A. 數學知識
π的歷史
圓的周長與直徑之比是一個常數,人們稱之為圓周率。通常用希臘字母「π」來表示。1706年,英國人瓊斯首次創用π代表圓周率。他的符號並未立刻被採用,以後,歐拉予以提倡,才漸漸推廣開來。現在π已成為圓周率的專用符號,π的研究,在一定程度上反映這個地區或時代的數學水平,它的歷史是饒有趣味的。
在古代,實際上長期使用 π=3這個數值,巴比倫、印度、中國都是如此。到公元前2世紀,中國的《周髀算經》里已有周三徑一的記載。東漢的數學家又將值改為根號10(約為3.16)。真正使圓周率計算建立在科學的基礎上,首先應歸功於阿基米德。他專門寫了一篇論文《圓的度量》,用幾何方法證明了圓周率與圓直徑之比小於三又七分之一而大於三又七十一分之十。這是第一次在科學中創用上、下界來確定近似值。第一次用正確方法計算π值的,是魏晉時期的劉徽,在公元263年,他創用了用圓的內接正多邊形的面積來逼近圓面積的方法,算得π值為3.14。我國稱這種方法為「割圓術」。直到1200年後,西方人才找到了類似的方法。後人為紀念劉徽的貢獻,將3.14稱為徽率。
公元460年,南朝的祖沖之利用劉徽的割圓術,把π值算到小點後第七位3.1415926,這個具有七位小數的圓周率在當時是世界首次。祖沖之還找到了兩個分數:22/7和113/355,用分數來代替π,極大地簡化了計算,這種思想比西方也早一千多年。
祖沖之的圓周率,保持了一千多年的世界記錄。終於在1596年,由荷蘭數學家盧道夫打破了。他把π值推到小數點後第15位小數,最後推到第35位。為了紀念他這項成就,人們在他1610年去世後的墓碑上,刻上:3.這個數,從此也把它稱為「盧道夫數」。
之後,西方數學家計算 的工作,有了飛速的進展。1948年1月,費格森與雷思奇合作,算出808位小數的π值。計算機問世後,π的人工計算宣告結束。20世紀50年代,人們藉助計算機算得了10萬位小數的π值,70年代又突破這個記錄,算到了150萬位。到90年代初,用新的計算方法,算到的值已到了4.8億位。π的計算經歷了幾千年的歷史,它的每一次重大進步,都標志著技術和演算法的革新。
圓周率π的計算歷程
圓周率是一個極其馳名的數。從有文字記載的歷史開始,這個數就引進了外行人和學者們的興趣。作為一個非常重要的常數,圓周率最早是出於解決有關圓的計算問題。僅憑這一點,求出它的盡量准確的近似值,就是一個極其迫切的問題了。事實也是如此,幾千年來作為數學家們的奮斗目標,古今中外一代一代的數學家為此獻出了自己的智慧和勞動。回顧歷史,人類對 π 的認識過程,反映了數學和計算技術發展情形的一個側面。 π 的研究,在一定程度上反映這個地區或時代的數學水平。德國數學史家康托說:"歷史上一個國家所算得的圓周率的准確程度,可以作為衡量這個國家當時數學發展水平的指標。"直到19世紀初,求圓周率的值應該說是數學中的頭號難題。為求得圓周率的值,人類走過了漫長而曲折的道路,它的歷史是饒有趣味的。我們可以將這一計算歷程分為幾個階段。
實驗時期
通過實驗對 π 值進行估算,這是計算 π 的的第一階段。這種對 π 值的估算基本上都是以觀察或實驗為根據,是基於對一個圓的周長和直徑的實際測量而得出的。在古代世界,實際上長期使用 π =3這個數值。最早見於文字記載的有基督教《聖經》中的章節,其上取圓周率為3。這一段描述的事大約發生在公元前950年前後。其他如巴比倫、印度、中國等也長期使用3這個粗略而簡單實用的數值。在我國劉徽之前"圓徑一而周三"曾廣泛流傳。我國第一部《周髀算經》中,就記載有圓"周三徑一"這一結論。在我國,木工師傅有兩句從古流傳下來的口訣:叫做:"周三徑一,方五斜七",意思是說,直徑為1的圓,周長大約是3,邊長為5的正方形,對角線之長約為7。這正反映了早期人們對圓周率 π 和√2 這兩個無理數的粗略估計。東漢時期官方還明文規定圓周率取3為計算面積的標准。後人稱之為"古率"。
早期的人們還使用了其它的粗糙方法。如古埃及、古希臘人曾用穀粒擺在圓形上,以數粒數與方形對比的方法取得數值。或用勻重木板鋸成圓形和方形以秤量對比取值……由此,得到圓周率的稍好些的值。如古埃及人應用了約四千年的 4 (8/9)2 = 3.1605。在印度,公元前六世紀,曾取 π= √10 = 3.162。在我國東、西漢之交,新朝王莽令劉歆製造量的容器――律嘉量斛。劉歆在製造標准容器的過程中就需要用到圓周率的值。為此,他大約也是通過做實驗,得到一些關於圓周率的並不劃一的近似值。現在根據銘文推算,其計算值分別取為3.1547,3.1992,3.1498,3.2031比徑一周三的古率已有所進步。人類的這種探索的結果,當主要估計圓田面積時,對生產沒有太大影響,但以此來製造器皿或其它計算就不合適了。
幾何法時期
憑直觀推測或實物度量,來計算 π 值的實驗方法所得到的結果是相當粗略的。
真正使圓周率計算建立在科學的基礎上,首先應歸功於阿基米德。他是科學地研究這一常數的第一個人,是他首先提出了一種能夠藉助數學過程而不是通過測量的、能夠把 π 的值精確到任意精度的方法。由此,開創了圓周率計算的第二階段。
圓周長大於內接正四邊形而小於外切正四邊形,因此 2√2 < π < 4 。
當然,這是一個差勁透頂的例子。據說阿基米德用到了正96邊形才算出他的值域。
阿基米德求圓周率的更精確近似值的方法,體現在他的一篇論文《圓的測定》之中。在這一書中,阿基米德第一次創用上、下界來確定 π 的近似值,他用幾何方法證明了"圓周長與圓直徑之比小於 3+(1/7) 而大於 3 + (10/71) ",他還提供了誤差的估計。重要的是,這種方法從理論上而言,能夠求得圓周率的更准確的值。到公元150年左右,希臘天文學家托勒密得出 π =3.1416,取得了自阿基米德以來的巨大進步。
割圓術。不斷地利用勾股定理,來計算正N邊形的邊長。
在我國,首先是由數學家劉徽得出較精確的圓周率。公元263年前後,劉徽提出著名的割圓術,得出 π =3.14,通常稱為"徽率",他指出這是不足近似值。雖然他提出割圓術的時間比阿基米德晚一些,但其方法確有著較阿基米德方法更美妙之處。割圓術僅用內接正多邊形就確定出了圓周率的上、下界,比阿基米德用內接同時又用外切正多邊形簡捷得多。另外,有人認為在割圓術中劉徽提供了一種絕妙的精加工辦法,以致於他將割到192邊形的幾個粗糙的近似值通過簡單的加權平均,竟然獲得具有4位有效數字的圓周率 π =3927/1250 =3.1416。而這一結果,正如劉徽本人指出的,如果通過割圓計算得出這個結果,需要割到3072邊形。這種精加工方法的效果是奇妙的。這一神奇的精加工技術是割圓術中最為精彩的部分,令人遺憾的是,由於人們對它缺乏理解而被長期埋沒了。
恐怕大家更加熟悉的是祖沖之所做出的貢獻吧。對此,《隋書·律歷志》有如下記載:"宋末,南徐州從事祖沖之更開密法。以圓徑一億為丈,圓周盈數三丈一尺四寸一分五厘九毫二秒七忽,朒數三丈一尺四寸一分五厘九毫二秒六忽,正數在盈朒二限之間。密率:圓徑一百一十三,圓周三百五十五。約率,圓徑七,周二十二。"
這一記錄指出,祖沖之關於圓周率的兩大貢獻。其一是求得圓周率
3.1415926 < π < 3.1415927
其二是,得到 π 的兩個近似分數即:約率為22/7;密率為355/113。
他算出的 π 的8位可靠數字,不但在當時是最精密的圓周率,而且保持世界記錄九百多年。以致於有數學史家提議將這一結果命名為"祖率"。
這一結果是如何獲得的呢?追根溯源,正是基於對劉徽割圓術的繼承與發展,祖沖之才能得到這一非凡的成果。因而當我們稱頌祖沖之的功績時,不要忘記他的成就的取得是因為他站在數學偉人劉徽的肩膀上的緣故。後人曾推算若要單純地通過計算圓內接多邊形邊長的話,得到這一結果,需要算到圓內接正12288邊形,才能得到這樣精確度的值。祖沖之是否還使用了其它的巧妙辦法來簡化計算呢?這已經不得而知,因為記載其研究成果的著作《綴術》早已失傳了。這在中國數學發展史上是一件極令人痛惜的事。
中國發行的祖沖之紀念郵票
祖沖之的這一研究成果享有世界聲譽:巴黎"發現宮"科學博物館的牆壁上著文介紹了祖沖之求得的圓周率,莫斯科大學禮堂的走廊上鑲嵌有祖沖之的大理石塑像,月球上有以祖沖之命名的環形山……
對於祖沖之的關於圓周率的第二點貢獻,即他選用兩個簡單的分數尤其是用密率來近似地表示 π 這一點,通常人們不會太注意。然而,實際上,後者在數學上有更重要的意義。
密率與 π 的近似程度很好,但形式上卻很簡單,並且很優美,只用到了數字1、3、5。數學史家梁宗巨教授驗證出:分母小於16604的一切分數中,沒有比密率更接近 π 的分數。在國外,祖沖之死後一千多年,西方人才獲得這一結果。
可見,密率的提出是一件很不簡單的事情。人們自然要追究他是採用什麼辦法得到這一結果的呢?他是用什麼辦法把圓周率從小數表示的近似值化為近似分數的呢?這一問題歷來為數學史家所關注。由於文獻的失傳,祖沖之的求法已不為人知。後人對此進行了各種猜測。
讓我們先看看國外歷史上的工作,希望能夠提供出一些信息。
1573年,德國人奧托得出這一結果。他是用阿基米德成果22/7與托勒密的結果377/120用類似於加成法"合成"的:(377-22) / (120-7) = 355/113。
1585年,荷蘭人安托尼茲用阿基米德的方法先求得:333/106 < π < 377/120,用兩者作為 π 的母近似值,分子、分母各取平均,通過加成法獲得結果:3 ((15+17)/(106+120) = 355/113。
兩個雖都得出了祖沖之密率,但使用方法都為偶合,無理由可言。
在日本,十七世紀關孝和重要著作《括要演算法》卷四中求圓周率時創立零約術,其實質就是用加成法來求近似分數的方法。他以3、4作為母近似值,連續加成六次得到祖沖之約率,加成一百十二次得到密率。其學生對這種按部就班的笨辦法作了改進,提出從相鄰的不足、過剩近似值就近加成的辦法,(實際上就是我們前面已經提到的加成法)這樣從3、4出發,六次加成到約率,第七次出現25/8,就近與其緊鄰的22/7加成,得47/15,依次類推,只要加成23次就得到密率。
錢宗琮先生在《中國算學史》(1931年)中提出祖沖之採用了我們前面提到的由何承天首創的"調日法"或稱加權加成法。他設想了祖沖之求密率的過程:以徽率157/50,約率22/7為母近似值,並計算加成權數x=9,於是 (157 + 22×,9) / (50+7×9) = 355/113,一舉得到密率。錢先生說:"沖之在承天後,用其術以造密率,亦意中事耳。"
另一種推測是:使用連分數法。
由於求二自然數的最大公約數的更相減損術遠在《九章算術》成書時代已流行,所以藉助這一工具求近似分數應該是比較自然的。於是有人提出祖沖之可能是在求得盈 二數之後,再使用這個工具,將3.14159265表示成連分數,得到其漸近分數:3,22/7,333/106,355/113,102573/32650…
最後,取精確度很高但分子分母都較小的355/113作為圓周率的近似值。至於上面圓周率漸近分數的具體求法,這里略掉了。你不妨利用我們前面介紹的方法自己求求看。英國李約瑟博士持這一觀點。他在《中國科學技術史》卷三第19章幾何編中論祖沖之的密率說:"密率的分數是一個連分數漸近數,因此是一個非凡的成就。"
我國再回過頭來看一下國外所取得的成果。
1150年,印度數學家婆什迦羅第二計算出 π= 3927/1250 = 3.1416。1424年,中亞細亞地區的天文學家、數學家卡西著《圓周論》,計算了3×228=805,306,368邊內接與外切正多邊形的周長,求出 π 值,他的結果是:
π=3.14159265358979325
有十七位準確數字。這是國外第一次打破祖沖之的記錄。
16世紀的法國數學家韋達利用阿基米德的方法計算 π 近似值,用 6×216正邊形,推算出精確到9位小數的 π 值。他所採用的仍然是阿基米德的方法,但韋達卻擁有比阿基米德更先進的工具:十進位置制。17世紀初,德國人魯道夫用了幾乎一生的時間鑽研這個問題。他也將新的十進制與早的阿基米德方法結合起來,但他不是從正六邊形開始並將其邊數翻番的,他是從正方形開始的,一直推導出了有262條邊的正多邊形,約4,610,000,000,000,000,000邊形!這樣,算出小數35位。為了記念他的這一非凡成果,在德國圓周率 π 被稱為"魯道夫數"。但是,用幾何方法求其值,計算量很大,這樣算下去,窮數學家一生也改進不了多少。到魯道夫可以說已經登峰造極,古典方法已引導數學家們走得很遠,再向前推進,必須在方法上有所突破。
17世紀出現了數學分析,這銳利的工具使得許多初等數學束手無策的問題迎刃而解。 π 的計算歷史也隨之進入了一個新的階段。
分析法時期
這一時期人們開始擺脫求多邊形周長的繁難計算,利用無窮級數或無窮連乘積來算 π 。
1593年,韋達給出
這一不尋常的公式是 π 的最早分析表達式。甚至在今天,這個公式的優美也會令我們贊嘆不已。它表明僅僅藉助數字2,通過一系列的加、乘、除和開平方就可算出 π 值。
接著有多種表達式出現。如沃利斯1650年給出:
1706年,梅欽建立了一個重要的公式,現以他的名字命名:
再利用分析中的級數展開,他算到小數後100位。
這樣的方法遠比可憐的魯道夫用大半生時間才摳出的35位小數的方法簡便得多。顯然,級數方法宣告了古典方法的過時。此後,對於圓周率的計算像馬拉松式競賽,紀錄一個接著一個:
1844年,達塞利用公式:
算到200位。
19世紀以後,類似的公式不斷涌現, π 的位數也迅速增長。1873年,謝克斯利用梅欽的一系列方法,級數公式將 π 算到小數後707位。為了得到這項空前的紀錄,他花費了二十年的時間。他死後,人們將這凝聚著他畢生心血的數值,銘刻在他的墓碑上,以頌揚他頑強的意志和堅韌不拔的毅力。於是在他的墓碑上留下了他一生心血的結晶: π 的小數點後707位數值。這一驚人的結果成為此後74年的標准。此後半個世紀,人們對他的計算結果深信不疑,或者說即便懷疑也沒有辦法來檢查它是否正確。以致於在1937年巴黎博覽會發現館的天井裡,依然顯赫地刻著他求出的 π 值。
又過了若干年,數學家弗格森對他的計算結果產生了懷疑,其疑問基於如下猜想:在 π 的數值中,盡管各數字排列沒有規律可循,但是各數碼出現的機會應該相同。當他對謝克斯的結果進行統計時,發現各數字出現次數過於參差不齊。於是懷疑有誤。他使用了當時所能找到的最先進的計算工具,從1944年5月到1945年5月,算了整整一年。1946年,弗格森發現第528位是錯的(應為4,誤為5)。謝克斯的值中足足有一百多位全都報了銷,這把可憐的謝克斯和他的十五年浪費了的光陰全部一筆勾銷了。
對此,有人曾嘲笑他說:數學史在記錄了諸如阿基米德、費馬等人的著作之餘,也將會擠出那麼一、二行的篇幅來記述1873年前謝克斯曾把 π 計算到小數707位這件事。這樣,他也許會覺得自己的生命沒有虛度。如果確實是這樣的話,他的目的達到了。
人們對這些在地球的各個角落裡作出不懈努力的人感到不可理解,這可能是正常的。但是,對此做出的嘲笑卻是過於殘忍了。人的能力是不同的,我們無法要求每個人都成為費馬、高斯那樣的人物。但成為不了偉大的數學家,並不意味著我們就不能為這個社會做出自己有限的貢獻。人各有其長,作為一個精力充沛的計算者,謝克斯願意獻出一生的大部分時光從事這項工作而別無報酬,並最終為世上的知識寶庫添了一小塊磚加了一個塊瓦。對此我們不應為他的不懈努力而感染並從中得到一些啟發與教育嗎?
1948年1月弗格森和倫奇兩人共同發表有808位正確小數的 π 。這是人工計算 π 的最高記錄。
計算機時期
1946年,世界第一台計算機ENIAC製造成功,標志著人類歷史邁入了電腦時代。電腦的出現導致了計算方面的根本革命。1949年,ENIAC根據梅欽公式計算到2035(一說是2037)位小數,包括准備和整理時間在內僅用了70小時。計算機的發展一日千里,其記錄也就被頻頻打破。
ENIAC:一個時代的開始
1973年,有人就把圓周率算到了小數點後100萬位,並將結果印成一本二百頁厚的書,可謂世界上最枯燥無味的書了。1989年突破10億大關,1995年10月超過64億位。1999年9月30日,《文摘報》報道,日本東京大學教授金田康正已求到2061.5843億位的小數值。如果將這些數字列印在A4大小的復印紙上,令每頁印2萬位數字,那麼,這些紙摞起來將高達五六百米。來自最新的報道:金田康正利用一台超級計算機,計算出圓周率小數點後一兆二千四百一十一億位數,改寫了他本人兩年前創造的紀錄。據悉,金田教授與日立製作所的員工合作,利用目前計算能力居世界第二十六位的超級計算機,使用新的計算方法,耗時四百多個小時,才計算出新的數位,比他一九九九年九月計算出的小數點後二千六百一十一位提高了六倍。圓周率小數點後第一兆位數是二,第一兆二千四百一十一億位數為五。如果一秒鍾讀一位數,大約四萬年後才能讀完。
不過,現在打破記錄,不管推進到多少位,也不會令人感到特別的驚奇了。實際上,把 π 的數值算得過分精確,應用意義並不大。現代科技領域使用的 π 值,有十幾位已經足夠。如果用魯道夫的35位小數的 π 值計算一個能把太陽系包圍起來的圓的周長,誤差還不到質子直徑的百萬分之一。我們還可以引美國天文學家西蒙·紐克姆的話來說明這種計算的實用價值:
"十位小數就足以使地球周界准確到一英寸以內,三十位小數便能使整個可見宇宙的四周准確到連最強大的顯微鏡都不能分辨的一個量。"
那麼為什麼數學家們還象登山運動員那樣,奮力向上攀登,一直求下去而不是停止對 π 的探索呢?為什麼其小數值有如此的魅力呢?
這其中大概免不了有人類的好奇心與領先於人的心態作怪,但除此之外,還有許多其它原因。
奔騰與圓周率之間的奇妙關系……
1、它現在可以被人們用來測試或檢驗超級計算機的各項性能,特別是運算速度與計算過程的穩定性。這對計算機本身的改進至關重要。就在幾年前,當Intel公司推出奔騰(Pentium)時,發現它有一點小問題,這問題正是通過運行 π 的計算而找到的。這正是超高精度的 π 計算直到今天仍然有重要意義的原因之一。
2、 計算的方法和思路可以引發新的概念和思想。雖然計算機的計算速度超出任何人的想像,但畢竟還需要由數學家去編製程序,指導計算機正確運算。實際上,確切地說,當我們把 π 的計算歷史劃分出一個電子計算機時期時,這並非意味著計算方法上的改進,而只是計算工具有了一個大飛躍而已。因而如何改進計算技術,研究出更好的計算公式,使公式收斂得更快、能極快地達到較大的精確度仍是數學家們面對的一個重要課題。在這方面,本世紀印度天才數學家拉馬努揚得出了一些很好的結果。他發現了許多能夠迅速而精確地計算 π 近似值的公式。他的見解開通了更有效地計算 π 近似值的思路。現在計算機計算 π 值的公式就是由他得到的。至於這位極富傳奇色彩的數學家的故事,在這本小書中我們不想多做介紹了。不過,我希望大家能夠明白 π 的故事講述的是人類的勝利,而不是機器的勝利。
3、還有一個關於 π 的計算的問題是:我們能否無限地繼續算下去?答案是:不行!根據朱達偌夫斯基的估計,我們最多算1077位。雖然,現在我們離這一極限還相差很遠很遠,但這畢竟是一個界限。為了不受這一界限的約束,就需要從計算理論上有新的突破。前面我們所提到的計算,不管用什麼公式都必須從頭算起,一旦前面的某一位出錯,後面的數值完全沒有意義。還記得令人遺憾的謝克斯嗎?他就是歷史上最慘痛的教訓。
4、於是,有人想能否計算時不從頭開始,而是從半截開始呢?這一根本性的想法就是尋找並行演算法公式。1996年,圓周率的並行演算法公式終於找到,但這是一個16進位的公式,這樣很容易得出的1000億位的數值,只不過是16進位的。是否有10進位的並行計算公式,仍是未來數學的一大難題。
5、作為一個無窮數列,數學家感興趣的把 π 展開到上億位,能夠提供充足的數據來驗證人們所提出的某些理論問題,可以發現許多迷人的性質。如,在 π 的十進展開中,10個數字,哪些比較稀,哪些比較密? π 的數字展開中某些數字出現的頻率會比另一些高嗎?或許它們並非完全隨意?這樣的想法並非是無聊之舉。只有那些思想敏銳的人才會問這種貌似簡單,許多人司空見慣但卻不屑發問的問題。
6、數學家弗格森最早有過這種猜想:在 π 的數值式中各數碼出現的概率相同。正是他的這個猜想為發現和糾正向克斯計算 π 值的錯誤立下了汗馬功勞。然而,猜想並不等於現實。弗格森想驗證它,卻無能為力。後人也想驗證它,也是苦於已知的 π 值的位數太少。甚至當位數太少時,人們有理由對猜想的正確性做出懷疑。如,數字0的出現機會在開始時就非常少。前50位中只有1個0,第一次出現在32位上。可是,這種現象隨著數據的增多,很快就改變了:100位以內有8個0;200位以內有19個0;……1000萬位以內有999,440個0;……60億位以內有599,963,005個0,幾乎佔1/10。
其他數字又如何呢?結果顯示,每一個都差不多是1/10,有的多一點,有的少一點。雖然有些偏差,但都在1/10000之內。
7、人們還想知道: π 的數字展開真的沒有一定的模式嗎?我們希望能夠在十進制展開式中通過研究數字的統計分布,尋找任何可能的模型――如果存在這種模型的話,迄今為止尚未發現有這種模型。同時我們還想了解: π 的展開式中含有無窮的樣式變化嗎?或者說,是否任何形式的數字排列都會出現呢?著名數學家希爾伯特在沒有發表的筆記本中曾提出下面的問題: π 的十進展開中是否有10個9連在一起?以現在算到的60億位數字來看,已經出現:連續6個9連在一起。希爾伯特的問題答案似乎應該是肯定的,看來任何數字的排列都應該出現,只是什麼時候出現而已。但這還需要更多 π 的數位的計算才能提供切實的證據。
8、在這方面,還有如下的統計結果:在60億數字中已出現連在一起的8個8;9個7;10個6;小數點後第710150位與3204765位開始,均連續出現了七個3;小數點52638位起連續出現了14142135這八個數字,這恰是的前八位;小數點後第2747956位起,出現了有趣的數列876543210,遺憾的是前面缺個9;還有更有趣的數列123456789也出現了。
如果繼續算下去,看來各種類型的數字列組合可能都會出現。
拾零: π 的其它計算方法
在1777年出版的《或然性算術實驗》一書中,蒲豐提出了用實驗方法計算 π 。這個實驗方法的操作很簡單:找一根粗細均勻,長度為 d 的細針,並在一張白紙上畫上一組間距為 l 的平行線(方便起見,常取 l = d/2),然後一次又一次地將小針任意投擲在白紙上。這樣反復地投多次,數數針與任意平行線相交的次數,於是就可以得到 π 的近似值。因為蒲豐本人證明了針與任意平行線相交的概率為 p = 2l/πd 。利用這一公式,可以用概率方法得到圓周率的近似值。在一次實驗中,他選取 l = d/2 ,然後投針2212次,其中針與平行線相交704次,這樣求得圓周率的近似值為 2212/704 = 3.142。當實驗中投的次數相當多時,就可以得到 π 的更精確的值。
1850年,一位叫沃爾夫的人在投擲5000多次後,得到 π 的近似值為3.1596。目前宣稱用這種方法得到最好結果的是義大利人拉茲瑞尼。在1901年,他重復這項實驗,作了3408次投針,求得 π 的近似值為3.1415929,這個結果是如此准確,以致於很多人懷疑其實驗的真偽。如美國猶他州奧格登的國立韋伯大學的L·巴傑就對此提出過有力的質疑。
不過,蒲豐實驗的重要性並非是為了求得比其它方法更精確的 π 值。蒲豐投針問題的重要性在於它是第一個用幾何形式表達概率問題的例子。計算 π 的這一方法,不但因其新穎,奇妙而讓人叫絕,而且它開創了使用隨機數處理確定性數學問題的先河,是用偶然性方法去解決確定性計算的前導。
在用概率方法計算 π 值中還要提到的是:R·查特在1904年發現,兩個隨意寫出的數中,互素的概率為6/π2。1995年4月英國《自然》雜志刊登文章,介紹英國伯明翰市阿斯頓大學計算機科學與應用數學系的羅伯特·馬修斯,如何利用夜空中亮星的分布來計算圓周率。馬修斯從100顆最亮的星星中隨意選取一對又一對進行分析,計算它們位置之間的角距。他檢查了100萬對因子,據此求得 π 的值約為3.12772。這個值與真值相對誤差不超過5%。
通過幾何、微積分、概率等廣泛的范圍和渠道發現 π ,這充分顯示了數學方法的奇異美。 π 竟然與這么些表面看來風馬牛不相及的試驗,溝通在一起,這的確使人驚訝不已。
四色猜想
世界近代三大數學難題之一。四色猜想的提出來自英國。1852年,畢業於倫敦大學的弗南西斯·格思里來到一家科研單位搞地圖著色工作時,發現了一種有趣的現象:「看來,每幅地圖都可以用四種顏色著色,使得有共同邊界的國家著上不
B. 數學知識都有哪些
數學知識包羅萬象,上到天文地理,下至雞毛蒜皮都涉及數學知識,不過最基本的不外是幼兒園、小學所教內容:認識數字大小、加減乘除四則運算,最多加上分數、小數的知識,基本上就是日常都要用到的數學知識,熟練掌握運算以及所謂「應用題」的解決,再掌握一點關於面積、體積的計算更好。至於其他「數學知識」,即使頂尖數學家恐怕難以說清楚「數學」最終包括哪些內容,因為科學技術就是一個不斷探索、不斷發展的過程。
C. 數學知識介紹
數學小知識--------------------------------------------------------------------------------
數學符號的起源
數學除了記數以外,還需要一套數學符號來表示數和數、數和形的相互關系。數學符號的發明和使用比數字晚,但是數量多得多。現在常用的有200多個,初中數學書里就不下20多種。它們都有一段有趣的經歷。
例如加號曾經有好幾種,現在通用"+"號。
"+"號是由拉丁文"et"("和"的意思)演變而來的。十六世紀,義大利科學家塔塔里亞用義大利文"più"(加的意思)的第一個字母表示加,草為"μ"最後都變成了"+"號。
"-"號是從拉丁文"minus"("減"的意思)演變來的,簡寫m,再省略掉字母,就成了"-"了。
到了十五世紀,德國數學家魏德美正式確定:"+"用作加號,"-"用作減號。
乘號曾經用過十幾種,現在通用兩種。一個是"×",最早是英國數學家奧屈特1631年提出的;一個是"· ",最早是英國數學家赫銳奧特首創的。德國數學家萊布尼茨認為:"×"號象拉丁字母"X",加以反對,而贊成用"· "號。他自己還提出用"п"表示相乘。可是這個符號現在應用到集合論中去了。
到了十八世紀,美國數學家歐德萊確定,把"×"作為乘號。他認為"×"是"+"斜起來寫,是另一種表示增加的符號。
"÷"最初作為減號,在歐洲大陸長期流行。直到1631年英國數學家奧屈特用":"表示除或比,另外有人用"-"(除線)表示除。後來瑞士數學家拉哈在他所著的《代數學》里,才根據群眾創造,正式將"÷"作為除號。
十六世紀法國數學家維葉特用"="表示兩個量的差別。可是英國牛津大學數學、修辭學教授列考爾德覺得:用兩條平行而又相等的直線來表示兩數相等是最合適不過的了,於是等於符號"="就從1540年開始使用起來。
1591年,法國數學家韋達在菱中大量使用這個符號,才逐漸為人們接受。十七世紀德國萊布尼茨廣泛使用了"="號,他還在幾何學中用"∽"表示相似,用"≌"表示全等。
大於號"〉"和小於號"〈",是1631年英國著名代數學家赫銳奧特創用。至於≯""≮"、"≠"這三個符號的出現,是很晚很晚的事了。大括弧"{ }"和中括弧"[ ]"是代數創始人之一魏治德創造
D. 關於數學知識
初中數學寶典,你知道學習數學最重要的是什麼嗎?
在初中學習數學這們課程的時候很多的學生都是比較煩惱的,因為這們課程是非常難的,並且難點非常多,很多的學生在剛開始學習的時候還可以更得上,但是過一段時間之後就會變得非常的吃力,那麼你知道初中數學寶典是什麼嗎?我們來了解一下吧!
復習知識點
以上就是初中數學寶典的內容,當學習吃力的時候可以先復習一下之前的內容,當然這個時候之前記得筆記就可以用來復習了,這樣可以更好的幫助我們學習後期的內容,並且可以改善學習吃力的問題.
E. 什麼是數學知識
數學是一門學科,
研究數與形及其衍生問題。
凡是在這個范圍內的知識,
都是數學知識。
數學知識以公理體系為基礎,
通過邏輯逐步導出各個定理,
把數學知識編織成網路結構。
數學是所有科學技術的基礎。
F. 數學素養與數學知識的區別聯系實際
數學是科學的工具,在人類物質文明的進程中已充分顯示出其實用價值。數學更是一種文化,是人類智慧的結晶,其價值已滲透到人類社會的每一個角落。數學本質的雙重性決定了作為教育任務的數學價值取向應是多極的。數學教育不僅是知識的傳授、能力的培養,而且是一種文化熏陶、素質的培養。數學素質教育應該是人文教育和科學教育的相互滲透,即整合。樹立新型的教育觀,是深化教育改革的關鍵。
一、數學教學中數學能力的培養途徑
基於數學思維能力體現數學認識和建構的需要 ,也反映數學自身特徵的要求,是數學能力的核心;另外,素質教育的核心是創新教育,我們所談及的數學能力具備多方面的內容,但在其核心內容中必須定位在促進學生的創新能力方面。
(一)應用數學能力的培養
數學是一種語言,是認識世界必不可少的方法,運用數學的能力是未來公民應當具有的最基本的素質之一。九年義務教育數學教學大綱明確規定:「要使學生受到把實際問題抽象成數學問題的訓練」,「形成用數學的意識」 。
1.重現知識形成的過程,培養學生用數學的意識。數學概念和數學規律大多是由實際問題抽象出來的,因而在進行數學概念和數學規律的教學中,我們不應當只是單純地向學生講授這些數學知識,而忽視對其原型的分析和抽象。我們應當從實際事例或學生已有知識出發,逐步引導學生對原型加以抽象、概括,弄清知識的抽象過程,了解它們的用途和適用范圍,從而使學生形成對學數學、用數學所必須遵循的途徑的認識。這不僅能加深學生對知識的理解和記憶,而且對激發學生學數學的興趣、增強學生用數學的意識大有裨益。
2.創造條件,讓學生運用數學解決實際問題。數學思想是對數學知識與方法形成的規律性的理性認識,是解決數學問題的根本策略。數學方法是解決問題的手段和工具。數學思想方法是數學的精髓,只有掌握了數學思想方法,才算真正掌握了數學。
因而,數學思想方法也應是學生必須具備的基本素質之一。現行教材中蘊涵了多種數學基礎知識和方法,在教學時,我們應充分挖掘由數學基礎知識所反映出來的數學思想和方法,設計數學思想方法的教學目標,結合教學內容適時滲透、反復強化、及時總結,用數學思想方式武裝學生,使學生真正成為數學的主人。
(二)思維能力的培養
思維品質的優良與否是國民素質的重要決定因素。為了促進學生思維能力的發展,我們必須高度關注學生在數學學習過程中的思維活動,必須研究思維活動的發展規律,研究思維的有關類型和功能、結構、內在聯系及其在數學教學中所起的作用。
1.重視數學思想培養的教學觀中學數學思想內容包括:
①符合思想。數學語言准確而清楚,使用它使數學的運轉成為可能。
②映射思想。以映射的原則,可以得到換元法,初等變換法及母函數法等解決問題的方法。
③化歸思想。化歸的實質就是把新問題轉化為已經解決的問題來解決,把復雜問題轉化為易於解決的簡單問題來解決。它是處理數學問題的一種基本思想。換元法、配方法、分組法、反證法等都是化歸思想的具體應用。
④分解思想。其特點是化整為零,其實質是分解――組合、分割――拼合的辯證思想。
⑤參數思想。參數作為橋梁,以溝通問題的條件與結論。在解題時引入新的變數,或將題設中多元里的一元看做已知數,根據已知條件列式推算,從而使問題獲得解決。換元法、比值法、主元法、待定系數法等都是參數思想的具體應用。
⑥歸納思想。從幾個簡單的、個別的、特殊的事例出發,歸納出一般的規律和性質。即以特殊到一般的思維方式。
⑦類比思想。是由已知的兩類事物具有某些相似性質,從而推斷它們在其他性質上也可能相似的推理形式。
⑧演繹思想。由一般到特殊的邏輯推理方法。
⑨模型思想。實際問題可數學化,通過數學模型加以解決。數學思想在數學整個體系中起著「靈魂」的作用,只有重現數學思想的教學才能從高一層次提高學生的能力水平,培養學生的數學觀念和良好品質,進而提高學生的數學素質。
2.重視「問題解決」的教學觀問題解決作為一種教學模式或作為一種教學過程,是培養學生數學素質的一條有效途徑。華師大張奠宙教授指出「問題解決反對單純模仿,更多地從問題情景出發,構造數學模型,提供數學想像,伴以實際操作,鼓勵發散思想,誘發創造能力,把數學嵌入活的認知過程中,而不是死的知識積累。我認為『問題解決』是可以影響當前數學教育的突破口,它和『升學率』不矛盾,有助於大眾數學的推廣,能全面提高數學素質」。重視「問題解決」,在一定的意義上也就是重視數學的應用價值。現在「能夠運用所學知識解決簡單的實際問題」被列為數學教學目的之一,就是要求我們順應社會發展,加強數學應用的教學。
在教學中,我們尤其要注重培養學生良好的思維品質,使學生的思維既有明確的目的方向,又有自己的見解;既有廣闊的思路,又能揭露問題的實質;既敢於創新,又能具體問題具體分析。
二、重視學生能力的個別差異,注意麵向全體學生
針對學生的「個別差異」,我們要了解不同發展水平的學生理解運用知識的情況,及時注入不同的信息以調控學生的學習心理和認識的發展水平。根據學生的心理差別,我們要做到面向全體學生,建立良好的師生關系。幫助後進生克服心理障礙,關心他們,使他們有信心學好,提高克服困難的勇氣。同時注意及時捕捉後進生的問題,發現他們的閃光點,有計劃地設計一些後進生能回答的問題,保護他們的自尊心,激發他們的求知慾和學習熱情,以達到大面積豐收。
總之,在數學教學中加強素質教育,就是要全面提高教育教學質量,全面提高學生整體素質。這樣就能把素質教育推向一個新的高度,我們的素質教育定能取得喜人的成果。
G. 數學有哪些知識
加減乘除,小數分數,單位換算,太多了
H. 數學基礎知識
七年級到九年級數學必記重要知識點
1、過兩點有且只有一條直線
2、兩點之間線段最短
3、同角或等角的補角相等
4、同角或等角的餘角相等
5、過一點有且只有一條直線和已知直線垂直
6、直線外一點與直線上各點連接的所有線段中,垂線段最短
7、平行公理 經過直線外一點,有且只有一條直線與這條直線平行
8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9、同位角相等,兩直線平行
10、內錯角相等,兩直線平行
11、同旁內角互補,兩直線平行
12、兩直線平行,同位角相等
13、兩直線平行,內錯角相等
14、兩直線平行,同旁內角互補
15、定理 三角形兩邊的和大於第三邊
16、推論 三角形兩邊的差小於第三邊
17、三角形內角和定理 三角形三個內角的和等於180°
18、推論1 直角三角形的兩個銳角互余
19、推論2 三角形的一個外角等於和它不相鄰的兩個內角的和
20、推論3 三角形的一個外角大於任何一個和它不相鄰的內角
21、全等三角形的對應邊、對應角相等
22、邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等
23、角邊角公理( ASA)有兩角和它們的夾邊對應相等的 兩個三角形全等
24、推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等
25、邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等
26、斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等
27、定理1 在角的平分線上的點到這個角的兩邊的距離相等
28、定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上
29、角的平分線是到角的兩邊距離相等的所有點的集合
30、等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角)
31、推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊
32、等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33、推論3 等邊三角形的各角都相等,並且每一個角都等於60°
34、等腰三角形的判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)
35、推論1 三個角都相等的三角形是等邊三角形
36、推論 2 有一個角等於60°的等腰三角形是等邊三角形
37、在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半
38、直角三角形斜邊上的中線等於斜邊上的一半
39、定理 線段垂直平分線上的點和這條線段兩個端點的距離相等
40、逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42、定理1 關於某條直線對稱的兩個圖形是全等形
43、定理 2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線
44、定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上
45、逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱
46、勾股定理 直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a2+b2=c2
47、勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a2+b2=c2,那麼這個三角形是直角三角形
48、定理 四邊形的內角和等於360°
49、四邊形的外角和等於360°
50、多邊形內角和定理 n邊形的內角的和等於(n-2)×180°
51、推論 任意多邊的外角和等於360°
52、平行四邊形性質定理1 平行四邊形的對角相等
53、平行四邊形性質定理2 平行四邊形的對邊相等
54、推論 夾在兩條平行線間的平行線段相等
55、平行四邊形性質定理3 平行四邊形的對角線互相平分
56、平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形
57、平行四邊形判定定理2 兩組對邊分別相等的四邊 形是平行四邊形
58、平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形
59、平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形
60、矩形性質定理1 矩形的四個角都是直角
61、矩形性質定理2 矩形的對角線相等
62、矩形判定定理1 有三個角是直角的四邊形是矩形
63、矩形判定定理2 對角線相等的平行四邊形是矩形
64、菱形性質定理1 菱形的四條邊都相等
65、菱形性質定理2 菱形的對角線互相垂直,並且每一條對角線平分一組對角
66、菱形面積=對角線乘積的一半,即S=(a×b)÷2
67、菱形判定定理1 四邊都相等的四邊形是菱形
68、菱形判定定理2 對角線互相垂直的平行四邊形是菱形
69、正方形性質定理1 正方形的四個角都是直角,四條邊都相等
70、正方形性質定理2正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角
71、定理1 關於中心對稱的兩個圖形是全等的
72、定理2 關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分
73、逆定理 如果兩個圖形的對應點連線都經過某一點,並且被這一點平分,那麼這兩個圖形關於這一點對稱
74、等腰梯形性質定理 等腰梯形在同一底上的兩個角相等
75、等腰梯形的兩條對角線相等
76、等腰梯形判定定理 在同一底上的兩個角相等的梯 形是等腰梯形
77、對角線相等的梯形是等腰梯形
78、平行線等分線段定理 如果一組平行線在一條直線上截得的線段相等,那麼在其他直線上截得的線段也相等
79、推論1 經過梯形一腰的中點與底平行的直線,必平分另一腰
80、推論2 經過三角形一邊的中點與另一邊平行的直線,必平分第三邊
81、三角形中位線定理 三角形的中位線平行於第三邊,並且等於它的一半
82、梯形中位線定理 梯形的中位線平行於兩底,並且等於兩底和的一半 L=(a+b)÷2 S=L×h
83、(1)比例的基本性質:
如果a:b=c:d,那麼ad=bc
如果 ad=bc ,那麼a:b=c:d
84、(2)合比性質:
如果a/b=c/d,那麼(a±b)/b=(c±d)/d
85、(3)等比性質:
如果a/b=c/d=…=m/n(b+d+…+n≠0),
那麼(a+c+…+m)/(b+d+…+n)=a/b
86、平行線分線段成比例定理 三條平行線截兩條直線,所得的對應線段成比例
87、推論 平行於三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例
88、定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那麼這條直線平行於三角形的第三邊
89、平行於三角形的一邊,並且和其他兩邊相交的直線, 所截得的三角形的三邊與原三角形三邊對應成比例
90、定理 平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似
91、相似三角形判定定理1 兩角對應相等,兩三角形相似(ASA)
92、直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
93、判定定理2 兩邊對應成比例且夾角相等,兩三角形相似(SAS)
94、判定定理3 三邊對應成比例,兩三角形相似(SSS)
95、定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那麼這兩個直角三角形相似
96、性質定理1 相似三角形對應高的比,對應中線的比與對應角平分線的比都等於相似比
97、性質定理2 相似三角形周長的比等於相似比
98、性質定理3 相似三角形面積的比等於相似比的平方
99、任意銳角的正弦值等於它的餘角的餘弦值,任意銳角的餘弦值等於它的餘角的正弦值
100、任意銳角的正切值等於它的餘角的餘切值,任意銳角的餘切值等於它的餘角的正切值
101、圓是定點的距離等於定長的點的集合
102、圓的內部可以看作是圓心的距離小於半徑的點的集合
103、圓的外部可以看作是圓心的距離大於半徑的點的集合
104、同圓或等圓的半徑相等
105、到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓
106、和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線
107、到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
108、到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線
109、定理 不在同一直線上的三點確定一個圓。
110、垂徑定理 垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧
111、推論1
①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧
②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧
112、推論2 圓的兩條平行弦所夾的弧相等
113、圓是以圓心為對稱中心的中心對稱圖形
114、定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
115、推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那麼它們所對應的其餘各組量都相等
116、定理 一條弧所對的圓周角等於它所對的圓心角的一半
117、推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
118、推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑
119、推論3 如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形
120、定理 圓的內接四邊形的對角互補,並且任何一個外角都等於它的內對角
121、①直線L和⊙O相交 d<r
②直線L和⊙O相切 d=r
③直線L和⊙O相離 d>r
122、切線的判定定理 經過半徑的外端並且垂直於這條半徑的直線是圓的切線
123、切線的性質定理 圓的切線垂直於經過切點的半徑
124、推論1 經過圓心且垂直於切線的直線必經過切點
125、推論2 經過切點且垂直於切線的直線必經過圓心
126、切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等圓心和這一點的連線平分兩條切線的夾角
127、圓的外切四邊形的兩組對邊的和相等
128、弦切角定理 弦切角等於它所夾的弧對的圓周角
129、推論 如果兩個弦切角所夾的弧相等,那麼這兩個弦切角也相等
130、相交弦定理 圓內的兩條相交弦,被交點分成的兩條線段長的積相等
131、推論 如果弦與直徑垂直相交,那麼弦的一半是它分直徑所成的兩條線段的比例中項
132、切割線定理 從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項
133、推論 從圓外一點引圓的兩條割線,這一點到每條 割線與圓的交點的兩條線段長的積相等
134、如果兩個圓相切,那麼切點一定在連心線上
135、①兩圓外離 d>R+r
②兩圓外切 d=R+r
③兩圓相交 R-r<d<R+r(R>r)
④兩圓內切 d=R-r(R>r)
⑤兩圓內含 d<R-r(R>r)
136、定理 相交兩圓的連心線垂直平分兩圓的公共弦
137、定理 把圓分成n(n≥3):
⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形
⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
138、定理 任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓
139、正n邊形的每個內角都等於(n-2)×180°/n
140、定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
141、正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長
142、正三角形面積√3a/4 a表示邊長
143、如果在一個頂點周圍有k個正n邊形的角,由於這些角的和應為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
144、弧長計算公式:L=n兀R/180
145、扇形面積公式:S扇形=n兀R^2/360=LR/2
146、內公切線長= d-(R-r) 外公切線長= d-(R+r)
正弦定理 a/sinA=b/sinB=c/sinC=2R
註:其中 R 表示三角形的外接圓半徑
餘弦定理 b2=a2+c2-2accosB
註:角B是邊a和邊c的夾角
I. 數學知識是什麼
數學,其英文是mathematics,這是一個復數名詞,「數學曾經是四門學科:算術、幾何、天文學和音樂,處於一種比語法、修辭和辯證法這三門學科更高的地位。」
自古以來,多數人把數學看成是一種知識體系,是經過嚴密的邏輯推理而形成的系統化的理論知識總和,它既反映了人們對「現實世界的空間形式和數量關系(恩格斯)」的認識(恩格斯),又反映了人們對「可能的量的關系和形式」的認識。數學既可以來自現實世界的直接抽象,也可以來自人類思維的勞動創造。
從人類社會的發展史看,人們對數學本質特徵的認識在不斷變化和深化。「數學的根源在於普通的常識,最顯著的例子是非負整數。"歐幾里德的算術來源於普通常識中的非負整數,而且直到19世紀中葉,對於數的科學探索還停留在普通的常識,」另一個例子是幾何中的相似性,「在個體發展中幾何學甚至先於算術」,其「最早的徵兆之一是相似性的知識,」相似性知識被發現得如此之早,「就象是大生的。」因此,19世紀以前,人們普遍認為數學是一門自然科學、經驗科學,因為那時的數學與現實之間的聯系非常密切,隨著數學研究的不斷深入,從19世紀中葉以後,數學是一門演繹科學的觀點逐漸占據主導地位,這種觀點在布爾巴基學派的研究中得到發展,他們認為數學是研究結構的科學,一切數學都建立在代數結構、序結構和拓撲結構這三種母結構之上。與這種觀點相對應,從古希臘的柏拉圖開始,許多人認為數學是研究模式的學問,數學家懷特海(A. N. Whiiehead,186----1947)在《數學與善》中說,「數學的本質特徵就是:在從模式化的個體作抽象的過程中對模式進行研究,」數學對於理解模式和分析模式之間的關系,是最強有力的技術。」1931年,歌德爾(K,G0de1,1978)不完全性定理的證明,宣告了公理化邏輯演繹系統中存在的缺憾,這樣,人們又想到了數學是經驗科學的觀點,著名數學家馮·諾伊曼就認為,數學兼有演繹科學和經驗科學兩種特性。
對於上述關於數學本質特徵的看法,我們應當以歷史的眼光來分析,實際上,對數本質特徵的認識是隨數學的發展而發展的。由於數學源於分配物品、計算時間、丈量土地和容積等實踐,因而這時的數學對象(作為抽象思維的產物)與客觀實在是非常接近的,人們能夠很容易地找到數學概念的現實原型,這樣,人們自然地認為數學是一種經驗科學;隨著數學研究的深入,非歐幾何、抽象代數和集合論等的產生,特別是現代數學向抽象、多元、高維發展,人們的注意力集中在這些抽象對象上,數學與現實之間的距離越來越遠,而且數學證明(作為一種演繹推理)在數學研究中占據了重要地位,因此,出現了認為數學是人類思維的自由創造物,是研究量的關系的科學,是研究抽象結構的理論,是關於模式的學問,等等觀點。這些認識,既反映了人們對數學理解的深化,也是人們從不同側面對數學進行認識的結果。正如有人所說的,「恩格斯的關於數學是研究現實世界的數量關系和空間形式的提法與布爾巴基的結構觀點是不矛盾的,前者反映了數學的來源,後者反映了現代數學的水平,現代數學是一座由一系列抽象結構建成的大廈。」而關於數學是研究模式的學問的說法,則是從數學的抽象過程和抽象水平的角度對數學本質特徵的闡釋,另外,從思想根源上來看,人們之所以把數學看成是演繹科學、研究結構的科學,是基於人類對數學推理的必然性、准確性的那種與生俱來的信念,是對人類自身理性的能力、根源和力量的信心的集中體現,因此人們認為,發展數學理論的這套方法,即從不證自明的公理出發進行演繹推理,是絕對可靠的,也即如果公理是真的,那麼由它演繹出來的結論也一定是真的,通過應用這些看起來清晰、正確、完美的邏輯,數學家們得出的結論顯然是毋庸置疑的、無可辯駁的。
J. 數學素養與數學知識的區別
數學素養是一種心理素養,是對解決數學問題的一種。台度表現以及心理素質。而數學知識卻先學到數學答。知識的多少的積累。