個0隻讀一個「零」;

3、末位不管有幾個0都不讀。

(5)四位數寫法

1、從高位起,按照順序寫;

2、幾千就在千位上寫幾,幾百就在百位上寫幾,依次類推,中間或末尾哪一位上一個也沒有,就在哪一位上寫「0」。

(6)四位數減法也要注意三條

1、相同數位對齊;

2、從個位減起;

3、哪一位數不夠減,從前位退1,在本位加10再減。

(7)一位數乘多位數乘法法則

1、從個位起,用一位數依次乘多位數中的每一位數;

2、哪一位上乘得的積滿幾十就向前進幾。

(8)除數是一位數的除法法則

1、從被除數高位除起,每次用除數先試除被除數的前一位數,如果它比除數小再試除前兩位數;

2、除數除到哪一位,就把商寫在那一位上面;

3、每求出一位商,餘下的數必須比除數小。

(9)一個因數是兩位數的乘法法則

1、先用兩位數個位上的數去乘另一個因數,得數的末位和兩位數個位對齊;

2、再用兩位數的十位上的數去乘另一個因數,得數的末位和兩位數十位對齊;

3、然後把兩次乘得的數加起來。

(10)除數是兩位數的除法法則

1、從被除數高位起,先用除數試除被除數前兩位,如果它比除數小,

2、除到被除數的哪一位就在哪一位上面寫商;

3、每求出一位商,餘下的數必須比除數小。

(11)萬級數的讀法法則

1、先讀萬級,再讀個級;

2、萬級的數要按個級的讀法來讀,再在後面加上一個「萬」字;

3、每級末位不管有幾個0都不讀, 其它 數位有一個0或連續幾個零都只讀一個「零」。

(12)多位數的讀法法則

1、從高位起,一級一級往下讀;

2、讀億級或萬級時,要按照個級數的讀法來讀,再往後面加上「億」或「萬」字;

3、每級末尾的0都不讀,其它數位有一個0或連續幾個0都只讀一個零。

(13)小數大小的比較

比較兩個小數的大小,先看它們整數部分,整數部分大的那個數就大,整數部分相同的,十分位上的數大的那個數就大,十分位數也相同的,百分位上的數大的那個數就大,依次類推。

(14)小數加減法計演算法則

計算小數加減法,先把小數點對齊(也就是把相同的數位上的數對齊),再按照整數加減法則進行計算,最後在得數里對齊橫線上的小數點位置,點上小數點。

(15)小數乘法的計演算法則

計算小數乘法,先按照乘法的法則算出積,再看因數中一共幾位小數,就從積的右邊起數出幾位,點上小數點。

(16)除數是整數除法的法則

除數是整數的小數除法,按照整數除法的法則去除,商的小數點要和被除數小數點對齊,如果除到被除數的末尾仍有餘數,就在余數後面添0再繼續除。

(17)除數是小數的除法運演算法則

除數是小數的除法,先移動除數小數點,使它變成整數;除數的小數點向右移幾位,被除數小數點也向右移幾位(位數不夠在被除數末尾用0補足)然後按照除數是整數的小數除法進行計算。

(18)解答應用題步驟

1、弄清題意,並找出已知條件和所求問題,分析題里的數量關系,確定先算什麼,再算什麼,最後算什麼;

2、確定每一步該怎樣算,列出算式,算出得數;

3、進行檢驗,寫出答案。

(19)列方程解應用題的一般步驟

1、弄清題意,找出未知數,並用X表示;

2、找出應用題中數量之間的相等關系,列方程;

3、解方程;

4、檢驗、寫出答案。

(20)同分母分數加減的法則

同分母分數相加減,分母不變,只把分子相加減。

(21)同分母帶分數加減的法則

帶分數相加減,先把整數部分和分數部分分別相加減,再把所得的數合並起來。

(22)異分母分數加減的法則

異分母分數相加減,先通分,然後按照同分母分數加減的法則進行計算。

(23)分數乘以整數的計演算法則

分數乘以整數,用分數的分子和整數相乘的積作分子,分母不變。

(24)分數乘以分數的計演算法則

分數乘以分數,用分子相乘的積作分子,分母相乘的積作分母。

(25)一個數除以分數的計演算法則

一個數除以分數,等於這個數乘以除數的倒數。

(26)把小數化成百分數和把百分數化成小數的 方法

把小數化成百分數,只要把小數點向右移動兩位,同時在後面添上百分號;

把百分數化成小數,把百分號去掉,同時小數點向左移動兩位。

(27)把分數化成百分數和把百分數化成分數的方法

把分數化成百分數,通常先把分數化成小數(除不盡通常保留三位小數),再把小數化成百分數;

把百分數化成小數,先把百分數改寫成分母是100的分數,能約分的要約成最簡分數。

小學數學口決定義歸類

1、什麼是圖形的周長?

圍成一個圖形所有邊長的總和就是這個圖形的周長。

2、什麼是面積?

物體的表面或圍成的平面圖形的大小叫做他們的面積。

3、加法各部分的關系:

一個加數=和-另一個加數

4、減法各部分的關系:

減數=被減數-差 被減數=減數+差

5、乘法各部分之間的關系:

一個因數=積÷另一個因數

6、除法各部分之間的關系:

除數=被除數÷商 被除數=商×除數

7、角

(1)什麼是角?

從一點引出兩條射線所組成的圖形叫做角。

(2)什麼是角的頂點?

圍成角的端點叫頂點。

(3)什麼是角的邊?

圍成角的射線叫角的邊。

(4)什麼是直角?

度數為90°的角是直角。

(5)什麼是平角?

角的兩條邊成一條直線,這樣的角叫平角。

(6)什麼是銳角?

小於90°的角是銳角。

(7)什麼是鈍角?

大於90°而小於180°的角是鈍角。

(8)什麼是周角?

一條射線繞它的端點旋轉一周所成的角叫周角,一個周角等於360°.

8、垂直問題

(1)什麼是互相垂直?什麼是垂線?什麼是垂足?

兩條直線相交成直角時,這兩條線互相垂直,其中一條直線叫做另一條直線的垂線,這兩條直線的交點叫做垂足。

(2)什麼是點到直線的距離?

從直線外一點向一條直線引垂線,點和垂足之間的距離叫做這點到直線的距離。

9、三角形

(1)什麼是三角形?

有三條線段圍成的圖形叫三角形。

(2)什麼是三角形的邊?

圍成三角形的每條線段叫三角形的邊。

(3)什麼是三角形的頂點?

每兩條線段的交點叫三角形的頂點。

(4)什麼是銳角三角形?

三個角都是銳角的三角形叫銳角三角形。

(5)什麼是直角三角形?

有一個角是直角的三角形叫直角三角形。

(6)什麼是鈍角三角形?

有一個角是鈍角的三角形叫鈍角三角形。

(7)什麼是等腰三角形?

兩條邊相等的三角形叫等腰三角形。

(8)什麼是等腰三角形的腰?

有等腰三角形里,相等的兩個邊叫做等腰三角形的腰。

(9)什麼是等腰三角形的頂點?

兩腰的交點叫做等腰三角形的頂點。

(10)什麼是等腰三角形的底?

在等腰三角形中,與其它兩邊不相等的邊叫做等腰三角形的底。

(11)什麼是等腰三角形的底角?

底邊上兩個相等的角叫等腰三角形的底角。

(12)什麼是等邊三角形?

三條邊都相等的三角形叫等邊三角形,也叫正三角形。

(13)什麼是三角形的高?什麼叫三角形的底?

從三角形的一個頂點向它的對邊引一條垂線,頂點和垂足之間的線段叫做三角形的高,這個頂點的對邊叫三角形的底。

(14)三角形的內角和是多少度?

三角形內角和是180°.

10、四邊形

(1)什麼是四邊形?

有四條線段圍成的圖形叫四邊形。

(2)什麼是平等四邊形?

兩組對邊分別平行的四邊形叫做平行四邊形。

(3)什麼是平行四邊形的高?

從平行四邊形一條邊上的一點到對邊引一條垂線,這個點和垂足之間的線段叫做四邊形的高。

(4)什麼是梯形?

只有一組對邊平行的四邊形叫做梯形。

(5)什麼是梯形的底?

在梯形里互相平等的一組邊叫梯形的底(通常較短的底叫上底,較長的底叫下底)。

(6)什麼是梯形的腰?

在梯形里,不平等的一組對邊叫梯形的腰。

(7)什麼是梯形的高?

從上底的一點往下底引一條垂線,這個點和垂足之間的線段叫做梯形的高。

(8)什麼是等腰梯形?

兩腰相等的梯形叫做等腰梯形。

11、什麼是自然數?

用來表示物體個數的0、1、2、3、4、5、6、7、8、9、10……是自然數(自然數都是整數)。

12、什麼是四捨五入法?

求一個數的近似數時,看被省略的尾數最高位上的數是幾,如果是4或者比4小,就把尾數捨去,如果是5或者比5大,去掉尾數後,要在它的前一位加1。這種求近似數的方法,叫做四捨五入法。

13、加法意義和運算定律

(1)什麼是加法?

把兩個數合並成一個數的運算叫加法。

(2)什麼是加數?

相加的兩個數叫加數。

(3)什麼是和?

加數相加的結果叫和。

(4)什麼是加法交換律?

兩個數相加,交換加數的位置後,它的和不變,這叫做加法交換律。

14、什麼是減法?

已知兩個數的和與其中的一個加數,求另一個加數的運算叫做減法。

15、什麼是被減數?什麼是減數?什麼叫差?

在減法中已知的和叫被減數,減去的已知數叫減數,所求的未知數叫差。

16、加法各部分間的關系:

和=加數+加數 加數=和-另一加數

17、減法各部分間的關系:

差=被減數-減數 減數=被減數-差 被減數=減數+差

18、乘法

(1)什麼是乘法?

求幾個相同加數的和的簡便運算叫乘法。

(2)什麼是因數?

相乘的兩個數叫因數。

(3)什麼是積?

因數相乘所得的數叫積。

(4)什麼是乘法交換律?

兩個因數相乘,交換因數的位置,它們的積不變,這叫乘法交換律。

(5)什麼是乘法結合律?

三個數相乘,先把前兩個數相乘,再同第三個數相乘,或者先把後兩個數相乘,再同第一個數相乘,它們的積不變,這叫乘法結合律。

19、除法

(1)什麼是除法?

已知兩個因數的積與其中的一個因數,求另一個因數的運算叫除法。

(2)什麼是被除數?

在除法中,已知的積叫被除數。

(3)什麼是除數?

在除法中,已知的一個因數叫除數。

(4)什麼是商?

在除法中,求出的未知因數叫商。

20、乘法各部分的關系:

積=因數×因數 一個因數=積÷另一個因數

21、除法

(1)除法各部分間的關系:

商=被除數÷除數 除數=被除數÷商

(2)有餘數的除法各部分間的關系:

被除數=商×除數+余數

22、什麼是名數?

通常量得的數和單位名稱合起來的數叫名數。

23、什麼是單名數?

只帶有一個單位名稱的數叫單名數。

24、什麼是復名數?

有兩個或兩個以上單位名稱的數叫復名數。

25、什麼是小數?

仿照整數的寫法,寫在整數個位的右面,用圓點隔開,用來表示十分之幾、百分之幾、千分之幾……的數叫小數。

26、什麼是小數的基本性質?

小數的末尾添上零或者去掉零,小數大小不變,這叫小數的基本性質。

27、什麼是有限小數?

小數部分的位數是有限的小數叫有限小數。

28、什麼是無限小數?

小數部分的位數是無限的小數叫無限小數。

29、什麼是循環節?

一個循環小數的部分依次不斷重復出現的數叫做這個數的循環節。

30、什麼是純循環小數?

循環節從小數第一位開始的叫純循環小數。

31、什麼是混循環小數?

循環節不是從小數部分第一位開始的叫做混循環小數。

32、什麼是四則運算?

我們把學過的加、減、乘、除四種運算統稱四則運算。

33、什麼是方程?

含有未知數的等式叫方程。

34、什麼是解方程?

求方程解的過程叫解方程。

35、什麼是倍數?什麼叫約數?

如果a能被b整除,a就是b的倍數,b就叫a的約數(或a的因數)。

36、什麼樣的數能被2整除?

個位上是0、2、4、6、8的數都能被2整除。

37、什麼是偶數?

能被2整除的數叫偶數。

38、什麼是奇數?

不能被2整除的數叫奇數。

39、什麼樣的數能被5整除?

個位上是0或5的數能被5整除。

40、什麼樣的數能被3整除?

一個數的各位上的和能被3整除,這個數就能被3整除。

41、什麼是質數(或素數)?

一個數如果只有1和它本身兩個約數,這樣的數叫質數。

42、什麼是合數?

一個數除了1和它本身還有別的約數,這樣的數叫合數。

43、什麼是質因數?

每個合數都可以寫成幾個質數相乘的形式。其中每個質數都是這個合數的因數,叫做這個合數的質因數。

44、什麼是分解質因數?

把一個合數用質因數相乘的形式表示出來叫做分解質因數。

45、什麼是公約數?什麼叫最大公約數?

幾個數公有的約數叫公約數。其中最大的一個叫最大公約數。

46、什麼是互質數?

公約數只有1的兩個數叫互質數。

47、什麼是公倍數?什麼是最小公倍數?

幾個數公有的倍數叫這幾個數的公倍數。其中最小的一個叫這幾個數的最小公倍數。

48、分數

(1)什麼是分數?

把單位1平均分成若干份,表示這樣的一份或者幾份的數叫分數。

(2)什麼是 分數線 ?

在分數里中間的橫線叫分數線。

(3)什麼是分母?

分數線下面的部分叫分母。

(4)什麼是分子?

分數線上面的部分叫分子。

(5)什麼是分數單位?

把單位「1」平均分成若干份,表示其中的一份叫分數單位。

49、怎麼比較分數大小?

(1)分母相同的兩個分數,分子大的分數比較大。

(2)分子相同的兩個分數,分母小的分子比較大。

(3)什麼是真分數?

分子比分母小的分數叫真分數。

(4)什麼是假分數?

分子比分母大或者分子和分母相等的分數叫假分數。

(5)什麼是帶分數?

由整分數和真分數合成的數通常叫帶分數。

(6)什麼是分數的基本性質?

分數的分子和分母同時乘或除以相同的數(0除外),分數大小不變,這就是分數的基本性質。

(7)什麼是約分?

把一個分數化成同它相等,但分子、分母都比較小的數叫做約分。

(8)什麼是最簡分數?

分子、分母是互質數的分數叫最簡分數。

50、比

(1)什麼是比?

兩個數相除又叫兩個數的比。

(2)什麼是比的前項?

比號前面的數叫比的前項。

(3)什麼是比的後項?

比號後面的數叫比的後項。

(4)什麼是比值?

比的前項除以後項所得的商叫比值。

(5)什麼是比的基本性質?

比的前項和後項同時乘以或者同時除以相同的數(0除外)比值不變,這叫比的基本性質。

51、長方體和正方體

(1)什麼是棱?

兩個 面相 交的邊叫棱。

(2)什麼是頂點?

三條棱相交的點叫頂點。

(3)什麼是長方體的長、寬、高?

相交於一個頂點的三條棱的長度分別叫長方體的長、寬、高。

(4)什麼是正方體(立方體)?

長寬高都相等的長方體叫正方體(或立方體)。

(5)什麼是長方體的表面積?

長方體六個面的總面積叫長方體的表面積。

(6)什麼是物體體積?

物體所佔空間的大小叫做物體的體積。

52、圓

(1)什麼是圓心?

圓中心的點叫圓心。

(2)什麼是半徑?

連接圓心和圓上任意一點的線段叫半徑。

(3)什麼是直徑?

通過圓心、並且兩端都在圓上的線段叫直徑。

(4)什麼是圓的周長?

圍成圓的曲線叫圓的周長。

(5)什麼是圓周率?

我們把圓的周長和直徑的比值叫圓周率。

(6)什麼是圓的面積?

圓所圍平面的大小叫圓的面積。

(7)什麼是扇形?

一條弧和經過這條弧兩端的兩條半徑所圍成的圖形叫扇形。

(8)什麼是弧?

在圓上兩點之間的部分叫弧。

(9)什麼是圓心角?

頂點在圓心上的角叫圓心角。

(10)什麼是對稱圖形?

如果一個圖形沿著一條直線對折,兩側圖形能夠完全重合,這樣的圖形就是對稱圖形。

53、什麼是百分數?

表示一個數是另一個數百分之幾的數叫百分數,百分數也叫百分率或百分比。

54、比例

(1)什麼是比例?

表示兩個比相等的式子叫比例。

(2)什麼是比例的項?

組成比例的四個數叫比例的項。

(3)什麼是比例外項?

兩端的兩項叫比例外項。

(4)什麼是比例內項?

中間的兩項叫比例內項。

(5)什麼是比例的基本性質?

在比例中兩個外項的積等於兩個內項的積。

(6)什麼是解比例?

求比例中的未知項叫解比例。

(7)什麼是正比例關系?

兩種相關的量,一種變化,另一種量也變化,如果這兩種量中相對應的兩個數的比值(也就是商)一定,這兩種量叫正比例的量,它們的關系叫正比例關系。

(8)什麼是反比例關系?

兩種相關的量,一種變化,另一種也隨著變化,如果這兩種量中相對應的積一定,這兩種量叫反比例的量,它們的關系成反比例關系。

55、圓柱

(1)什麼是圓柱底面?

圓柱的上下兩個面叫圓柱的底面。

(2)什麼是圓柱的側面?

圓柱的曲面叫圓柱的側面。

(3)什麼是圓柱的高?

圓柱兩個底面的距離叫圓柱的高。

小學數學量的計算單位及進率歸類

1、長度計量單位及進率:

千米(公里)、米、分米、厘米、毫米

1千米=1公里 1千米=1000米

1米=10分米 1分米=10厘米

1厘米=10毫米

2、面積計量單位及進率:

平方千米、公頃、平方米、平方分米、平方厘米

1平方千米=100公頃

1平方千米=1000000平方米

1公頃=10000平方米

1平方米=100平方分米

1平方分米=100平方厘米

3、體積容積計量單位及進率:

立方米、立方分米、立方厘米、升、毫升

1立方米=1000立方分米

1立方分米=1000立方厘米

1立方分米=1升 1立方厘米=1毫升

4、質量單位及進率:

噸、千克、公斤、克

1噸=1000千克

1千克=1公斤

1千克=1000克

5、時間單位及進率:

世紀、年、月、日、小時、分、秒

1世紀=100年 1年=12月

1天=24小時 1小時=60分

1分=60秒

(31天的月份有1、3、5、7、8、10、12月份, 30天的月份有4、6、9、11月份, 平年2月28天,閏年2月29天)

常用計算公式表

1、長方形面積

=長×寬,計算公式S=ab

2、正方形面積

=邊長×邊長,計算公式S=a×a=a2

3、長方形周長

=(長+寬)×2,計算公式C=(a+b)×2

4、正方形周長

=邊長×4,計算公式C=4a

5、平行四邊形面積

=底×高,計算公式S=ah

6、三角形面積

=底×高÷2,計算公式S=a×h÷2

7、梯形面積

=(上底+下底)×高÷2,計算公式S=(a+b)×h÷2

8、長方體體積

=長×寬×高,計算公式V=abh

9、圓的面積

=圓周率×半徑平方,計算公式V=πr2

10、正方體體積

=棱長×棱長×棱長,計算公式V=a3

11、長方體和正方體的體積

都可以寫成底面積×高,計算公式V=sh

12、圓柱的體積

=底面積×高,計算公式V=sh


相關 文章 :

1. 小學數學知識點:和差、和倍與差倍問題詳解

2. 做小學四年級數學上冊知識點總結

3. 小學數學必備概念知識點順口溜

4. 做小學四年級數學上冊知識點總結

5. 小學三年級數學學習內容重點知識匯總

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

Ⅲ 小學階段數學知識總結

小學數學總復習各模塊知識

數的認識 簡易方程
一、數和數的運算 數的整除 二、代數初步知識
數的運算 比和比例

一般復合應用題 長度
典型應用題 面積
三、應用題 分數、百分數應用題 四、量的計量 體積
列方程解應用題 重量
比和比例應用題 時間
人民幣
線 統計表
平面圖形的認識與計算 角 六、統計與概率
五、空間與圖形 平面圖形 統計圖
長方體、正方體
立體圖形的認識與計算
圓柱體、圓錐體

一、數和數的運算
(一)數的認識

整數的含義:像…-3,-1,0,1,2,3,…這樣的數統稱整數。
正數和負數的含義:像1,+5,6,…這樣的數叫做正數;像-3,-2,-9,…這樣的數叫做負數。

佔位
0是最小的自然數,0是偶數,0的作用 表示起點
表示界線
自然數 1是最小的一位數,是自然數的基本單位;1既不是質數,也不是合數。
數的意義: 是整數的一部分,可表示基數也可以表示序數
意義:把單位「1」平均分成若干份,表示這樣一份或幾份的數叫做分數。表示其中一份的數就是分數單位
分數
真分數——分子比分母小(小於1)
分類: 假分數——分子大於或等於分母(大於或等於1)
帶分數——分子比分母大(大於1)

意義:把整體「1」平均分成10份、100份、1000份……這樣的一份或幾份
是十分之幾,百分之幾,千分之幾……可以用小數表示
有限小數
按小數部分分 無限不循環小數
小數 無限小數 純循環小數
分類 純小數 循環小數
按整數部分分 混循環小數
帶小數

整數和小數數位順序表
整數部分 小數部分
… 億級 萬級 個級
數位 … 千億位 百億位 十億位
億位 千萬位 百萬位 十萬位
萬位
千位
百位
十位
個位 十分位 百分位 千分位 萬分位 …
計數單位 … 千億 百億 十億
億 千萬 百萬 十萬





十分之一 百分之一 千分之一 萬分之一 …
百分數:表示一個數是另一個數的百分之幾的數叫做百分數。(百分率或百分比)
折扣*:商業用名詞,幾折就是十分之幾,成數,幾成就是百之幾十。
注意:百分數、折扣只表示兩個數的倍比關系,而分數除倍比關系外還可以表示具體數量。
數的讀寫:
1、整數的讀法:從高位到低位,一級一級地讀,每級末尾的0都不讀,其他數位連續有幾個0都只讀一個0。
2、整數的寫法:從高位到低位,一級一級地寫,哪一個數位上一個單位也沒有,就在那個數位上寫0。
3、小數的讀寫:整數部分按整數來讀(寫),小數點讀作「點」,小數部分依次讀(寫)出每一位上的數字。
數的改寫
寫成用「萬」或「億」作單位的數
1、多位數的改寫和省略: 省略「萬」或「億」位後面的尾數
2、分數、小數、百分數的互化
改寫成分母是10、100、1000…的分數再約分
小數 分數
用分子除以分母

小數點向右移動兩位,同時添上%
小數 百分數
去掉%,小數點向左移動兩位

寫成分數形式並約分
百分數 分數
先寫成小數,再寫成百分數
數的大小比較:
1、整數的大小比較:先看位數,位數多的數大:位數相同,從高位看起相同數位上的數大的那個數就大
2、小數大小的比較:先比較兩個數的整數部分,整數部分大的那個數就大;整數部分相同就看小數部分從高位看起,依數位比較
3、分數大小比較:分母相同分子大的分數大;分子相同分母小的分數大;分母不同,先通分再比較。
數的基本性質:
1、分數的基本性質:分數的分子和分母同時乘上或者除以相同的數(0除外),分數的大小不變。
2、小數的基本性質:小數的末尾添「0」或者去掉「0」,小數的大小不變。

(二)數的整除
定義:(小學階段研究「數的整除」時所說的數一般指非0自然數)
數a除以b(b≠0)的商正好是整數而沒有餘數,我們就說a能被b整除(或者說b能整除a)。

倍數 公倍數 最小公倍數
整除 因數 公因數 最大公因數

質數 合數 互質數(已刪除)

質因數 分解質因數(已刪除)
2的倍數的特徵:個位是0、2、4、6、8。

偶數 奇數(能被2整數的數叫偶數,不能被2整除的數叫奇數。)
3的倍數的特徵:各位上的數的和是3的倍數
5的倍數的特徵:個位上是0或者5的數。
(三)數的運算
1、四則運算的意義
數的
分類
運算名稱 整數 小數 分數
加法 把兩個數合並成一個數的運算。
減法 已知兩個加數的和與其中一個加數,求另一個加數的運算。
乘法 求幾個相同加數的和的簡便運算。 小數乘整數與整數乘法意義相同。 分數乘整數與整數乘法意義相同。
一個數乘小數,就是求這個數的十分之幾,百分之幾…是多少。 一個數乘分數,就是求這個數的幾分之幾是多少。
除法 已知兩個因數的積與其中一個因數,求另一個因數的運算。
2、四則運算的法則
整數 小數 分數
加減 相同數位對齊,從低位算起
加法:滿十就向前一位進一
減法:不夠減就從前一位退,退一當十 小數點對齊,從低位算起,按整數加減法進行計算,結果中的小數點和加減的數的小數點對齊。 1、同分母分數相加減,分母不變,分子相加減。
2、異分母分數相加減,先通分,然後再按同分母分數相加減的方法計算。
3、結果能約分的要約分。

乘法 1、從個位乘起,依次用第二個因數每一位上的數去乘第一個因數。
2、用第二個因數哪一位上的數去乘,得數的末位就和第二個因數的哪一位對齊。
3、再把幾次乘得的數加起來。 1、按整數乘法法則算出積。
2、看因數中一共有幾位小數,就從積的右邊起數出幾位點上小數點。 1、分數乘分數,用分子相乘的積作分子,分母相乘的積作分母。
2、有整數的把整數看作分母是1的假分數。
3、有帶分數的,通常先把帶分數化成假分數。
除法 除數是整數:從被除數的高位除起,除數是幾位就先看被除數的前幾位,如果不夠除,就要多看一位,除到哪一位就要把商寫在哪一位的上面。商的小數點和被除數的小數點對齊。 除數是小數:先移動除數的小數點,使它變成整數,除數的小數點向右移動幾位,被除數的小數點也向右移動相同的位數(位數不夠的補0),然後按照除數是整數的除法進行計算。 甲數除以乙數(0除外),等於甲數乘以乙數的倒數。

3、四則運算各部分的關系:
加數+加數=和 被減數—減數=差
一個加數=和—另一個加數 減法 被減數=減數+差
減數=被減數—差
因數×因數=積 被除數÷除數=商
一個因數=積÷另一個因數 除法 被除數=商×除數
除數=被除數÷商
4、運算定律和運算性質
加法交換律 : a+b=b+a
加法結合律 : (a+b)+c=a+(b+c)
乘法交換律 : a×b=b×a
乘法結合律 : (a×b)×c=a×(b×c)
乘法分配律 : (a+b)×c=a×c+b×c
減法的運算性質: a-b-c=a-(b+c)
除法的運算性質: a÷(b×c)=a÷b÷c
5、四則運算的順序:
在一個沒有括弧的算式里,如果只含有同一級運算,要從左往右依次計算;如果含有兩級運算,要先算第二級運算,再算第一級運算。
有括弧的算式里,要先算括弧里的,再算括弧外的。

二、代數的初步知識
(一)簡易方程
1、用字母表示數:
(1) 用字母可以表示我們學過的自然數、整數、小數、百分數……
(2) 用含有字母的式子,可以簡明地表達數學概念、運算定律和數學計算公式。還可以簡明地表達數量關系。
2、簡易方程
(1) 等式:表示相等關系的式子。
(2) 方程:含有未知數的等式。
(3) 方程的解:使方程左右兩邊相等的未知數的值。
(4) 解方程:求方程的解的過程。
(5) 解方程的依據:等式的基本性質(天平平衡的道理)

(二)比和比例:
1、 比和比例的意義與性質
比 比例
意義 兩個數相除又叫做兩個數的比 表示兩個比相等的式子叫做比例
基本
性質 比的前項和後項同時乘上或者除以相同的數(0除外),比值不變。 在比例里,兩個內項的積等於兩個外項的積。
2、 比、分數與除法的關系
比 比號 前項 後項 比值
分數 分數線 分子 分母 分數值
除法 除號 被除數 除數 商
3、 求比值和化簡比的區別與聯系
一般方法 結果
求比值 根據比值的意義,用前項除以後項。 是一個商,可以是整數,小數或分數。
化簡比 根據比的基本性質,把比的前項和後項同時乘上或同時除以相同的數(0除外)。 是一個比 ,它的前項和後項都是整數。
4、 比例尺
圖上距離和實際距離的比,叫做這幅圖的比例尺。
5、正比例和反比例的區別與聯系
相同點 不同點
特徵 關系式
正比例關系 兩種相關聯的量,一種量變化,另一種量也隨著變化。 兩種量中相對應的兩個數的比值一定。

反比例關系 兩種量中相對應的兩個數的積一定。
ху=k (一定)

三、應用題

(一) 一般復合應用題
1、一般復合應用題的解法
(1)分析法:從問題入手,逐步分析題里的已知條件。
(2)綜合法:從應用題的已知條件入手,逐步推出未知。
(3)分析綜合法:將分析法、綜合法結合起來交替使用的方法。當已知條件中有明顯計算過程時就用綜合法順推,遇到困難時再轉向原題所提的問題用分析法幫忙,逆推幾步,順推和逆推聯繫上了,問題便解決了。
2、一般復合應用題的解題步驟:
(1)審清題意,並找出已知條件和所求問題;
(2)分析題目里的數量間的關系,從而確定先算什麼,再算什麼,最後算什麼;
(3)列式,算出結果;
(4)進行檢驗,寫出答案。
(二)典型應用題(有一定解答規律的應用題)
1、求平均數問題
(1) 求平均數問題的特點:把各「部分量」合並為「總量」,然後按「總份數」平均,求其中一份是多少。
(2) 求平均數問題的解題規律:關鍵是先求出「總量」和「總份數」,然後用「總量÷總份數=平均數」,特殊情況可用「移多補少法」解答。
2、歸一應用題
(1) 歸一應用的特點:從已知條件中求出「單一量」,再以「單一量」為標准去計算所求的量。歸一問題通常分為正歸一和反歸一。
(2) 歸一問題的解題規律:首先求出一個單位數量,然後以這個「單位量」為標准,根據題目的要求,用乘法算出若干個「單位量」是多少,這是正歸一的解題規律。或用除法算出總量包含多少個「單位量」,這是反歸一的解題規律。歸一問題還可以用倍比問題的解題方法求解。
3、相遇問題
(1)特點:A、兩個運動物體;B、運動方向相向;C、運動時間同時。
(2)解題規律:速度和×相遇時間=路程
路程 ÷速度和=相遇時間
路程 ÷相遇時間=速度和
(三)分數、百分數應用題
1、分數乘法應用題
已知一個數,求它的幾分之幾(百分之幾)是多少,用乘法。即:「一個數×幾分之幾(百分之幾)」。
已知條件:表示單位「1」的量;單位「1」的幾分之幾(或百分之幾)(又稱:分率)
特徵:
所求問題:求單位「1」的幾分之幾(百分之幾)是多少(又稱:部分量)

用等式表示三量的關系:單位「1」的量×分率=部分量

對應關系
2、分數除法應用題
(1)已知一個數的幾分之幾(百分之幾)是多少,求這個數,用除法。即「多少÷幾分之幾」
已知條件:單位「1」的幾分之幾(分率);單位「1」的幾分之幾是多少
(部分量)
特徵
所求問題:單位「1」的量
用等式表示三量的關系:部分量÷分率=單位「1」的量

對應關系
(2)求一個數是另一個數的幾分之幾(百分之幾)用除法。即「一個數÷另一個數」。
已知條件:表示單位「1」的量;單位「1」的幾分之幾是多少(部分量)
特徵
所求問題:求部分量是單位「1」的幾分之幾(百分之幾)
用等式表示三量的關系:部分量÷單位「1」的量=分率

對應關系
3、工程問題的應用題
把工作總量用「1」表示,工作效率用單位時間內做工作總量的「幾分之一」表示。根據工作總量與工作效率,就能求出合作完成的工作時間。
三量之間的關系式:工作效率×工作時間=工作總量
工作總量÷工作效率=工作時間
工作總量÷工作時間= 工作效率
(四)列方程解應用題
1、列方程解應用題的思考方法:用字母代替應用題中的未知數,根據數量間的相等關系列方程,解方程。
2、列方程解應用題的一般步驟
(1)弄清題意,找出未知數並用X表示。
(2)找出數量間的相等關系,列出方程。
(3)解方程。
(4)檢驗並答。

(五)比和比例應用題
比和比例應用題包括:比例尺、按比例分配、和正反比例應用題。
1、比例尺中解題關系式:圖上距離∶實際距離=比例尺
2、按比例分配應用題 :要分配的總量×各部分量的分率=各部分量。
3、正比例 у/χ=X/Y 反比例χу=XY(正、反比例應用題已刪去)

四、量與計量
(一)量、計量和計量單位的意義
事物的多少、長短、大小、輕重、快慢等,這些可以測定的客觀事物的特徵叫做量。把一個要測定的量同一個作為標準的量相比較叫做計量。用來作為計量標準的量叫做計量單位。
(二)常用的計量單位及其進率
1、長度、面積、地積、體積、容積、重量單位及其進率
長度 1千米(km)=1000米(m) 1米(m) =10分米 (dm)
1分米(dm)=10厘米(cm) 1厘米(cm)=10毫米(mm)
面積 1平方千米=1000000平方米
1平方米=100平方分米
1平方分米=100平方厘米
1平方厘米=100平方毫米 地積 1平方千米=100公頃
1公頃=10000平方米
體積 1立方米=1000立方分米
1立方分米=1000立方厘米
1立方厘米=1000立方毫米 容積 1升=1000毫升
1立方分米=1升
1立方厘米=1毫升
重量 1噸=1000千克 1千克=1000克

2、常用時間單位及其關系
世紀 年 月 日 時 分 秒
100 12 24 60 60
每月31天的有1、3、5、7、8、10、12各月;每月30天的有4、6、9、11各月;平年全年365天,平年二月28天;閏年全年366天,閏年二月29天。
3、人民幣:1元=10角 1角=10分
(三)同類計量單位之間的轉化
(化法)乘以進率
高級單位的數 低級單位的數
(化法)除以進率

五、空間與圖形
(一)平面圖形的認識和計算
1、線
線段:用直尺把兩點連接起來就得到一條線段。
線段的長就是這兩點間的距離。(有兩個端點)
直線:把線段的兩端無限延 平行線:在同一平面內不相交的兩條直線,叫做
長可以得到一條直線 平行線。
(沒有端點) 垂線:兩條直線相交成直角,這兩條直線叫做互
相垂直,其中一條直線叫另一條直線的垂線。
射線:把線段的一端無限延長可以得到一條射線。(有一個端點)
2、角:從一點引出兩條射線所組成的圖形
銳角:小於90度的角
直角:等於90度的角
鈍角:大於90度而小於180度的角
平角:180度的角
周角:360度的角

3、平面圖形
(1)三角形:由三條線段首尾相互連接圍成的圖形
銳角三角形:三個角都是銳角
按角分 直角三角形:有一個角是直角
鈍角三角形:有一個角是鈍角
三角形
等腰三角形:兩條邊相等
按邊分 等邊三角形:三條邊相等
不等邊三角形:三條邊都不相等

(2)四邊形:由四條線段首尾依次連接圍成的圖形。 扇形
平行四邊形 長方形 正方形 (3)圓形
四邊形 環形
直角梯形
梯形
等腰梯形
(畫線段、畫角、畫高、量線段、畫垂線、畫圓、畫對稱軸)

(4)特徵及周長、面積計算公式:
名稱 圖形 字母意義 特 征 周長面積公式
正方形
a a:邊長 四條邊都相等,四個角都是直角 C=4a
S=a²
長方形 b
a a:長
b:寬 對邊相等,四個角都是直角 C=2(a+b)
S=ab
平行四 邊形 h
a a:底
h:高 兩組對邊分別平行且相等 S=ah
三角形 h
a a:底
h:高 有三條邊,三個角,內角的和是180度 S=ah÷2
梯形 a
h
b a:上底
b:下底
h:高 只有一組對邊平行 S=(a+b)h÷2
圓 d

r d:直徑
r:半徑 同圓內半徑相等,直徑相等,直徑是半徑的2倍 C=πd=2πr
S=πr²
(二)立體圖形的認識和計算
1、長方體與正方體特徵的區別與聯系
特徵
名稱 相同點 不同點
面 棱 頂點 面的特點 棱長
長方體
6個 12條 8
個 6個面一般都是長方形(也可能有兩個相對的面是正方形),相對的面的面積相等 每組(有3組,分別叫長、寬、高)互相平行的4條棱相等
正方體
6個 12條 8
個 6個面都是相等的正方形 12條棱都相等
2、圓柱、圓錐的特徵
名稱 圖形 特徵


上、下底面是面積相等的圓,兩個底面之間的距離叫做高。側面沿高展開是長方形(或正方形)。有無數條高


底面是圓形,頂點到底面圓心的距離叫做高。只有一條高。

3、立體圖形的表面積和體積的計算公式
名稱 圖形 字母意義 表面積s , 體積v
正方體
a:棱長 S=6a² V=a³
長方體
a:長 b:寬
h:高 S=(ab+ah+bh)x 2 V=abh
圓柱體
r:底面半徑 h:高
c:底面周長 S側=ch=πdh =2πrh
S表=S側 +2S底面 V=sh=πr²h
圓錐體
r:底面半徑
h:高 V=sh÷3
=πr²h÷3
六、統計與概率

單式統計表
統計表 復式統計表
百分數統計表
統計表包括:總標題、縱欄標題、橫欄標題、數據資料欄、數量單位、製表日期
條形統計圖(單式、復式)
統計圖 折線統計圖(單式、復式)
扇形統計圖
統計圖的製法與特點
製法 特點
條形
統計圖 1、 整理數據,畫出橫、縱軸,單位長度表示一定的數量2、根據數量多少畫直條
3、寫名稱、製表日期、圖例 很容易看出數量的多少
折線
統計圖 1、 整理數據,畫出橫、縱軸,單位長度表示一定的數量
2、 根據數量多少描點,再把各點用線段順次連接起來。
3、 寫名稱、製表日期、圖例 不但可表示數量的多少,而且能夠表示數量的增減變化
扇形
統計圖 1、計算各部分佔總數的百分比,再算出與各部分所對應的扇形的圓心角的度數。2、取適當半徑畫圓,用量角器量出各扇形的圓心角,作扇形。3、註明各扇形表示內容和所佔百分比,並用不同的標記加以區別,4、寫上標題及制圖日期。 清楚的表示出各部分與總數及部分與部分的關系

數學《北師大版》與(人教版)增、刪知識

《北師大版》比(人教版)新增知識

1、分類(按一定標准或不同標准進行分類)
2、位置與順序(前、後、左、右、上、下)
3、位置與方向(東、南、西、北)
4、方向與路線(東南、東北、西南、西北)
5、觀察物體(正面、上面、左面或右面)
6、可能性(大、小;可能、不可能、一定;分數表示、幾種結果)
7、生活中的推理(列表解決)
8、對稱、平移或旋轉(軸對稱圖形、方向、幾格)
9、圖形變換(繞點、方向、旋轉90°、平移幾格)
10、確定位置(方向、北偏××度,距離;數對)
11、生活中的負數(0既不是正數,也不是負數)
12、數圖形(數角、數三角形、數長方形)
13、游戲公式(公平性)
14、圖形規律(擺三角形、擺正方形、列表解決)
15、嘗試與猜測(雞兔同籠、點陣中的規律,圖表解決)
16、生活中的數(數據世界、數字用處、身份證)
17、看圖找關系(足球場內聲音、行為、成員間關系)
18、中位數和眾數
19、成數、折數
20、因數、公因數、最大公因數
21、字母單位:m、dm、cm、mm、km;g、kg、t、L、ML
22、搭配的學問(兩種物品以上)
23、比賽場次(循環賽)
24、組合圖形面積(只限兩個圖形)
25、觀察范圍
26、方程(加減或乘除同一個數、等式性質)

《北師大版》比《人教版》刪去知識

1、約數、公約數、最大公約數
2、互質數
3、分解質因數
4、用比例知識解應用題

Ⅳ 小學各年級數學知識點總結

貪玩是孩子的天性,大多數孩子缺少自我控制能力,所以需要家長們平時多督促孩子認真完成家庭作業,培養他們良好的作業習慣,寫字姿勢。家長督促他們寫作業,及時檢查他們的作業,發現沒學會的知識要及時給他們講解,每天的作業認真完成是學習的基本保障。下面是我為大家整理的關於小學各年級數學知識點 總結 ,希望對您有所幫助。歡迎大家閱讀參考學習!

一年級的知識點及重難點

(一)數與計算

(1)20以內數的認識。加法和減法。

數數。數的組成、順序、大小、讀法和寫法。加法和減法。連加、連減和加減混合運算。

(2)100以內數的認識。加法和減法。數數。個位、十位。數的順序、大小、讀法和寫法。

兩位數加、減整十數和兩位數加、減一位數的口算。兩步計算的加減式題。

(二)量與計量鍾面的認識(整時)。人民幣的認識和簡單計算。

(三)幾何初步知識

長方體、正方體、圓柱和球的直觀認識。

長方形、正方形、三角形和圓的直觀認識。

(四)應用題

比較容易的加法、減法一步計算的應用題。 多和少的應用題(抓有效信息的能力)

(五)實踐活動

選擇與生活密切聯系的內容。例如根據本班男、女生人數,每組人數分布情況,想到哪些數學問題。

一年級 數學 學習 方法

1、要培養學生的學習習慣。學習習慣的一方面就是作業的按時完成,作業格式訓練也是學習習慣培養的一個方面。要利用數學練習本讓學生練習寫數和寫算式

2、重視孩子計算能力的培養

口算20以內的加減法是十分重要的基礎知識,孩子必須學好,並能夠達到熟練計算的程度。由於孩子的基礎不同,不同孩子的計算熟練程度和速度也就存在一定差異,要縮小這一差異,僅靠每天一節數學課練習是不客觀的,所以要經常性的練習。一年級要多讓孩子藉助小棒等學具擺一擺、說一說計算思路。

3、依據生活理解數學,讓孩子在游戲中成長

有些數學知識較抽象,容易混淆,我們要注意給孩子創造生活情境,讓孩子在實際體驗中理解知識。如「左右」的認識,分辨左右是孩子本學期學習的一個難點,在生活中強化孩子對左右手的認識,引導孩子藉此來分辨物體間的左右關系。同時還要注意一個參照物的問題,如兩人面對面時,如何判別對面之人的左右邊。

4、重視數學語言發展,讓學生養成積極思維的習慣。 在生活中要多為孩子創設說數學的機會,數學是「思維的 體操 」,如果不積極動腦思考就不可能學好數學。如在學習「10的分與合」時,在復習鋪墊的基礎上,提問:「10可以分成幾和幾呢?」引導學生一邊塗珠算一邊思考,從而自己得出結論。多問幾個「為什麼」比直接告訴學生「是這樣的」要好得多。,學生在相互之間的思維撞擊中學會了知識,獲得了積極的成功體驗。

總之,一年級學生由於特殊的年齡特徵,所以要重視培養學生良好書寫、思維的學習習慣。

二年級的知識點和重難點

(一)數與計算

(1)兩位數加、減兩位數。 ? 兩位數加、減兩位數。加、減法豎式。兩步計算的加減式題。

(2)表內乘法和表內除法。 ? 乘法的初步認識。乘法口訣。乘法豎式。除法的初步認識。用乘法口訣求商。除法豎式。有餘數除法。兩步計算的式題。

(3)萬以內數的讀法和寫法。 ? 數數。百位、千位、萬位。數的讀法、寫法和大小比較。

(4)加法和減法。 ?加法,減法。連加法。加法驗算,用加法驗算減法。

(5)混合運算。 ? 先乘除後加減。兩步計算式題。小括弧。

(二)量與計量

時、分、秒的認識。

米、分米、厘米的認識和簡單計算。

千克(公斤)的認識

(三)幾何初步知識

直線和線段的初步認識。 ? 角的初步認識。直角。

(四)應用題

加法和減法一步計算的應用題。 ? 乘法和除法一步計算的應用題。 ?比較容易的兩步計算的應用題。

(五)實踐活動

與生活密切聯系的內容。例如調查家中本周各項消費的開支情況,想到哪些數學問題。

二年級數學 學習方法

小學生是以具體形象思維為主,根據二年級學生的特點,應該:

第一:要適度應用學具,例如:在教學乘法的初步認識時,用擺小棒的方法,應按照從一般到特殊的規律,先擺出兩堆不同數目的小棒,再擺出兩份數目相同的,讓學生覺得加法的累贅,再介紹乘法,學生就很容易理解乘法的意義,並且樂意學乘法了。

第二:利用 生活知識 教學。

例如:小紅做了18朵紙花,送給同學們12朵,還剩下多少朵。這是兩位數減兩位數,如果在生活中做一做,學生就明白意思了,所以說,有一些應用題,能從實際生活出發,先用學生的生活 經驗 來解答,再用數學知識來解答,就可以使學生理解題意。

第三:利用社會環境提高數學實際應用能力。例如:在學習統計時,可以帶學生到商城或社會中,利用新學的統計知識,通過觀察、計量、比較,從而收集到有用的信息和知識。

第四:為學生創造機會,使學生去思、去想、去問。比如,二年級教材學習了「角的認識」,對於什麼叫角,角各部分名稱,「角的大小與邊的長短無關」這些內容,學生已經知道了

「還有什麼問題嗎?」學生答道「沒問題」。真的沒問題了嗎?「那我來問個問題」我提出了一個問題:「角的大小為什麼與邊的長短無關呢?」經過討論,大家明白了,角的邊是射線,射線是沒有長短的,所以,角的大小與邊的長短無關。角的大小決定於兩條邊張開的程度。教師從學生的角度示範提問題,久而久之,也就讓學生有了提問題的意識,在引導學生提問題的同時,也培養了學生積極思考問題和解決問題的能力。

三年級知識點和重難點

(一)數與計算

(1)一位數的乘、除法。一個乘數是一位數的乘法(另一個乘數一般不超過三位數)。0的乘法。連乘。除數是一位數的除法。0除以一個數。用乘法驗算除法。連除。

(2)兩位數的乘、除法。一個乘數是兩位數的乘法(另一個乘數一般不超過三位數)。乘數末尾有0的簡便演算法。乘法驗算。除數是兩位數的除法。連乘、連除的簡便演算法。

(3)四則混合運算。兩步計算的式題。小括弧的使用。

(4)分數的初步認識。分數的初步認識,讀法和寫法。看圖比較分數的大小。簡單的同分母分數加、減法。

(二)量與計量千米(公里)、毫米的認識和簡單計算。噸、克的認識和簡單計算。

(三)幾何初步知識長方形和正方形的特徵。長方形和正方形的周長。平行四邊形的直觀認識。周長的含義。長方形、正方形的周長。

(四)應用題常見的數量關系。解答兩步計算的應用題。

(五)實踐活動聯系周圍接觸到的事物組織活動。例如記錄10天內的天氣情況,分類整理,並作簡單分析。

三年級數學 學習方法

小學三年級學生學習數學的三種數學能力中,影響程度最大的是運用數概念的能力,其次是空間關系的知覺能力,再次是基本能力(概括和推理)。

第一,加強小學三年級學生運用「數概念」的能力培養。

有不少小學數學的教學中,常只重演算法,忽視數概念的掌握和算理的理解。因而只能機械地應用學過的東西,或簡單地模仿做過的例題,不能在變化了情況下遷移;或者只知道一些定義,而不能全面掌握屬於這一概念的東西。

例如,學生能說出什麼是圓的半徑,但在作圖或解題時又常常只能舉出垂直方向上的半徑,不能反轉過來去解決逆向問題,沒有納入到一般的范疇或嵌入數概念體系的認知結構中去。所以在小學數學教學中,不僅要重視演算法和演算過程,尤其要重視數概念的掌握和算理的理解,加強小學生運用數概念的能力培養。三年級數學中,會出現長度單位的認識,什麼千米、毫米、厘米,很多孩子總是無法記清楚,怎麼辦呢?請大家伸出自己的右手,手心面向自己,從小拇指到大拇指,依次為:毫米、厘米、分米、米、千米。兩指之間的距離大小表示進率的大小。你們看,小指、無名指、中指、食指每相臨的兩指間的距離相等,也就表示毫米、厘米、分米、米每相臨兩個單位間的進率相等,都是10。而毫米與分米、厘米與米間的進率為100,毫米與米之間的進率為1000,食指與大拇指之間的距離較大,也是1000。記住單位對應的拇指,這個換算就變得十分簡單而且准確了。

第二,重視和加強發展小學三年級學生「空間關系」的知覺能力。

數和形是不可分開的。因此,學生掌握空間關系的知覺能力也是小學數學能力的重要組成部分。例如三年級下冊如用圓圈圖(韋恩圖)向學生直觀的滲透集合概念。讓他們感知圈內的物體具有某種共同的屬性,可以看作一個整體,這個整體就是一個集合。

第三,觀察活動:

所謂觀察是指學生對客觀事物或某種現象的仔細察看,因而是一種有意注意。培養的途徑是:教師提供的「客觀事物或某種現象」特徵有序、背景鮮明,而且要給出一些觀察的思考題。這樣有助於學生明確觀察目標,進而使他們邊觀察,邊思考,邊議論,邊作觀察記錄,以發現數學規律、本質。

「乘法分配律」的教學,根據例證得到三個等式:

(5+3)×2=5×2+3×2

(6+4)×30=6×30+4×30

(25+9)×4=25×4+9×4

教師要求學生結合下面的兩個思考題觀察上面的三個等式都具有什麼相同點(即規律)。①豎里觀察,等式的左邊都有什麼特點?等式右邊又有什麼特徵?②橫里觀察,等式的左邊與右邊有怎樣的關系?

教師再要求學生把記錄的文字:兩個加數的和與一個數相乘,兩個積的和,兩個加數分別與一個數相乘……整理一下就得到了「乘法分配律」。

四年級知識點和重難點

(一)數與計算

(1)億以內數的讀法和寫法。

計數單位「十萬」、「百萬」、「千萬」。相鄰計數單位間的十進關系。讀法和寫法。數的大小比較。以萬作單位的近似數。

(2)加法和減法。

加法,減法。

接近整十、整百數的加、減法的簡便演算法。

加、減法算式中各部分之間的關系。求未知數x。

(3)乘、除數是三位數的乘、除法。

乘數是三位數的乘法。積的變化。除數是三位數的除法。商不變的性質。被除數和除數末尾有0的簡便演算法。

_乘、除計算的簡單估算。

乘數接近整十、整百的簡便演算法。

乘、除法算式中各部分之間的關系。求未知數x。

(4)四則混合運算。

中括弧。三步計算的式題。

(5)整數及其四則運算的關系和運算定律。

自然數與整數。十進制計數法。讀法和寫法。

四則運算的意義。加法與減法、乘法與除法之間的關系。整除和有餘數的除法。

運算定律。簡便運算。

(6)小數的意義、性質,加法和減法。

小數的意義、性質。小數大小的比較。小數點移位引起小數大小的變化。小數的近似值

加法和減法。加法運算定律推廣到小數。

(註:小數如果分段教學,可以把小數的初步認識安排在前面的適當年級)。

(二)量與計量

年、月、日。平年、閏年。世紀。24時計時法。

角的度量。

面積單位。

(三)幾何初步知識。

直線的測定。測量距離(工具測、步測、目測)。

射線。直角、銳角、鈍角、平角、_周角。垂線。畫垂線。平行線。畫平行線。

三角形的特徵。_三角形的內角和。

(四)統計初步知識

簡單數據整理。簡單統計圖表的初步認識。平均數的意義。求簡單的平均數。

(五)應用題列綜合算式解答比較容易的三步計算的應用題。

四年級數學 學習方法

四年級的學生思維正處在從直觀思維向抽象 邏輯思維 過渡的階段,因此,通過練習鞏固所學知識只是其中的一個方面,而通過比較、概括、推理、綜合等思維方法的學習運用發展其邏輯思維是這個年齡段學生的一個重要任務,除了注意學生思維方法的掌握,最明顯的表現是培養學生畫概念圖和線段圖,促進其知識系統化和思維能力的發展。)

在數學知識中,數學概念又是數學知識的基礎,數學原理、數學方法也是由數學概念構成。概念的清晰性、穩定性、可辨性以及概念之間的關聯性極大地影響數學知識的質量。概念圖包括節點、連線、層級和命題四個基本要素。根據小學四年級學生思維發展水平,引導學生思考如何更好建構自己的概念圖,掌握這種方法。數學知識就像~張縱橫交錯的網,每個知識點都是一個網點,網點上的一條條知識,連接起了一個個的網點,從而形成一張密密的「知識網」。培養學生自己去「織網」能力應該是新課改對教師的要求之一,而且對於小學四年級的教師來說,在學生思維折的關鍵時期,有意識地通過讓學生畫概念圖的方法來培養思維能力也是行之有效的法之一。

「線段圖」是指由有一定意義的線段、箭頭、數字元號等構成的圖式,它的特點是形象直觀,能夠引起學生的注意和興趣。利用線段圖將題中蘊涵的抽象的數量關系以形象、直觀的方式表達出來,化 抽象思維 為形象思維,符合小學生特別是中高年級學生的認知特點。小學數學各種類型的應用題:如分數應用題、行程問題、工程問題等用線段圖扳書分析數量關系,易化繁為簡,化抽象思維為形象思維。四年級教材中的路程問題(第七冊59—61頁),很容易通過例題中的線段圖理解問題。對於第七冊第64頁的習題5,學生們也能輕松地把情景圖用線段圖表示出來;第八冊「解方程一」(第95頁)的練習2,即使學困生也很容易列出方程,我所教的兩個班的學生能把一些方程用線段圖畫出來,比如97頁的練習l、2,通過這種 思維訓練 ,學生的表徵能力得到提高,實現《標准》提出的「能從具體情境中抽象出數量關系和變化規律,並用符號來表示:理解符號所代表的數量關系和變化規律;會進行符號間的轉換;能選擇適當的程序和方法解決用符號所表達的問題。」

五年級知識點和重難點

小數乘法,小數除法,簡易方程,多邊形的面積,統計與可能性等是本冊教材的重點教學內容。

在數與代數方面,這一冊教材安排了小數乘法、小數除法和簡易方程。小數的乘法和除法在實際生活中和數學學習中都有著廣泛的應用,是小學生應該掌握和形成的基礎知識和基本技能。這部分內容是在前面學習整數四則運算和小數加、減法的基礎上進行教學,繼續培養學生小數的四則運算能力。簡易方程是小學階段集中教學代數初步知識的單元,在這一單元里安排了用字母表示數、等式的性質、解簡單的方程、用方程表示等量關系進而解決簡單的實際問題等內容,進一步發展學生的抽象思維能力,提高解決問題的能力。

在空間與圖形方面,這一冊教材安排了觀察物體和多邊形的面積兩個單元。在已有知識和經驗的基礎上,通過豐富的現實的數學活動,讓學生獲得探究學習的經歷,能辨認從不同方位看到的物體的形狀和相對位置;探索並體會各種圖形的特徵、圖形之間的關系,及圖形之間的轉化,掌握平行四邊形、三角形、梯形的面積公式及公式之間的關系,滲透平移、旋轉、轉化的數學思想方法,促進學生空間觀念的進一步發展。

在統計與概率方面,本冊教材讓學生學習有關可能性和中位數的知識。通過操作與實驗,讓學生體驗事件發生的等可能性以及游戲規則的公平性,學會求一些事件發生的可能性;在平均數的基礎上教學中位數,使學生理解平均數和中位數各自的統計意義、各自的特徵和適用范圍;進一步體會統計和概率在現實生活中的作用。

在用數學解決問題方面,教材一方面結合小數乘法和除法兩個單元,教學用所學的乘除法計算知識解決生活中的簡單問題;另一方面,安排了「數學廣角」的教學內容,通過觀察、猜測、實驗、推理等活動向學生滲透初步的數字編碼的數學思想方法,體會運用數字的有規律排列可以使人與人之間的信息交換變得安全、有序、快捷,給人們的生活和工作帶來便利,感受數學的魅力。培養學生的符號感,及觀察、分析、推理的能力,培養他們探索數學問題的興趣和發現、欣賞數學美的意識。

五年級數學 學習方法

(一)數與代數

1、第一單元「倍數與因數」:結合具體情境,經歷探索數的有關特徵的活動,認識自然數,認識倍數和因數,能在100以內的自然數中找出10以內某個自然數的所有倍數,能找出100以內某個自然數的所有因數,知道質數、合數;經歷 2、3、5的倍數特徵的探索過程,知道2、3、5的倍數的特徵,知道奇數和偶數;能根據解決問題的需要,收集有用的信息,進行歸納、類比與猜測,發展初步的合情推理能力;

2.第三單元「分數」:進一步理解分數的意義,能正確用分數描述圖形或簡單的生活現象;認識真分數、假分數與帶分數,理解分數與除法的關系,會進行分數的大小比較;能找出10以內兩個自然數的公倍數和最小公倍數,能找出兩個自然數的公因數和最大公因數,會正確進行約分和通分;初步了解分數在實際生活中的應用,能運用分數知識解決一些簡單的實際問題。

3.第四單元「分數加減法」:理解異分母分數加減法的算理,並能正確計算;能理解分數加減混合運算的順序,並能正確計算;能把分數化成有限小數,也能把有限小數化成分數;能結合實際情境,解決簡單分數加減法的實際問題。

(二)在學習《空間與圖形》可採用數、形結合的方式,以及類比法等教學

1.第二單元「圖形的面積(一)」:知道比較面積大小方法的多樣性;經歷探索平行四邊形、三角形、梯形面積計算方法的過程,並能運用計算的方法解決生活中一些簡單的問題;在探索圖形面積的計算方法中,獲得探索問題成功的體驗。

2.第五單元「圖形的面積(二)」:在探索活動中,認識組合圖形,並會運用不同的方法計算組合圖形的面積;能正確運用計算組合圖形面積的方法,解決相應的實際問題;能估計不規則圖形的面積大小,並能用不同方法計算面積。

六年級數學

(一)數與計算

(1)分數的乘法和除法。分數乘法的意義。分數乘法。乘法的運算定律推廣到分數。倒數。分數除法的意義。分數除法。

(2)分數四則混合運算。分數四則混合運算。

(3)百分數。百分數的意義和寫法。百分數和分數、小數的互化。

(二)比和比例

比的意義和性質。比例的意義和基本性質。解比例。成正比例的量和成反比例的量。

(三)幾何初步知識

圓的認識。圓周率。畫圓。圓的周長和面積。_扇形的認識。軸對稱圖形的初步認識。圓柱的認識。圓柱的表面積和體積。圓錐的認識。圓錐的體積。球和球的半徑、直徑的初步認識。

(四)統計初步知識

統計表。條形統計圖,折線統計圖,_扇形統計圖。

(五)應用題

分數四則應用題(包括工程問題)。百分數的實際應用(包括發芽率、合格率、利率、稅率等的計算)。比例尺。按比例分配。

(六)實踐活動

聯系學生所接觸到的社會情況組織活動。例如就家中的卧室,畫一個平面圖。

(七)整理和復習

六年級數學學習方法:

進入小學高年級後,科目稍微增加、內容拓寬、知識深化……學生認知結構發生根本變化,許多同學容易忽略老師所講的數學思想、數學方法,而注重題目的解答,其實諸如「化歸」、「數形結合」等思想方法遠遠重要於某道題目的解答。

總結比較,理清思緒

知識點的總結比較。每學完一章都應將本章內容做一個框架圖或在腦中過一遍,整理出它們的關系。對於相似易混淆的知識點應分項歸納比較,有時可用聯想法將其區分開。題目的總結比較。同學們可以建立自己的題庫。

在學習《位置》在用數對確定點的位置,這部分滲透了數形結合的思想,和一一對應的思想。學生可在方格紙上畫畫。

學習分數乘法的意義:1、分數乘整數是求幾個相同加數的和的簡便運算,與整數乘法的意義相同。2、分數乘分數是求一個數的幾分之幾是多少。

例:一小時刷一面牆的1/4,1/5小時刷一面牆的多少?實際上是求1/5的1/4是多少?

這種題型可以利用數形結合的數學思想,畫一畫,折一折。再就是利用:工作效率_工作時間=工作總量

在學習分數除法這一節時,例如:分數、除法和小數之間的關系和區別,以及分數除法應用題無論是 折紙 實驗,還是畫線段圖,都是用圖形語言揭示分數除法計算過程的幾何意義。分數乘除法,比的知識,運用了類比的數學。(相似和變式)

在學習圓這一節時,用逐漸逼近的轉化思想。把一個園等分(偶數份)成的份數越多,拼成的圖像越接近長方形。體現化圓為方,化曲為直的思想,應用轉化思想。在應用中,我們還知道面積相同時,長方形的周長最長,正方形居中,圓周長最短。周長一定時,圓面積最大,正方形居中,長方形面積最小。這題蘊含著一個數學規律,即在面積相等的情況下,圓的周長最短,而長方形的周長最長;反之,在周長相等的情況下,圓的面積最大,而長方形的面積則最小。

在學習數學廣角這一章節中,例如,研究古代雞兔同籠的問題,就應用了假設法來教學。這種 思維方式 就是劃歸法。

Ⅳ 小學數學知識點總結

小學數學知識點總結

總結就是把一個時段的學習、工作或其完成情況進行一次全面系統的總結,通過它可以正確認識以往學習和工作中的優缺點,為此要我們寫一份總結。但是卻發現不知道該寫些什麼,下面是我收集整理的小學數學知識點總結,歡迎閱讀,希望大家能夠喜歡。

(一)數的讀法和寫法

1.整數的讀法:從高位到低位,一級一級地讀。讀億級、萬級時,先按照個級的讀法去讀,再在後面加一個「億」或「萬」字。每一級末尾的0都不讀出來,其它數位連續有幾個0都只讀一個零。

2.整數的寫法:從高位到低位,一級一級地寫,哪一個數位上一個單位也沒有,就在那個數位上寫0。

3.小數的讀法:讀小數的時候,整數部分按照整數的讀法讀,小數點讀作「點」,小數部分從左向右順次讀出每一位數位上的數字。

4.小數的寫法:寫小數的時候,整數部分按照整數的寫法來寫,小數點寫在個位右下角,小數部分順次寫出每一個數位上的數字。

5.分數的讀法:讀分數時,先讀分母再讀「分之」然後讀分子,分子和分母按照整數的讀法來讀。

6.分數的寫法:先寫分數線,再寫分母,最後寫分子,按照整數的寫法來寫。

7.百分數的讀法:讀百分數時,先讀百分之,再讀百分號前面的數,讀數時按照整數的讀法來讀。

8.百分數的寫法:百分數通常不寫成分數形式,而在原來的分子後面加上百分號「%」來表示。

(二)數的改寫

一個較大的多位數,為了讀寫方便,常常把它改寫成用「萬」或「億」作單位的數。有時還可以根據需要,省略這個數某一位後面的數,寫成近似數。

1.准確數 :在實際生活中,為了計數的簡便,可以把一個較大的數改寫成以萬或億為單位的數。改寫後的數是原數的准確數。例如把1254300000改寫成以萬做單位的數是125430萬;改寫成以億做單位的數12.543億。

2.近似數 :根據實際需要,我們還可以把一個較大的數,省略某一位後面的尾數,用一個近似數來表示。例如:1302490015省略億後面的尾數是13億。

3.四捨五入法 :要省略的尾數的最高位上的數是4或者比4小,就把尾數去掉;如果尾數的最高位上的數是5或者比5大,就把尾數捨去,並向它的前一位進1。例如:省略345900萬後面的'尾數約是35萬。省略4725097420億後面的尾數約是47億。

4.大小比較

(1)比較整數大小:比較整數的大小,位數多的那個數就大,如果位數相同,就看最高位,最高位上的數大,那個數就大;最高位上的數相同,就看下一位,哪一位上的數大那個數就大。

(2)比較小數的大小:先看它們的整數部分,整數部分大的那個數就大;整數部分相同的,十分位上的數大的那個數就大;十分位上的數也相同的,百分位上的數大的那個數就大……

(3)比較分數的大小:分母相同的分數,分子大的分數比較大;分子相同的數,分母小的分數大。分數的分母和分子都不相同的,先通分,再比較兩個數的大小。

;

Ⅵ 小學數學知識點總結(全部)

對於那些成績較差的小學生來說,學習小學數學都有很大的難度,其實小學數學屬於基礎類的知識比較多,只要掌握一定的技巧還是比較容易掌握的.在小學,是一個需要養成良好習慣的時期,注重培養孩子的習慣和學習能力是重要的一方面,那小學數學有哪些技巧?

由此可見小學數學的技巧就是多做練習題,掌握基本知識.另外就是心態,不能見考試就膽怯,調整心態很重要.所以大家可以遵循這些技巧,來提高自己的能力,使自己進入到數學的海洋中去.

Ⅶ 1至6年級數學知識總結

小學1至6年級數學主要學習基礎的計算和幾何代數的初步認識。數與代數裡面的基礎概念,如數位、自然數、正數、負數等;圖形與幾何部分的基礎概念,如角、角的定點、角的邊、三角形、四邊形等。

小學一年級:九九乘法口訣表,學會基礎加減乘:背誦好九九乘法口訣表,做到熟悉個位數的相乘;

小學二年級:完善乘法口訣表,牢固一年級知識,學會除混合運算,基礎幾何圖形;

小學三年級:學會乘法交換律,幾何面積周長等,時間量及單位。路程計算,分配律,分數小數;

小學四年級:線角自然數整數,素因數梯形對稱,分數小數計算;

小學五年級:分數小數乘除法,代數方程及平均,比較大小變換,圖形面積體積;

小學六年級:比例百分比概率,圓扇圓柱及圓錐。