當前位置:首頁 » 基礎知識 » 基礎數學知識歸納總結
擴展閱讀
零基礎學語法什麼書最好 2024-11-13 03:55:23

基礎數學知識歸納總結

發布時間: 2022-12-12 22:01:24

① 初中數學基礎知識點總結

初中數學只要內容是函數的學習,其中重點是二次函數的解法。二次函數在數學中佔有一定地位,甚至以後的數學學習中都會遇到二次函數問題,因此牢牢掌握二次函數的解法對於大家以後數學學習十分有幫助。現在將初中數學重要知識點整理如下,供大家學習。

目錄

有理數

代數式

分式的運算

方程與方程組

有理數

1、數軸:①畫一條水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規定直線上向右的方向為正方向,就得到數軸。②任何一個有理數都可以用數軸上的一個點來表示。③如果兩個數只有符號不同,那麼我們稱其中一個數為另外一個數的相反數,也稱這兩個數互為相反數。在數軸上,表示互為相反數的兩個點,位於原點的兩側,並且與原點距離相等。④數軸上兩個點表示的數,右邊的總比左邊的大。正數大於0,負數小於0,正數大於負數。

2、絕對值:①在數軸上,一個數所對應的點與原點的距離叫做該數的絕對值。②正數的絕對值是他的本身、負數的絕對值是他的相反數、0的絕對值是0。兩個負數比較大小,絕對值大的反而小。

3、有理數的運算:

加法:①同號相加,取相同的符號,把絕對值相加。②異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數的符號,並用較大的絕對值減去較小的絕對值。③一個數與0相加不變。

減法:減去一個數,等於加上這個數的相反數。

乘法:①兩數相乘,同號得正,異號得負,絕對值相乘。②任何數與0相乘得0。③乘積為1的兩個有理數互為倒數。

除法:①除以一個數等於乘以一個數的倒數。②0不能作除數。

乘方:求N個相同因數A的積的運算叫做乘方,乘方的結果叫冪,A叫底數,N叫次數。

混合順序:先算乘法,再算乘除,最後算加減,有括弧要先算括弧里的。

平方根:①如果一個正數X的平方等於A,那麼這個正數X就叫做A的算術平方根。②如果一個數X的平方等於A,那麼這個數X就叫做A的平方根。③一個正數有2個平方根/0的平方根為0/負數沒有平方根。④求一個數A的平方根運算,叫做開平方,其中A叫做被開方數。

立方根:①如果一個數X的立方等於A,那麼這個數X就叫做A的立方根。②正數的立方根是正數、0的立方根是0、負數的立方根是負數。③求一個數A的立方根的運算叫開立方,其中A叫做被開方數。

4、實數:

①實數分有理數和無理數。

②在實數范圍內,相反數,倒數,絕對值的意義和有理數范圍內的相反數,倒數,絕對值的意義完全一樣。

③每一個實數都可以在數軸上的一個點來表示。


代數式

1、合並同類項:①所含字母相同,並且相同字母的指數也相同的項,叫做同類項。②把同類項合並成一項就叫做合並同類項。③在合並同類項時,我們把同類項的系數相加,字母和字母的指數不變。

2、整式與分式,整式:①數與字母的乘積的代數式叫單項式,幾個單項式的和叫多項式,單項式和多項式統稱整式。②一個單項式中,所有字母的指數和叫做這個單項式的次數。③一個多項式中,次數最高的項的次數叫做這個多項式的次數。

3、整式運算:加減運算時,如果遇到括弧先去括弧,再合並同類項。冪的運算:AM+AN=A(M+N)(A/B)N=AN/BN 除法一樣。

整式的乘法:①單項式與單項式相乘,把他們的系數,相同字母的冪分別相乘,其餘字母連同他的指數不變,作為積的因式。②單項式與多項式相乘,就是根據分配律用單項式去乘多項式的每一項,再把所得的積相加。③多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。

公式兩條:平方差公式/完全平方公式

整式的除法:①單項式相除,把系數,同底數冪分別相除後,作為商的因式;對於只在被除式里含有的字母,則連同他的指數一起作為商的一個因式。②多項式除以單項式,先把這個多項式的每一項分別除以單項式,再把所得的商相加。

分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式。

方法 :提公因式法、運用公式法、分組分解法、十字相乘法。

分式:①整式A除以整式B,如果除式B中含有分母,那麼這個就是分式,對於任何一個分式,分母不為0。②分式的分子與分母同乘以或除以同一個不等於0的整式,分式的值不變。


分式的運算

1、乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。

2、除法:除以一個分式等於乘以這個分式的倒數。

3、加減法:①同分母分式相加減,分母不變,把分子相加減。②異分母的分式先通分,化為同分母的分式,再加減。

4、分式方程:①分母中含有未知數的方程叫分式方程。②使方程的分母為0的解稱為原方程的增根。

方程與不等式


方程與方程組

1、一元一次方程:①在一個方程中,只含有一個未知數,並且未知數的指數是1,這樣的方程叫一元一次方程。②等式兩邊同時加上或減去或乘以或除以(不為0)一個代數式,所得結果仍是等式。

2、解一元一次方程的步驟:去分母,移項,合並同類項,未知數系數化為1。

3、二元一次方程:含有兩個未知數,並且所含未知數的項的次數都是1的方程叫做二元一次方程。

4、二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。適合一個二元一次方程的一組未知數的值,叫做這個二元一次方程的一個解。二元一次方程組中各個方程的公共解,叫做這個二元一次方程的解。解二元一次方程組的方法:代入消元法/加減消元法。一元二次方程:只有一個未知數,並且未知數的項的最高系數為2的方程

5、一元二次方程的二次函數的關系

關於二次函數的解法公式其實很簡單,關鍵是我們如何應用這些公式來解答實際問題,這有待於大家在以後學習過程中勤加練習, 總結 經驗 了。


相關 文章 :

1. 初中數學基礎知識點總結

2. 初中數學知識點整理:

3. 初一數學基礎知識有哪些?

4. 初中數學的常考知識點20條

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

② 高一數學基礎知識點總結

學習這件事不在乎有沒有人教你,最重要的是在於你自己有沒有覺悟和恆心。任何科目 學習 方法 其實都是一樣的,不斷的記憶與練習,使知識刻在腦海里。下面是我給大家整理的一些 高一數學 的知識點,希望對大家有所幫助。

高一上冊數學必修一知識點梳理

兩個平面的位置關系:

(1)兩個平面互相平行的定義:空間兩平面沒有公共點

(2)兩個平面的位置關系:

兩個平面平行-----沒有公共點;兩個平 面相 交-----有一條公共直線。

a、平行

兩個平面平行的判定定理:如果一個平面內有兩條相交直線都平行於另一個平面,那麼這兩個平面平行。

兩個平面平行的性質定理:如果兩個平行平面同時和第三個平面相交,那麼交線平行。

b、相交

二面角

(1)半平面:平面內的一條直線把這個平面分成兩個部分,其中每一個部分叫做半平面。

(2)二面角:從一條直線出發的兩個半平面所組成的圖形叫做二面角。二面角的取值范圍為[0°,180°]

(3)二面角的棱:這一條直線叫做二面角的棱。

(4)二面角的面:這兩個半平面叫做二面角的面。

(5)二面角的平面角:以二面角的棱上任意一點為端點,在兩個面內分別作垂直於棱的兩條射線,這兩條射線所成的角叫做二面角的平面角。

(6)直二面角:平面角是直角的二面角叫做直二面角。

esp.兩平面垂直

兩平面垂直的定義:兩平面相交,如果所成的角是直二面角,就說這兩個平面互相垂直。記為⊥

兩平面垂直的判定定理:如果一個平面經過另一個平面的一條垂線,那麼這兩個平面互相垂直

兩個平面垂直的性質定理:如果兩個平面互相垂直,那麼在一個平面內垂直於交線的直線垂直於另一個平面。

高一數學必修五知識點 總結

⑴公差為d的等差數列,各項同加一數所得數列仍是等差數列,其公差仍為d.

⑵公差為d的等差數列,各項同乘以常數k所得數列仍是等差數列,其公差為kd.

⑶若{a}、{b}為等差數列,則{a±b}與{ka+b}(k、b為非零常數)也是等差數列.

⑷對任何m、n,在等差數列{a}中有:a=a+(n-m)d,特別地,當m=1時,便得等差數列的通項公式,此式較等差數列的通項公式更具有一般性.

⑸、一般地,如果l,k,p,…,m,n,r,…皆為自然數,且l+k+p+…=m+n+r+…(兩邊的自然數個數相等),那麼當{a}為等差數列時,有:a+a+a+…=a+a+a+….

⑹公差為d的等差數列,從中取出等距離的項,構成一個新數列,此數列仍是等差數列,其公差為kd(k為取出項數之差).

⑺如果{a}是等差數列,公差為d,那麼,a,a,…,a、a也是等差數列,其公差為-d;在等差數列{a}中,a-a=a-a=md.(其中m、k、)

⑻在等差數列中,從第一項起,每一項(有窮數列末項除外)都是它前後兩項的等差中項.

⑼當公差d>0時,等差數列中的數隨項數的增大而增大;當d<0時,等差數列中的數隨項數的減少而減小;d=0時,等差數列中的數等於一個常數.

⑽設a,a,a為等差數列中的三項,且a與a,a與a的項距差之比=(≠-1),則a=.

⑴數列{a}為等差數列的充要條件是:數列{a}的前n項和S可以寫成S=an+bn的形式(其中a、b為常數).

⑵在等差數列{a}中,當項數為2n(nN)時,S-S=nd,=;當項數為(2n-1)(n)時,S-S=a,=.

⑶若數列{a}為等差數列,則S,S-S,S-S,…仍然成等差數列,公差為.

⑷若兩個等差數列{a}、{b}的前n項和分別是S、T(n為奇數),則=.

⑸在等差數列{a}中,S=a,S=b(n>m),則S=(a-b).

⑹等差數列{a}中,是n的一次函數,且點(n,)均在直線y=x+(a-)上.

⑺記等差數列{a}的前n項和為S.①若a>0,公差d<0,則當a≥0且a≤0時,S;②若a<0,公差d>0,則當a≤0且a≥0時,S最小.

高一 數學學習方法

1、培養良好的學習習慣。

(1)制定計劃明確學習目的。合理的 學習計劃 是推動我們主動學習和克服困難的內在動力。計劃先由老師指導督促,再一定要由自己切實完成,既有長遠打算,又有短期安排,執行過程中嚴格要求自己,磨煉學習意志。

(2) 課前預習 是取得較好學習效果的基礎。課前預習不僅能培養自學能力,而且能提高學習新課的興趣,掌握學習的主動權。預習不能搞走過場,要講究質量,力爭在課前把教材弄懂,上課著重聽老師講思路,把握重點,突破難點,盡可能把問題解決在課堂上。

(3)上課是理解和掌握基本知識、基本技能和基本方法的關鍵環節。學然後知不足,上課更能專心聽重點難點,把老師補充的內容記錄下來,而不是全抄全錄,顧此失彼。

(4)及時復習是提高效率學習的重要一環。通過反復閱讀教材,多方面查閱有關資料,強化對基本概念知識體系的理解與記憶,將所學的新知識與有關舊知識聯系起來,進行分析比效,一邊復習一邊將復習成果整理在 筆記本 上,使對所學的新知識由懂到會。

(5)獨立作業是通過自己的獨立思考,靈活地分析問題、解決問題,進一步加深對所學新知識的理解和對新技能的掌握過程。這一過程也是對我們意志毅力的考驗,通過運用使我們對所學知識由會到熟。

(6)解決疑難是指對獨立完成作業過程中暴露出來對知識理解的錯誤,或由於思維受阻遺漏解答,通過點撥使思路暢通,補遺解答的過程。解決疑難一定要有鍥而不舍的精神。做錯的作業再做一遍。對錯誤的地方沒弄清楚要反復思考。實在解決不了的要請教老師和同學,並要經常把易錯的地方拿來復習強化,作適當的重復性練習,把求老師問同學獲得的東西消化變成自己的知識,長期堅持使對所學知識由熟到活。

(7)系統小結是通過積極思考,達到全面系統深刻地掌握知識和發展認識能力的重要環節。小結要在系統復習的基礎上以教材為依據,參照筆記與資料,通過分析、綜合、類比、概括,揭示知識間的內在聯系,以達到對所學知識融會貫通的目的。經常進行多層次小結,能對所學知識由活到悟。

(8)課外學習包括閱讀課外書籍與報刊,參加學科競賽與講座,走訪高年級同學或老師交流 學習心得 等。課外學習是課內學習的補充和繼續,它不僅能豐富同學們的 文化 科學知識,加深和鞏固課內所學的知識,而且能夠滿足和發展我們的 興趣 愛好 ,培養獨立學習和工作的能力,激發求知慾與學習熱情。


高一數學基礎知識點總結相關 文章 :

★ 高一數學知識點新總結

★ 高一數學知識點小歸納

★ 高中數學基礎知識點總結

★ 高一數學基礎知識學習方法歸納

★ 高一數學集合知識點匯總

★ 高一數學知識點總結歸納

★ 高一數學知識點總結

★ 高一數學常考知識點總結

★ 高一數學知識點總結下冊

★ 高一數學必修一知識點匯總

③ 初中數學基礎知識整理歸納

數學,是一門關於如何思維的科學,也就是教給我們如何分析和解決事物之間數量與數量的關系,分析和解決點與線、線與線在空間之間的關系。下面給大家帶來一些關於初中基礎知識整理歸納,希望對大家有所幫助。

初中數學基礎知識整理歸納1

一元一次方程根的情況

△=b2-4ac

當△>0時,一元二次方程有2個不相等的實數根;

當△=0時,一元二次方程有2個相同的實數根;

當△<0時,一元二次方程沒有實數根< span="">

初中數學基礎知識整理歸納2

平行四邊形的性質:

①兩組對邊分別平行的四邊形叫做平行四邊形。

②平行四邊形不相鄰的兩個頂點連成的線段叫他的對角線。

③平行四邊形的對邊/對角相等。

④平行四邊形的對角線互相平分。

菱形:①一組鄰邊相等的平行四邊形是菱形

②領心的四條邊相等,兩條對角線互相垂直平分,每一組對角線平分一組對角。

③判定條件:定義/對角線互相垂直的平行四邊形/四條邊都相等的四邊形。

矩形與正方形:

①有一個內角是直角的平行四邊形叫做矩形。

②矩形的對角線相等,四個角都是直角。

③對角線相等的平行四邊形是矩形。

④正方形具有平行四邊形,矩形,菱形的一切性質。

⑤一組鄰邊相等的矩形是正方形。

多邊形:

①N邊形的內角和等於(N-2)180度

②多邊形內角的一邊與另一邊的反向延長線所組成的角叫做這個多邊形的外角,在每個頂點處取這個多邊形的一個外角,他們的和叫做這個多邊形的內角和(都等於360度)

平均數:對於N個數X1,X2…XN,我們把(X1+X2+…+XN)/N叫做這個N個數的算術平均數,記為X

加權平均數:一組數據里各個數據的重要程度未必相同,因而,在計算這組數據的平均數時往往給每個數據加一個權,這就是加權平均數。

初中數學基礎知識整理歸納3

常用數學公式

公式分類 公式表達式

乘法與因式分解 a2-b2=(a+b)(a-b)

a3+b3=(a+b)(a2-ab+b2)

a3-b3=(a-b(a2+ab+b2)

一元二次方程的解 -b+√(b2-4ac)/2a

-b-√(b2-4ac)/2a

根與系數的關系 X1+X2=-b/a

X1-X2=c/a 註:韋達定理

某些數列前n項和

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2

1+3+5+7+9+11+13+15+…+(2n-1)=n2

2+4+6+8+10+12+14+…+(2n)=n(n+1)

12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

13+23+33+43+53+63+…n3=n2(n+1)2/4

1-2+2-3+3-4+4-5+5-6+6-7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理 a/sinA=b/sinB=c/sinC=2R

註:其中 R 表示三角形的外接圓半徑

餘弦定理 b2=a2+c2-2accosB

註:角B是邊a和邊c的夾角

初中數學基礎知識整理歸納4

有理數大小比較:

1.有理數的大小比較

比較有理數的大小可以利用數軸,他們從左到有的順序,即從大到小的順序(在數軸上表示的兩個有理數,右邊的數總比左邊的數大);也可以利用數的性質比較異號兩數及0的大小,利用絕對值比較兩個負數的大小。

2.有理數大小比較的法則:

①正數都大於0;

②負數都小於0;

③正數大於一切負數;

④兩個負數,絕對值大的其值反而小。

有理數大小比較的三種 方法 :

1.法則比較:正數都大於0,負數都小於0,正數大於一切負數.兩個負數比較大小,絕對值大的反而小。

2.數軸比較:在數軸上右邊的點表示的數大於左邊的點表示的數。

3.作差比較:

若a﹣b>0,則a>b;

若a﹣b<0,則a

若a﹣b=0,則a=b。


初中數學基礎知識整理歸納相關 文章 :

★ 初中數學基礎知識點歸納總結

★ 初中數學基礎知識點總結

★ 初中數學知識點整理:

★ 初中數學知識點總結歸納

★ 初中數學知識點整理

★ 初中數學知識點總結

★ 2020初中數學知識點總結歸納

★ 初三數學知識點考點歸納總結

★ 2020最新初中數學知識點總結

★ 初中七年級數學知識點歸納整理

④ 數學知識點總結

數學集合知識點總結

集合是高中數學中的一個重要考點,相關的知識掌握並不是十分的難,下面是我想跟大家分享的數學集合知識點總結,歡迎大家瀏覽。

數學知識點總結1

一、知識歸納:

1、集合的有關概念。

1)集合(集):某些指定的對象集在一起就成為一個集合(集)、其中每一個對象叫元素

注意:

①集合與集合的元素是兩個不同的概念,教科書中是通過描述給出的,這與平面幾何中的點與直線的概念類似。

②集合中的元素具有確定性(a?A和a?A,二者必居其一)、互異性(若a?A,b?A,則a≠b)和無序性({a,b}與{b,a}表示同一個集合)。

③集合具有兩方面的意義,即:凡是符合條件的對象都是它的元素;只要是它的元素就必須符號條件

2)集合的表示方法:常用的有列舉法、描述法和圖文法

3)集合的分類:有限集,無限集,空集。

4)常用數集:N,Z,Q,R,N*

2、子集、交集、並集、補集、空集、全集等概念。

1)子集:若對x∈A都有x∈B,則A B(或A B);

2)真子集:A B且存在x0∈B但x0 A;記為A B(或 ,且 )

3)交集:A∩B={x| x∈A且x∈B}

4)並集:A∪B={x| x∈A或x∈B}

5)補集:CUA={x| x A但x∈U}

注意:

①? A,若A≠?,則? A ;

②若 , ,則 ;

③若 且 ,則A=B(等集)

3、弄清集合與元素、集合與集合的關系,掌握有關的術語和符號,特別要注意以下的符號:

(1) 與 、?的區別;

(2) 與 的區別;

(3) 與 的區別。

4、有關子集的幾個等價關系

①A∩B=A A B;②A∪B=B A B;③A B C uA C uB;

④A∩CuB = 空集 CuA B;⑤CuA∪B=I A B。

5、交、並集運算的性質

①A∩A=A,A∩? = ?,A∩B=B∩A;②A∪A=A,A∪? =A,A∪B=B∪A;

③Cu (A∪B)= CuA∩CuB,Cu (A∩B)= CuA∪CuB;

6、有限子集的個數:設集合A的元素個數是n,則A有2n個子集,2n—1個非空子集,2n—2個非空真子集。

二、例題講解:

【例1】已知集合M={x|x=m+ ,m∈Z},N={x|x= ,n∈Z},P={x|x= ,p∈Z},則M,N,P滿足關系

A) M=N P B) M N=P C) M N P D) N P M

分析一:從判斷元素的共性與區別入手。

解答一:對於集合M:{x|x= ,m∈Z};對於集合N:{x|x= ,n∈Z}

對於集合P:{x|x= ,p∈Z},由於3(n—1)+1和3p+1都表示被3除餘1的數,而6m+1表示被6除餘1的數,所以M N=P,故選B。

分析二:簡單列舉集合中的元素。

解答二:M={…, ,…},N={…, , , ,…},P={…, , ,…},這時不要急於判斷三個集合間的關系,應分析各集合中不同的元素。

= ∈N, ∈N,∴M N,又 = M,∴M N,

= P,∴N P 又 ∈N,∴P N,故P=N,所以選B。

點評:由於思路二隻是停留在最初的歸納假設,沒有從理論上解決問題,因此提倡思路一,但思路二易人手。

變式:設集合 , ,則( B )

A、M=N B、M N C、N M

解:

當 時,2k+1是奇數,k+2是整數,選B

【例2】定義集合A*B={x|x∈A且x B},若A={1,3,5,7},B={2,3,5},則A*B的子集個數為

A)1 B)2 C)3 D)4

分析:確定集合A*B子集的個數,首先要確定元素的個數,然後再利用公式:集合A={a1,a2,…,an}有子集2n個來求解。

解答:∵A*B={x|x∈A且x B}, ∴A*B={1,7},有兩個元素,故A*B的子集共有22個。選D。

變式1:已知非空集合M {1,2,3,4,5},且若a∈M,則6?a∈M,那麼集合M的個數為

A)5個 B)6個 C)7個 D)8個

變式2:已知{a,b} A {a,b,c,d,e},求集合A。

解:由已知,集合中必須含有元素a,b。

集合A可能是{a,b},{a,b,c},{a,b,d},{a,b,e},{a,b,c,d},{a,b,c,e},{a,b,d,e}。

評析 本題集合A的個數實為集合{c,d,e}的真子集的個數,所以共有 個 。

【例3】已知集合A={x|x2+px+q=0},B={x|x2?4x+r=0},且A∩B={1},A∪B={?2,1,3},求實數p,q,r的值。

解答:∵A∩B={1} ∴1∈B ∴12?4×1+r=0,r=3。

∴B={x|x2?4x+r=0}={1,3}, ∵A∪B={?2,1,3},?2 B, ∴?2∈A

∵A∩B={1} ∴1∈A ∴方程x2+px+q=0的兩根為—2和1,

∴ ∴

變式:已知集合A={x|x2+bx+c=0},B={x|x2+mx+6=0},且A∩B={2},A∪B=B,求實數b,c,m的值。

解:∵A∩B={2} ∴1∈B ∴22+m?2+6=0,m=—5

∴B={x|x2—5x+6=0}={2,3} ∵A∪B=B ∴

又 ∵A∩B={2} ∴A={2} ∴b=—(2+2)=4,c=2×2=4

∴b=—4,c=4,m=—5

【例4】已知集合A={x|(x—1)(x+1)(x+2)>0},集合B滿足:A∪B={x|x>—2},且A∩B={x|1

分析:先化簡集合A,然後由A∪B和A∩B分別確定數軸上哪些元素屬於B,哪些元素不屬於B。

解答:A={x|—21}。由A∩B={x|1—2}可知[—1,1] B,而(—∞,—2)∩B=ф。

綜合以上各式有B={x|—1≤x≤5}

變式1:若A={x|x3+2x2—8x>0},B={x|x2+ax+b≤0},已知A∪B={x|x>—4},A∩B=Φ,求a,b。(答案:a=—2,b=0)

點評:在解有關不等式解集一類集合問題,應注意用數形結合的方法,作出數軸來解之。

變式2:設M={x|x2—2x—3=0},N={x|ax—1=0},若M∩N=N,求所有滿足條件的a的集合。

解答:M={—1,3} , ∵M∩N=N, ∴N M

①當 時,ax—1=0無解,∴a=0 ②

綜①②得:所求集合為{—1,0, }

【例5】已知集合 ,函數y=log2(ax2—2x+2)的定義域為Q,若P∩Q≠Φ,求實數a的取值范圍。

分析:先將原問題轉化為不等式ax2—2x+2>0在 有解,再利用參數分離求解。

解答:(1)若 , 在 內有有解

令 當 時,

所以a>—4,所以a的取值范圍是

變式:若關於x的方程 有實根,求實數a的取值范圍。

解答:

點評:解決含參數問題的題目,一般要進行分類討論,但並不是所有的問題都要討論,怎樣可以避免討論是我們思考此類問題的關鍵。

數學知識點總結2

一、集合與函數概念

1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。

2、集合的中元素的三個特性:元素的確定性;元素的互異性;元素的無序性。

集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬於集合A記作a∈A,相反,a不屬於集合A

列舉法:把集合中的元素一一列舉出來,然後用一個大括弧括上。

描述法:將集合中的元素的公共屬性描述出來,寫在大括弧內表示集合的方法。用確定的條件表示某些對象是否屬於這個集合的方法。

①語言描述法:例:{不是直角三角形的三角形}

②數學式子描述法

二、函數的有關概念

1、函數的概念:設A、B是非空的數集,如果按照某個確定的對應關系f,使對於集合A中的任意一個數x,在集合B中都有唯一確定的數f(x)和它對應,那麼就稱f:A→B為從集合A到集合B的一個函數。記作:y=f(x),x∈A。其中,x叫做自變數,x的取值范圍A叫做函數的定義域;與x的值相對應的y值叫做函數值,函數值的集合{f(x)| x∈A }叫做函數的.值域。

一般地,設A、B是兩個非空的集合,如果按某一個確定的對應法則f,使對於集合A中的任意一個元素x,在集合B中都有唯一確定的元素y與之對應,那麼就稱對應f:A B為從集合A到集合B的一個映射。記作「f:A B」

給定一個集合A到B的映射,如果a∈A,b∈B。且元素a和元素b對應,那麼,我們把元素b叫做元素a的象,元素a叫做元素b的原象

說明:函數是一種特殊的映射,映射是一種特殊的對應,

①集合A、B及對應法則f是確定的;

②對應法則有「方向性」,即強調從集合A到集合B的對應,它與從B到A的對應關系一般是不同的;

③對於映射f:A→B來說,則應滿足:

(Ⅰ)集合A中的每一個元素,在集合B中都有象,並且象是唯一的;

(Ⅱ)集合A中不同的元素,在集合B中對應的象可以是同一個;

(Ⅲ)不要求集合B中的每一個元素在集合A中都有原象。

拓展閱讀:學習數學的方法

第一、興趣。

如今的家庭和學校對孩子的期望很高,而且女生的性格普遍較為文靜,心理不夠強大,還有的就是數學這科目難度相對來說較高,很容易會導致女生對數學的興趣降低。

所以說,作為老師應該多關心她們的學習情況,多與她們交流科目上的內容,了解她們的想法,只有理解她們的想法才能有效的制定相應的學習計劃,為她們驅除緊張的情緒,從而達到一個好的學習狀態。與此同時,作為家長的應該多關心孩子的情況,不要一看到成績不好就開口訓斥,這樣對孩子的心理會造成一定的影響,甚至可能削弱孩子對數學的興趣。我們應該用積極的態度去對待孩子的學習,女生的情感與男生不同,她們對於感興趣的,一般會更有耐心克服困難,達到自己的目標。

第二、自信。

女生的形象思維能力一般比男生要差,邏輯思維能力也如此,所以容易造成沒有信心的現象。事實上,女生在運算準確率方面是很高的,也比較規范,所以我們看到女生的數學答題大都很工整,其實這是一個優點。

所謂每個人都有優缺點,我們不應該因為自己的缺點而妄自菲薄,而是應該努力克服缺點,增強自己的自信心,在學習上應該多了解通解通法,還有一些常用的數學公式,解題技巧,還有解題速度。很多女生解數學題的速度都不快,甚至有些女生到時間了還有幾道大題沒做,這樣丟分是讓人很遺憾的。

第三、學習方法。

很多女生在學習數學的時候喜歡按部就班,注重基礎,但是卻很少做難題,所以便導致了解題能力薄弱。女生上課的時候很認真,復習的時候喜歡看筆記和書本,但是卻忽視了對自己能力的訓練,所以導致了自己適應性比較差。

所以,女生應該從這幾點下手,多下功夫,對於難題我們不要害怕,但是也不能一味地做難題,適當的訓練,對於自己的數學能力是有很大提升的。還有,女生在學習數學的時候應該多向男生學習,學習他們的一些優秀技巧,進而轉化為自己的學習技巧,結合在做題上,多訓練,相信對自己的數學水平是有很大幫助的。

第四、課前預習。

正所謂「笨鳥先飛」,我們經過預習可以提前對新內容有一個大概的了解,從而在聽課的時候能夠有的放矢,對自己不了解的知識點著重注意,很可能會有奇效。而提前預習,還能對女生的心理有一個暗示,對女生的信心提高也是有極大的好處。

;

⑤ 初一數學基礎知識點

學習這件事不在乎有沒有人教你,最重要的是在於你自己有沒有覺悟和恆心。任何科目 學習 方法 其實都是一樣的,不斷的記憶與練習,使知識刻在腦海里。下面是我給大家整理的一些初一數學的知識點,希望對大家有所幫助。

七年級數學 知識點

【生活中的軸對稱】

1、軸對稱圖形:如果一個圖形沿一條直線折疊後,直線兩旁的部分能夠完全重合,那麼這個圖形叫做軸對稱圖形,這條直線叫做對稱軸。

2、軸對稱:對於兩個圖形,如果沿一條直線對折後,它們能互相重合,那麼稱這兩個圖形成軸對稱,這條直線就是對稱軸。可以說成:這兩個圖形關於某條直線對稱。

3、軸對稱圖形與軸對稱的區別:軸對稱圖形是一個圖形,軸對稱是兩個圖形的關系。

聯系:它們都是圖形沿某直線折疊可以相互重合。

2、成軸對稱的兩個圖形一定全等。

3、全等的兩個圖形不一定成軸對稱。

4、對稱軸是直線。

5、角平分線的性質

1、角平分線所在的直線是該角的對稱軸。

2、性質:角平分線上的點到這個角的兩邊的距離相等。

6、線段的垂直平分線

1、垂直於一條線段並且平分這條線段的直線叫做這條線段的垂直平分線,又叫線段的中垂線。

2、性質:線段垂直平分線上的點到這條線段兩端點的距離相等。

7、軸對稱圖形有:

等腰三角形(1條或3條)、等腰梯形(1條)、長方形(2條)、菱形(2條)、正方形(4條)、圓(無數條)、線段(1條)、角(1條)、正五角星。

8、等腰三角形性質:

①兩個底角相等。②兩個條邊相等。③「三線合一」。④底邊上的高、中線、頂角的平分線所在直線是它的對稱軸。

9、①「等角對等邊」∵∠B=∠C∴AB=AC

②「等邊對等角」∵AB=AC∴∠B=∠C

10、角平分線性質:

角平分線上的點到角兩邊的距離相等。

∵OA平分∠CADOE⊥AC,OF⊥AD∴OE=OF

11、垂直平分線性質:垂直平分線上的點到線段兩端點的距離相等。

∵OC垂直平分AB∴AC=BC

12、軸對稱的性質

1、兩個圖形沿一條直線對折後,能夠重合的點稱為對應點(對稱點),能夠重合的線段稱為對應線段,能夠重合的角稱為對應角。2、關於某條直線對稱的兩個圖形是全等圖形。

2、如果兩個圖形關於某條直線對稱,那麼對應點所連的線段被對稱軸垂直平分。

3、如果兩個圖形關於某條直線對稱,那麼對應線段、對應角都相等。

13、鏡面對稱

1.當物體正對鏡面擺放時,鏡面會改變它的左右方向;

2.當垂直於鏡面擺放時,鏡面會改變它的上下方向;

3.如果是軸對稱圖形,當對稱軸與鏡面平行時,其鏡子中影像與原圖一樣;

學生通過討論,可能會找出以下解決物體與像之間相互轉化問題的辦法:

(1)利用鏡子照(注意鏡子的位置擺放);(2)利用軸對稱性質;

(3)可以把數字左右顛倒,或做簡單的軸對稱圖形;

(4)可以看像的背面;(5)根據前面的結論在頭腦中想像。

初一下冊數學《三角形》知識點

一、目標與要求

1.認識三角形,了解三角形的意義,認識三角形的邊、內角、頂點,能用符號語言表示三角形。

2.經歷度量三角形邊長的實踐活動中,理解三角形三邊不等的關系。

3.懂得判斷三條線段可否構成一個三角形的方法,並能運用它解決有關的問題。

4.三角形的內角和定理,能用平行線的性質推出這一定理。

5.能應用三角形內角和定理解決一些簡單的實際問題。

二、重點

三角形內角和定理;

對三角形有關概念的了解,能用符號語言表示三條形。

三、難點

三角形內角和定理的推理的過程;

在具體的圖形中不重復,且不遺漏地識別所有三角形;

用三角形三邊不等關系判定三條線段可否組成三角形。

四、知識框架

五、知識點、概念 總結

1.三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。

2.三角形的分類

3.三角形的三邊關系:三角形任意兩邊的和大於第三邊,任意兩邊的差小於第三邊。

4.高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。

5.中線:在三角形中,連接一個頂點和它的對邊中點的線段叫做三角形的中線。

6.角平分線:三角形的一個內角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。

7.高線、中線、角平分線的意義和做法

8.三角形的穩定性:三角形的形狀是固定的,三角形的這個性質叫三角形的穩定性。

9.三角形內角和定理:三角形三個內角的和等於180°

推論1直角三角形的兩個銳角互余;

推論2三角形的一個外角等於和它不相鄰的兩個內角和;

推論3三角形的一個外角大於任何一個和它不相鄰的內角;

三角形的內角和是外角和的一半。

10.三角形的外角:三角形的一條邊與另一條邊延長線的夾角,叫做三角形的外角。

11.三角形外角的性質

(1)頂點是三角形的一個頂點,一邊是三角形的一邊,另一邊是三角形的一邊的延長線;

(2)三角形的一個外角等於與它不相鄰的兩個內角和;

(3)三角形的一個外角大於與它不相鄰的任一內角;

(4)三角形的外角和是360°。

12.多邊形:在平面內,由一些線段首尾順次相接組成的圖形叫做多邊形。

13.多邊形的內角:多邊形相鄰兩邊組成的角叫做它的內角。

14.多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角。

15.多邊形的對角線:連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線。

16.多邊形的分類:分為凸多邊形及凹多邊形,凸多邊形又可稱為平面多邊形,凹多邊形又稱空間多邊形。多邊形還可以分為正多邊形和非正多邊形。正多邊形各邊相等且各內角相等。

17.正多邊形:在平面內,各個角都相等,各條邊都相等的多邊形叫做正多邊形。

18.平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面。

初一 數學學習方法

一預習

對於理科學習,預習是必不可少的。我們在預習中,應該把書上的內容看一遍,盡力去理解,對解決不了的問題適當作出標記,請教老師或課上聽講解決,並試著做一做書後的習題檢驗預習效果。

二聽講

這一環節最為重要,因為老師把知識的精華都濃縮在課堂上,聽數學課時應做到抓住老師講題的思路,方法。有問題記下來,課下整理,解決,數學課上一定要積極思考,跟著老師的思路走。

三復習

體會老師課上的例題,整理思維,想想自己是怎麼想的,與老師的思路有何異同,想想每一道題的考點,並試著一題多解,做到舉一反三。

四作業

認真完成老師留的習題,適當挑選一些課外習題作為練習,但切忌一味追求偏題,怪題,更不要打「題海戰術」。

五總結

這一步是為了更好的掌握所學知識。在學完一段知識或做了一道典型題後可總結:總結專題的數學知識;總結自己卡殼的地方;總結自己是怎麼錯的,錯在哪裡,總結題目的「陷阱」設在哪裡及總結自己或他人的想法。

如何挑選及處理習題

一市面上的習題集數不勝數,大多數的習題集互相抄襲,漏洞百出,使同學在練習的過程中費時費力。我認為歷的考試真題是的習題,它緊扣考試大綱,難度適中,不會出現偏題怪題的現象。同時也使同學們緊緊的把握考試的方向,少走彎路。

二有的同學喜歡「題海戰術」拿題就做,從不總結,感覺作的越多,成績越高。這是學習數學的弊端之一。

要記住:題不在於多而在於精。作題是必不可少的,但作完每一道題都要認真的 反思 ,這道題的考點是什麼,這道題的解題方法有多少種,哪種方法最簡便,對於作錯的習題要反復的思考,找出錯誤的原因,確保該知識點的熟練掌握。

三很多同學喜歡作偏題,難題。但卻疏忽了對書本中的定義,概念及公式的理解。從而導致了在考試中經常出現「基本題」失誤的現象。

因此,在平時的數學練習中,要對書中的每一個知識點都要深刻的理解,找出可能出現的考點,陷阱。在考試中則要做到「基本題全作對,穩作中檔題一分不浪費,盡力沖擊高檔題,即使錯了不後悔。」


初一數學基礎知識點相關 文章 :

★ 初中數學基礎知識整理歸納

★ 初一數學基礎知識有哪些?

★ 初一數學上冊知識點

★ 人教版初一數學知識點整理

★ 初中數學基礎知識點歸納總結

★ 初一數學上冊知識點歸納

★ 初中數學基礎知識點總結

★ 初一數學課本知識點總結

★ 初一數學知識點整理

★ 初一數學知識點歸納與學習方法

⑥ 小學數學基礎知識點整理

小學數學知識點有哪些?哪些基礎知識是我們一定要整理的?下面是我為大家整理的關於小學數學基礎知識點整理,希望對您有所幫助。歡迎大家閱讀參考學習!

小學數學基礎知識整理(一到六年級)

小學一年級 初步認識加減法。學會基礎加減。

小學二年級 完善加減法,表內乘法,學會應用題,基礎幾何圖形。

小學三年級 學會萬以內加減法,長度單位和質量單位,倍數的認知,多位數乘一位數,時間量及單位。長方形和正方形幾何圖形、分數的初步認識。

小學四年級 億萬數的認識、面積單位(公頃和平方千米)、角的度量,兩位數的乘數法、平行四邊形和梯形幾何圖形及條形統計圖的了解。

小學五年級 小數乘除法,簡易方程運算,圖形面積計算,可能性和植樹問題了解。

小學六年級 掌握分數乘除法,比和百分數,圓和扇形。

必背定義、定理公式

三角形的面積=底×高÷2。 公式 S= a×h÷2

正方形的面積=邊長×邊長 公式 S= a×a

長方形的面積=長×寬 公式 S= a×b

平行四邊形的面積=底×高 公式 S= a×h

梯形的面積=(上底+下底)×高÷2 公式 S=(a+b)h÷2

內角和:三角形的內角和=180度。

長方體的體積=長×寬×高 公式:V=abh

長方體(或正方體)的體積=底面積×高 公式:V=abh

正方體的體積=棱長×棱長×棱長 公式:V=aaa

圓的周長=直徑×π 公式:L=πd=2πr

圓的面積=半徑×半徑×π 公式:S=πr2

圓柱的表(側)面積:圓柱的表(側)面積等於底面的周長乘高。公式:S=ch=πdh=2πrh

圓柱的表面積:圓柱的表面積等於底面的周長乘高再加上兩頭的圓的面積。公式:S=ch+2s=ch+2πr2

圓柱的體積:圓柱的體積等於底面積乘高。公式:V=Sh

圓錐的體積=1/3底面×積高。公式:V=1/3Sh

分數的加、減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。

分數的乘法則:用分子的積做分子,用分母的積做分母。

分數的除法則:除以一個數等於乘以這個數的倒數。

定義定理性質公式

1、加法交換律:兩數相加交換加數的位置,和不變。

2、加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第三個數相加,和不變。

3、乘法交換律:兩數相乘,交換因數的位置,積不變。

4、乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。

5、乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。如:(2+4)×5=2×5+4×5

6、除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。 0除以任何不是0的數都得0。

簡便乘法:被乘數、乘數末尾有0的乘法,可以先把0前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。

7、什麼叫等式?等號左邊的數值與等號右邊的數值相等的式子叫做等式。

等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,等式仍然成立。

8、什麼叫方程式?答:含有未知數的等式叫方程式。

9、 什麼叫一元一次方程式?答:含有一個未知數,並且未知數的次 數是一次的等式叫做一元一次方程式。

學會一元一次方程式的例法及計算。即例出代有χ的算式並計算。

10、分數:把單位"1"平均分成若干份,表示這樣的一份或幾分的數,叫做分數。

11、分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。

12、分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。異分母的分數相比較,先通分然後再比較;若分子相同,分母大的反而小。

13、分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。

14、分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。

15、分數除以整數(0除外),等於分數乘以這個整數的倒數。

16、真分數:分子比分母小的分數叫做真分數。

17、假分數:分子比分母大或者分子和分母相等的分數叫做假分數。假分數大於或等於1。

18、帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。

19、分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小不變。

20、一個數除以分數,等於這個數乘以分數的倒數。

21、甲數除以乙數(0除外),等於甲數乘以乙數的倒數。

數量關系計算公式方面

1、單價×數量=總價

2、單產量×數量=總產量

3、速度×時間=路程

4、工效×時間=工作總量

5、加數+加數=和 一個加數=和+另一個加數

被減數-減數=差 減數=被減數-差 被減數=減數+差

因數×因數=積 一個因數=積÷另一個因數

被除數÷除數=商 除數=被除數÷商 被除數=商×除數

有餘數的除法: 被除數=商×除數+余數

一個數連續用兩個數除,可以先把後兩個數相乘,再用它們的積去除這個數,結果不變。例:90÷5÷6=90÷(5×6)

6、 1公里=1千米 1千米=1000米

1米=10分米 1分米=10厘米 1厘米=10毫米

1平方米=100平方分米 1平方分米=100平方厘米

1平方厘米=100平方毫米

1立方米=1000立方分米 1立方分米=1000立方厘米

1立方厘米=1000立方毫米

1噸=1000千克 1千克= 1000克= 1公斤= 1市斤

1公頃=10000平方米。 1畝=666.666平方米。

1升=1立方分米=1000毫升 1毫升=1立方厘米

7、什麼叫比:兩個數相除就叫做兩個數的比。如:2÷5或3:6或1/3

比的前項和後項同時乘以或除以一個相同的數(0除外),比值不變。

8、什麼叫比例:表示兩個比相等的式子叫做比例。如3:6=9:18

9、比例的基本性質:在比例里,兩外項之積等於兩內項之積。

10、解比例:求比例中的未知項,叫做解比例。如3:χ=9:18

11、正比例:兩種相關聯的量,一種量變化,另一種量也隨著化,如果這兩種量中相對應的的比值(也就是商k)一定,這兩種量就叫做成正比例的量,它們的關系就叫做正比例關系。如:y/x=k( k一定)或kx=y

12、反比例:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,它們的關系就叫做反比例關系。如:x×y = k( k一定)或k / x = y

百分數:表示一個數是另一個數的百分之幾的數,叫做百分數。百分數也叫做百分率或百分比。

13、把小數化成百分數,只要把小數點向右移動兩位,同時在後面添上百分號。其實,把小數化成百分數,只要把這個小數乘以100%就行了。

把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。

14、把分數化成百分數,通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。其實,把分數化成百分數,要先把分數化成小數後,再乘以100%就行了。

把百分數化成分數,先把百分數改寫成分數,能約分的要約成最簡分數。

15、要學會把小數化成分數和把分數化成小數的化發。

16、最大公約數:幾個數都能被同一個數一次性整除,這個數就叫做這幾個數的最大公約數。(或幾個數公有的約數,叫做這幾個數的公約數。其中最大的一個,叫做最大公約數。)

17、互質數: 公約數只有1的兩個數,叫做互質數。

18、最小公倍數:幾個數公有的倍數,叫做這幾個數的公倍數,其中最小的一個叫做這幾個數的最小公倍數。

19、通分:把異分母分數的分別化成和原來分數相等的同分母的分數,叫做通分。(通分用最小公倍數)

20、約分:把一個分數化成同它相等,但分子、分母都比較小的分數,叫做約分。(約分用最大公約數)

21、最簡分數:分子、分母是互質數的分數,叫做最簡分數。

分數計算到最後,得數必須化成最簡分數。

個位上是0、2、4、6、8的數,都能被2整除,即能用2進行約分。個位上是0或者5的數,都能被5整除,即能用5進行約分。在約分時應注意利用。

22、偶數和奇數:能被2整除的數叫做偶數。不能被2整除的數叫做奇數。

23、質數(素數):一個數,如果只有1和它本身兩個約數,這樣的數叫做質數(或素數)。

24、合數:一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數。1不是質數,也不是合數。

28、利息=本金×利率×時間(時間一般以年或月為單位,應與利率的單位相對應)

29、利率:利息與本金的比值叫做利率。一年的利息與本金的比值叫做年利率。一月的利息與本金的比值叫做月利率。

30、自然數:用來表示物體個數的整數,叫做自然數。0也是自然數。

31、循環小數:一個小數,從小數部分的某一位起,一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做循環小數。如3. 141414

32、不循環小數:一個小數,從小數部分起,沒有一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做不循環小數。

如3. 141592654

33、無限不循環小數:一個小數,從小數部分起到無限位數,沒有一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做無限不循環小數。如3. 141592654……

34、什麼叫代數? 代數就是用字母代替數。

35、什麼叫代數式?用字母表示的式子叫做代數式。如:3x =ab+c

一般運算規則

1、 每份數×份數=總數總數÷每份數=份數 總數÷份數=每份數

2、 1倍數×倍數=幾倍數幾倍數÷1倍數=倍數 幾倍數÷倍數=1倍數

3、 速度×時間=路程路程÷速度=時間 路程÷時間=速度

4、 單價×數量=總價總價÷單價=數量 總價÷數量=單價

5、工作效率×工作時間=工作總量工作總量÷工作效率=工作時間 工作總量÷工作時間=工作效率

6、 加數+加數=和和-一個加數=另一個加數

7、 被減數-減數=差被減數-差=減數 差+減數=被減數

8、 因數×因數=積積÷一個因數=另一個因數

9、 被除數÷除數=商被除數÷商=除數 商×除數=被除數

小學數學圖形計算公式

1、正方形 C周長 S面積 a邊長

周長=邊長×4 C=4a

面積=邊長×邊長 S=a×a

2、正方體 V:體積 a:棱長

表面積=棱長×棱長×6 S表=a×a×6

體積=棱長×棱長×棱長 V=a×a×a

3、長方形 C周長 S面積 a邊長

周長=(長+寬)×2 C=2(a+b)

面積=長×寬 S=ab

4、長方體 V:體積 s:面積 a:長 b: 寬 h:高

表面積(長×寬+長×高+寬×高)×2 S=2(ab+ah+bh)

體積=長×寬×高 V=abh

5、三角形 s面積 a底 h高

面積=底×高÷2 s=ah÷2

三角形高=面積 ×2÷底三角形底=面積 ×2÷高

6、平行四邊形 s面積 a底 h高

面積=底×高 s=ah

7、梯形 s面積 a上底 b下底 h高

面積=(上底+下底)×高÷2 s=(a+b)× h÷2

8、圓形 S面積 C周長 πd=直徑 r=半徑

周長=直徑×π=2×π×半徑 C=πd=2πr

面積=半徑×半徑×π

9、圓柱體 v:體積 h:高 s;底面積 r:底面半徑 c:底面周長

側面積=底面周長×高表面積=側面積+底面積×2

體積=底面積×高體積=側面積÷2×半徑

10、圓錐體 v:體積 h:高 s;底面積 r:底面半徑體積=底面積×高÷3

相關 文章 :

1. 小升初數學基礎知識點順口溜

2. 小學三年級數學學習內容重點知識匯總

3. 小升初數學知識點匯總與常見易錯點

4. 小學數學六年級圓的知識要點解析

5. 六年級上冊數學知識點整理歸納

⑦ 初二數學基礎知識點歸納總結

失敗乃成功之母,重復是學習之母。學習,需要不斷的重復重復,重復學過的知識,加深印象,其實任何科目的 學習 方法 都是不斷重復學習。下面是我給大家整理的一些初二數學的知識點,希望對大家有所幫助。

初二數學下冊知識點歸納

一次函數

一、正比例函數與一次函數的概念:

一般地,形如y=kx(k為常數,且k≠0)的函數叫做正比例函數.其中k叫做比例系數。

一般地,形如y=kx+b(k,b為常數,且k≠0)的函數叫做一次函數.

當b=0時,y=kx+b即為y=kx,所以正比例函數,是一次函數的特例.

二、正比例函數的圖象與性質:

(1)圖象:正比例函數y=kx(k是常數,k≠0))的圖象是經過原點的一條直線,我們稱它為直線y=kx。

(2)性質:當k>0時,直線y=kx經過第三,一象限,從左向右上升,即隨著x的增大y也增大;當k0,b>0圖像經過一、二、三象限;

(2)k>0,b<0圖像經過一、三、四象限;

(3)k>0,b=0圖像經過一、三象限;

(4)k<0,b>0圖像經過一、二、四象限;

(5)k<0,b<0圖像經過二、三、四象限;

(6)k<0,b=0圖像經過二、四象限。

一次函數表達式的確定

求一次函數y=kx+b(k、b是常數,k≠0)時,需要由兩個點來確定;求正比例函數y=kx(k≠0)時,只需一個點即可.

5.一次函數與二元一次方程組:

解方程組

從「數」的角度看,自變數(x)為何值時兩個函數的值相等.並

求出這個函數值

解方程組從「形」的角度看,確定兩直線交點的坐標.

數據的分析

數據的代表:平均數、眾數、中位數、極差、方差

八年級 下冊數學期中知識點 總結

1.平行四邊形定義:有兩組對邊分別平行的四邊形叫做平行四邊形。

2.平行四邊形的性質:平行四邊形的對邊相等;平行四邊形的對角相等;平行四邊形的對角線互相平分。

3.平行四邊形的判定:兩組對邊分別相等的四邊形是平行四邊形;對角線互相平分的四邊形是平行四邊形;兩組對角分別相等的四邊形是平行四邊形;一組對邊平行且相等的四邊形是平行四邊形。

4.三角形的中位線平行於三角形的第三邊,且等於第三邊的一半。

5.直角三角形斜邊上的中線等於斜邊的一半。

6.矩形的定義:有一個角是直角的平行四邊形。

7.矩形的性質:矩形的四個角都是直角;矩形的對角線平分且相等。AC=BD

8.矩形判定定理:有一個角是直角的平行四邊形叫做矩形;對角線相等的平行四邊形是矩形;有三個角是直角的四邊形是矩形。

9.菱形的定義:鄰邊相等的平行四邊形。

10.菱形的性質:菱形的四條邊都相等;菱形的兩條對角線互相垂直,並且每一條對角線平分一組對角。

11.菱形的判定定理:一組鄰邊相等的平行四邊形是菱形;對角線互相垂直的平行四邊形是菱形;四條邊相等的四邊形是菱形。S菱形=1/2×ab(a、b為兩條對角線)

12.正方形定義:一個角是直角的菱形或鄰邊相等的矩形。

13.正方形的性質:四條邊都相等,四個角都是直角。正方形既是矩形,又是菱形。

14.正方形判定定理:1.鄰邊相等的矩形是正方形。2.有一個角是直角的菱形是正方形。

15.梯形的定義:一組對邊平行,另一組對邊不平行的四邊形叫做梯形。

16.直角梯形的定義:有一個角是直角的梯形

17.等腰梯形的定義:兩腰相等的梯形。

18.等腰梯形的性質:等腰梯形同一底邊上的兩個角相等;等腰梯形的兩條對角線相等。

19.等腰梯形判定定理:同一底上兩個角相等的梯形是等腰梯形。

八年級數學 重要知識點

1.提公共因式法

※1.如果一個多項式的各項含有公因式,那麼就可以把這個公因式提出來,從而將多項式化成兩個因式乘積的形式.這種分解因式的方法叫做提公因式法.

如:

※2.概念內涵:

(1)因式分解的最後結果應當是「積」;

(2)公因式可能是單項式,也可能是多項式;

(3)提公因式法的理論依據是乘法對加法的分配律,即:

※3.易錯點點評:

(1)注意項的符號與冪指數是否搞錯;

(2)公因式是否提「干凈」;

(3)多項式中某一項恰為公因式,提出後,括弧中這一項為+1,不漏掉.

2.運用公式法

※1.如果把乘法公式反過來,就可以用來把某些多項式分解因式.這種分解因式的方法叫做運用公式法.

※2.主要公式:

(1)平方差公式:

(2)完全平方公式:

¤3.易錯點點評:

因式分解要分解到底.如就沒有分解到底.

※4.運用公式法:

(1)平方差公式:

①應是二項式或視作二項式的多項式;

②二項式的每項(不含符號)都是一個單項式(或多項式)的平方;

③二項是異號.

(2)完全平方公式:

①應是三項式;

②其中兩項同號,且各為一整式的平方;

③還有一項可正負,且它是前兩項冪的底數乘積的2倍.

3.因式分解的思路與解題步驟:

(1)先看各項有沒有公因式,若有,則先提取公因式;

(2)再看能否使用公式法;

(3)用分組分解法,即通過分組後提取各組公因式或運用公式法來達到分解的目的;

(4)因式分解的最後結果必須是幾個整式的乘積,否則不是因式分解;

(5)因式分解的結果必須進行到每個因式在有理數范圍內不能再分解為止.

初二數學 學習 經驗 心得

1好初中數學課前要預習

初中生想要學好數學,那麼就要利用課前的時間將課上老師要講的內容預習一下。初中數學課前的預習是要明白老師在課上大致所講的內容,這樣有利於和方便初中生整理知識結構。

初中生 課前預習 數學還能夠知道自己有哪些不明白的知識點,這樣在課上就會集中注意力去聽,不會出現溜號和走神的情況。同時課前預習還可以將知識點形成體系,可以幫助初中生建立完整的知識結構。

2學習初中數學課上是關鍵

初中生想要學好學生,在課上就是一個字:跟。上初中數學課時跟住老師,老師講到哪裡一定要跟上,仔細看老師的板書,隨時知道老師講的是哪裡,涉及到的知識點是什麼。有的初中生喜歡記筆記,在這里提醒大家,初中數學課上的時候盡量不要記筆記。

你的主要目的是跟著老師,而不是一味的記筆記,即使有不會的地方也要快速簡短的記下來,可以在課後完善。跟上老師的思維是最重要的,這就意味著你明白了老師的分析和解題過程。

3課後可以適當做一些初中數學基礎題

在每學完一課後,初中生可以在課後做一些初中數學的基礎題型,在做這樣的題時,建議大家是,不要出現錯誤的情況,做完題後要學會思考和整理。當你的初中數學基礎題沒問題的時候,就可以做一些有點難度的提升題了,如果做不出來可以根據解析看題。

但是記住千萬不要大量的做這類題,初中生偶爾做一次有難度的題還是對數學的學習有幫助的,但是如果將重點放在這上面,沒有什麼好處。同時要學會整理,將自己錯題歸納並總結,

數學是由簡單明了的事項一步一步地發展而來,所以,只要學習數學的人老老實實地、一步一步地去理解,並同時記住其要點,以備以後之需用,就一定能理解其全部內容.就是說,若理解了第一步,就必然能理解第二步,理解了第一步、第二步,就必然能理解第三步.這好比梯子的階級,在登梯子時,一級一級地往上登,無論多小的人,只要他的腿長足以跨過一級階梯,就一定能從第一級登上第二級,從第二級登上第三級、第四級,…….這時,只不過是反復地做同一件事,故不管誰都應該會做.

初二數學基礎知識點歸納總結相關 文章 :

★ 初中數學基礎知識點歸納總結

★ 初中數學基礎知識整理歸納

★ 八年級數學知識點整理歸納

★ 初中數學基礎知識點總結

★ 初二數學知識點整理歸納

★ 初二數學知識點復習整理

★ 初二數學知識點歸納

★ 初二數學知識點歸納上冊人教版

★ 初二數學下冊重要知識點總結

★ 初二數學上冊知識點總結歸納

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

⑧ 初二數學基礎知識點歸納

數學是考試的重點考察科目,數學知識的積累和解題 方法 的掌握,需要科學有效的 復習方法 ,同時需要持之以恆的堅持。下面是我給大家整理的一些初二數學的知識點,希望對大家有所幫助。

初二數學下冊知識點歸納

第一章分式

1分式及其基本性質分式的分子和分母同時乘以(或除以)一個不等於零的整式,分式的只不變

2分式的運算

(1)分式的乘除乘法法則:分式乘以分式,用分子的積作為積的分子,分母的積作為積的分母除法法則:分式除以分式,把除式的分子、分母顛倒位置後,與被除式相乘。

(2)分式的加減加減法法則:同分母分式相加減,分母不變,把分子相加減;異分母分式相加減,先通分,變為同分母的分式,再加減

3整數指數冪的加減乘除法

4分式方程及其解法

第二章反比例函數

1反比例函數的表達式、圖像、性質

圖像:雙曲線

表達式:y=k/x(k不為0)

性質:兩支的增減性相同;

2反比例函數在實際問題中的應用

第三章勾股定理

1勾股定理:直角三角形的兩個直角邊的平方和等於斜邊的平方

2勾股定理的逆定理:如果一個三角形中,有兩個邊的平方和等於第三條邊的平方,那麼這個三角形是直角三角形。

第四章四邊形

1平行四邊形

性質:對邊相等;對角相等;對角線互相平分。

判定:兩組對邊分別相等的四邊形是平行四邊形;

兩組對角分別相等的四邊形是平行四邊形;

對角線互相平分的四邊形是平行四邊形;

一組對邊平行而且相等的四邊形是平行四邊形。

推論:三角形的中位線平行第三邊,並且等於第三邊的一半。

2特殊的平行四邊形:矩形、菱形、正方形

(1)矩形

性質:矩形的四個角都是直角;

矩形的對角線相等;

矩形具有平行四邊形的所有性質

判定:有一個角是直角的平行四邊形是矩形;對角線相等的平行四邊形是矩形;

推論:直角三角形斜邊的中線等於斜邊的一半。

(2)菱形性質:菱形的四條邊都相等;菱形的對角線互相垂直,並且每一條對角線平分一組對角;菱形具有平行四邊形的一切性質

判定:有一組鄰邊相等的平行四邊形是菱形;對角線互相垂直的平行四邊形是菱形;四邊相等的四邊形是菱形。

(3)正方形:既是一種特殊的矩形,又是一種特殊的菱形,所以它具有矩形和菱形的所有性質。

3梯形:直角梯形和等腰梯形

等腰梯形:等腰梯形同一底邊上的兩個角相等;等腰梯形的兩條對角線相等;同一個底上的兩個角相等的梯形是等腰梯形。

八年級 數學知識點

零指數冪與負整指數冪

重點:冪的性質(指數為全體整數)並會用於計算以及用科學記數法表示一些絕對值較小的數

難點:理解和應用整數指數冪的性質。

一、復習練習:

1、;=;=,=,=。

2、不用計算器計算:÷(—2)2—2-1+

二、指數的范圍擴大到了全體整數.

1、探索

現在,我們已經引進了零指數冪和負整數冪,指數的范圍已經擴大到了全體整數.那麼,在「冪的運算」中所學的冪的性質是否還成立呢?與同學們討論並交流一下,判斷下列式子是否成立.

(1);(2)(a?b)-3=a-3b-3;(3)(a-3)2=a(-3)×2

2、概括:指數的范圍已經擴大到了全體整數後,冪的運演算法則仍然成立。

3、例1計算(2mn2)-3(mn-2)-5並且把結果化為只含有正整數指數冪的形式。

解:原式=2-3m-3n-6×m-5n10=m-8n4=

4練習:計算下列各式,並且把結果化為只含有正整數指數冪的形式:

(1)(a-3)2(ab2)-3;(2)(2mn2)-2(m-2n-1)-3.

三、科學記數法

1、回憶:在之前的學習中,我們曾用科學記數法表示一些絕對值較大的數,即利用10的正整數次冪,把一個絕對值大於10的數表示成a×10n的形式,其中n是正整數,1≤∣a∣<10.例如,864000可以寫成8.64×105.

2、類似地,我們可以利用10的負整數次冪,用科學記數法表示一些絕對值較小的數,即將它們表示成a×10-n的形式,其中n是正整數,1≤∣a∣<10.

3、探索:

10-1=0.1

10-2=

10-3=

10-4=

10-5=

歸納:10-n=

例如,上面例2(2)中的0.000021可以表示成2.1×10-5.

4、例2、一個納米粒子的直徑是35納米,它等於多少米?請用科學記數法表示.

分析我們知道:1納米=米.由=10-9可知,1納米=10-9米.

所以35納米=35×10-9米.

而35×10-9=(3.5×10)×10-9

=35×101+(-9)=3.5×10-8,

所以這個納米粒子的直徑為3.5×10-8米.

5、練習

①用科學記數法表示:

(1)0.00003;(2)-0.0000064;(3)0.0000314;(4)2013000.

②用科學記數法填空:

(1)1秒是1微秒的1000000倍,則1微秒=_________秒;

(2)1毫克=_________千克;

(3)1微米=_________米;(4)1納米=_________微米;

(5)1平方厘米=_________平方米;(6)1毫升=_________立方米.

初二數學復習方法

按部就班

數學是環環相扣的一門學科,哪一個環節脫節都會影響整個學習的進程。所以,平時學習不應貪快,要一章一章過關,不要輕易留下自己不明白或者理解不深刻的問題。

強調理解

概念、定理、公式要在理解的基礎上記憶。每新學一個定理,嘗試先不看答案,做一次例題,看是否能正確運用新定理;若不行,則對照答案,加深對定理的理解。

基本訓練

學習數學是不能缺少訓練的,平時多做一些難度適中的練習,當然莫要陷入死鑽難題的誤區,要熟悉高考的題型,訓練要做到有的放矢。

重視錯誤

訂一個錯題本,專門搜集自己的錯題,這些往往就是自己的薄弱之處。復習時,這個錯題本也就成了寶貴的復習資料。

數學的學習有一個循序漸進的過程,妄想一步登天是不現實的。熟記書本內容後將書後習題認真寫好,有些同學可能認為書後習題太簡單不值得做,這種想法是極不可取的,書後習題的作用不僅幫助你將書本內容記牢,還輔助你將書寫格式規范化,從而使自己的解題結構緊密而又嚴整,公式定理能夠運用的恰如其分,以減少考試中無謂的失分。

平時的數學學習:

○1課前認真預習.預習的目的是為了能更好得聽老師講課,通過預習,掌握度要達到百分之八十.帶著預習中不明白的問題去聽老師講課,來解答這類的問題.預習還可以使聽課的整體效率提高.具體的預習方法:將書上的題目做完,畫出知識點,整個過程大約持續15-20分鍾.在時間允許的情況下,還可以將練習冊做完.

○2讓數學課學與練結合.在數學課上,光聽是沒用的.當老師讓同學去黑板上演算時,自己也要在草稿紙上練.如果遇到不懂的難題,一定要提出來,不能不求甚解.否則考試遇到類似的題目就可能不會做.聽老師講課時一定要全神貫注,要注意細節問題,否則「千里之堤,毀於蟻穴」.

○3課後及時復習.寫完作業後對當天老師講的內容進行梳理,可以適當地做25分鍾左右的課外題.可以根據自己的需要選擇適合自己的課外書.其課外題內容大概就是今天上的課.

○4單元測驗是為了檢測近期的學習情況.其實分數代表的是你的過去,關鍵的是對於每次考試的 總結 和吸取教訓,是為了讓你在期中、期末考得更好.老師經常會在沒通知的情況下進行考試,所以要及時做到「課後復習」.


初二數學基礎知識點歸納相關 文章 :

★ 初中數學基礎知識整理歸納

★ 初二數學知識點歸納整理

★ 初中數學基礎知識點歸納總結

★ 初二數學基礎知識點

★ 初二數學知識點歸納

★ 初二數學知識點復習整理

★ 初二數學知識點歸納梳理

★ 初二數學基礎知識點2021

★ 初二數學知識點整理歸納

★ 部編版初二數學知識點梳理

⑨ 初中數學基礎知識點歸納總結

初中數學教學,注重培養學生正確的數學情操和幾何思維能力。下面是我為大家整理的關於初中數學基礎知識點歸納 總結 ,希望對您有所幫助。歡迎大家閱讀參考學習!

初中數學基礎知識點歸納總結

1、定理1 關於中心對稱的兩個圖形是全等的

2、定理2 關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分

3、逆定理 如果兩個圖形的對應點連線都經過某一點,並且被這一點平分,那麼這兩個圖形關於這一點對稱

4、等腰梯形性質定理 等腰梯形在同一底上的兩個角相等

5、等腰梯形的兩條對角線相等

6、等腰梯形判定定理 在同一底上的兩個角相等的梯 形是等腰梯形

7、對角線相等的梯形是等腰梯形

8、平行線等分線段定理 如果一組平行線在一條直線上截得的線段相等,那麼在其他直線上截得的線段也相等

9、推論1 經過梯形一腰的中點與底平行的直線,必平分另一腰

10、推論2 經過三角形一邊的中點與另一邊平行的直線,必平分第三邊

11、三角形中位線定理 三角形的中位線平行於第三邊,並且等於它的一半

12、梯形中位線定理 梯形的中位線平行於兩底,並且等於兩底和的一半 L=(a+b)÷2 S=L×h

13、(1)比例的基本性質:如果a:b=c:d,那麼ad=bc 如果 ad=bc ,那麼a:b=c:d

14、(2)合比性質:如果a/b=c/d,那麼(a±b)/b=(c±d)/d

15、(3)等比性質:如果a/b=c/d=…=m/n(b+d+…+n≠0),那麼(a+c+…+m)/(b+d+…+n)=a/b

16、平行線分線段成比例定理 三條平行線截兩條直線,所得的對應線段成比例

17、推論 平行於三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例

18、定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那麼這條直線平行於三角形的第三邊

19、平行於三角形的一邊,並且和其他兩邊相交的直線, 所截得的三角形的三邊與原三角形三邊對應成比例

20、定理 平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似

21、相似三角形判定定理1 兩角對應相等,兩三角形相似(ASA)

22、直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似

23、判定定理2 兩邊對應成比例且夾角相等,兩三角形相似(SAS)

24、判定定理3 三邊對應成比例,兩三角形相似(SSS)

25、定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那麼這兩個直角三角形相似

26、性質定理1 相似三角形對應高的比,對應中線的比與對應角平分線的比都等於相似比

27、性質定理2 相似三角形周長的比等於相似比

28、性質定理3 相似三角形面積的比等於相似比的平方

29、任意銳角的正弦值等於它的餘角的餘弦值,任意銳角的餘弦值等於它的餘角的正弦值

30、任意銳角的正切值等於它的餘角的餘切值,任意銳角的餘切值等於它的餘角的正切值

31、圓是定點的距離等於定長的點的集合

32、圓的內部可以看作是圓心的距離小於半徑的點的集合

33、圓的外部可以看作是圓心的距離大於半徑的點的集合

34、同圓或等圓的半徑相等

35、到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓

36、和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線

37、到已知角的兩邊距離相等的點的軌跡,是這個角的平分線

38、到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線

39、定理 不在同一直線上的三點確定一個圓。

40、垂徑定理 垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧

41、推論1

①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧

②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧

③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧

42、推論2 圓的兩條平行弦所夾的弧相等

43、圓是以圓心為對稱中心的中心對稱圖形

44、定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

45、推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那麼它們所對應的其餘各組量都相等

46、定理 一條弧所對的圓周角等於它所對的圓心角的一半

47、推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

48、推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑

49、推論3 如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形

50、定理 圓的內接四邊形的對角互補,並且任何一個外角都等於它的內對角

51、①直線L和⊙O相交 d

②直線L和⊙O相切 d=r

③直線L和⊙O相離 d>r

52、切線的判定定理 經過半徑的外端並且垂直於這條半徑的直線是圓的切線

53、切線的性質定理 圓的切線垂直於經過切點的半徑

54、推論1 經過圓心且垂直於切線的直線必經過切點

55、推論2 經過切點且垂直於切線的直線必經過圓心

56、切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等圓心和這一點的連線平分兩條切線的夾角

57、圓的外切四邊形的兩組對邊的和相等

58、弦切角定理 弦切角等於它所夾的弧對的圓周角

59、推論 如果兩個弦切角所夾的弧相等,那麼這兩個弦切角也相等

60、相交弦定理 圓內的兩條相交弦,被交點分成的兩條線段長的積相等

61、推論 如果弦與直徑垂直相交,那麼弦的一半是它分直徑所成的兩條線段的比例中項

62、切割線定理 從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項

63、推論 從圓外一點引圓的兩條割線,這一點到每條 割線與圓的交點的兩條線段長的積相等

64、如果兩個圓相切,那麼切點一定在連心線上

65、①兩圓外離 d>R+r ②兩圓外切 d=R+r③兩圓相交 R-rr)

④兩圓內切 d=R-r(R>r) ⑤兩圓內含 dr)

66、定理 相交兩圓的連心線垂直平分兩圓的公共弦

67、定理 把圓分成n(n≥3):

⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形

⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形

68、定理 任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓

69、正n邊形的每個內角都等於(n-2)×180°/n

70、定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形

71、正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長

72、正三角形面積√3a/4 a表示邊長

73、如果在一個頂點周圍有k個正n邊形的角,由於這些角的和應為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4

74、弧長計算公式:L=n兀R/180

75、扇形面積公式:S扇形=n兀R^2/360=LR/2

76、內公切線長= d-(R-r) 外公切線長= d-(R+r) 本回答被提問者採納

怎樣學好初中數學

1、深刻理解概念,概念是數學的基石,學習概念不僅要知其然,還要知其所以然。

2、對於每個定義、定理必須在牢記其內容的基礎上知道是怎樣得來的,又是運用到何處的。

3、多看一些例題,不能只看皮毛,不看內涵。

4、要把想和看結合起來,各難度層次的例題都照顧到。

5、看例題要循序漸進,這同後面的「做練習」一樣,但看比做有一個顯著的好處,例題有現成的解答,思路清晰,只需循著思路走,就會得出結論,所以可以看一些技巧性較強、難度較大的例題。

相關 文章 :

1. 初中數學基礎知識點總結

2. 初中數學基礎知識點總結之有理數

3. 初中數學知識點整理

4. 初一數學知識點歸納與學習方法

5. 初一數學基礎知識有哪些?

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

⑩ 關於初中數學知識點總結歸納

數學已成為許多國家及地區的 教育 范疇中的一部分。它應用於不同領域中,包括科學、工程、醫學、經濟學和金融學等。這次我給大家整理了初中數學知識點 總結 歸納,供大家閱讀參考。

初中數學知識點總結歸納

一: 數軸

11 有向直線

在科學技術和日常生活中,為了區別一條直線的兩個不同方向,可以規定其中一方向為正向,另一方向為負相

規定了正方向的直線,叫做有向直線,讀作有向直線l

12 數軸

我們把數軸上任意一點所對應的實數稱為點的坐標

對於每一個坐標(實數),在數周上可以找到唯一的點與之對應這就是直線的坐標化

數軸上任意一條有向線段的數量等於它的終點坐標與起點坐標的差任意一條有向線段的長度等於它兩個斷電坐標差的絕對值

二:平面直角坐標系

下面是對平面直角坐標系的內容學習,希望同學們很好的掌握下面的內容。

平面直角坐標系

平面直角坐標系:在平面內畫兩條互相垂直、原點重合的數軸,組成平面直角坐標系。

水平的數軸稱為x軸或橫軸,豎直的數軸稱為y軸或縱軸,兩坐標軸的交點為平面直角坐標系的原點。

平面直角坐標系的要素:①在同一平面②兩條數軸③互相垂直④原點重合

三個規定:

①正方向的規定橫軸取向右為正方向,縱軸取向上為正方向

②單位長度的規定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數軸上必須相同。

③象限的規定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。

相信上面對平面直角坐標系知識的講解學習,同學們已經能很好的掌握了吧,希望同學們都能考試成功。

三:平面直角坐標系的構成

對於平面直角坐標系的構成內容,下面我們一起來學習哦。

平面直角坐標系的構成

在同一個平面上互相垂直且有公共原點的兩條數軸構成平面直角坐標系,簡稱為直角坐標系。通常,兩條數軸分別置於水平位置與鉛直位置,取向右與向上的方向分別為兩條數軸的正方向。水平的數軸叫做X軸或橫軸,鉛直的數軸叫做Y軸或縱軸,X軸或Y軸統稱為坐標軸,它們的公共原點O稱為直角坐標系的原點。

通過上面對平面直角坐標系的構成知識的講解學習,希望同學們對上面的內容都能很好的掌握,同學們認真學習吧。

四:點的坐標的性質

點的坐標的性質

建立了平面直角坐標系後,對於坐標系平面內的任何一點,我們可以確定它的坐標。反過來,對於任何一個坐標,我們可以在坐標平面內確定它所表示的一個點。

對於平面內任意一點C,過點C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應點a,b分別叫做點C的橫坐標、縱坐標,有序實數對(a,b)叫做點C的坐標。

一個點在不同的象限或坐標軸上,點的坐標不一樣。

希望上面對點的坐標的性質知識講解學習,同學們都能很好的掌握,相信同學們會在考試中取得優異成績的。

五:因式分解的一般步驟

關於數學中因式分解的一般步驟內容學習,我們做下面的知識講解。

因式分解的一般步驟

如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,

通常採用分組分解法,最後運用十字相乘法分解因式。因此,可以概括為:「一提」、「二套」、「三分組」、「四十字」。

注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內因式分解,應該是指在有理數范圍內因式分解,因此分解因式的結果,必須是幾個整式的積的形式。

相信上面對因式分解的一般步驟知識的內容講解學習,同學們已經能很好的掌握了吧,希望同學們會考出好成績。

六:因式分解

下面是對數學中因式分解內容的知識講解,希望同學們認真學習。

因式分解

因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。

因式分解要素:①結果必須是整式②結果必須是積的形式③結果是等式④

因式分解與整式乘法的關系:m(a+b+c)

公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。

公因式確定 方法 :①系數是整數時取各項最大公約數。②相同字母取最低次冪③系數最大公約數與相同字母取最低次冪的積就是這個多項式各項的公因式。

提取公因式步驟:

①確定公因式。②確定商式③公因式與商式寫成積的形式。

分解因式注意;

①不準丟字母

②不準丟常數項注意查項數

③雙重括弧化成單括弧

④結果按數單字母單項式多項式順序排列

⑤相同因式寫成冪的形式

⑥首項負號放括弧外

⑦括弧內同類項合並。

初中數學知識點

1.有理數:

(1)凡能寫成形式的數,都是有理數.正整數、0、負整數統稱整數;正分數、負分數統稱分數;整數和分數統稱有理數.注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;p不是有理數;

(2)有理數的分類: ① ②

2.數軸:數軸是規定了原點、正方向、單位長度的一條直線.

3.相反數:

(1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0;

(2)相反數的和為0 ? a+b=0 ? a、b互為相反數.

4.絕對值:

(1)正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;注意:絕對值的意義是數軸上表示某數的點離開原點的距離;

(2) 絕對值可表示為:或 ;絕對值的問題經常分類討論;

5.有理數比大小:(1)正數的絕對值越大,這個數越大;(2)正數永遠比0大,負數永遠比0小;(3)正數大於一切負數;(4)兩個負數比大小,絕對值大的反而小;(5)數軸上的兩個數,右邊的數總比左邊的數大;(6)大數-小數> 0,小數-大數< 0.

6.互為倒數:乘積為1的兩個數互為倒數;注意:0沒有倒數;若 a≠0,那麼的倒數是;若ab=1? a、b互為倒數;若ab=-1? a、b互為負倒數.

7. 有理數加法法則:

(1)同號兩數相加,取相同的符號,並把絕對值相加;

(2)異號兩數相加,取絕對值較大的符號,並用較大的絕對值減去較小的絕對值;

(3)一個數與0相加,仍得這個數.

8.有理數加法的運算律:

(1)加法的交換律:a+b=b+a ;(2)加法的結合律:(a+b)+c=a+(b+c).

9.有理數減法法則:減去一個數,等於加上這個數的相反數;即a-b=a+(-b).

10 有理數乘法法則:

(1)兩數相乘,同號為正,異號為負,並把絕對值相乘;

(2)任何數同零相乘都得零;

(3)幾個數相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數決定.

11 有理數乘法的運算律:

(1)乘法的交換律:ab=ba;(2)乘法的結合律:(ab)c=a(bc);

(3)乘法的分配律:a(b+c)=ab+ac .

12.有理數除法法則:除以一個數等於乘以這個數的倒數;注意:零不能做除數, .

13.有理數乘方的法則:

(1)正數的任何次冪都是正數;

(2)負數的奇次冪是負數;負數的偶次冪是正數;注意:當n為正奇數時: (-a)n=-an或(a -b)n=-(b-a)n , 當n為正偶數時: (-a)n =an 或 (a-b)n=(b-a)n .

14.乘方的定義:

(1)求相同因式積的運算,叫做乘方;

(2)乘方中,相同的因式叫做底數,相同因式的個數叫做指數,乘方的結果叫做冪;

15.科學記數法:把一個大於10的數記成a×10n的形式,其中a是整數數位只有一位的數,這種記數法叫科學記數法.

16.近似數的精確位:一個近似數,四捨五入到那一位,就說這個近似數的精確到那一位.

17.有效數字:從左邊第一個不為零的數字起,到精確的位數止,所有數字,都叫這個近似數的有效數字.

18.混合運演算法則:先乘方,後乘除,最後加減.

本章內容要求學生正確認識有理數的概念,在實際生活和學習數軸的基礎上,理解正負數、相反數、絕對值的意義所在。重點利用有理數的運演算法則解決實際問題.

體驗數學發展的一個重要原因是生活實際的需要.激發學生學習數學的興趣,教師培養學生的觀察、歸納與概括的能力,使學生建立正確的數感和解決實際問題的能力。教師在講授本章內容時,應該多創設情境,充分體現學生學習的主體性地位。

關於初中數學的知識點

一、平移變換:

1。概念:在平面內,將一個圖形沿著某個方向移動一定的距離,這樣的圖形運動叫做平移。

2。性質:(1)平移前後圖形全等;

(2)對應點連線平行或在同一直線上且相等。

3。平移的作圖步驟和方法:

(1)分清題目要求,確定平移的方向和平移的距離;

(2)分析所作的圖形,找出構成圖形的關健點;

(3)沿一定的方向,按一定的距離平移各個關健點;

(4)連接所作的各個關鍵點,並標上相應的字母;

(5)寫出結論。

二、旋轉變換:

1。概念:在平面內,將一個圖形繞一個定點沿某個方向轉動一個角度,這樣的圖形運動叫做旋轉。

說明:

(1)圖形的旋轉是由旋轉中心和旋轉的角度所決定的;

(2)旋轉過程中旋轉中心始終保持不動。

(3)旋轉過程中旋轉的方向是相同的。

(4)旋轉過程靜止時,圖形上一個點的旋轉角度是一樣的。⑤旋轉不改變圖形的大小和形狀。

2。性質:

(1)對應點到旋轉中心的距離相等;

(2)對應點與旋轉中心所連線段的夾角等於旋轉角;

(3)旋轉前、後的圖形全等。

3。旋轉作圖的步驟和方法:

(1)確定旋轉中心及旋轉方向、旋轉角;

(2)找出圖形的關鍵點;

(3)將圖形的關鍵點和旋轉中心連接起來,然後按旋轉方向分別將它們旋轉一個旋轉角度數,得到這些關鍵點的對應點;

(4)按原圖形順次連接這些對應點,所得到的圖形就是旋轉後的圖形。

說明:在旋轉作圖時,一對對應點與旋轉中心的夾角即為旋轉角。

常見考法

(1)把平移旋轉結合起來證明三角形全等;

(2)利用平移變換與旋轉變換的性質,設計一些題目。

誤區提醒

(1)弄反了坐標平移的上加下減,左減右加的規律;

(2)平移與旋轉的性質沒有掌握。

學好數學的方法

1、上課前要調整好心態,一定不能想,哎,又是數學課,上課時聽講心情就很不好,這樣當然學不好!

2、上課時一定要認真聽講,作到耳到、眼到、手到!這個很重要,一定要學會做筆記,上課時如果老師講的快,一定靜下心來聽,不要記,下課時再整理到 筆記本 上!保持高效率!

3、俗話說興趣是最好的老師,當別人談論最討厭的課時,你要告訴自己,我喜歡數學!

4、保證遇到的每一題都要弄會,弄懂,這個很重要!不會就問,不要不好意思,要學會舉一反三!也就是要靈活運用!作的題不要求多,但要精!

5、要有錯題集,把平時遇到的好題記下來,錯題記下來,並要多看,多思考,不能在同一個地方絆倒!!

總之,學習數學,不要怕難,不要怕累,不要怕問!


初中數學知識點總結歸納相關 文章 :

★ 初中數學基礎知識整理歸納

★ 初中數學知識點總結

★ 初中數學重點知識點的歸納總結

★ 初中數學知識點歸納有哪些

★ 初中數學知識點總結歸納

★ 初中部數學學習方法總結

★ 初中數學圓的知識點歸納

★ 初一數學學習方法總結

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();