㈠ 高中數學知識點大全
有的學生認為高中數學難做難做。其實高中數學整體上很簡單,很簡單,很多知識只要讀兩遍就可以了。下面是我整理的高中數學知識點大全,希望對你們有所幫助!
高中數學知識點
1、基本初等函數
指數、對數、冪函數三大函數的運算性質及圖像
函數的幾大要素和相關考點基本都在函數圖像上有所體現,單調性、增減性、極值、零點等等。關於這三大函數的運算公式,多記多用,多做一點練習,基本就沒問題。
函數圖像是這一章的重難點,而且圖像問題是不能靠記憶的,必須要理解,要會熟練的畫出函數圖像,定義域、值域、零點等等。對於冪函數還要搞清楚當指數冪大於一和小於一時圖像的不同及函數值的大小關系,這也是常考點。另外指數函數和對數函數的對立關系及其相互之間要怎樣轉化等問題,需要著重回看課本例題。
2、函數的應用
這一章主要考是函數與方程的結合,其實就是函數的零點,也就是函數圖像與X軸的交點。這三者之間的轉化關系是這一章的重點,要學會在這三者之間靈活轉化,以求能最簡單的解決問題。關於證明零點的 方法 ,直接計算加得必有零點,連續函數在x軸上方下方有定義則有零點等等,這些難點對應的證明方法都要記住,多練習。二次函數的零點的Δ判別法,這個需要你看懂定義,多畫多做題。
3、空間幾何
三視圖和直觀圖的繪制不算難,但是從三視圖復原出實物從而計算就需要比較強的空間感,要能從三張平面圖中慢慢在腦海中畫出實物,這就要求學生特別是空間感弱的學生多看書上的例圖,把實物圖和平面圖結合起來看,先熟練地正推,再慢慢的逆推(建議用紙做一個立方體來找感覺)。
在做題時結合草圖是有必要的,不能單憑想像。後面的錐體、柱體、台體的表面積和體積,把公式記牢問題就不大。
4、點、直線、平面之間的位置關系
這一章除了面與面的相交外,對空間概念的要求不強,大部分都可以直接畫圖,這就要求學生多看圖。自己畫草圖的時候要嚴格注意好實線虛線,這是個規范性問題。
關於這一章的內容,牢記直線與直線、面與面、直線與 面相 交、垂直、平行的幾大定理及幾大性質,同時能用圖形語言、文字語言、數學表達式表示出來。只要這些全部過關這一章就解決了一大半。這一章的難點在於二面角這個概念,大多同學即使知道有這個概念,也無法理解怎麼在二面裡面做出這個角。對這種情況只有從定義入手,先要把定義記牢,再多做多看,這個沒有什麼捷徑可走。
5、圓與方程
能熟練地把一般式方程轉化為標准方程,通常的考試形式是等式的一邊含根號,另一邊不含,這時就要注意開方後定義域或值域的限制。通過點到點的距離、點到直線的距離、圓半徑的大小關系來判斷點與圓、直線與圓、圓與圓的位置關系。另外注意圓的對稱性引起的相切、相交等的多種情況,自己把幾種對稱的形式羅列出來,多思考就不難理解了。
6、三角函數
考試必在這一塊出題,且題量不小!誘導公式和基本三角函數圖像的一些性質,沒有太大難度,只要會畫圖就行。難度都在三角函數形函數的振幅、頻率、周期、相位、初相上,及根據最值計算A、B的值和周期,及恆等變化時的圖像及性質變化,這部分的知識點內容較多,需要多花時間,不要再定義上死扣,要從圖像和例題入手。
7、平面向量
向量的運算性質及三角形法則、平行四邊形法則的難度都不大,只要在計算的時候記住要「同起點的向量」這一條就OK了。向量共線和垂直的數學表達,是計算當中經常用到的公式。向量的共線定理、基本定理、數量積公式。分點坐標公式是重點內容,也是難點內容,要花心思記憶。
8、三角恆等變換
這一章公式特別多,像差倍半形公式這類內容常會出現,所以必須要記牢。由於量比較大,記憶難度大,所以建議用紙寫好後貼在桌子上,天天都要看。要提一點,就是三角恆等變換是有一定規律的,記憶的時候可以集合三角函數去記。
9、解三角形
掌握正弦、餘弦公式及其變式、推論、三角面積公式即可。
10、數列
等差、等比數列的通項公式、前n項及一些性質常出現於填空、解答題中,這部分內容學起來比較簡單,但考驗對其推導、計算、活用的層面較深,因此要仔細。考試題中,通項公式、前n項和的內容出現頻次較多,這類題看到後要帶有目的的去推導就沒問題了。
11、不等式
這一章一般用線性規劃的形式來考察學生,這種題通常是和實際問題聯系的,所以要會讀題,從題中找不等式,畫出線性規劃圖,然後再根據實際問題的限制要求來求最值。
高中數學公式大全
乘法與因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根與系數的關系 X1+X2=-b/a X1_X2=c/a 註:韋達定理
判別式
b2-4ac=0 註:方程有兩個相等的實根
b2-4ac>0 註:方程有兩個不等的實根
b2-4ac<0 註:方程沒有實根,有共軛復數根
三角函數公式
兩角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半形公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化積
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
某些數列前n項和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1_2+2_3+3_4+4_5+5_6+6_7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 註: 其中 R 表示三角形的外接圓半徑
餘弦定理 b2=a2+c2-2accosB 註:角B是邊a和邊c的夾角
圓的標准方程 (x-a)2+(y-b)2=r2 註:(a,b)是圓心坐標
圓的一般方程 x2+y2+Dx+Ey+F=0 註:D2+E2-4F>0
拋物線標准方程 y2=2px y2=-2px x2=2py x2=-2py
直稜柱側面積 S=c_h 斜稜柱側面積 S=c'_h
正棱錐側面積 S=1/2c_h' 正稜台側面積 S=1/2(c+c')h'
圓台側面積 S=1/2(c+c')l=pi(R+r)l 球的表面積 S=4pi_r2
圓柱側面積 S=c_h=2pi_h 圓錐側面積 S=1/2_c_l=pi_r_l
弧長公式 l=a_r a是圓心角的弧度數r >0 扇形面積公式 s=1/2_l_r
錐體體積公式 V=1/3_S_H 圓錐體體積公式 V=1/3_pi_r2h
斜稜柱體積 V=S'L 註:其中,S'是直截面面積, L是側棱長
柱體體積公式 V=s_h 圓柱體 V=pi_r2h
高考前數學知識點 總結
選擇填空題
1、易錯點歸納:
九大模塊易混淆難記憶考點分析,如概率和頻率概念混淆、數列求和公式記憶錯誤等,強化基礎知識點記憶,避開因為知識點失誤造成的客觀性解題錯誤。
針對審題、解題思路不嚴謹如集合題型未考慮空集情況、函數問題未考慮定義域等主觀性因素造成的失誤進行專項訓練。
2、答題方法:
選擇題十大速解方法:
排除法、增加條件法、以小見大法、極限法、關鍵點法、對稱法、小結論法、歸納法、感覺法、分析選項法;
填空題四大速解方法:直接法、特殊化法、數形結合法、等價轉化法。
解答題
專題一、三角變換與三角函數的性質問題
1、解題路線圖
①不同角化同角
②降冪擴角
③化f(x)=Asin(ωx+φ)+h
④結合性質求解。
2、構建答題模板
①化簡:三角函數式的化簡,一般化成y=Asin(ωx+φ)+h的形式,即化為「一角、一次、一函數」的形式。
②整體代換:將ωx+φ看作一個整體,利用y=sin x,y=cos x的性質確定條件。
③求解:利用ωx+φ的范圍求條件解得函數y=Asin(ωx+φ)+h的性質,寫出結果。
④ 反思 :反思回顧,查看關鍵點,易錯點,對結果進行估算,檢查規范性。
專題二、解三角形問題
1、解題路線圖
(1) ①化簡變形;②用餘弦定理轉化為邊的關系;③變形證明。
(2) ①用餘弦定理表示角;②用基本不等式求范圍;③確定角的取值范圍。
2、構建答題模板
①定條件:即確定三角形中的已知和所求,在圖形中標注出來,然後確定轉化的方向。
②定工具:即根據條件和所求,合理選擇轉化的工具,實施邊角之間的互化。
③求結果。
④再反思:在實施邊角互化的時候應注意轉化的方向,一般有兩種思路:一是全部轉化為邊之間的關系;二是全部轉化為角之間的關系,然後進行恆等變形。
專題三、數列的通項、求和問題
1、解題路線圖
①先求某一項,或者找到數列的關系式。
②求通項公式。
③求數列和通式。
2、構建答題模板
①找遞推:根據已知條件確定數列相鄰兩項之間的關系,即找數列的遞推公式。
②求通項:根據數列遞推公式轉化為等差或等比數列求通項公式,或利用累加法或累乘法求通項公式。
③定方法:根據數列表達式的結構特徵確定求和方法(如公式法、裂項相消法、錯位相減法、分組法等)。
④寫步驟:規范寫出求和步驟。
⑤再反思:反思回顧,查看關鍵點、易錯點及解題規范。
專題四、利用空間向量求角問題
1、解題路線圖
①建立坐標系,並用坐標來表示向量。
②空間向量的坐標運算。
③用向量工具求空間的角和距離。
2、構建答題模板
①找垂直:找出(或作出)具有公共交點的三條兩兩垂直的直線。
②寫坐標:建立空間直角坐標系,寫出特徵點坐標。
③求向量:求直線的方向向量或平面的'法向量。
④求夾角:計算向量的夾角。
⑤得結論:得到所求兩個平面所成的角或直線和平面所成的角。
專題五、圓錐曲線中的范圍問題
1、解題路線圖
①設方程。
②解系數。
③得結論。
2、構建答題模板
①提關系:從題設條件中提取不等關系式。
②找函數:用一個變數表示目標變數,代入不等關系式。
③得范圍:通過求解含目標變數的不等式,得所求參數的范圍。
④再回顧:注意目標變數的范圍所受題中其他因素的制約。
專題六、解析幾何中的探索性問題
1、解題路線圖
①一般先假設這種情況成立(點存在、直線存在、位置關系存在等)
②將上面的假設代入已知條件求解。
③得出結論。
2、構建答題模板
①先假定:假設結論成立。
②再推理:以假設結論成立為條件,進行推理求解。
③下結論:若推出合理結果, 經驗 證成立則肯。 定假設;若推出矛盾則否定假設。
④再回顧:查看關鍵點,易錯點(特殊情況、隱含條件等),審視解題規范性。
專題七、離散型隨機變數的均值與方差
1、解題路線圖
(1)①標記事件;②對事件分解;③計算概率。
(2)①確定ξ取值;②計算概率;③得分布列;④求數學期望。
2、構建答題模板
①定元:根據已知條件確定離散型隨機變數的取值。
②定性:明確每個隨機變數取值所對應的事件。
③定型:確定事件的概率模型和計算公式。
④計算:計算隨機變數取每一個值的概率。
⑤列表:列出分布列。
⑥求解:根據均值、方差公式求解其值。
專題八、函數的單調性、極值、最值問題
1、解題路線圖
(1)①先對函數求導;②計算出某一點的斜率;③得出切線方程。
(2)①先對函數求導;②談論導數的正負性;③列表觀察原函數值;④得到原函數的單調區間和極值。
2、構建答題模板
①求導數:求f(x)的導數f′(x)。(注意f(x)的定義域)
②解方程:解f′(x)=0,得方程的根
③列表格:利用f′(x)=0的根將f(x)定義域分成若干個小開區間,並列出表格。
④得結論:從表格觀察f(x)的單調性、極值、最值等。
⑤再回顧:對需討論根的大小問題要特殊注意,另外觀察f(x)的間斷點及步驟規范性。
以上模板僅供參考,希望大家能針對自己的情況整理出來最適合的「套路」。
高中數學 學習心得
數學是一們基礎學科,我們從小就開始接觸到它。現在我們已經步入高中,由於高中數學對知識的難度、深度、廣度要求更高,有一部分同學由於不適應這種變化,數學成績總是不如人意。甚至產生這樣的困惑:「我在初中時數學成績很好,可現在怎麼了?」其實,學習是一個不斷接收新知識的過程。正是由於你在進入高中後 學習方法 或 學習態度 的影響,才會造成學得累死而成績不好的後果。那麼,究竟該如何學好高中數學呢?以下我談談我的高中數學學習心得。
一、 認清學習的能力狀態。
1、 心理素質。我們在高中學習環境下取決於我們是否具有面對挫折、冷靜分析問題的辦法。當我們面對困難時不應產生畏懼感,面對失敗時不應灰心喪氣,而要勇於正視自己,及時作出總結教訓,改變學習方法。
2、 學習方式、習慣的反思與認識。(1) 學習的主動性。我們在進入高中以後,不能還像初中時那樣有很強的依賴心理,不訂 學習計劃 ,坐等上課,課前不預習,上課忙於記筆記而忽略了真正的聽課,顧此失彼,被動學習。(2) 學習的條理性。我們在每學習一課內容時,要學會將知識有條理地分為若干類,剖析概念的內涵外延,重點難點要突出。不要忙於記筆記,而對要點沒有聽清楚或聽不全。筆記記了一大摞,問題也有一大堆。如果還不能及時鞏固、總結,而忙於套著題型趕作業,對概念、定理、公式不能理解而死記硬背,則會事倍功半,收效甚微。(3) 忽視基礎。在我身邊,常有些「自我感覺良好」的同學,忽視基礎知識、基本技能和基本方法,不能牢牢地抓住課本,而是偏重於對難題的攻解,好高騖遠,重「量」而輕「質」,陷入題海,往往在考試中不是演算錯誤就是中途「卡殼」。(4) 不良習慣。主要有對答案,卷面書寫不工整,格式不規范,不相信自己的結論,缺乏對問題解決的信心和決心,遇到問題不能獨立思考,養成一種依賴於老師解說的心理,做作業不講究效率,學習效率不高。
二、 努力提高自己的學習能力。
1、 抓要點提高學習效率。(1) 抓教材處理。正所謂「萬變不離其中」。要知道,教材始終是我們學習的根本依據。教學是活的,思維也是活的,學習能力是隨著知識的積累而同時形成的。我們要通過老師教學,理解所學內容在教材中的地位,並將前後知識聯系起來,把握教材,才能掌握學習的主動性。(2) 抓問題暴露。對於那些典型的問題,必須及時解決,而不能把問題遺留下來,而要對遺留的問題及時、有效的解決。(3) 抓 思維訓練 。數學的特點是具有高度的抽象性、邏輯性和廣泛的適用性,對能力要求較高。我們在平時的訓練中,要注重一個思維的過程,學習能力是在不斷運用中才能培養出來的。(5) 抓45分鍾課堂效率。我們學習的大部分時間都在學校,如果不能很好地抓住課堂時間,而寄希望於課外去補,則會使學習效率大打折扣。
高中數學知識點大全相關 文章 :
★ 高二數學知識點總結
★ 高一數學必修一知識點匯總
★ 高中數學學習方法:知識點總結最全版
★ 高中數學知識點總結
★ 高一數學知識點總結歸納
★ 高三數學知識點考點總結大全
★ 高中數學基礎知識大全
★ 高三數學知識點梳理匯總
★ 高中數學必考知識點歸納整理
★ 高一數學知識點總結期末必備
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();㈡ 高中數學知識點總結
高中數學知識點總結
高中數學知識點有哪些呢?下面是我為大家分享有關高中數學知識點總結,歡迎大家閱讀與學習!
一、集合與簡易邏輯
1.集合的元素具有確定性、無序性和互異性.
2.對集合 , 時,必須注意到“極端”情況: 或 ;求集合的子集時是否注意到 是任何集合的子集、 是任何非空集合的真子集.
3.對於含有 個元素的有限集合 ,其子集、真子集、非空子集、非空真子集的個數依次為 4.“交的補等於補的並,即 ”;“並的補等於補的交,即 ”.
5.判斷命題的真假 關鍵是“抓住關聯字詞”;注意:“不‘或’即‘且’,不‘且’即‘或’”.
6.“或命題”的真假特點是“一真即真,要假全假”;“且命題”的真假特點是“一假即假,要真全真”;“非命題”的真假特點是“一真一假”.
7.四種命題中“‘逆’者‘交換’也”、“‘否’者‘否定’也”.原命題等價於逆否命題,但原命題與逆命題、否命題都不等價.反證法分為三步:假設、推矛、得果.注意:命題的否定是“命題的非命題,也就是‘條件不變,僅否定結論’所得命題”,但否命題是“既否定原命題的條件作為條件,又否定原命題的結論作為結論的所得命題” .
8.充要條件
二、函 數
1.指數式、對數式
2.(1)映射是“‘全部射出’加‘一箭一雕’”;映射中第一個集合 中的元素必有像,但第二個集合 中的元素不一定有原像( 中元素的像有且僅有下一個,但 中元素的原像可能沒有,也可任意個);函數是“非空數集上的映射”,其中“值域是映射中像集 的子集”.
(2)函數圖像與 軸垂線至多一個公共點,但與 軸垂線的公共點可能沒有,也可任意個.
(3)函數圖像一定是坐標系中的曲線,但坐標系中的曲線不一定能成為函數圖像.
3.單調性和奇偶性
(1)奇函數在關於原點對稱的區間上若有單調性,則其單調性完全相同.偶函數在關於原點對稱的區間上若有單調性,則其單調性恰恰相反.注意:(1)確定函數的奇偶性,務必先判定函數定義域是否關於原點對稱.確定函數奇偶性的常用方法有:定義法、圖像法等等.對於偶函數而言有: .
(2)若奇函數定義域中有0,則必有 .即 的定義域時, 是 為奇函數的必要非充分條件.
3)確定函數的單調性或單調區間,在解答題中常用:定義法(取值、作差、鑒定)、導數法;在選擇、填空題中還有:數形結合法(圖像法)、特殊值法等等.
(4)既奇又偶函數有無窮多個( ,定義域是關於原點對稱的任意一個數集).
(7)復合函數的單調性特點是:“同性得增,增必同性;異性得減,減必異性”.復合函數的奇偶性特點是:“內偶則偶,內奇同外”.復合函數要考慮定義域的變化.(即復合有意義)
4.對稱性與周期性(以下結論要消化吸收,不可強記)
(1)函數 與函數 的圖像關於直線 ( 軸)對稱.推廣一:如果函數 對於一切 ,都有 成立,那麼 的圖像關於直線 (由“ 和的一半 確定”)對稱.推廣二:函數 , 的圖像關於直線 (由 確定)對稱.
(2)函數 與函數 的圖像關於直線 ( 軸)對稱.
(3)函數 與函數 的圖像關於坐標原點中心對稱.推廣:曲線 關於直線 的對稱曲線是 ;曲線 關於直線 的對稱曲線是 .
(5)類比“三角函數圖像”得:若 圖像有兩條對稱軸 ,則 必是周期函數,且一周期為 .如果 是R上的周期函數,且一個周期為 ,那麼 .特別:若 恆成立,則 .若 恆成立,則 .若 恆成立,則 .三、數 列1.數列的通項、數列項的項數,遞推公式與遞推數列,數列的'通項與數列的前 項和公式的關系: (必要時請分類討論).
注意:
2.等差數列 中:
(1)等差數列公差的取值與等差數列的單調性.
(2) 兩等差數列對應項和(差)組成的新數列仍成等差數列.
(3) 仍成等差數列.(4“首正”的遞減等差數列中,前 項和的最大值是所有非負項之和;“首負”的遞增等差數列中,前 項和的最小值是所有非正項之和;
(5)有限等差數列中,奇數項和與偶數項和的存在必然聯系,由數列的總項數是偶數還是奇數決定.若總項數為偶數,則“偶數項和”-“奇數項和”=總項數的一半與其公差的積;若總項數為奇數,則“奇數項和”-“偶數項和”=此數列的中項.
(6)兩數的等差中項惟一存在.在遇到三數或四數成等差數列時,常考慮選用“中項關系”轉化求解.
(7)判定數列是否是等差數列的主要方法有:定義法、中項法、通項法、和式法、圖像法(也就是說數列是等差數列的充要條件主要有這五種形式).
3.等比數列 中:
(1)等比數列的符號特徵(全正或全負或一正一負),等比數列的首項、公比與等比數列的單調性.
(2) 成等比數列; 成等比數列 成等比數列.
(3)兩等比數列對應項積(商)組成的新數列仍成等比數列.
(4) 成等比數列.
(5)“首大於1”的正值遞減等比數列中,前 項積的最大值是所有大於或等於1的項的積;“首小於1”的正值遞增等比數列中,前 項積的最小值是所有小於或等於1的項的積;
(6)有限等比數列中,奇數項和與偶數項和的存在必然聯系,由數列的總項數是偶數還是奇數決定.若總項數為偶數,則“偶數項和”=“奇數項和”與“公比”的積;若總項數為奇數,則“奇數項和”=“首項”加上“公比”與“偶數項和”積的和.
(7)並非任何兩數總有等比中項.僅當實數 同號時,實數 存在等比中項.對同號兩實數 的等比中項不僅存在,而且有一對 .也就是說,兩實數要麼沒有等比中項(非同號時),如果有,必有一對(同號時).在遇到三數或四數成等差數列時,常優先考慮選用“中項關系”轉化求解.
(8)判定數列是否是等比數列的方法主要有:定義法、中項法、通項法、和式法(也就是說數列是等比數列的充要條件主要有這四種形式).
4.等差數列與等比數列的聯系
(1)如果數列 成等差數列,那麼數列 ( 總有意義)必成等比數列.
(2)如果數列 成等比數列,那麼數列 必成等差數列.
(3)如果數列 既成等差數列又成等比數列,那麼數列 是非零常數數列;但數列 是常數數列僅是數列既成等差數列又成等比數列的必要非充分條件.
(4)如果兩等差數列有公共項,那麼由他們的公共項順次組成的新數列也是等差數列,且新等差數列的公差是原兩等差數列公差的最小公倍數.如果一個等差數列與一個等比數列有公共項順次組成新數列,那麼常選用“由特殊到一般的方法”進行研討,且以其等比數列的項為主,探求等比數列中那些項是他們的公共項,並構成新的數列.
注意:(1)公共項僅是公共的項,其項數不一定相同,即研究 .但也有少數問題中研究 ,這時既要求項相同,也要求項數相同.(2)三(四)個數成等差(比)的中項轉化和通項轉化法.
;㈢ 高中數學知識點最全總結
高考數學考試要取得好成績,一方面要有扎實的基本功、熟練的計算能力,同時還要有一定的答題技巧。下面是我給大家帶來的高中數學知識點最全 總結 ,以供大家參考!
數學重點知識點及答題技巧總結
一、高考數學必考題型 之 函數與導數
考查集合運算、函數的有關概念定義域、值域、解析式、函數的極限、連續、導數。
函數與導數單調性
若導數大於零,則單調遞增;若導數小於零,則單調遞減;導數等於零為函數駐點,不一定為極值點。需代入駐點左右兩邊的數值求導數正負判斷單調性。
若已知函數為遞增函數,則導數大於等於零;若已知函數為遞減函數,則導數小於等於零。
二、高考數學必考題型 之 幾何
公理1:如果一條直線上的兩點在一個平面內,那麼這條直線上所有的點在此平面內
公理2:過不在同一條直線上的三點,有且只有一個平面
公理3:如果兩個不重合的平面有一個公共點,那麼它們有且只有一條過該點的公共直線
公理4:平行於同一條直線的兩條直線互相平行
定理:空間中如果一個角的兩邊與另一個角的兩邊分別平行,那麼這兩個角相等或互補
判定定理:
如果平面外一條直線與此平面內的一條直線平行,那麼該直線與此平面平行 「線面平行」
如果一個平面內的兩條相交直線與另一個平面都平行,那麼這兩個平面平行「面面平行」
如果一條直線與一個平面內的兩條相交直線都垂直,那麼該直線與此平面垂直「線面垂直」
如果一個平面經過另一個平面的垂線,那麼這兩個平面互相垂直「面面垂直」
三、高考數學必考題型 之 不等式
對稱性
傳遞性
加法單調性,即同向不等式可加性
乘法單調性
同向正值不等式可乘性
正值不等式可乘方
正值不等式可開方
倒數法則
四、高考數學必考題型 之 數列
(1)理解數列的概念,了解數列通項公式的意義了解遞推公式是給出數列的一種 方法 ,並能根據遞推公式寫出數列的前幾項。
(2)理解等差數列的概念,掌握等差數列的通項公式與前n項和公式,並能解決簡單的實際問題。
(3)理解等比數列的概念,掌握等比數列的通項公式與前n項和公式,井能解決簡單的實際問題。
必背公式
1、一元二次方程的解
-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a
根與系數的關系x1+x2=-b/ax1x2=c/a註:韋達定理
判別式b2-4a=0註:方程有相等的兩實根
b2-4ac>0註:方程有兩個不相等的個實根
b2-4ac<0註:方程有共軛復數根
2、立體圖形及平面圖形的公式
圓的標准方程(x-a)2+(y-b)2=r2註:(a,b)是圓心坐標
圓的一般方程x2+y2+Dx+Ey+F=0註:D2+E2-4F>0
拋物線標准方程y2=2pxy2=-2px2=2pyx2=-2py
直稜柱側面積S=cxh斜稜柱側面積S=c'xh
正棱錐側面積S=1/2cxh'正稜台側面積S=1/2(c+c')h'
圓台側面積S=1/2(c+c')l=pi(R+r)l球的表面積S=4pixr2
圓柱側面積S=cxh=2pixh圓錐側面積S=1/2xcxl=pixrxl
弧長公式l=axra是圓心角的弧度數r>0扇形面積公式s=1/2xlxr
錐體體積公式V=1/3xSxH圓錐體體積公式V=1/3xpixr2h
斜稜柱體積V=S'L註:其中,S'是直截面面積,L是側棱長
柱體體積公式V=sxh圓柱體V=pixr2h
3、圖形周長、面積、體積公式
長方形的周長=(長+寬)×2
正方形的周長=邊長×4
長方形的面積=長×寬
正方形的面積=邊長×邊長
三角形的面積
已知三角形底a,高h,則S=ah/2
已知三角形三邊a,b,c,半周長p,則S=√[p(p-a)(p-b)(p-c)](海倫公式)(p=(a+b+c)/2)
和:(a+b+c)x(a+b-c)x1/4
已知三角形兩邊a,b,這兩邊夾角C,則S=absinC/2
設三角形三邊分別為a、b、c,內切圓半徑為r
則三角形面積=(a+b+c)r/2
設三角形三邊分別為a、b、c,外接圓半徑為r
則三角形面積=abc/4r
常用的三角函數公式
兩角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半形公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化積
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
高考應試技巧
技巧一提前進入「角色」
考前晚上要睡足八個小時,早晨最好吃些清淡的早餐,帶齊一切高考用具,如筆、橡皮、作圖工具、身分證、准考證等。
提前半小時到達高考考區,一方面可以消除新異刺激,穩定情緒,從容進場,另一方面也留有時間提前進入「角色」讓大腦開始簡單的數學活動。回憶一下高考數學常用公式,有助於高考數學超常發揮。
技巧二情緒要自控
最易導致高考心理緊張、焦慮和恐懼的是入場後與答卷前的「臨戰」階段,此間保持心態平衡的方法有三種
轉移注意法:把注意力轉移到對你感興趣的事情上或滑稽事情的回憶中。
自我安慰法:如「我經過的考試多了,沒什麼了不起」等。
抑制思維法:閉目而坐,氣貫丹田,四肢放鬆,深呼吸,慢吐氣,如此進行到高考發卷時。
技巧三摸透「題情」
剛拿到高考數學試卷,不要匆匆作答,可先從頭到尾通覽全卷,通覽全卷是克服「前面難題做不出,後面易題沒時間做」的有效 措施 ,也從根本上防止了「漏做題」。
從高考數學卷面上獲取最多的信息,為實施正確的解題策略作準備,順利解答那些一眼看得出結論的簡單選擇或填空題,這樣可以使緊張的情緒立即穩定,使高考數學能夠超常發揮。
技巧四信心要充足,暗示靠自己
高考數學答卷中,見到簡單題,要細心,莫忘乎所以,謹防「大意失荊州」。面對偏難的題,要耐心,不能急。
考試全程都要確定「人家會的我也會,人家不會的我也會」的必勝信念,使自己始終處於最佳競技狀態
技巧五數學答題有先有後
1、答題應先易後難,先做簡單的數學題,再做復雜的數學題;根據自己的實際情況,跳過實在沒有思路的高考數學題,從易到難。
2、先高分後低分,在高考數學考試的後半段時要特別注重時間,如兩道題都會做,先做高分題,後做低分題,對那些拿不下來的數學難題也就是高分題應「分段得分」,以增加在時間不足前提下的得到更多的分,這樣在高考中就會增加數學超常發揮的幾率。
高中數學知識點最全總結相關 文章 :
★ 高中數學知識點歸納最新
★ 高中數學基本知識點最新
★ 高一數學知識點全面總結
★ 高中數學知識點總結
★ 高中數學知識點:橢圓方程式知識點總結
★ 高一數學考試基礎知識點
★ 高中數學必修一三角函數知識點總結
★ 高中數學知識點:平面向量的公式的知識點總結
★ 高中數學全部知識點提綱整理
★ 人教版高中數學知識點總結最新
㈣ 高中數學知識點總結
進入高中之後,數學對於許多學生來說,是一個學習較難的科目,且一些學生在數學這門課上都是越學越不會,那麼高中數學知識點有哪些?下面是我給大家帶來的高中數學知識點 總結 _高中數學知識點最全版,以供大家參考!
▼ 高中數學知識點總結1
1、命題的四種形式及其相互關系是什麼?
(互為逆否關系的命題是等價命題。)
原命題與逆否命題同真、同假;逆命題與否命題同真同假。
2、對映射的概念了解嗎?映射f:A→B,是否注意到A中元素的任意性和B中與之對應元素的唯一性,哪幾種對應能構成映射?
(一對一,多對一,允許B中有元素無原象。)
3、 函數的三要素是什麼?如何比較兩個函數是否相同?
(定義域、對應法則、值域)
4、反函數存在的條件是什麼?
(一一對應函數)
求反函數的步驟掌握了嗎?
(①反解x;②互換x、y;③註明定義域)
5、反函數的性質有哪些?
①互為反函數的圖象關於直線y=x對稱;
②保存了原來函數的單調性、奇函數性;
6、 函數f(x)具有奇偶性的必要(非充分)條件是什麼?
(f(x)定義域關於原點對稱)
▼ 高中數學知識點總結2
1、三類角的求法:
①找出或作出有關的角。
②證明其符合定義,並指出所求作的角。
③計算大小(解直角三角形,或用餘弦定理)。
2、正稜柱——底面為正多邊形的直稜柱
正棱錐——底面是正多邊形,頂點在底面的射影是底面的中心。
正棱錐的計算集中在四個直角三角形中:
3、怎樣判斷直線l與圓C的位置關系?
圓心到直線的距離與圓的半徑比較。
直線與圓相交時,注意利用圓的「垂徑定理」。
4、 對線性規劃問題:作出可行域,作出以目標函數為截距的直線,在可行域內平移直線,求出目標函數的最值。
不看後悔!清華名師揭秘學好高中數學的 方法
培養興趣是關鍵。學生對數學產生了興趣,自然有動力去鑽研。如何培養興趣呢?
(1) 欣賞數學的美感
比如幾何圖形中的對稱、變換前後的不變數、概念的嚴謹、邏輯的嚴密……
舉個例子,
通過對旋轉變換及其不變數的討論,我們可以證明反比例函數、「對勾函數」的圖象都是雙曲線——平面上到兩個定點的距離之差的絕對值為定值(小於兩個定點之間的距離)的點的集合。
(2)注意到數學在實際生活中的應用。
例如和日常生活息息相關的等額本金、等額本息兩種不同的還款方式,用數列的知識就可以理解.
學好數學,是現代公民的 基本素養 之一啊.
(3)採用靈活的教學手段,與時俱進。
利用多種技術手段,聲、光、電多管齊下,老師可以藉此把一些知識講得更具體形象,學生也更容易接受,理解更深。
(4)適當看一些科普類的書籍和 文章 。
比如:學圓錐曲線的時候,可以看看一些建築物的外形,它們被平面所截出的曲線往往就是各種圓錐曲線,很多文章對此都有介紹;還有圓錐曲線光學性質的應用,這方面的文章也不少。
▼ 高中數學知識點總結3
1、抽樣方法主要有:簡單隨機抽樣(抽簽法、隨機數表法)常常用於總體個數較少時,它的特徵是從總體中逐個抽取;系統抽樣,常用於總體個數較多時,它的主要特徵是均衡成若幹部分,每部分只取一個;分層抽樣,主要特徵是分層按比例抽樣,主要用於總體中有明顯差異,它們的共同特徵是每個個體被抽到的概率相等,體現了抽樣的客觀性和平等性。
2、對總體分布的估計——用樣本的頻率作為總體的概率,用樣本的期望(平均值)和方差去估計總體的期望和方差。
3、向量——既有大小又有方向的量。在此規定下向量可以在平面(或空間)平行移動而不改變。
4、並線向量(平行向量)——方向相同或相反的向量。規定零向量與任意向量平行。
高中數學知識點總結相關文章:
★ 高中數學學習方法:知識點總結最全版
★ 高中數學知識點全總結最全版
★ 高中數學知識點總結
★ 高中高一數學知識點總結
★ 高一數學知識點全面總結
★ 高中數學知識點全總結
★ 高中數學知識點總結及公式大全
★ 高二數學知識點總結
★ 高中數學知識點歸納最新
★ 高中數學知識點大全
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();㈤ 高中數學必考知識點歸納
高考數學必考知識點有哪些,高中數學重點知識有哪些,需要我們掌握?下面是我為大家整理的關於高中數學必考知識點歸納,希望對您有所幫助。
高中數學知識點 總結
1.必修課程由5個模塊組成:
必修1:集合,函數概念與基本初等函數(指數函數,冪函數,對數函數)
必修2:立體幾何初步、平面解析幾何初步。
必修3:演算法初步、統計、概率。
必修4:基本初等函數(三角函數)、平面向量、三角恆等變換。
必修5:解三角形、數列、不等式。
以上所有的知識點是所有高中生必須掌握的,而且要懂得運用。
選修課程分為4個系列:
系列1:2個模塊
選修1-1:常用邏輯用語、圓錐曲線與方程、空間向量與立體幾何。
選修1-2:統計案例、推理與證明、數系的擴充與復數、框圖
系列2: 3個模塊
選修2-1:常用邏輯用語、圓錐曲線與方程、空間向量與立體幾何
選修2-2:導數及其應用、推理與證明、數系的擴充與復數
選修2-3:計數原理、隨機變數及其分布列、統計案例
選修4-1:幾何證明選講
選修4-4:坐標系與參數方程
選修4-5:不等式選講
2.高考數學必考重難點及其考點:
重點:函數,數列,三角函數,平面向量,圓錐曲線,立體幾何,導數
難點:函數,圓錐曲線
高考相關考點:
1. 集合與邏輯:集合的邏輯與運算(一般出現在高考卷的第一道選擇題)、簡易邏輯、充要條件
2. 函數:映射與函數、函數解析式與定義域、值域與最值、反函數、三大性質、函數圖象、指數函數、對數函數、函數的應用
3. 數列:數列的有關概念、等差數列、等比數列、數列求通項、求和
4. 三角函數:有關概念、同角關系與誘導公式、和差倍半公式、求值、化簡、證明、三角函數的圖像及其性質、應用
5. 平面向量:初等運算、坐標運算、數量積及其應用
6. 不等式:概念與性質、均值不等式、不等式的證明、不等式的解法、絕對值不等式(經常出現在大題的選做題里)、不等式的應用
7. 直線與圓的方程:直線的方程、兩直線的位置關系、線性規劃、圓、直線與圓的位置關系
8. 圓錐曲線方程:橢圓、雙曲線、拋物線、直線與圓錐曲線的位置關系、軌跡問題、圓錐曲線的應用
9. 直線、平面、簡單幾何體:空間直線、直線與平面、平面與平面、稜柱、棱錐、球、空間向量
10. 排列、組合和概率:排列、組合應用題、二項式定理及其應用
11. 概率與統計:概率、分布列、期望、方差、抽樣、正態分布
12. 導數:導數的概念、求導、導數的應用
13. 復數:復數的概念與運算
高中數學易錯知識點整理
一.集合與函數
1.進行集合的交、並、補運算時,不要忘了全集和空集的特殊情況,不要忘記了藉助數軸和文氏圖進行求解.
2.在應用條件時,易A忽略是空集的情況
3.你會用補集的思想解決有關問題嗎?
4.簡單命題與復合命題有什麼區別?四種命題之間的相互關系是什麼?如何判斷充分與必要條件?
5.你知道「否命題」與「命題的否定形式」的區別.
6.求解與函數有關的問題易忽略定義域優先的原則.
7.判斷函數奇偶性時,易忽略檢驗函數定義域是否關於__對稱.
8.求一個函數的解析式和一個函數的反函數時,易忽略標注該函數的定義域.
9.原函數在區間[-a,a]上單調遞增,則一定存在反函數,且反函數也單調遞增;但一個函數存在反函數,此函數不一定單調.例如:.
10.你熟練地掌握了函數單調性的證明 方法 嗎?定義法(取值,作差,判正負)和導數法
11.求函數單調性時,易錯誤地在多個單調區間之間添加符號「∪」和「或」;單調區間不能用集合或不等式表示.
12.求函數的值域必須先求函數的定義域。
13.如何應用函數的單調性與奇偶性解題?①比較函數值的大小;②解抽象函數不等式;③求參數的范圍(恆成立問題).這幾種基本應用你掌握了嗎?
14.解對數函數問題時,你注意到真數與底數的限制條件了嗎?
(真數大於零,底數大於零且不等於1)字母底數還需討論
15.三個二次(哪三個二次?)的關系及應用掌握了嗎?如何利用二次函數求最值?
16.用換元法解題時易忽略換元前後的等價性,易忽略參數的范圍。
17.「實系數一元二次方程有實數解」轉化時,你是否注意到:當時,「方程有解」不能轉化為。若原題中沒有指出是二次方程,二次函數或二次不等式,你是否考慮到二次項系數可能為的零的情形?
二.不等式
18.利用均值不等式求最值時,你是否注意到:「一正;二定;三等」.
19.絕對值不等式的解法及其幾何意義是什麼?
20.解分式不等式應注意什麼問題?用「根軸法」解整式(分式)不等式的注意事項是什麼?
21.解含參數不等式的通法是「定義域為前提,函數的單調性為基礎,分類討論是關鍵」,注意解完之後要寫上:「綜上,原不等式的解集是……」.
22.在求不等式的解集、定義域及值域時,其結果一定要用集合或區間表示;不能用不等式表示.
23.兩個不等式相乘時,必須注意同向同正時才能相乘,即同向同正可乘;同時要注意「同號可倒」即a>b>0,a<0.
三.數列
24.解決一些等比數列的前項和問題,你注意到要對公比及兩種情況進行討論了嗎?
25.在「已知,求」的問題中,你在利用公式時注意到了嗎?(時,應有)需要驗證,有些題目通項是分段函數。
26.你知道存在的條件嗎?(你理解數列、有窮數列、無窮數列的概念嗎?你知道無窮數列的前項和與所有項的和的不同嗎?什麼樣的無窮等比數列的所有項的和必定存在?
27.數列單調性問題能否等同於對應函數的單調性問題?(數列是特殊函數,但其定義域中的值不是連續的。)
28.應用數學歸納法一要注意步驟齊全,二要注意從到過程中,先假設時成立,再結合一些數學方法用來證明時也成立。
四.三角函數
29.正角、負角、零角、象限角的概念你清楚嗎?,若角的終邊在坐標軸上,那它歸哪個象限呢?你知道銳角與第一象限的角;終邊相同的角和相等的角的區別嗎?
30.三角函數的定義及單位圓內的三角函數線(正弦線、餘弦線、正切線)的定義你知道嗎?
31.在解三角問題時,你注意到正切函數、餘切函數的定義域了嗎?你注意到正弦函數、餘弦函數的有界性了嗎?
32.你還記得三角化簡的通性通法嗎?(切割化弦、降冪公式、用三角公式轉化出現特殊角.異角化同角,異名化同名,高次化低次)
33.反正弦、反餘弦、反正切函數的取值范圍分別是
34.你還記得某些特殊角的三角函數值嗎?
35.掌握正弦函數、餘弦函數及正切函數的圖象和性質.你會寫三角函數的單調區間嗎?會寫簡單的三角不等式的解集嗎?(要注意數形結合與書寫規范,可別忘了),你是否清楚函數的圖象可以由函數經過怎樣的變換得到嗎?
36.函數的圖象的平移,方程的平移以及點的平移公式易混:
(1)函數的圖象的平移為「左+右-,上+下-」;如函數的圖象左移2個單位且下移3個單位得到的圖象的解析式為,即.
(2)方程表示的圖形的平移為「左+右-,上-下+」;如直線左移2個個單位且下移3個單位得到的圖象的解析式為,即.
(3)點的平移公式:點按向量平移到點,則.
37.在三角函數中求一個角時,注意考慮兩方面了嗎?(先求出某一個三角函數值,再判定角的范圍)
38.形如的周期都是,但的周期為。
39.正弦定理時易忘比值還等於2R.
五.平面向量
40.數0有區別,的模為數0,它不是沒有方向,而是方向不定。可以看成與任意向量平行,但與任意向量都不垂直。
41.數量積與兩個實數乘積的區別:
在實數中:若,且ab=0,則b=0,但在向量的數量積中,若,且,不能推出.
已知實數,且,則a=c,但在向量的數量積中沒有.
在實數中有,但是在向量的數量積中,這是因為左邊是與共線的向量,而右邊是與共線的向量.
42.是向量與平行的充分而不必要條件,是向量和向量夾角為鈍角的必要而不充分條件。
六.解析幾何
43.在用點斜式、斜截式求直線的方程時,你是否注意到不存在的情況?
44.用到角公式時,易將直線l1、l2的斜率k1、k2的順序弄顛倒。
45.直線的傾斜角、到的角、與的夾角的取值范圍依次是。
46.定比分點的坐標公式是什麼?(起點,中點,分點以及值可要搞清),在利用定比分點解題時,你注意到了嗎?
47.對不重合的兩條直線
(建議在解題時,討論後利用斜率和截距)
48.直線在兩坐標軸上的截距相等,直線方程可以理解為,但不要忘記當時,直線在兩坐標軸上的截距都是0,亦為截距相等。
49.解決線性規劃問題的基本步驟是什麼?請你注意解題格式和完整的文字表達.(①設出變數,寫出目標函數②寫出線性約束條件③畫出可行域④作出目標函數對應的系列平行線,找到並求出最優解⑦應用題一定要有答。)
50.三種圓錐曲線的定義、圖形、標准方程、幾何性質,橢圓與雙曲線中的兩個特徵三角形你掌握了嗎?
51.圓、和橢圓的參數方程是怎樣的?常用參數方程的方法解決哪一些問題?
52.利用圓錐曲線第二定義解題時,你是否注意到定義中的定比前後項的順序?如何利用第二定義推出圓錐曲線的焦半徑公式?如何應用焦半徑公式?
53.通徑是拋物線的所有焦點弦中最短的弦.(想一想在雙曲線中的結論?)
54.在用圓錐曲線與直線聯立求解時,消元後得到的方程中要注意:二次項的系數是否為零?橢圓,雙曲線二次項系數為零時直線與其只有一個交點,判別式的限制.(求交點,弦長,中點,斜率,對稱,存在性問題都在下進行).
55.解析幾何問題的求解中,平面幾何知識利用了嗎?題目中是否已經有坐標系了,是否需要建立直角坐標系?
七.立體幾何
56.你掌握了空間圖形在平面上的直觀畫法嗎?(斜二測畫法)。
57.線面平行和面面平行的定義、判定和性質定理你掌握了嗎?線線平行、線面平行、面面平行這三者之間的聯系和轉化在解決立幾問題中的應用是怎樣的?每種平行之間轉換的條件是什麼?
58.三垂線定理及其逆定理你記住了嗎?你知道三垂線定理的關鍵是什麼嗎?(一面、四線、三垂直、立柱即面的垂線是關鍵)一面四直線,立柱是關鍵,垂直三處見
59.線面平行的判定定理和性質定理在應用時都是三個條件,但這三個條件易混為一談;面面平行的判定定理易把條件錯誤地記為」一個平面內的兩條相交直線與另一個平面內的兩條相交直線分別平行」而導致證明過程跨步太大.
60.求兩條異面直線所成的角、直線與平面所成的角和二面角時,如果所求的角為90°,那麼就不要忘了還有一種求角的方法即用證明它們垂直的方法.
61.異面直線所成角利用「平移法」求解時,一定要注意平移後所得角等於所求角(或其補角),特別是題目告訴異面直線所成角,應用時一定要從題意出發,是用銳角還是其補角,還是兩種情況都有可能。
62.你知道公式:和中每一字母的意思嗎?能夠熟練地應用它們解題嗎?
63.兩條異面直線所成的角的范圍:0°<α≤90° >
直線與平面所成的角的范圍:0o≤α≤90°
二面角的平面角的取值范圍:0°≤α≤180°
64.你知道異面直線上兩點間的距離公式如何運用嗎?
65.平面圖形的翻折,立體圖形的展開等一類問題,要注意翻折,展開前後有關幾何元素的「不變數」與「不變性」。
66.立幾問題的求解分為「作」,「證」,「算」三個環節,你是否只注重了「作」,「算」,而忽視了「證」這一重要環節?
67.稜柱及其性質、平行六面體與長方體及其性質.這些知識你掌握了嗎?(注意運用向量的方法解題)
68.球及其性質;經緯度定義易混.經度為二面角,緯度為線面角、球面距離的求法;球的表面積和體積公式.這些知識你掌握了嗎?
八.排列、組合和概率
69.解排列組合問題的依據是:分類相加,分步相乘,有序排列,無序組合.
解排列組合問題的規律是:相鄰問題捆綁法;不鄰問題插空法;多排問題單排法;定位問題優先法;定序問題倍縮法;多元問題分類法;有序分配問題法;選取問題先排後排法;至多至少問題間接法.
70.二項式系數與展開式某一項的系數易混,第r+1項的二項式系數為。二項式系數最大項與展開式中系數最大項易混.二項式系數最大項為中間一項或兩項;展開式中系數最大項的求法要用解不等式組來確定r.
71.你掌握了三種常見的概率公式嗎?(①等可能事件的概率公式;②互斥事件有一個發生的概率公式;③相互獨立事件同時發生的概率公式.)
72.二項式展開式的通項公式、n次獨立重復試驗中事件A發生k次的概率易記混。
通項公式:它是第r+1項而不是第r項;
事件A發生k次的概率:.其中k=0,1,2,3,…,n,且0
<1,p+q=1.< p="">
73.求分布列的解答題你能把步驟寫全嗎?
74.如何對總體分布進行估計?(用樣本估計總體,是研究統計問題的一個基本思想方法,一般地,樣本容量越大,這種估計就越精確,要求能畫出頻率分布表和頻率分布直方圖;理解頻率分布直方圖矩形面積的幾何意義.)
75.你還記得一般正態總體如何化為標准正態總體嗎?(對任一正態總體來說,取值小於x的概率,其中表示標准正態總體取值小於的概率)
相關 文章 :
1. 高中數學重要知識點巧記口訣
2. 高中數學學習方法:知識點總結最全版
3. 高一數學必背公式及知識匯總
4. 高一數學重點知識點公式總結
5. 高中數學重點知識結構總結
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();㈥ 高中數學知識點總結
《高中數學基礎知識梳理(數學小飛俠)》網路網盤免費下載
鏈接:
資源目錄
01.集合例題講解.mp4
01.集合進階.mp4
02函數的值域.mp4
03函數的定義域與解析式.mp4
04函數的單調性.mp4
04函數的奇偶性.mp4
05指數運算與指數函數.mp4
07對數運算與對數函數.mp4
08冪函數突破.mp4
09函數零點專題.mp4
10含參二次函數與不等式專題.mp4
11二次函數根的分布專題.mp4
12空間幾何體.mp4
13點線面位置關系進階.mp4
14平行關系突破.mp4
15垂直關系突破.mp4
16空間幾何關系綜合.mp4
17直線方程突破.mp4
18圓的方程突破.mp4
19演算法初步.mp4
20演算法語句與演算法案例.mp4
21數據的收集與頻率分布.mp4
22常用統計量與相關關系.mp4
23古典概型概率.mp4
24幾何概型概率.mp4
25任意角重難點.mp4
26三角函數定義與誘導公式.mp4
27三角函數圖像及性質.mp4
28平面向量幾何運算.mp4
29平面向量代數運算.mp4
30.三角恆等變換.mp4
31.三角函數計算專題.mp4
32.正弦定理與餘弦定理.mp4
33.等差數列突破.mp4
34.等比數列突破.mp4
35.數列通項公式專題 .mp4
36.數列求和公式專題 .mp4
37.二次不等式與分式不等式.mp4
38.線性規劃問題.mp4
39.基本不等式突破.mp4
40.邏輯用語專題.mp4
41.橢圓方程及其幾何性質.mp4
42.雙曲線方程及其性質.mp4
43.拋物線方程及其性質.mp4
44.直線與圓錐曲線綜合.mp4
45.空間向量突破.mp4
46.導數的計算專題.mp4
47.導數的應用.mp4
48.導數的應用(二).mp4
49.定積分與微積分.mp4
50.復數專題.mp4
51.排列組合.mp4
52.二項式定理.mp4
53.隨機變數及其變數.mp4
54回歸分析與獨立性檢驗.mp4
資源目錄
01.集合例題講解.mp4
01.集合進階.mp4
02函數的值域.mp4
03函數的定義域與解析式.mp4
04函數的單調性.mp4
04函數的奇偶性.mp4
05指數運算與指數函數.mp4
07對數運算與對數函數.mp4
08冪函數突破.mp4
09函數零點專題.mp4
10含參二次函數與不等式專題.mp4
11二次函數根的分布專題.mp4
12空間幾何體.mp4
13點線面位置關系進階.mp4
14平行關系突破.mp4
15垂直關系突破.mp4
16空間幾何關系綜合.mp4
17直線方程突破.mp4
18圓的方程突破.mp4
19演算法初步.mp4
20演算法語句與演算法案例.mp4
21數據的收集與頻率分布.mp4
22常用統計量與相關關系.mp4
23古典概型概率.mp4
24幾何概型概率.mp4
25任意角重難點.mp4
26三角函數定義與誘導公式.mp4
27三角函數圖像及性質.mp4
28平面向量幾何運算.mp4
29平面向量代數運算.mp4
30.三角恆等變換.mp4
31.三角函數計算專題.mp4
32.正弦定理與餘弦定理.mp4
33.等差數列突破.mp4
34.等比數列突破.mp4
35.數列通項公式專題 .mp4
36.數列求和公式專題 .mp4
37.二次不等式與分式不等式.mp4
38.線性規劃問題.mp4
39.基本不等式突破.mp4
40.邏輯用語專題.mp4
41.橢圓方程及其幾何性質.mp4
42.雙曲線方程及其性質.mp4
43.拋物線方程及其性質.mp4
44.直線與圓錐曲線綜合.mp4
45.空間向量突破.mp4
46.導數的計算專題.mp4
47.導數的應用.mp4
48.導數的應用(二).mp4
49.定積分與微積分.mp4
50.復數專題.mp4
51.排列組合.mp4
52.二項式定理.mp4
53.隨機變數及其變數.mp4
54回歸分析與獨立性檢驗.mp4
㈦ 高中數學知識點全總結
高中數學知識點全總結 : 1、數列或者三角函數;2、立體幾何;3、概率統計;4、圓錐曲線;5、導數;6、選修題(參數方程和不等式)。
1、三角函數
對於三角函數的考法共有兩種。分別是解三角形和三角函數本身。大概百分之十到二十的概率考解三角形,百分之八十到九十概率考對於三角函數本身的熟練運用。
2、概率統計
以理科數學為例,考點覆蓋概率統計必修和選修的各個章節的內容,考查了抽樣法、統計圖表、數據的數字特徵、用樣本估計整體、回歸分析、獨立性檢驗、古典概型、幾何概型、條件概率、相互獨立事件的概率、獨立重復試驗的概率、離散型隨機變數的分布列、數學期望與方差、超幾何分布、二項分布、正態分布等基礎知識和基本方法。
3、立體幾何
這道題有兩到三問,前面問的某條線的大小或者證明某個線或面與另外一個線或面平行或垂直,最後一問是求二面角。
4、數列
數列主要是求解通項公式和前n項和。首先是通項公式,要看題目中給出的條件形式,不同的形式對應不同的解題方法,其中主要包括公式法(定義法)、累加法、累乘法、待定系數法、數學歸納法 倒數變化法等,熟練應用這些方法並積累例題達到熟練的程度。
5、圓錐曲線
一般套路就是,前半部分是對基本性質的考察,後半部分考察與直線相交,且後半部分的步驟幾乎都是一致的。
㈧ 高中數學知識點全總結最全版
高中數學知識點全 總結 最全版有哪些?高中數學小題一般是信息量少、運算量小,易於把握,不要輕易放過,應爭取在大題之前盡快解決,一起來看看高中數學知識點全總結最全版,歡迎查閱!
目錄
高中數學重點知識點
高考數學常考知識點
高中數學重點知識點講解
1.有理數:
(1)凡能寫成形式的數,都是有理數,整數和分數統稱有理數.
注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;?不是有理數;
(2)有理數的分類:①②
(3)注意:有理數中,1、0、-1是三個特殊的數,它們有自己的特性;這三個數把數軸上的數分成四個區域,這四個區域的數也有自己的特性;
(4)自然數?0和正整數;a>0?a是正數;a<0?a是負數;
a≥0?a是正數或0?a是非負數;a≤0?a是負數或0?a是非正數.
2.數軸:數軸是規定了原點、正方向、單位長度的一條直線.
3.相反數:(1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0;(2)注意:a-b+c的相反數是-a+b-c;a-b的相反數是b-a;a+b的相反數是-a-b;
(3)相反數的和為0?a+b=0?a、b互為相反數.
(4)相反數的商為-1.
(5)相反數的絕對值相等
4.絕對值:
(1)正數的絕對值等於它本身,0的絕對值是0,負數的絕對值等於它的相反數;
注意:絕對值的意義是數軸上表示某數的點離開原點的距離;
(2)絕對值可表示為:或;
(3);;
(4)|a|是重要的非負數,即|a|≥0;
5.有理數比大小:
(1)正數永遠比0大,負數永遠比0小;
(2)正數大於一切負數;
(3)兩個負數比較,絕對值大的反而小;
(4)數軸上的兩個數,右邊的數總比左邊的數大;
(5)-1,-2,+1,+4,-0.5,以上數據表示與標准質量的差,絕對值越小,越接近標准。
6.倒數:乘積為1的兩個數互為倒數;
注意:0沒有倒數;若ab=1?a、b互為倒數;若ab=-1?a、b互為負倒數.
等於本身的數匯總:
相反數等於本身的數:0
倒數等於本身的數:1,-1
絕對值等於本身的數:正數和0
平方等於本身的數:0,1
立方等於本身的數:0,1,-1.
7.有理數加法法則:
(1)同號兩數相加,取相同的`符號,並把絕對值相加;
(2)異號兩數相加,取絕對值較大加數的符號,並用較大的絕對值減去較小的絕對值;
(3)一個數與0相加,仍得這個數.
8.有理數加法的運算律:
(1)加法的交換律:a+b=b+a;(2)加法的結合律:(a+b)+c=a+(b+c).
9.有理數減法法則:減去一個數,等於加上這個數的相反數;即a-b=a+(-b).
10有理數乘法法則:(1)兩數相乘,同號得正,異號得負,並把絕對值相乘;
(2)任何數同零相乘都得零;
(3)幾個因式都不為零,積的符號由負因式的個數決定.奇數個負數為負,偶數個負數為正。
11有理數乘法的運算律:
(1)乘法的交換律:ab=ba;(2)乘法的結合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac.(簡便運算)
12.有理數除法法則:除以一個數等於乘以這個數的倒數;注意:零不能做除數,.
13.有理數乘方的法則:(1)正數的任何次冪都是正數;
(2)負數的奇次冪是負數;負數的偶次冪是正數;
14.乘方的定義:(1)求相同因式積的運算,叫做乘方;
(2)乘方中,相同的因式叫做底數,相同因式的個數叫做指數,乘方的結果叫做冪;
(3)a2是重要的非負數,即a2≥0;若a2+|b|=0?a=0,b=0;
(4)據規律底數的小數點移動一位,平方數的小數點移動二位.
15.科學記數法:把一個大於10的數記成a×10n的形式,其中a是整數數位只有一位的數,這種記數法叫科學記數法.
16.近似數的精確位:一個近似數,四捨五入到那一位,就說這個近似數的精確到那一位.
17.混合運演算法則:先乘方,後乘除,最後加減;注意:不省過程,不跳步驟。
18.特殊值法:是用符合題目要求的數代入,並驗證題設成立而進行猜想的一種 方法 ,但不能用於證明.常用於填空,選擇。
<<<
一、三角函數
1.周期函數:一般地,對於函數f(x),如果存在一個不為0的常數T使得當x取定義域內的每一個值時,都有f(x+T)=f(x),那麼函數f(x)就叫做周期函數,非零常數T叫做這個函數的周期,把所有周期中存在的最小正數,叫做最小正周期三角函數屬於高中數學中的重點內容,在高考理科數學中更是占據很重要的位置。
2.三角函數的圖像:可以利用三角函數線用幾何法作出,在精確度要求不高的情況下,常用五點法作圖,要特別注意「五點」的取法。
3.三角函數的定義域:三角函數的定義域是研究其他一切性質的前提,求三角函數的定義域實際上就是解最簡單的三角不等式,通常可用三角函數的圖像或三角函數線來求解,注意數形結合思想的應用。
二、反三角函數主要是三個:
y=arcsin(x),定義域[-1,1] ,值域[-π/2,π/2]圖象用紅色線條;
y=arccos(x),定義域[-1,1] , 值域[0,π],圖象用藍色線條;
y=arctan(x),定義域(-∞,+∞),值域(-π/2,π/2),圖象用綠色線條;
sin(arcsin x)=x,定義域[-1,1],值域 [-1,1] arcsin(-x)=-arcsinx
三、三角函數其他公式
arcsin(-x)=-arcsinx
arccos(-x)=π-arccosx
arctan(-x)=-arctanx
arccot(-x)=π-arccotx
arcsinx+arccosx=π/2=arctanx+arccotx
sin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx)
當x∈[—π/2,π/2]時,有arcsin(sinx)=x
當x∈[0,π],arccos(cosx)=x
x∈(—π/2,π/2),arctan(tanx)=x
x∈(0,π),arccot(cotx)=x
x〉0,arctanx=π/2-arctan1/x,arccotx類似
若(arctanx+arctany)∈(—π/2,π/2),則arctanx+arctany=arctan(x+y/1-xy)
四、三角函數與平面向量的綜合問題
(1)巧妙「轉化」--把以「向量的數量積、平面向量共線、平面向量垂直」「向量的線性運算」形式出現的條件還其本來面目,轉化為「對應坐標乘積之間的關系」;
(2)巧挖「條件」--利用隱含條件」正弦函數、餘弦函數、的有界性「,把不等式的恆成立問題轉化為含參數ψ的方程,求出參數ψ的值,從而可求函數的解析式;
(3)活用」性質「--活用正弦函數與餘弦函數的單調性、對稱性、周期性、奇偶性,以及整體換元思想,即可求其對稱軸與單調區間。
五、見三角函數「對稱」問題,啟用圖象特徵代數關系:(A≠0)
1.函數y=Asin(wx+φ)和函數y=Acos(wx+φ)的圖象,關於過最值點且平行於y軸的`直線分別成軸對稱;
2.函數y=Asin(wx+φ)和函數y=Acos(wx+φ)的圖象,關於其中間零點分別成中心對稱;
3.同樣,利用圖象也可以得到函數y=Atan(wx+φ)和函數y=Acot(wx+φ)的對稱性質。
<<<
直線的傾斜角
定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°
高中數學重點知識點講解:直線的斜率
①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。在高中數學里直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。當時,。當時,;當時,不存在。
②過兩點的直線的斜率公式:
注意下面四點:(1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;
(2)k與P1、P2的順序無關;
(3)以後高中數學涉及到求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;
(4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到。
高中數學重點知識點講解:直線方程
①點斜式:
直線斜率k,且過點
注意:高中數學在關於直線方程解法中,當直線的斜率為0°時,k=0,直線的方程是y=y1。當直線的斜率為90°時,直線的斜率不存在,它的方程不能用點斜式表示.但因l上每一點的橫坐標都等於x1,所以它的方程是x=x1。
②斜截式:,直線斜率為k,直線在y軸上的截距為b
③兩點式:()直線兩點,
④截矩式:
其中直線與軸交於點,與軸交於點,即與軸、軸的截距分別為。
⑤一般式:(A,B不全為0)
⑤一般式:(A,B不全為0)
注意:○1各式的適用范圍
○2特殊的方程如:平行於x軸的直線:
(b為常數);平行於y軸的直線:
(a為常數);
<<<
高中數學知識點全總結最全版相關 文章 :
★ 高中數學知識點全總結最全版
★ 高中數學學習方法:知識點總結最全版
★ 高中數學知識點總結及公式大全
★ 高中數學必考知識點歸納整理
★ 高中數學知識點總結及公式大全(4)
★ 高中數學知識點總結及公式大全(3)
★ 高三數學學習方法和技巧大全
★ 高一數學基礎知識學習方法歸納
★ 2020高一數學學習方法總結大全
★ 高一數學學習方法總結大全
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();㈨ 高中數學知識點重點總結大全
總結 是指社會團體、企業單位和個人對某一階段的學習、它可以給我們下一階段的學習和工作生活做指導,因此十分有必須要寫一份總結哦。下面是我給大家帶來的高中數學知識點重點總結大全,以供大家參考!
高中數學知識點重點總結大全
集合的有關概念
1)集合(集):某些指定的對象集在一起就成為一個集合(集).其中每一個對象叫元素
注意:①集合與集合的元素是兩個不同的概念,教科書中是通過描述給出的,這與平面幾何中的點與直線的概念類似。
②集合中的元素具有確定性(a?A和a?A,二者必居其一)、互異性(若a?A,b?A,則a≠b)和無序性({a,b}與{b,a}表示同一個集合)。
③集合具有兩方面的意義,即:凡是符合條件的對象都是它的元素;只要是它的元素就必須符號條件
2)集合的表示 方法 :常用的有列舉法、描述法和圖文法
3)集合的分類:有限集,無限集,空集。
4)常用數集:N,Z,Q,R,N
子集、交集、並集、補集、空集、全集等概念
1)子集:若對_∈A都有_∈B,則AB(或AB);
2)真子集:AB且存在_0∈B但_0A;記為AB(或,且)
3)交集:A∩B={_|_∈A且_∈B}
4)並集:A∪B={_|_∈A或_∈B}
5)補集:CUA={_|_A但_∈U}
注意:A,若A≠?,則?A;
若且,則A=B(等集)
集合與元素
掌握有關的術語和符號,特別要注意以下的符號:(1)與、?的區別;(2)與的區別;(3)與的區別。
子集的幾個等價關系
①A∩B=AAB;②A∪B=BAB;③ABCuACuB;
④A∩CuB=空集CuAB;⑤CuA∪B=IAB。
交、並集運算的性質
①A∩A=A,A∩?=?,A∩B=B∩A;②A∪A=A,A∪?=A,A∪B=B∪A;
③Cu(A∪B)=CuA∩CuB,Cu(A∩B)=CuA∪CuB;
有限子集的個數:
設集合A的元素個數是n,則A有2n個子集,2n-1個非空子集,2n-2個非空真子集。
練習題:
已知集合M={_|_=m+,m∈Z},N={_|_=,n∈Z},P={_|_=,p∈Z},則M,N,P滿足關系()
A)M=NPB)MN=PC)MNPD)NPM
分析一:從判斷元素的共性與區別入手。
解答一:對於集合M:{_|_=,m∈Z};對於集合N:{_|_=,n∈Z}
對於集合P:{_|_=,p∈Z},由於3(n-1)+1和3p+1都表示被3除餘1的數,而6m+1表示被6除餘1的數,所以MN=P,故選B。
人教版 高一數學 知識點整理
考點一、映射的概念
1.了解對應大千世界的對應共分四類,分別是:一對一多對一一對多多對多
2.映射:設A和B是兩個非空集合,如果按照某種對應關系f,對於集合A中的任意一個元素_,在集合B中都存在的一個元素y與之對應,那麼,就稱對應f:A→B為集合A到集合B的一個映射(mapping).映射是特殊的對應,簡稱「對一」的對應。包括:一對一多對一
考點二、函數的概念
1.函數:設A和B是兩個非空的數集,如果按照某種確定的對應關系f,對於集合A中的任意一個數_,在集合B中都存在確定的數y與之對應,那麼,就稱對應f:A→B為集合A到集合B的一個函數。記作y=f(_),_A.其中_叫自變數,_的取值范圍A叫函數的定義域;與_的值相對應的y的值函數值,函數值的集合叫做函數的值域。函數是特殊的映射,是非空數集A到非空數集B的映射。
2.函數的三要素:定義域、值域、對應關系。這是判斷兩個函數是否為同一函數的依據。
3.區間的概念:設a,bR,且a
①(a,b)={_a
⑤(a,+∞)={__>a}⑥[a,+∞)={__≥a}⑦(-∞,b)={__
考點三、函數的表示方法
1.函數的三種表示方法列表法圖象法解析法
2.分段函數:定義域的不同部分,有不同的對應法則的函數。注意兩點:①分段函數是一個函數,不要誤認為是幾個函數。②分段函數的定義域是各段定義域的並集,值域是各段值域的並集。
考點四、求定義域的幾種情況
①若f(_)是整式,則函數的定義域是實數集R;
②若f(_)是分式,則函數的定義域是使分母不等於0的實數集;
③若f(_)是二次根式,則函數的定義域是使根號內的式子大於或等於0的實數集合;
④若f(_)是對數函數,真數應大於零。
⑤.因為零的零次冪沒有意義,所以底數和指數不能同時為零。
⑥若f(_)是由幾個部分的數學式子構成的,則函數的定義域是使各部分式子都有意義的實數集合;
⑦若f(_)是由實際問題抽象出來的函數,則函數的定義域應符合實際問題
高一數學知識點歸納大全
圓的方程定義:
圓的標准方程(_—a)2+(y—b)2=r2中,有三個參數a、b、r,即圓心坐標為(a,b),只要求出a、b、r,這時圓的方程就被確定,因此確定圓方程,須三個獨立條件,其中圓心坐標是圓的定位條件,半徑是圓的定形條件。
直線和圓的位置關系:
1、直線和圓位置關系的判定方法一是方程的觀點,即把圓的方程和直線的方程聯立成方程組,利用判別式Δ來討論位置關系。
①Δ>0,直線和圓相交、②Δ=0,直線和圓相切、③Δ<0,直線和圓相離。
方法二是幾何的觀點,即把圓心到直線的距離d和半徑R的大小加以比較。
①dR,直線和圓相離、
2、直線和圓相切,這類問題主要是求圓的切線方程、求圓的切線方程主要可分為已知斜率k或已知直線上一點兩種情況,而已知直線上一點又可分為已知圓上一點和圓外一點兩種情況。
3、直線和圓相交,這類問題主要是求弦長以及弦的中點問題。
切線的性質
⑴圓心到切線的距離等於圓的半徑;
⑵過切點的半徑垂直於切線;
⑶經過圓心,與切線垂直的直線必經過切點;
⑷經過切點,與切線垂直的直線必經過圓心;
當一條直線滿足
(1)過圓心;
(2)過切點;
(3)垂直於切線三個性質中的兩個時,第三個性質也滿足。
切線的判定定理
經過半徑的外端點並且垂直於這條半徑的直線是圓的切線。
切線長定理
從圓外一點作圓的兩條切線,兩切線長相等,圓心與這一點的連線平分兩條切線的夾角。
高中數學知識點重點總結大全相關 文章 :
★ 高中數學知識點總結及公式大全
★ 高中數學知識點全總結最全版
★ 高中數學知識點全總結
★ 高中數學知識點大全
★ 高一數學知識點匯總大全
★ 高中數學知識要點總結範文
★ 高中數學知識點總結歸納最新
★ 高中數學知識點總結
★ 高一數學知識點總結歸納
★ 高一數學知識點全面總結
㈩ 高中數學知識點總結歸納
如果把數學比作一把鎖的話,那思考就是一把開鎖的金鑰匙,為你打開這數學之鎖。下面就是我為大家精心整理的高中數學知識點 總結 ,希望對你們有所幫助!
高中數學知識點總結歸納
1、含n個元素的有限集合其子集共有2n個,非空子集有2n—1個,非空真子集有2n—2個。
2、集合中,Cu(A∩B)=(CuA)U(CuB),交之補等於補之並。
Cu(AUB)=(CuA)∩(CuB),並之補等於補之交。
3、ax2+bx+c<0的解集為x(0
+c>0的解集為x,cx2+bx+a>0的解集為>x或x<;ax2—bx+
4、c<0的解集為x,cx2—bx+a>0的解集為->x或x<-。
5、原命題與其逆否命題是等價命題。
原命題的逆命題與原命題的否命題也是等價命題。
6、函數是一種特殊的映射,函數與映射都可用:f:A→B表示。
A表示原像,B表示像。當f:A→B表示函數時,A表示定義域,B大於或等於其值域范圍。只有一一映射的函數才具有反函數。
7、原函數與反函數的單調性一致,且都為奇函數。
偶函數和周期函數沒有反函數。若f(x)與g(x)關於點(a,b)對稱,則g(x)=2b-f(2a-x).
8、若f(-x)=f(x),則f(x)為偶函數,若f(-x)=f(x),則f(x)為奇函數;
偶函數關於y軸對稱,且對稱軸兩邊的單調性相反;奇函數關於原點對稱,且在整個定義域上的單調性一致。反之亦然。若奇函數在x=0處有意義,則f(0)=0。函數的單調性可用定義法和導數法求出。偶函數的導函數是奇函數,奇函數的導函數是偶函數。對於任意常數T(T≠0),在定義域范圍內,都有f(x+T)=f(x),則稱f(x)是周期為T的周期函數,且f(x+kT)=f(x),k≠0.
9、周期函數的特徵性:①f(x+a)=-f(x),是T=2a的函數,②若f(x+a)+f(x+b)=0,即f(x+a)=-f(x+b),T=2(b-a)的函數,③若f(x)既x=a關對稱,又關於x=b對稱,則f(x)是T=2(b-a)的函數④若f(x
+a)?f(x+b)=±1,即f(x+a)=±,則f(x)是T=2(b-a)的函數⑤f(x+a)=±,則f(x)
是T=4(b-a)的函數
10、復合函數的單調性滿足「同增異減」原理。
定義域都是指函數中自變數的取值范圍。
11、抽象函數主要有f(xy)=f(x)+f(y)(對數型),f(x+y)=f(x)?f(y)(指數型),f(x+y)=f(x)+f(y)(直線型)。
解此類抽象函數比較實用的 方法 是特殊值法和周期法。
12、指數函數圖像的規律是:底數按逆時針增大。
對數函數與之相反.
13、ar?as=ar+s,ar÷as=ar—s,(ar)s=ars,(ab)r=arbr。
在解可化為a2x+Bax+C=0或a2x+Bax+C≥0(≤0)的指數方程或不等式時,常藉助於換元法,應特別注意換元後新變元的取值范圍。
14、log10N=lgN;logeN=lnN(e=2.718???);對數的性質:如果a>0,a≠0,M>0N>0,
那麼loga(MN)=logaM+logaN,;loga()=logaM—logaN;logaMn=nlogaM;alogaN=N.
換底公式:logaN=;logamlogbnlogck=logbmlogcnlogak=logcmloganlogbk.
15、函數圖像的變換:
(1)水平平移:y=f(x±a)(a>0)的圖像可由y=f(x)向左或向右平移a個單位得到;
(2)豎直平移:y=f(x)±b(b>0)圖像,可由y=f(x)向上或向下平移b個單位得到;
(3)對稱:若對於定義域內的一切x均有f(x+m)=f(x—m),則y=f(x)的圖像關於直線x=m對稱;y=f(x)關於(a,b)對稱的函數為y!=2b—f(2a—x).
(4) , 學習計劃 ;翻折:①y=|f(x)|是將y=f(x)位於x軸下方的部分以x軸為對稱軸將期翻折到x軸上方的圖像。②y=f(|x|)是將y=f(x)位於y軸左方的圖像翻折到y軸的右方而成的圖像。
(5)有關結論:①若f(a+x)=f(b—x),在x為一切實數上成立,則y=f(x)的圖像關於
x=對稱。②函數y=f(a+x)與函數y=f(b—x)的圖像有關於直線x=對稱。
15、等差數列中,an=a1+(n—1)d=am+(n—m)d;sn=n=na1+
16、若n+m=p+q,則am+an=ap+aq;
sk,s2k—k,s3k—2k成以k2d為公差的等差數列。an是等差數列,若ap=q,aq=p,則ap+q=0;若sp=q,sq=p,則sp+q=—(p+q);若已知sk,sn,sn—k,sn=(sk+sn+sn—k)/2k;若an是等差數列,則可設前n項和為sn=an2+bn(註:沒有常數項),用方程的思想求解a,b。在等差數列中,若將其腳碼成等差數列的項取出組成數列,則新的數列仍舊是等差數列。
17、等比數列中,an=a1?qn-1=am?qn-m,若n+m=p+q,則am?an=ap?aq;sn=na1(q=1),
sn=,(q≠1);若q≠1,則有=q,若q≠—1,=q;
sk,s2k—k,s3k—2k也是等比數列。a1+a2+a3,a2+a3+a4,a3+a4+a5也成等比數列。在等比數列中,若將其腳碼成等差數列的項取出組成數列,則新的數列仍舊是等比數列。裂項公式:
=—,=?(—),常用數列遞推形式:疊加,疊乘,
18、弧長公式:l=|α|?r。
s扇=?lr=?|α|r2=?;當一個扇形的周長一定時(為L時),
其面積為,其圓心角為2弧度。
19、Sina(α+β)=sinαcosβ+cosαsinβ;Sina(α—β)=sinαcosβ—cosαsinβ;
Cos(α+β)=cosαcosβ—sinαsinβ;cos(α—β)=cosαcosβ+sinαsinβ
高考數學必考知識點
1.【數列】&【解三角形】
數列與解三角形的知識點在解答題的第一題中,是非此即彼的狀態,近些年的特徵是大題第一題兩年數列兩年解三角形輪流來, 2014、2015年大題第一題考查的是數列,2016年大題第一題考查的是解三角形,故預計2017年大題第一題較大可能仍然考查解三角形。
數列主要考察數列的定義,等差數列、等比數列的性質,數列的通項公式及數列的求和。
解三角形在解答題中主要考查正、餘弦定理在解三角形中的應用。
2.【立體幾何】
高考在解答題的第二或第三題位置考查一道立體幾何題,主要考查空間線面平行、垂直的證明,求二面角等,出題比較穩定,第二問需合理建立空間直角坐標系,並正確計算。
3.【概率】
高考在解答題的第二或第三題位置考查一道概率題,主要考查古典概型,幾何概型,二項分布,超幾何分布,回歸分析與統計,近年來概率題每年考查的角度都不一樣,並且題干長,是學生感到困難的一題,需正確理解題意。
4.【解析幾何】
高考在第20題的位置考查一道解析幾何題。主要考查圓錐曲線的定義和性質,軌跡方程問題、含參問題、定點定值問題、取值范圍問題,通過點的坐標運算解決問題。
5.【導數】
高考在第21題的位置考查一道導數題。主要考查含參數的函數的切線、單調性、最值、零點、不等式證明等問題,並且含參問題一般較難,處於必做題的最後一題。
6.【選做題】
今年高考幾何證明選講已經刪除,選考題只剩兩道,一道是坐標系與參數方程問題,另一道是不等式選講問題。坐標系與參數方程題主要考查曲線的極坐標方程、參數方程、直線參數方程的幾何意義的應用以及范圍的最值問題;不等式選講題主要考查絕對值不等式的化簡,求參數的范圍及不等式的證明。
高中數學知識點總結
一、集合、簡易邏輯(14課時,8個)1.集合;2.子集;3.補集;4.交集;5.並集;6.邏輯連結詞;7.四種命題;8.充要條件.
二、函數(30課時,12個)1.映射;2.函數;3.函數的單調性;4.反函數;5.互為反函數的函數圖象間的關系;6.指數概念的擴充;7.有理指數冪的運算;8.指數函數;9.對數;10.對數的運算性質;11.對數函數.12.函數的應用舉例.
三、數列(12課時,5個)1.數列;2.等差數列及其通項公式;3.等差數列前n項和公式;4.等比數列及其通頂公式;5.等比數列前n項和公式.
四、三角函數(46課時17個)1.角的概念的推廣;2.弧度制;3.任意角的三角函數;4,單位圓中的三角函數線;5.同角三角函數的基本關系式;6.正弦、餘弦的誘導公式』7.兩角和與差的正弦、餘弦、正切;8.二倍角的正弦、餘弦、正切;9.正弦函數、餘弦函數的圖象和性質;10.周期函數;11.函數的奇偶性;12.函數的圖象;13.正切函數的圖象和性質;14.已知三角函數值求角;15.正弦定理;16餘弦定理;17斜三角形解法舉例.
五、平面向量(12課時,8個)1.向量2.向量的加法與減法3.實數與向量的積;4.平面向量的坐標表示;5.線段的定比分點;6.平面向量的數量積;7.平面兩點間的距離;8.平移.
六、不等式(22課時,5個)1.不等式;2.不等式的基本性質;3.不等式的證明;4.不等式的解法;5.含絕對值的不等式.
七、直線和圓的方程(22課時,12個)1.直線的傾斜角和斜率;2.直線方程的點斜式和兩點式;3.直線方程的一般式;4.兩條直線平行與垂直的條件;5.兩條直線的交角;6.點到直線的距離;7.用二元一次不等式表示平面區域;8.簡單線性規劃問題.9.曲線與方程的概念;10.由已知條件列出曲線方程;11.圓的標准方程和一般方程;12.圓的參數方程.
八、圓錐曲線(18課時,7個)1橢圓及其標准方程;2.橢圓的簡單幾何性質;3.橢圓的參數方程;4.雙曲線及其標准方程;5.雙曲線的簡單幾何性質;6.拋物線及其標准方程;7.拋物線的簡單幾何性質.
九、(B)直線、平面、簡單何體(36課時,28個)1.平面及基本性質;2.平面圖形直觀圖的畫法;3.平面直線;4.直線和平面平行的判定與性質;5,直線和平面垂直的判與性質;6.三垂線定理及其逆定理;7.兩個平面的位置關系;8.空間向量及其加法、減法與數乘;9.空間向量的坐標表示;10.空間向量的數量積;11.直線的方向向量;12.異面直線所成的角;13.異面直線的公垂線;14異面直線的距離;15.直線和平面垂直的性質;16.平面的法向量;17.點到平面的距離;18.直線和平面所成的角;19.向量在平面內的射影;20.平面與平面平行的性質;21.平行平面間的距離;22.二面角及其平面角;23.兩個平面垂直的判定和性質;24.多面體;25.稜柱;26.棱錐;27.正多面體;28.球.
十、排列、組合、二項式定理(18課時,8個)1.分類計數原理與分步計數原理.2.排列;3.排列數公式』4.組合;5.組合數公式;6.組合數的兩個性質;7.二項式定理;8.二項展開式的性質.
十一、概率(12課時,5個)1.隨機事件的概率;2.等可能事件的概率;3.互斥事件有一個發生的概率;4.相互獨立事件同時發生的概率;5.獨立重復試驗.選修Ⅱ(24個)
十二、概率與統計(14課時,6個)1.離散型隨機變數的分布列;2.離散型隨機變數的期望值和方差;3.抽樣方法;4.總體分布的估計;5.正態分布;6.線性回歸.
十三、極限(12課時,6個)1.數學歸納法;2.數學歸納法應用舉例;3.數列的極限;4.函數的極限;5.極限的四則運算;6.函數的連續性.
十四、導數(18課時,8個)1.導數的概念;2.導數的幾何意義;3.幾種常見函數的導數;4.兩個函數的和、差、積、商的導數;5.復合函數的導數;6.基本導數公式;7.利用導數研究函數的單調性和極值;8函數的值和最小值.
十五、復數(4課時,4個)1.復數的概念;2.復數的加法和減法;3.復數的乘法和除法答案補充高中數學有130個知識點,從前一份試卷要考查90個知識點,覆蓋率達70%左右,而且把這一項作為衡量試捲成功與否的標准之一.這一傳統近年被打破,取而代之的是關注思維,突出能力,重視思想方法和思維能力的考查.現在的我們學數學比前人幸福啊!!相信對你的學習會有幫助的,祝你成功!答案補充一試全國高中數x的一試競賽大綱,完全按照全日制中學《數學教學大綱》中所規定的教學要求和內容,即高考所規定的知識范圍和方法,在方法的要求上略有提高,其中概率和微積分初步不考。二試1、平面幾何基本要求:掌握初中數學競賽大綱所確定的所有內容。補充要求:面積和面積方法。幾個重要定理:梅涅勞斯定理、塞瓦定理、托勒密定理、西姆松定理。幾個重要的極值:到三角形三頂點距離之和最小的點--費馬點。到三角形三頂點距離的平方和最小的點,重心。三角形內到三邊距離之積的點,重心。幾何不等式。簡單的等周問題。了解下述定理:在周長一定的n邊形的集合中,正n邊形的面積。在周長一定的簡單閉曲線的集合中,圓的面積。在面積一定的n邊形的集合中,正n邊形的周長最小。在面積一定的簡單閉曲線的集合中,圓的周長最小。幾何中的運動:反射、平移、旋轉。復數方法、向量方法。平面凸集、凸包及應用。答案補充第二數學歸納法。遞歸,一階、二階遞歸,特徵方程法。函數迭代,求n次迭代,簡單的函數方程。n個變元的平均不等式,柯西不等式,排序不等式及應用。復數的指數形式,歐拉公式,棣莫佛定理,單位根,單位根的應用。圓排列,有重復的排列與組合,簡單的組合恆等式。一元n次方程(多項式)根的個數,根與系數的關系,實系數方程虛根成對定理。簡單的初等數論問題,除初中大綱中所包括的內容外,還應包括無窮遞降法,同餘,歐幾里得除法,非負最小完全剩餘類,高斯函數,費馬小定理,歐拉函數,孫子定理,格點及其性質。3、立體幾何多面角,多面角的性質。三面角、直三面角的基本性質。正多面體,歐拉定理。體積證法。截面,會作截面、表面展開圖。4、平面解析幾何直線的法線式,直線的極坐標方程,直線束及其應用。二元一次不等式表示的區域。三角形的面積公式。圓錐曲線的切線和法線。圓的冪和根軸。
高中數學知識點總結歸納最新相關 文章 :
★ 高中數學知識點全總結最全版
★ 高中數學知識點最新歸納
★ 高考數學知識點總結最新整理
★ 高中數學考點整理歸納
★ 高中數學知識點全總結
★ 高中數學學習方法:知識點總結最全版
★ 高中高一數學知識點總結
★ 高中數學全部知識點提綱整理
★ 最新高考數學知識點歸納總結
★ 高考數學知識點最新總結
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();