當前位置:首頁 » 基礎知識 » 高中數學知識點歸納第一章手寫
擴展閱讀
如何快速認識基礎代謝 2024-11-08 11:33:34

高中數學知識點歸納第一章手寫

發布時間: 2022-12-10 15:26:21

『壹』 高中數學知識點最全總結

高考數學考試要取得好成績,一方面要有扎實的基本功、熟練的計算能力,同時還要有一定的答題技巧。下面是我給大家帶來的高中數學知識點最全 總結 ,以供大家參考!

數學重點知識點及答題技巧總結

一、高考數學必考題型 之 函數與導數

考查集合運算、函數的有關概念定義域、值域、解析式、函數的極限、連續、導數。

函數與導數單調性

若導數大於零,則單調遞增;若導數小於零,則單調遞減;導數等於零為函數駐點,不一定為極值點。需代入駐點左右兩邊的數值求導數正負判斷單調性。

若已知函數為遞增函數,則導數大於等於零;若已知函數為遞減函數,則導數小於等於零。

二、高考數學必考題型 之 幾何

公理1:如果一條直線上的兩點在一個平面內,那麼這條直線上所有的點在此平面內

公理2:過不在同一條直線上的三點,有且只有一個平面

公理3:如果兩個不重合的平面有一個公共點,那麼它們有且只有一條過該點的公共直線

公理4:平行於同一條直線的兩條直線互相平行

定理:空間中如果一個角的兩邊與另一個角的兩邊分別平行,那麼這兩個角相等或互補

判定定理:

如果平面外一條直線與此平面內的一條直線平行,那麼該直線與此平面平行 「線面平行」

如果一個平面內的兩條相交直線與另一個平面都平行,那麼這兩個平面平行「面面平行」

如果一條直線與一個平面內的兩條相交直線都垂直,那麼該直線與此平面垂直「線面垂直」

如果一個平面經過另一個平面的垂線,那麼這兩個平面互相垂直「面面垂直」

三、高考數學必考題型 之 不等式

對稱性

傳遞性

加法單調性,即同向不等式可加性

乘法單調性

同向正值不等式可乘性

正值不等式可乘方

正值不等式可開方

倒數法則

四、高考數學必考題型 之 數列

(1)理解數列的概念,了解數列通項公式的意義了解遞推公式是給出數列的一種 方法 ,並能根據遞推公式寫出數列的前幾項。

(2)理解等差數列的概念,掌握等差數列的通項公式與前n項和公式,並能解決簡單的實際問題。

(3)理解等比數列的概念,掌握等比數列的通項公式與前n項和公式,井能解決簡單的實際問題。

必背公式

1、一元二次方程的解

-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a

根與系數的關系x1+x2=-b/ax1x2=c/a註:韋達定理

判別式b2-4a=0註:方程有相等的兩實根

b2-4ac>0註:方程有兩個不相等的個實根

b2-4ac<0註:方程有共軛復數根

2、立體圖形及平面圖形的公式

圓的標准方程(x-a)2+(y-b)2=r2註:(a,b)是圓心坐標

圓的一般方程x2+y2+Dx+Ey+F=0註:D2+E2-4F>0

拋物線標准方程y2=2pxy2=-2px2=2pyx2=-2py

直稜柱側面積S=cxh斜稜柱側面積S=c'xh

正棱錐側面積S=1/2cxh'正稜台側面積S=1/2(c+c')h'

圓台側面積S=1/2(c+c')l=pi(R+r)l球的表面積S=4pixr2

圓柱側面積S=cxh=2pixh圓錐側面積S=1/2xcxl=pixrxl

弧長公式l=axra是圓心角的弧度數r>0扇形面積公式s=1/2xlxr

錐體體積公式V=1/3xSxH圓錐體體積公式V=1/3xpixr2h

斜稜柱體積V=S'L註:其中,S'是直截面面積,L是側棱長

柱體體積公式V=sxh圓柱體V=pixr2h

3、圖形周長、面積、體積公式

長方形的周長=(長+寬)×2

正方形的周長=邊長×4

長方形的面積=長×寬

正方形的面積=邊長×邊長

三角形的面積

已知三角形底a,高h,則S=ah/2

已知三角形三邊a,b,c,半周長p,則S=√[p(p-a)(p-b)(p-c)](海倫公式)(p=(a+b+c)/2)

和:(a+b+c)x(a+b-c)x1/4

已知三角形兩邊a,b,這兩邊夾角C,則S=absinC/2

設三角形三邊分別為a、b、c,內切圓半徑為r

則三角形面積=(a+b+c)r/2

設三角形三邊分別為a、b、c,外接圓半徑為r

則三角形面積=abc/4r

常用的三角函數公式

兩角和公式

sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)

ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

倍角公式

tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

半形公式

sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))

和差化積

2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB

高考應試技巧

技巧一提前進入「角色」

考前晚上要睡足八個小時,早晨最好吃些清淡的早餐,帶齊一切高考用具,如筆、橡皮、作圖工具、身分證、准考證等。

提前半小時到達高考考區,一方面可以消除新異刺激,穩定情緒,從容進場,另一方面也留有時間提前進入「角色」讓大腦開始簡單的數學活動。回憶一下高考數學常用公式,有助於高考數學超常發揮。

技巧二情緒要自控

最易導致高考心理緊張、焦慮和恐懼的是入場後與答卷前的「臨戰」階段,此間保持心態平衡的方法有三種

轉移注意法:把注意力轉移到對你感興趣的事情上或滑稽事情的回憶中。

自我安慰法:如「我經過的考試多了,沒什麼了不起」等。

抑制思維法:閉目而坐,氣貫丹田,四肢放鬆,深呼吸,慢吐氣,如此進行到高考發卷時。

技巧三摸透「題情」

剛拿到高考數學試卷,不要匆匆作答,可先從頭到尾通覽全卷,通覽全卷是克服「前面難題做不出,後面易題沒時間做」的有效 措施 ,也從根本上防止了「漏做題」。

從高考數學卷面上獲取最多的信息,為實施正確的解題策略作準備,順利解答那些一眼看得出結論的簡單選擇或填空題,這樣可以使緊張的情緒立即穩定,使高考數學能夠超常發揮。

技巧四信心要充足,暗示靠自己

高考數學答卷中,見到簡單題,要細心,莫忘乎所以,謹防「大意失荊州」。面對偏難的題,要耐心,不能急。

考試全程都要確定「人家會的我也會,人家不會的我也會」的必勝信念,使自己始終處於最佳競技狀態

技巧五數學答題有先有後

1、答題應先易後難,先做簡單的數學題,再做復雜的數學題;根據自己的實際情況,跳過實在沒有思路的高考數學題,從易到難。

2、先高分後低分,在高考數學考試的後半段時要特別注重時間,如兩道題都會做,先做高分題,後做低分題,對那些拿不下來的數學難題也就是高分題應「分段得分」,以增加在時間不足前提下的得到更多的分,這樣在高考中就會增加數學超常發揮的幾率。

高中數學知識點最全總結相關 文章 :

★ 高中數學知識點歸納最新

★ 高中數學基本知識點最新

★ 高一數學知識點全面總結

★ 高中數學知識點總結

★ 高中數學知識點:橢圓方程式知識點總結

★ 高一數學考試基礎知識

★ 高中數學必修一三角函數知識點總結

★ 高中數學知識點:平面向量的公式的知識點總結

★ 高中數學全部知識點提綱整理

★ 人教版高中數學知識點總結最新

『貳』 求高中數學必修1的知識點總結 急!!!

高中高一數學必修1各章知識點總結

第一章 集合與函數概念

一、集合有關概念

1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。

2、集合的中元素的三個特性:

1.元素的確定性; 2.元素的互異性; 3.元素的無序性

說明:(1)對於一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。

(2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。

(3)集合中的元素是平等的,沒有先後順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。

(4)集合元素的三個特性使集合本身具有了確定性和整體性。

3、集合的表示:{ … } 如{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

1. 用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

2.集合的表示方法:列舉法與描述法。

注意啊:常用數集及其記法:

非負整數集(即自然數集)記作:N

正整數集 N*或 N+ 整數集Z 有理數集Q 實數集R

關於「屬於」的概念

集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬於集合A 記作 a∈A ,相反,a不屬於集合A 記作 a?A

列舉法:把集合中的元素一一列舉出來,然後用一個大括弧括上。

描述法:將集合中的元素的公共屬性描述出來,寫在大括弧內表示集合的方法。用確定的條件表示某些對象是否屬於這個集合的方法。

①語言描述法:例:{不是直角三角形的三角形}

②數學式子描述法:例:不等式x-3>2的解集是{x?R| x-3>2}或{x| x-3>2}

4、集合的分類:

1.有限集 含有有限個元素的集合

2.無限集 含有無限個元素的集合

3.空集 不含任何元素的集合 例:{x|x2=-5}

二、集合間的基本關系

1.「包含」關系—子集

注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

反之: 集合A不包含於集合B,或集合B不包含集合A,記作A B或B A

2.「相等」關系(5≥5,且5≤5,則5=5)

實例:設 A={x|x2-1=0} B={-1,1} 「元素相同」

結論:對於兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時,集合B的任何一個元素都是集合A的元素,我們就說集合A等於集合B,即:A=B

① 任何一個集合是它本身的子集。AíA

②真子集:如果AíB,且A1 B那就說集合A是集合B的真子集,記作A B(或B A)

③如果 AíB, BíC ,那麼 AíC

④ 如果AíB 同時 BíA 那麼A=B

3. 不含任何元素的集合叫做空集,記為Φ

規定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

三、集合的運算

1.交集的定義:一般地,由所有屬於A且屬於B的元素所組成的集合,叫做A,B的交集.

記作A∩B(讀作」A交B」),即A∩B={x|x∈A,且x∈B}.

2、並集的定義:一般地,由所有屬於集合A或屬於集合B的元素所組成的集合,叫做A,B的並集。記作:A∪B(讀作」A並B」),即A∪B={x|x∈A,或x∈B}.

3、交集與並集的性質:A∩A = A, A∩φ= φ, A∩B = B∩A,A∪A = A,

A∪φ= A ,A∪B = B∪A.

4、全集與補集

(1)補集:設S是一個集合,A是S的一個子集(即 ),由S中所有不屬於A的元素組成的集合,叫做S中子集A的補集(或余集)

記作: CSA 即 CSA ={x | x?S且 x?A}

S

CsA

A

(2)全集:如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集。通常用U來表示。

(3)性質:⑴CU(C UA)=A ⑵(C UA)∩A=Φ ⑶(CUA)∪A=U

二、函數的有關概念

1.函數的概念:設A、B是非空的數集,如果按照某個確定的對應關系f,使對於集合A中的任意一個數x,在集合B中都有唯一確定的數f(x)和它對應,那麼就稱f:A→B為從集合A到集合B的一個函數.記作: y=f(x),x∈A.其中,x叫做自變數,x的取值范圍A叫做函數的定義域;與x的值相對應的y值叫做函數值,函數值的集合{f(x)| x∈A }叫做函數的值域.

注意:2如果只給出解析式y=f(x),而沒有指明它的定義域,則函數的定義域即是指能使這個式子有意義的實數的集合;3 函數的定義域、值域要寫成集合或區間的形式.

定義域補充

能使函數式有意義的實數x的集合稱為函數的定義域,求函數的定義域時列不等式組的主要依據是:(1)分式的分母不等於零; (2)偶次方根的被開方數不小於零; (3)對數式的真數必須大於零;(4)指數、對數式的底必須大於零且不等於1. (5)如果函數是由一些基本函數通過四則運算結合而成的.那麼,它的定義域是使各部分都有意義的x的值組成的集合.(6)指數為零底不可以等於零 (6)實際問題中的函數的定義域還要保證實際問題有意義.

(又注意:求出不等式組的解集即為函數的定義域。)

構成函數的三要素:定義域、對應關系和值域

再注意:(1)構成函數三個要素是定義域、對應關系和值域.由於值域是由定義域和對應關系決定的,所以,如果兩個函數的定義域和對應關系完全一致,即稱這兩個函數相等(或為同一函數)(2)兩個函數相等當且僅當它們的定義域和對應關系完全一致,而與表示自變數和函數值的字母無關。相同函數的判斷方法:①表達式相同;②定義域一致 (兩點必須同時具備)

(見課本21頁相關例2)

值域補充

(1)、函數的值域取決於定義域和對應法則,不論採取什麼方法求函數的值域都應先考慮其定義域. (2).應熟悉掌握一次函數、二次函數、指數、對數函數及各三角函數的值域,它是求解復雜函數值域的基礎。

3. 函數圖象知識歸納

(1)定義:在平面直角坐標系中,以函數 y=f(x) , (x∈A)中的x為橫坐標,函數值y為縱坐標的點P(x,y)的集合C,叫做函數 y=f(x),(x ∈A)的圖象.

C上每一點的坐標(x,y)均滿足函數關系y=f(x),反過來,以滿足y=f(x)的每一組有序實數對x、y為坐標的點(x,y),均在C上 . 即記為C={ P(x,y) | y= f(x) , x∈A }

圖象C一般的是一條光滑的連續曲線(或直線),也可能是由與任意平行與Y軸的直線最多隻有一個交點的若干條曲線或離散點組成。

(2) 畫法

A、描點法:根據函數解析式和定義域,求出x,y的一些對應值並列表,以(x,y)為坐標在坐標系內描出相應的點P(x, y),最後用平滑的曲線將這些點連接起來.

B、圖象變換法(請參考必修4三角函數)

常用變換方法有三種,即平移變換、伸縮變換和對稱變換

(3)作用:

1、直觀的看出函數的性質;2、利用數形結合的方法分析解題的思路。提高解題的速度。

發現解題中的錯誤。

4.快去了解區間的概念

(1)區間的分類:開區間、閉區間、半開半閉區間;(2)無窮區間;(3)區間的數軸表示.

5.什麼叫做映射

一般地,設A、B是兩個非空的集合,如果按某一個確定的對應法則f,使對於集合A中的任意一個元素x,在集合B中都有唯一確定的元素y與之對應,那麼就稱對應f:A B為從集合A到集合B的一個映射。記作「f:A B」

給定一個集合A到B的映射,如果a∈A,b∈B.且元素a和元素b對應,那麼,我們把元素b叫做元素a的象,元素a叫做元素b的原象

說明:函數是一種特殊的映射,映射是一種特殊的對應,①集合A、B及對應法則f是確定的;②對應法則有「方向性」,即強調從集合A到集合B的對應,它與從B到A的對應關系一般是不同的;③對於映射f:A→B來說,則應滿足:(Ⅰ)集合A中的每一個元素,在集合B中都有象,並且象是唯一的;(Ⅱ)集合A中不同的元素,在集合B中對應的象可以是同一個;(Ⅲ)不要求集合B中的每一個元素在集合A中都有原象。

常用的函數表示法及各自的優點:

1 函數圖象既可以是連續的曲線,也可以是直線、折線、離散的點等等,注意判斷一個圖形是否是函數圖象的依據;2 解析法:必須註明函數的定義域;3 圖象法:描點法作圖要注意:確定函數的定義域;化簡函數的解析式;觀察函數的特徵;4 列表法:選取的自變數要有代表性,應能反映定義域的特徵.

注意啊:解析法:便於算出函數值。列表法:便於查出函數值。圖象法:便於量出函數值

補充一:分段函數 (參見課本P24-25)

在定義域的不同部分上有不同的解析表達式的函數。在不同的范圍里求函數值時必須把自變數代入相應的表達式。分段函數的解析式不能寫成幾個不同的方程,而就寫函數值幾種不同的表達式並用一個左大括弧括起來,並分別註明各部分的自變數的取值情況.(1)分段函數是一個函數,不要把它誤認為是幾個函數;(2)分段函數的定義域是各段定義域的並集,值域是各段值域的並集.

補充二:復合函數

如果y=f(u),(u∈M),u=g(x),(x∈A),則 y=f[g(x)]=F(x),(x∈A) 稱為f、g的復合函數。

例如: y=2sinX y=2cos(X2+1)

7.函數單調性

(1).增函數

設函數y=f(x)的定義域為I,如果對於定義域I內的某個區間D內的任意兩個自變數x1,x2,當x1<x2時,都有f(x1)<f(x2),那麼就說f(x)在區間D上是增函數。區間D稱為y=f(x)的單調增區間(睇清楚課本單調區間的概念)

如果對於區間D上的任意兩個自變數的值x1,x2,當x1<x2 時,都有f(x1)>f(x2),那麼就說f(x)在這個區間上是減函數.區間D稱為y=f(x)的單調減區間.

注意:1 函數的單調性是在定義域內的某個區間上的性質,是函數的局部性質;

2 必須是對於區間D內的任意兩個自變數x1,x2;當x1<x2時,總有f(x1)<f(x2) 。

(2) 圖象的特點

如果函數y=f(x)在某個區間是增函數或減函數,那麼說函數y=f(x)在這一區間上具有(嚴格的)單調性,在單調區間上增函數的圖象從左到右是上升的,減函數的圖象從左到右是下降的.

(3).函數單調區間與單調性的判定方法

(A) 定義法:

1 任取x1,x2∈D,且x1<x2;2 作差f(x1)-f(x2);3 變形(通常是因式分解和配方);4 定號(即判斷差f(x1)-f(x2)的正負);5 下結論(指出函數f(x)在給定的區間D上的單調性).

(B)圖象法(從圖象上看升降)_

(C)復合函數的單調性

復合函數f[g(x)]的單調性與構成它的函數u=g(x),y=f(u)的單調性密切相關,其規律如下:

函數
單調性

u=g(x)





y=f(u)





y=f[g(x)]





注意:1、函數的單調區間只能是其定義域的子區間 ,不能把單調性相同的區間和在一起寫成其並集. 2、還記得我們在選修里學習簡單易行的導數法判定單調性嗎?

8.函數的奇偶性

(1)偶函數

一般地,對於函數f(x)的定義域內的任意一個x,都有f(-x)=f(x),那麼f(x)就叫做偶函數.

(2).奇函數

一般地,對於函數f(x)的定義域內的任意一個x,都有f(-x)=—f(x),那麼f(x)就叫做奇函數.

注意:1 函數是奇函數或是偶函數稱為函數的奇偶性,函數的奇偶性是函數的整體性質;函數可能沒有奇偶性,也可能既是奇函數又是偶函數。

2 由函數的奇偶性定義可知,函數具有奇偶性的一個必要條件是,對於定義域內的任意一個x,則-x也一定是定義域內的一個自變數(即定義域關於原點對稱).

(3)具有奇偶性的函數的圖象的特徵

偶函數的圖象關於y軸對稱;奇函數的圖象關於原點對稱.

總結:利用定義判斷函數奇偶性的格式步驟:1 首先確定函數的定義域,並判斷其定義域是否關於原點對稱;2 確定f(-x)與f(x)的關系;3 作出相應結論:若f(-x) = f(x) 或 f(-x)-f(x) = 0,則f(x)是偶函數;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,則f(x)是奇函數.

注意啊:函數定義域關於原點對稱是函數具有奇偶性的必要條件.首先看函數的定義域是否關於原點對稱,若不對稱則函數是非奇非偶函數.若對稱,(1)再根據定義判定; (2)有時判定f(-x)=±f(x)比較困難,可考慮根據是否有f(-x)±f(x)=0或f(x)/f(-x)=±1來判定; (3)利用定理,或藉助函數的圖象判定 .

9、函數的解析表達式

(1).函數的解析式是函數的一種表示方法,要求兩個變數之間的函數關系時,一是要求出它們之間的對應法則,二是要求出函數的定義域.

(2).求函數的解析式的主要方法有:待定系數法、換元法、消參法等,如果已知函數解析式的構造時,可用待定系數法;已知復合函數f[g(x)]的表達式時,可用換元法,這時要注意元的取值范圍;當已知表達式較簡單時,也可用湊配法;若已知抽象函數表達式,則常用解方程組消參的方法求出f(x)

10.函數最大(小)值(定義見課本p36頁)

1 利用二次函數的性質(配方法)求函數的最大(小)值2 利用圖象求函數的最大(小)值3 利用函數單調性的判斷函數的最大(小)值:如果函數y=f(x)在區間[a,b]上單調遞增,在區間[b,c]上單調遞減則函數y=f(x)在x=b處有最大值f(b);如果函數y=f(x)在區間[a,b]上單調遞減,在區間[b,c]上單調遞增則函數y=f(x)在x=b處有最小值f(b);

第二章 基本初等函數

一、指數函數

(一)指數與指數冪的運算

1.根式的概念:一般地,如果 ,那麼 叫做 的 次方根(n th root),其中 >1,且 ∈ *.

當 是奇數時,正數的 次方根是一個正數,負數的 次方根是一個負數.此時, 的 次方根用符號 表示.式子 叫做根式(radical),這里 叫做根指數(radical exponent), 叫做被開方數(radicand).

當 是偶數時,正數的 次方根有兩個,這兩個數互為相反數.此時,正數 的正的 次方根用符號 表示,負的 次方根用符號- 表示.正的 次方根與負的 次方根可以合並成± ( >0).由此可得:負數沒有偶次方根;0的任何次方根都是0,記作 。

注意:當 是奇數時, ,當 是偶數時,
2.分數指數冪

正數的分數指數冪的意義,規定:


0的正分數指數冪等於0,0的負分數指數冪沒有意義

指出:規定了分數指數冪的意義後,指數的概念就從整數指數推廣到了有理數指數,那麼整數指數冪的運算性質也同樣可以推廣到有理數指數冪.

3.實數指數冪的運算性質

(1) · ;

(2) ;

(3) .

(二)指數函數及其性質

1、指數函數的概念:一般地,函數 叫做指數函數(exponential ),其中x是自變數,函數的定義域為R.

注意:指數函數的底數的取值范圍,底數不能是負數、零和1.

2、指數函數的圖象和性質

a>1
0<a<1

圖象特徵
函數性質

向x、y軸正負方向無限延伸
函數的定義域為R

圖象關於原點和y軸不對稱
非奇非偶函數

函數圖象都在x軸上方
函數的值域為R+

函數圖象都過定點(0,1)

自左向右看,

圖象逐漸上升
自左向右看,

圖象逐漸下降
增函數
減函數

在第一象限內的圖象縱坐標都大於1
在第一象限內的圖象縱坐標都小於1

在第二象限內的圖象縱坐標都小於1
在第二象限內的圖象縱坐標都大於1

圖象上升趨勢是越來越陡
圖象上升趨勢是越來越緩
函數值開始增長較慢,到了某一值後增長速度極快;
函數值開始減小極快,到了某一值後減小速度較慢;

注意:利用函數的單調性,結合圖象還可以看出:
(1)在[a,b]上, 值域是 或 ;
(2)若 ,則 ; 取遍所有正數當且僅當 ;
(3)對於指數函數 ,總有 ;
(4)當 時,若 ,則 ;

二、對數函數

(一)對數

1.對數的概念:一般地,如果 ,那麼數 叫做以 為底 的對數,記作: ( — 底數, — 真數, — 對數式)

說明:1 注意底數的限制 ,且 ;

2 ;

3 注意對數的書寫格式.

兩個重要對數:

1 常用對數:以10為底的對數 ;

2 自然對數:以無理數 為底的對數的對數 .

對數式與指數式的互化

對數式 指數式

對數底數 ← → 冪底數

對數 ← → 指數

真數 ← → 冪

(二)對數的運算性質

如果 ,且 , , ,那麼:

1 · + ;

2 - ;

3 .

注意:換底公式

( ,且 ; ,且 ; ).

利用換底公式推導下面的結論(1) ;(2) .

(二)對數函數

1、對數函數的概念:函數 ,且 叫做對數函數,其中 是自變數,函數的定義域是(0,+∞).

注意:1 對數函數的定義與指數函數類似,都是形式定義,注意辨別。

如: , 都不是對數函數,而只能稱其為對數型函數.

2 對數函數對底數的限制: ,且 .

2、對數函數的性質:

a>1
0<a<1

圖象特徵
函數性質

函數圖象都在y軸右側
函數的定義域為(0,+∞)

圖象關於原點和y軸不對稱
非奇非偶函數

向y軸正負方向無限延伸
函數的值域為R

函數圖象都過定點(1,0)

自左向右看,

圖象逐漸上升
自左向右看,

圖象逐漸下降
增函數
減函數

第一象限的圖象縱坐標都大於0
第一象限的圖象縱坐標都大於0

第二象限的圖象縱坐標都小於0
第二象限的圖象縱坐標都小於0

(三)冪函數

1、冪函數定義:一般地,形如 的函數稱為冪函數,其中 為常數.

2、冪函數性質歸納.

(1)所有的冪函數在(0,+∞)都有定義,並且圖象都過點(1,1);

(2) 時,冪函數的圖象通過原點,並且在區間 上是增函數.特別地,當 時,冪函數的圖象下凸;當 時,冪函數的圖象上凸;

(3) 時,冪函數的圖象在區間 上是減函數.在第一象限內,當 從右邊趨向原點時,圖象在 軸右方無限地逼近 軸正半軸,當 趨於 時,圖象在 軸上方無限地逼近 軸正半軸.

第三章 函數的應用

一、方程的根與函數的零點

1、函數零點的概念:對於函數 ,把使 成立的實數 叫做函數 的零點。

2、函數零點的意義:函數 的零點就是方程 實數根,亦即函數 的圖象與 軸交點的橫坐標。即:

方程 有實數根 函數 的圖象與 軸有交點 函數 有零點.

3、函數零點的求法:

求函數 的零點:

1 (代數法)求方程 的實數根;

2 (幾何法)對於不能用求根公式的方程,可以將它與函數 的圖象聯系起來,並利用函數的性質找出零點.

4、二次函數的零點:

二次函數 .

1)△>0,方程 有兩不等實根,二次函數的圖象與 軸有兩個交點,二次函數有兩個零點.

2)△=0,方程 有兩相等實根(二重根),二次函數的圖象與 軸有一個交點,二次函數有一個二重零點或二階零點.

3)△<0,方程 無實根,二次函數的圖象與 軸無交點,二次函數無零點

『叄』 2019教師資格考試高中數學知識點——第一章 集合

1.1 集合

1.1.1

一般的,把研究對象統稱為元素(element),把元素組成的總體叫做集合(set)。

集合的元素具有:確定性、互異性、無序性。

集合的表示方法有:自然語言、列舉法、描述法。

1.1.2 集合的基本關系:

子集(subset),真子集(proper subset),相等

不含任何元素的集合叫做空集(empty set),規定:空集是任何集合的子集。

Venn圖

1.1.3 集合的基本運算

並集(union set):A∪B

交集(intersection set):A∩B

補集(complementary set):CUA

全集(universe set):U

*集合中元素的個數:

1.2 函數(function)

1.2.1 構成函數的三要素:定義域(domain)、對應關系(f)、值域(range)。

如果兩個函數的定義域相同,並且對應關系完全一致,則這兩個函數相等。

閉區間:[a,b]

開區間:(a,b)

半開半閉區間:[a,b);(a,b]

a與b叫做相應區間的端點。

1.2.2 函數的表示法

解析法:用數學表達式表示兩個變數之間的對應關系

圖像法:用圖像表示兩個變數之間的對應關系

列表法:列出表格來表示兩個變數之間的對應關系

分段函數

A,B是兩個非空的集合,如果按照某一個確定的對應關系f,使對於集合A中的任意一個元素x,在集合B中都有唯一確定的元素y與之對應,那麼就稱對應f:A→B為從集合A到集合B的一個映射(mapping)。

1.3 函數的基本性質

1.3.1 單調性與最值

增函數(increasing function)

減函數(decreasing function)

最大值(maximum value)

最小值(minimum value)

1.3.2 奇偶性

奇函數(odd function):對於函數f(x)的定義域內任何一個x,都有

偶函數(even function):對於函數f(x)的定義域內任何一個x,都有

解析

『肆』 高一數學知識點總結

http://wenku..com/view/5555392b3169a4517723a30f.html
數列基礎知識點(必修5)-重難點-高一數學
空間幾何
本人也是高一學生

『伍』 高一數學第一章的知識點概括

在掌握了適合自己的一套 學習 方法 的同時,還要有一套可行的復習計劃。剩下的時間畢竟是有限的,在這樣的形勢下,處理問題才能決勝於千里之外,才能取得事半功倍的效果。以下是我給大家整理的 高一數學 第一章的知識點概括,希望能幫助到你!

高一數學第一章的知識點概括1

1.並集

(1)並集的定義

由所有屬於集合A或屬於集合B的元素所組成的集合稱為集合A與B的並集,記作A∪B(讀作"A並B");

(2)並集的符號表示

A∪B={x|x∈A或x∈B}.

並集定義的數學表達式中"或"字的意義應引起注意,用它連接的並列成分之間不一定是互相排斥的.

x∈A,或x∈B包括如下三種情況:

①x∈A,但xB;②x∈B,但xA;③x∈A,且x∈B.

由集合A中元素的互異性知,A與B的公共元素在A∪B中只出現一次,因此,A∪B是由所有至少屬於A、B兩者之一的元素組成的集合.

例如,設A={3,5,6,8},B={4,5,7,8},則A∪B={3,4,5,6,7,8},而不是{3,5,6,8,4,5,7,8}.

2.交集

利用下圖類比並集的概念引出交集的概念.

(1)交集的定義

由屬於集合A且屬於集合B的所有元素組成的集合,稱為A與B的交集,記作A∩B(讀作"A交B").

(2)交集的符號表示

A∩B={x|x∈A且x∈B}.

高一數學第一章的知識點概括2

1、集合的概念

集合是集合論中的不定義的原始概念,教材中對集合的概念進行了描述性說明:「一般地,把一些能夠確定的不同的對象看成一個整體,就說這個整體是由這些對象的全體構成的集合(或集)」。理解這句話,應該把握4個關鍵詞:對象、確定的、不同的、整體。

對象――即集合中的元素。集合是由它的元素確定的。

整體――集合不是研究某一單一對象的,它關注的是這些對象的全體。

確定的――集合元素的確定性――元素與集合的「從屬」關系。

不同的――集合元素的互異性。

2、有限集、無限集、空集的意義

有限集和無限集是針對非空集合來說的。我們理解起來並不困難。

我們把不含有任何元素的集合叫做空集,記做Φ。理解它時不妨思考一下「0與Φ」及「Φ與{Φ}」的關系。

幾個常用數集N、N_、N+、Z、Q、R要記牢。

3、集合的表示方法

(1)列舉法的表示形式比較容易掌握,並不是所有的集合都能用列舉法表示,同學們需要知道能用列舉法表示的三種集合:

①元素不太多的有限集,如{0,1,8}

②元素較多但呈現一定的規律的有限集,如{1,2,3,…,100}

③呈現一定規律的無限集,如{1,2,3,…,n,…}

●注意a與{a}的區別

●注意用列舉法表示集合時,集合元素的「無序性」。

(2)特徵性質描述法的關鍵是把所研究的集合的「特徵性質」找准,然後適當地表示出來就行了。但關鍵點也是難點。學習時多加練習就可以了。另外,弄清「代表元素」也是非常重要的。如{x|y=x2},{y|y=x2},{(x,y)|y=x2}是三個不同的集合。

4、集合之間的關系

●注意區分「從屬」關系與「包含」關系

「從屬」關系是元素與集合之間的關系。

「包含」關系是集合與集合之間的關系。掌握子集、真子集的概念,掌握集合相等的概念,學會正確使用「」等符號,會用Venn圖描述集合之間的關系是基本要求。

●注意辨清Φ與{Φ}兩種關系。

高一數學第一章的知識點概括3

反比例函數

形如y=k/x(k為常數且k≠0)的函數,叫做反比例函數。

自變數x的取值范圍是不等於0的一切實數。

反比例函數圖像性質:

反比例函數的圖像為雙曲線。

由於反比例函數屬於奇函數,有f(-x)=-f(x),圖像關於原點對稱。

另外,從反比例函數的解析式可以得出,在反比例函數的圖像上任取一點,向兩個坐標軸作垂線,這點、兩個垂足及原點所圍成的矩形面積是定值,為∣k∣。

如圖,上面給出了k分別為正和負(2和-2)時的函數圖像。

當K>0時,反比例函數圖像經過一,三象限,是減函數

當K<0時,反比例函數圖像經過二,四象限,是增函數

反比例函數圖像只能無限趨向於坐標軸,無法和坐標軸相交。

知識點:

1.過反比例函數圖象上任意一點作兩坐標軸的垂線段,這兩條垂線段與坐標軸圍成的矩形的面積為|k|。

2.對於雙曲線y=k/x,若在分母上加減任意一個實數(即y=k/(x±m)m為常數),就相當於將雙曲線圖象向左或右平移一個單位。(加一個數時向左平移,減一個數時向右平移)

高一數學第一章的知識點概括相關 文章 :

★ 高一數學必修1第一章知識點總結

★ 高一數學第一章集合知識點歸納

★ 高一人教版數學必修一第一章知識點整理

★ 高一必修一數學第一章知識點總結

★ 高一必修一數學第一章知識點總結(2)

★ 高一數學必修一第一章集合知識點

★ 高一數學必修1各章知識點總結

★ 高一數學必修1知識點歸納

★ 高中數學必修四第一章知識點總結

『陸』 高中必修一數學知識點總結

高中必修一數學知識點總結

高一數學必修一的學習,需要大家對知識點進行總結,這樣大家最大效率地提高自己的學習成績。下面高中必修一數學知識點總結是我為大家整理的,在這里跟大家分享一下。

高中必修一數學知識點總結

第一章 集合與函數概念

一、集合有關概念

1.集合的含義

2.集合的中元素的三個特性:

(1)元素的確定性如:世界上最高的山

(2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}

(3)元素的無序性: 如:{a,b,c}和{a,c,b}是表示同一個集合

3.集合的表示:{ … } 如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

(1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

(2)集合的表示方法:列舉法與描述法。

注意:常用數集及其記法:X Kb 1.C om

非負整數集(即自然數集) 記作:N

正整數集 :N*或 N+

整數集: Z

有理數集: Q

實數集: R

1)列舉法:{a,b,c……}

2) 描述法:將集合中的元素的公共屬性描述出來,寫在大括弧內表示集合{xR|x-3>2} ,{x|x-3>2}

3) 語言描述法:例:{不是直角三角形的三角形}

4) Venn圖:

4、集合的分類:

(1)有限集 含有有限個元素的集合

(2)無限集 含有無限個元素的集合

(3)空集 不含任何元素的集合例:{x|x2=-5}

二、集合間的基本關系

1.“包含”關系—子集

注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

反之: 集合A不包含於集合B,或集合B不包含集合A,記作A B或B A

2.“相等”關系:A=B (5≥5,且5≤5,則5=5)

實例:設 A={x|x2-1=0} B={-1,1} “元素相同則兩集合相等”

即:① 任何一個集合是它本身的子集。AA

② 真子集:如果AB,且A B那就說集合A是集合B的真子集,記作A B(或B A)

③ 如果 AB, BC ,那麼 AC

④ 如果AB 同時 BA 那麼A=B

3. 不含任何元素的集合叫做空集,記為Φ

規定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

4.子集個數:

有n個元素的集合,含有2n個子集,2n-1個真子集,含有2n-1個非空子集,含有2n-1個非空真子集

三、集合的運算

運算類型 交 集 並 集 補 集

定 義 由所有屬於A且屬於B的元素所組成的集合,叫做A,B的交集.記作A B(讀作‘A交B’),即A B={x|x A,且x B}.

由所有屬於集合A或屬於集合B的元素所組成的集合,叫做A,B的並集.記作:A B(讀作‘A並B’),即A B ={x|x A,或x B}).

設S是一個集合,A是S的一個子集,由S中所有不屬於A的元素組成的集合,叫做S中子集A的補集(或余集)

記作 ,即

CSA=

A A=A

A Φ=Φ

A B=B A

A B A

A B B

A A=A

A Φ=A

A B=B A

A B A

A B B

(CuA) (CuB)

= Cu (A B)

(CuA) (CuB)

= Cu(A B)

A (CuA)=U

A (CuA)= Φ.

二、函數的有關概念

1.函數的概念

設A、B是非空的數集,如果按照某個確定的對應關系f,使對於集合A中的任意一個數x,在集合B中都有唯一確定的數f(x)和它對應,那麼就稱f:A→B為從集合A到集合B的一個函數.記作: y=f(x),x∈A.其中,x叫做自變數,x的取值范圍A叫做函數的定義域;與x的值相對應的y值叫做函數值,函數值的集合{f(x)| x∈A }叫做函數的值域.

注意:

1.定義域:能使函數式有意義的實數x的集合稱為函數的定義域。

求函數的定義域時列不等式組的主要依據是:

(1)分式的分母不等於零;

(2)偶次方根的被開方數不小於零;

(3)對數式的真數必須大於零;

(4)指數、對數式的底必須大於零且不等於1.

(5)如果函數是由一些基本函數通過四則運算結合而成的.那麼,它的定義域是使各部分都有意義的x的值組成的集合.

(6)指數為零底不可以等於零,

(7)實際問題中的函數的定義域還要保證實際問題有意義.

相同函數的判斷方法:①表達式相同(與表示自變數和函數值的字母無關);

②定義域一致 (兩點必須同時具備)

2.值域 : 先考慮其定義域

(1)觀察法 (2)配方法 (3)代換法

3. 函數圖象知識歸納

(1)定義:

在平面直角坐標系中,以函數 y=f(x) , (x∈A)中的x為橫坐標,函數值y為縱坐標的點P(x,y)的集合C,叫做函數 y=f(x),(x ∈A)的圖象.C上每一點的坐標(x,y)均滿足函數關系y=f(x),反過來,以滿足y=f(x)的每一組有序實數對x、y為坐標的點(x,y),均在C上 .

(2) 畫法

1.描點法: 2.圖象變換法:常用變換方法有三種:1)平移變換2)伸縮變換3)對稱變換

4.區間的概念

(1)區間的分類:開區間、閉區間、半開半閉區間 (2)無窮區間 (3)區間的數軸表示.

5.映射

一般地,設A、B是兩個非空的集合,如果按某一個確定的對應法則f,使對於集合A中的任意一個元素x,在集合B中都有唯一確定的元素y與之對應,那麼就稱對應f:A B為從集合A到集合B的一個映射。記作“f(對應關系):A(原象) B(象)”

對於映射f:A→B來說,則應滿足:

(1)集合A中的每一個元素,在集合B中都有象,並且象是唯一的;

(2)集合A中不同的元素,在集合B中對應的象可以是同一個;

(3)不要求集合B中的每一個元素在集合A中都有原象。

6.分段函數

(1)在定義域的不同部分上有不同的解析表達式的函數。

(2)各部分的自變數的取值情況.

(3)分段函數的定義域是各段定義域的交集,值域是各段值域的並集.

補充:復合函數

如果y=f(u)(u∈M),u=g(x)(x∈A),則 y=f[g(x)]=F(x)(x∈A) 稱為f、g的復合函數。

二.函數的性質

1.函數的單調性(局部性質)

(1)增函數

設函數y=f(x)的定義域為I,如果對於定義域I內的某個區間D內的任意兩個自變數x1,x2,當x1

如果對於區間D上的任意兩個自變數的值x1,x2,當x1f(x2),那麼就說f(x)在這個區間上是減函數.區間D稱為y=f(x)的單調減區間.

注意:函數的單調性是函數的局部性質;

(2) 圖象的特點

如果函數y=f(x)在某個區間是增函數或減函數,那麼說函數y=f(x)在這一區間上具有(嚴格的)單調性,在單調區間上增函數的圖象從左到右是上升的,減函數的圖象從左到右是下降的.

(3).函數單調區間與單調性的判定方法

(A) 定義法:

(1)任取x1,x2∈D,且x1

(2)作差f(x1)-f(x2);或者做商

(3)變形(通常是因式分解和配方);

(4)定號(即判斷差f(x1)-f(x2)的正負);

(5)下結論(指出函數f(x)在給定的區間D上的單調性).

(B)圖象法(從圖象上看升降)

(C)復合函數的單調性

復合函數f[g(x)]的單調性與構成它的函數u=g(x),y=f(u)的單調性密切相關,其規律:“同增異減”

注意:函數的單調區間只能是其定義域的子區間 ,不能把單調性相同的區間和在一起寫成其並集.

8.函數的奇偶性(整體性質)

(1)偶函數:一般地,對於函數f(x)的定義域內的任意一個x,都有f(-x)=f(x),那麼f(x)就叫做偶函數.

(2)奇函數:一般地,對於函數f(x)的定義域內的任意一個x,都有f(-x)=—f(x),那麼f(x)就叫做奇函數.

(3)具有奇偶性的函數的圖象的特徵:偶函數的圖象關於y軸對稱;奇函數的圖象關於原點對稱.

9.利用定義判斷函數奇偶性的步驟:

○1首先確定函數的定義域,並判斷其是否關於原點對稱;

○2確定f(-x)與f(x)的關系;

○3作出相應結論:若f(-x) = f(x) 或 f(-x)-f(x) = 0,則f(x)是偶函數;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,則f(x)是奇函數.

注意:函數定義域關於原點對稱是函數具有奇偶性的必要條件.首先看函數的定義域是否關於原點對稱,若不對稱則函數是非奇非偶函數.若對稱,(1)再根據定義判定; (2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1來判定; (3)利用定理,或藉助函數的圖象判定 .

10、函數的解析表達式

(1)函數的解析式是函數的一種表示方法,要求兩個變數之間的函數關系時,一是要求出它們之間的對應法則,二是要求出函數的定義域.

(2)求函數的解析式的.主要方法有:1.湊配法2.待定系數法3.換元法4.消參法

11.函數最大(小)值

○1 利用二次函數的性質(配方法)求函數的最大(小)值

○2 利用圖象求函數的最大(小)值

○3 利用函數單調性的判斷函數的最大(小)值:

如果函數y=f(x)在區間[a,b]上單調遞增,在區間[b,c]上單調遞減則函數y=f(x)在x=b處有最大值f(b);

如果函數y=f(x)在區間[a,b]上單調遞減,在區間[b,c]上單調遞增則函數y=f(x)在x=b處有最小值f(b);

第三章 基本初等函數

一、指數函數

(一)指數與指數冪的運算

1.根式的概念:一般地,如果 ,那麼 叫做 的 次方根,其中 >1,且 ∈ *.

負數沒有偶次方根;0的任何次方根都是0,記作 。

當 是奇數時, ,當 是偶數時,

2.分數指數冪

正數的分數指數冪的意義,規定:

0的正分數指數冪等於0,0的負分數指數冪沒有意義

3.實數指數冪的運算性質

(1) • ;

(2) ;

(3) .

(二)指數函數及其性質

1、指數函數的概念:一般地,函數 叫做指數函數,其中x是自變數,函數的定義域為R.

注意:指數函數的底數的取值范圍,底數不能是負數、零和1.

2、指數函數的圖象和性質

a>1 0

定義域 R 定義域 R

值域y>0 值域y>0

在R上單調遞增 在R上單調遞減

非奇非偶函數 非奇非偶函數

函數圖象都過定點(0,1) 函數圖象都過定點(0,1)

注意:利用函數的單調性,結合圖象還可以看出:

(1)在[a,b]上, 值域是 或 ;

(2)若 ,則 ; 取遍所有正數當且僅當 ;

(3)對於指數函數 ,總有 ;

二、對數函數

(一)對數

1.對數的概念:

一般地,如果 ,那麼數 叫做以 為底 的對數,記作: ( — 底數, — 真數, — 對數式)

說明:○1 注意底數的限制 ,且 ;

○2 ;

○3 注意對數的書寫格式.

兩個重要對數:

○1 常用對數:以10為底的對數 ;

○2 自然對數:以無理數 為底的對數的對數 .

指數式與對數式的互化

冪值 真數

= N = b

底數

指數 對數

(二)對數的運算性質

如果 ,且 , , ,那麼:

○1 • + ;

○2 - ;

○3 .

注意:換底公式: ( ,且 ; ,且 ; ).

利用換底公式推導下面的結論:(1) ;(2) .

(3)、重要的公式 ①、負數與零沒有對數; ②、 , ③、對數恆等式

(二)對數函數

1、對數函數的概念:函數 ,且 叫做對數函數,其中 是自變數,函數的定義域是(0,+∞).

注意:○1 對數函數的定義與指數函數類似,都是形式定義,注意辨別。如: , 都不是對數函數,而只能稱其為對數型函數.

○2 對數函數對底數的限制: ,且 .

2、對數函數的性質:

a>1 0

定義域x>0 定義域x>0

值域為R 值域為R

在R上遞增 在R上遞減

函數圖象都過定點(1,0) 函數圖象都過定點(1,0)

(三)冪函數

1、冪函數定義:一般地,形如 的函數稱為冪函數,其中 為常數.

2、冪函數性質歸納.

(1)所有的冪函數在(0,+∞)都有定義並且圖象都過點(1,1);

(2) 時,冪函數的圖象通過原點,並且在區間 上是增函數.特別地,當 時,冪函數的圖象下凸;當 時,冪函數的圖象上凸;

(3) 時,冪函數的圖象在區間 上是減函數.在第一象限內,當 從右邊趨向原點時,圖象在 軸右方無限地逼近 軸正半軸,當 趨於 時,圖象在 軸上方無限地逼近 軸正半軸.

第四章 函數的應用

一、方程的根與函數的零點

1、函數零點的概念:對於函數 ,把使 成立的實數 叫做函數 的零點。

2、函數零點的意義:函數 的零點就是方程 實數根,亦即函數 的圖象與 軸交點的橫坐標。

即:方程 有實數根 函數 的圖象與 軸有交點 函數 有零點.

3、函數零點的求法:

○1 (代數法)求方程 的實數根;

○2 (幾何法)對於不能用求根公式的方程,可以將它與函數 的圖象聯系起來,並利用函數的性質找出零點.

4、二次函數的零點:

二次函數 .

(1)△>0,方程 有兩不等實根,二次函數的圖象與 軸有兩個交點,二次函數有兩個零點.

(2)△=0,方程 有兩相等實根,二次函數的圖象與 軸有一個交點,二次函數有一個二重零點或二階零點.

(3)△<0,方程 無實根,二次函數的圖象與 軸無交點,二次函數無零點.

5.函數的模型

;

『柒』 高一數學必修一知識點總結

數學知識點是高考的基礎,掌握 高一數學 知識點將對高考復習起到重要作用,高一數學必修一知識點 總結 有哪些你知道嗎?一起來看看高一數學必修一知識點總結,歡迎查閱!

高1數學知識點總結

一、集合、簡易邏輯(14課時,8個)

1.集合;2.子集;3.補集;4.交集;5.並集;6.邏輯連結詞;7.四種命題;8.充要條件。

二、函數(30課時,12個)

1.映射;2.函數;3.函數的單調性;4.反函數;5.互為反函數的函數圖象間的關系;6.指數概念的擴充;7.有理指數冪的運算;8.指數函數;9.對數;10.對數的運算性質;11.對數函數.12.函數的應用舉例。

三、數列(12課時,5個)

1.數列;2.等差數列及其通項公式;3.等差數列前n項和公式;4.等比數列及其通頂公式;5.等比數列前n項和公式。

四、三角函數(46課時,17個)

1.角的概念的推廣;2.弧度制;3.任意角的三角函數;4.單位圓中的三角函數線;5.同角三角函數的基本關系式;6.正弦、餘弦的誘導公式;7.兩角和與差的正弦、餘弦、正切;8.二倍角的正弦、餘弦、正切;9.正弦函數、餘弦函數的圖象和性質;10.周期函數;11.函數的奇偶性;12.函數的圖象;13.正切函數的圖象和性質;14.已知三角函數值求角;15.正弦定理;16.餘弦定理;17.斜三角形解法舉例。

五、平面向量(12課時,8個)

1.向量;2.向量的加法與減法;3.實數與向量的積;4.平面向量的坐標表示;5.線段的定比分點;6.平面向量的數量積;7.平面兩點間的距離;8.平移。

六、不等式(22課時,5個)

1.不等式;2.不等式的'基本性質;3.不等式的證明;4.不等式的解法;5.含絕對值的不等式。

七、直線和圓的方程(22課時,12個)

1.直線的傾斜角和斜率;2.直線方程的點斜式和兩點式;3.直線方程的一般式;4.兩條直線平行與垂直的條件;5.兩條直線的交角;6.點到直線的距離;7.用二元一次不等式表示平面區域;8.簡單線性規劃問題;9.曲線與方程的概念;10.由已知條件列出曲線方程;11.圓的標准方程和一般方程;12.圓的參數方程。

八、圓錐曲線(18課時,7個)

1.橢圓及其標准方程;2.橢圓的簡單幾何性質;3.橢圓的參數方程;4.雙曲線及其標准方程;5.雙曲線的簡單幾何性質;6.拋物線及其標准方程;7.拋物線的簡單幾何性質。

九、直線、平面、簡單何體(36課時,28個)

1.平面及基本性質;2.平面圖形直觀圖的畫法;3.平面直線;4.直線和平面平行的判定與性質;5.直線和平面垂直的判定與性質;6.三垂線定理及其逆定理;7.兩個平面的位置關系;8.空間向量及其加法、減法與數乘;9.空間向量的坐標表示;10.空間向量的數量積;11.直線的方向向量;12.異面直線所成的角;13.異面直線的公垂線;14.異面直線的距離;15.直線和平面垂直的性質;16.平面的法向量;17.點到平面的距離;18.直線和平面所成的角;19.向量在平面內的射影;20.平面與平面平行的性質;21.平行平面間的距離;22.二面角及其平面角;23.兩個平面垂直的判定和性質;24.多面體;25.稜柱;26.棱錐;27.正多面體;28.球。

十、排列、組合、二項式定理(18課時,8個)

1.分類計數原理與分步計數原理;2.排列;3.排列數公式;4.組合;5.組合數公式;6.組合數的兩個性質;7.二項式定理;8.二項展開式的性質。

十一、概率(12課時,5個)

1.隨機事件的概率;2.等可能事件的概率;3.互斥事件有一個發生的概率;4.相互獨立事件同時發生的概率;5.獨立重復試驗。

選修Ⅱ(24個)

十二、概率與統計(14課時,6個)

1.離散型隨機變數的分布列;2.離散型隨機變數的期望值和方差;3.抽樣 方法 ;4.總體分布的估計;5.正態分布;6.線性回歸。

十三、極限(12課時,6個)

1.數學歸納法;2.數學歸納法應用舉例;3.數列的極限;4.函數的極限;5.極限的四則運算;6.函數的連續性。

十四、導數(18課時,8個)

1.導數的概念;2.導數的幾何意義;3.幾種常見函數的導數;4.兩個函數的和、差、積、商的導數;5.復合函數的導數;6.基本導數公式;7.利用導數研究函數的單調性和極值;8.函數的最大值和最小值。

十五、復數(4課時,4個)

1.復數的概念;2.復數的加法和減法;3.復數的乘法和除法;4.復數的一元二次方程和二二項方程的解法。

數學必修一知識點整理集合與函數概念

一、集合有關概念

1.集合的含義

2.集合的中元素的三個特性:

(1)元素的確定性如:世界上最高的山

(2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}

(3)元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個集合

3.集合的表示:{…}如:{我校的 籃球 隊員},{太平洋,大西洋,印度洋,北冰洋}

(1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

(2)集合的表示方法:列舉法與描述法。

注意:常用數集及其記法:XKb1.Com

非負整數集(即自然數集)記作:N

正整數集:N_或N+

整數集:Z

有理數集:Q

實數集:R

1)列舉法:{a,b,c……}

2)描述法:將集合中的元素的公共屬性描述出來,寫在大括弧內表示集合{x?R|x-3>2},{x|x-3>2}

3)語言描述法:例:{不是直角三角形的三角形}

4)Venn圖:

4、集合的分類:

(1)有限集含有有限個元素的集合

(2)無限集含有無限個元素的集合

(3)空集不含任何元素的集合

二、集合間的基本關系

1.「包含」關系—子集

注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

反之:集合A不包含於集合B,或集合B不包含集合A,記作AB或BA

2.「相等」關系:A=B(5≥5,且5≤5,則5=5)

實例:設A={x|x2-1=0}B={-1,1}「元素相同則兩集合相等」

即:①任何一個集合是它本身的子集。A?A

②真子集:如果A?B,且A?B那就說集合A是集合B的真子集,記作AB(或BA)

③如果A?B,B?C,那麼A?C

④如果A?B同時B?A那麼A=B

3.不含任何元素的集合叫做空集,記為Φ

規定:空集是任何集合的子集,空集是任何非空集合的真子集。

4.子集個數:

有n個元素的集合,含有2n個子集,2n-1個真子集,含有2n-1個非空子集,含有2n-1個非空真子集

三、集合的運算

運算類型交集並集補集

定義由所有屬於A且屬於B的元素所組成的集合,叫做A,B的交集.記作AB(讀作『A交B』),即AB={x|xA,且xB}.

由所有屬於集合A或屬於集合B的元素所組成的集合,叫做A,B的並集.記作:AB(讀作『A並B』),即AB={x|xA,或xB}).

基本初等函數

一、指數函數

(一)指數與指數冪的運算

1.根式的概念:一般地,如果,那麼叫做的次方根(nthroot),其中>1,且∈_.

當是奇數時,正數的次方根是一個正數,負數的次方根是一個負數.此時,的次方根用符號表示.式子叫做根式(radical),這里叫做根指數(radicalexponent),叫做被開方數(radicand).

當是偶數時,正數的次方根有兩個,這兩個數互為相反數.此時,正數的正的次方根用符號表示,負的次方根用符號-表示.正的次方根與負的次方根可以合並成±(>0).由此可得:負數沒有偶次方根;0的任何次方根都是0,記作。

注意:當是奇數時,當是偶數時,

2.分數指數冪

正數的分數指數冪的意義,規定:

0的正分數指數冪等於0,0的負分數指數冪沒有意義

指出:規定了分數指數冪的意義後,指數的概念就從整數指數推廣到了有理數指數,那麼整數指數冪的運算性質也同樣可以推廣到有理數指數冪.

3.實數指數冪的運算性質

(二)指數函數及其性質

1、指數函數的概念:一般地,函數叫做指數函數(exponential),其中x是自變數,函數的定義域為R.

注意:指數函數的底數的取值范圍,底數不能是負數、零和1.

2、指數函數的圖象和性質

函數的應用

1、函數零點的概念:對於函數,把使成立的實數叫做函數的零點。

2、函數零點的意義:函數的零點就是方程實數根,亦即函數的圖象與軸交點的橫坐標。即:

方程有實數根函數的圖象與軸有交點函數有零點.

3、函數零點的求法:

求函數的零點:

1(代數法)求方程的實數根;

2(幾何法)對於不能用求根公式的方程,可以將它與函數的圖象聯系起來,並利用函數的性質找出零點.

4、二次函數的零點:

二次函數.

1)△>0,方程有兩不等實根,二次函數的圖象與軸有兩個交點,二次函數有兩個零點.

2)△=0,方程有兩相等實根(二重根),二次函數的圖象與軸有一個交點,二次函數有一個二重零點或二階零點.

3)△<0,方程無實根,二次函數的圖象與軸無交點,二次函數無零點.

必修一函數重點知識整理

1. 函數的奇偶性

(1)若f(x)是偶函數,那麼f(x)=f(-x) ;

(2)若f(x)是奇函數,0在其定義域內,則 f(0)=0(可用於求參數);

(3)判斷函數奇偶性可用定義的等價形式:f(x)±f(-x)=0或 (f(x)≠0);

(4)若所給函數的解析式較為復雜,應先化簡,再判斷其奇偶性;

(5)奇函數在對稱的單調區間內有相同的單調性;偶函數在對稱的單調區間內有相反的單調性;

2. 復合函數的有關問題

(1)復合函數定義域求法:若已知 的定義域為[a,b],其復合函數f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求 f(x)的定義域,相當於x∈[a,b]時,求g(x)的值域(即 f(x)的定義域);研究函數的問題一定要注意定義域優先的原則。

(2)復合函數的單調性由「同增異減」判定;

3.函數圖像(或方程曲線的對稱性)

(1)證明函數圖像的對稱性,即證明圖像上任意點關於對稱中心(對稱軸)的對稱點仍在圖像上;

(2)證明圖像C1與C2的對稱性,即證明C1上任意點關於對稱中心(對稱軸)的對稱點仍在C2上,反之亦然;

(3)曲線C1:f(x,y)=0,關於y=x+a(y=-x+a)的對稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

(4)曲線C1:f(x,y)=0關於點(a,b)的對稱曲線C2方程為:f(2a-x,2b-y)=0;

(5)若函數y=f(x)對x∈R時,f(a+x)=f(a-x)恆成立,則y=f(x)圖像關於直線x=a對稱;

(6)函數y=f(x-a)與y=f(b-x)的圖像關於直線x= 對稱;

4.函數的周期性

(1)y=f(x)對x∈R時,f(x +a)=f(x-a) 或f(x-2a )=f(x) (a>0)恆成立,則y=f(x)是周期為2a的周期函數;

(2)若y=f(x)是偶函數,其圖像又關於直線x=a對稱,則f(x)是周期為2︱a︱的周期函數;

(3)若y=f(x)奇函數,其圖像又關於直線x=a對稱,則f(x)是周期為4︱a︱的周期函數;

(4)若y=f(x)關於點(a,0),(b,0)對稱,則f(x)是周期為2 的周期函數;

(5)y=f(x)的圖象關於直線x=a,x=b(a≠b)對稱,則函數y=f(x)是周期為2 的周期函數;

(6)y=f(x)對x∈R時,f(x+a)=-f(x)(或f(x+a)= ,則y=f(x)是周期為2 的周期函數;

5.方程k=f(x)有解 k∈D(D為f(x)的值域);

6.a≥f(x) 恆成立 a≥[f(x)]max,; a≤f(x) 恆成立 a≤[f(x)]min;

7.(1) (a>0,a≠1,b>0,n∈R+);

(2) l og a N= ( a>0,a≠1,b>0,b≠1);

(3) l og a b的符號由口訣「同正異負」記憶;

(4) a log a N= N ( a>0,a≠1,N>0 );

8. 判斷對應是否為映射時,抓住兩點:

(1)A中元素必須都有象且唯一;(2)B中元素不一定都有原象,並且A中不同元素在B中可以有相同的象;

9. 能熟練地用定義證明函數的單調性,求反函數,判斷函數的奇偶性。

10.對於反函數,應掌握以下一些結論:(1)定義域上的單調函數必有反函數;(2)奇函數的反函數也是奇函數;(3)定義域為非單元素集的偶函數不存在反函數;(4)周期函數不存在反函數;(5)互為反函數的兩個函數具有相同的單調性;(5) y=f(x)與y=f-1(x)互為反函數,設f(x)的定義域為A,值域為B,則有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A).

11.處理二次函數的問題勿忘數形結合;二次函數在閉區間上必有最值,求最值問題用「兩看法」:一看開口方向;二看對稱軸與所給區間的相對位置關系;

12. 依據單調性,利用一次函數在區間上的保號性可解決求一類參數的范圍問題

13. 恆成立問題的處理方法:(1)分離參數法;(2)轉化為一元二次方程的根的分布列不等式(組)求解。


高一數學必修一知識點總結相關 文章 :

★ 高一數學必修一知識點匯總

★ 高中數學必修1知識點總結

★ 高一數學必修一知識點總結

★ 高一數學知識點匯總大全

★ 高一數學必修1對數函數知識點總結

★ 高一數學必修1函數的知識點歸納

★ 高一數學必修一知識點總結歸納

★ 高一數學必修1知識點歸納

★ 高中數學必修一復習提綱

★ 高一數學必修1知識整理

『捌』 高中數學知識點總結

進入高中之後,數學對於許多學生來說,是一個學習較難的科目,且一些學生在數學這門課上都是越學越不會,那麼高中數學知識點有哪些?下面是我給大家帶來的高中數學知識點 總結 _高中數學知識點最全版,以供大家參考!

高中數學知識點總結1

1、命題的四種形式及其相互關系是什麼?

(互為逆否關系的命題是等價命題。)

原命題與逆否命題同真、同假;逆命題與否命題同真同假。

2、對映射的概念了解嗎?映射f:A→B,是否注意到A中元素的任意性和B中與之對應元素的唯一性,哪幾種對應能構成映射?

(一對一,多對一,允許B中有元素無原象。)

3、 函數的三要素是什麼?如何比較兩個函數是否相同?

(定義域、對應法則、值域)

4、反函數存在的條件是什麼?

(一一對應函數)

求反函數的步驟掌握了嗎?

(①反解x;②互換x、y;③註明定義域)

5、反函數的性質有哪些?

①互為反函數的圖象關於直線y=x對稱;

②保存了原來函數的單調性、奇函數性;

6、 函數f(x)具有奇偶性的必要(非充分)條件是什麼?

(f(x)定義域關於原點對稱)

高中數學知識點總結2

1、三類角的求法:

①找出或作出有關的角。

②證明其符合定義,並指出所求作的角。

③計算大小(解直角三角形,或用餘弦定理)。

2、正稜柱——底面為正多邊形的直稜柱

正棱錐——底面是正多邊形,頂點在底面的射影是底面的中心。

正棱錐的計算集中在四個直角三角形中:

3、怎樣判斷直線l與圓C的位置關系?

圓心到直線的距離與圓的半徑比較。

直線與圓相交時,注意利用圓的「垂徑定理」。

4、 對線性規劃問題:作出可行域,作出以目標函數為截距的直線,在可行域內平移直線,求出目標函數的最值。

不看後悔!清華名師揭秘學好高中數學的 方法

培養興趣是關鍵。學生對數學產生了興趣,自然有動力去鑽研。如何培養興趣呢?

(1) 欣賞數學的美感

比如幾何圖形中的對稱、變換前後的不變數、概念的嚴謹、邏輯的嚴密……

舉個例子,

通過對旋轉變換及其不變數的討論,我們可以證明反比例函數、「對勾函數」的圖象都是雙曲線——平面上到兩個定點的距離之差的絕對值為定值(小於兩個定點之間的距離)的點的集合。

(2)注意到數學在實際生活中的應用。

例如和日常生活息息相關的等額本金、等額本息兩種不同的還款方式,用數列的知識就可以理解.

學好數學,是現代公民的 基本素養 之一啊.

(3)採用靈活的教學手段,與時俱進。

利用多種技術手段,聲、光、電多管齊下,老師可以藉此把一些知識講得更具體形象,學生也更容易接受,理解更深。

(4)適當看一些科普類的書籍和 文章 。

比如:學圓錐曲線的時候,可以看看一些建築物的外形,它們被平面所截出的曲線往往就是各種圓錐曲線,很多文章對此都有介紹;還有圓錐曲線光學性質的應用,這方面的文章也不少。

高中數學知識點總結3

1、抽樣方法主要有:簡單隨機抽樣(抽簽法、隨機數表法)常常用於總體個數較少時,它的特徵是從總體中逐個抽取;系統抽樣,常用於總體個數較多時,它的主要特徵是均衡成若幹部分,每部分只取一個;分層抽樣,主要特徵是分層按比例抽樣,主要用於總體中有明顯差異,它們的共同特徵是每個個體被抽到的概率相等,體現了抽樣的客觀性和平等性。

2、對總體分布的估計——用樣本的頻率作為總體的概率,用樣本的期望(平均值)和方差去估計總體的期望和方差。

3、向量——既有大小又有方向的量。在此規定下向量可以在平面(或空間)平行移動而不改變。

4、並線向量(平行向量)——方向相同或相反的向量。規定零向量與任意向量平行。


高中數學知識點總結相關文章:

★ 高中數學學習方法:知識點總結最全版

★ 高中數學知識點全總結最全版

★ 高中數學知識點總結

★ 高中高一數學知識點總結

★ 高一數學知識點全面總結

★ 高中數學知識點全總結

★ 高中數學知識點總結及公式大全

★ 高二數學知識點總結

★ 高中數學知識點歸納最新

★ 高中數學知識點大全

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

『玖』 高一數學必修一知識點梳理

是孩子適應學校,適應老師,適應各種學習環境的時候,簡單說就是磨合期。高中知識點那麼多,學科壓力很大,很多人剛進入高一,還存在著新鮮勁和學習的動力,雖然有些吃力,但是依舊在力挺。下面是我給大家帶來的 高一數學 必修一知識點梳理,希望能幫助到你!

高一數學必修一知識點梳理1

一、指數函數

(一)指數與指數冪的運算

1.根式的概念:一般地,如果,那麼叫做的次方根(nthroot),其中>1,且∈_.

當是奇數時,正數的次方根是一個正數,負數的次方根是一個負數.此時,的次方根用符號表示.式子叫做根式(radical),這里叫做根指數(radicalexponent),叫做被開方數(radicand).

當是偶數時,正數的次方根有兩個,這兩個數互為相反數.此時,正數的正的次方根用符號表示,負的次方根用符號-表示.正的次方根與負的次方根可以合並成±(>0).由此可得:負數沒有偶次方根;0的任何次方根都是0,記作。

注意:當是奇數時,當是偶數時,

2.分數指數冪

正數的分數指數冪的意義,規定:

0的正分數指數冪等於0,0的負分數指數冪沒有意義

指出:規定了分數指數冪的意義後,指數的概念就從整數指數推廣到了有理數指數,那麼整數指數冪的運算性質也同樣可以推廣到有理數指數冪.

3.實數指數冪的運算性質

(二)指數函數及其性質

1、指數函數的概念:一般地,函數叫做指數函數(exponential),其中x是自變數,函數的定義域為R.

注意:指數函數的底數的取值范圍,底數不能是負數、零和1.

2、指數函數的圖象和性質

【第三章:第三章函數的應用】

1、函數零點的概念:對於函數,把使成立的實數叫做函數的零點。

2、函數零點的意義:函數的零點就是方程實數根,亦即函數的圖象與軸交點的橫坐標。即:

方程有實數根函數的圖象與軸有交點函數有零點.

3、函數零點的求法:

求函數的零點:

1(代數法)求方程的實數根;

2(幾何法)對於不能用求根公式的方程,可以將它與函數的圖象聯系起來,並利用函數的性質找出零點.

4、二次函數的零點:

二次函數.

1)△>0,方程有兩不等實根,二次函數的圖象與軸有兩個交點,二次函數有兩個零點.

2)△=0,方程有兩相等實根(二重根),二次函數的圖象與軸有一個交點,二次函數有一個二重零點或二階零點.

3)△<0,方程無實根,二次函數的圖象與軸無交點,二次函數無零點.

高一數學必修一知識點梳理2

1、函數零點的定義

(1)對於函數)(xfy,我們把方程0)(xf的實數根叫做函數)(xfy的零點。

(2)方程0)(xf有實根?函數()yfx的圖像與x軸有交點?函數()yfx有零點。因此判斷一個函數是否有零點,有幾個零點,就是判斷方程0)(xf是否有實數根,有幾個實數根。函數零點的求法:解方程0)(xf,所得實數根就是()fx的零點(3)變號零點與不變號零點

①若函數()fx在零點0x左右兩側的函數值異號,則稱該零點為函數()fx的變號零點。②若函數()fx在零點0x左右兩側的函數值同號,則稱該零點為函數()fx的不變號零點。

③若函數()fx在區間,ab上的圖像是一條連續的曲線,則0)()(

2、函數零點的判定

(1)零點存在性定理:如果函數)(xfy在區間],[ba上的圖象是連續不斷的曲線,並且有()()0fafb,那麼,函數)(xfy在區間,ab內有零點,即存在),(0bax,使得0)(0xf,這個0x也就是方程0)(xf的根。

(2)函數)(xfy零點個數(或方程0)(xf實數根的個數)確定 方法

①代數法:函數)(xfy的零點?0)(xf的根;②(幾何法)對於不能用求根公式的方程,可以將它與函數)(xfy的圖象聯系起來,並利用函數的性質找出零點。

(3)零點個數確定

0)(xfy有2個零點?0)(xf有兩個不等實根;0)(xfy有1個零點?0)(xf有兩個相等實根;0)(xfy無零點?0)(xf無實根;對於二次函數在區間,ab上的零點個數,要結合圖像進行確定.

3、二分法

(1)二分法的定義:對於在區間[,]ab上連續不斷且()()0fafb的函數()yfx,通過不斷地把函數()yfx的零點所在的區間一分為二,使區間的兩個端點逐步逼近零點,進而得到零點的近似值的方法叫做二分法;

(2)用二分法求方程的近似解的步驟:

①確定區間[,]ab,驗證()()0fafb,給定精確度e;

②求區間(,)ab的中點c;③計算()fc;

(ⅰ)若()0fc,則c就是函數的零點;

(ⅱ)若()()0fafc,則令bc(此時零點0(,)xac);(ⅲ)若()()0fcfb,則令ac(此時零點0(,)xcb);

④判斷是否達到精確度e,即ab,則得到零點近似值為a(或b);否則重復②至④步.

高一數學必修一知識點梳理3

(1)直線的傾斜角

定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角.特別地,當直線與x軸平行或重合時,我們規定它的傾斜角為0度.因此,傾斜角的取值范圍是0°≤α<180°

(2)直線的斜率

①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率.直線的斜率常用k表示.即.斜率反映直線與軸的傾斜程度.

當時,;當時,;當時,不存在.

②過兩點的直線的斜率公式:

注意下面四點:(1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;

(2)k與P1、P2的順序無關;(3)以後求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;

(4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到.

(3)直線方程

①點斜式:直線斜率k,且過點

注意:當直線的斜率為0°時,k=0,直線的方程是y=y1.

當直線的斜率為90°時,直線的斜率不存在,它的方程不能用點斜式表示.但因l上每一點的橫坐標都等於x1,所以它的方程是x=x1.

②斜截式:,直線斜率為k,直線在y軸上的截距為b

③兩點式:()直線兩點,

④截矩式:

其中直線與軸交於點,與軸交於點,即與軸、軸的截距分別為.

⑤一般式:(A,B不全為0)

注意:各式的適用范圍特殊的方程如:

平行於x軸的直線:(b為常數);平行於y軸的直線:(a為常數);

(5)直線系方程:即具有某一共同性質的直線

(一)平行直線系

平行於已知直線(是不全為0的常數)的直線系:(C為常數)

(二)垂直直線系

垂直於已知直線(是不全為0的常數)的直線系:(C為常數)

(三)過定點的直線系

(ⅰ)斜率為k的直線系:,直線過定點;

(ⅱ)過兩條直線,的交點的直線系方程為

(為參數),其中直線不在直線系中.

(6)兩直線平行與垂直

注意:利用斜率判斷直線的平行與垂直時,要注意斜率的存在與否.

(7)兩條直線的交點

相交

交點坐標即方程組的一組解.

方程組無解;方程組有無數解與重合

(8)兩點間距離公式:設是平面直角坐標系中的兩個點

(9)點到直線距離公式:一點到直線的距離

(10)兩平行直線距離公式

在任一直線上任取一點,再轉化為點到直線的距離進行求解.

高一數學必修一知識點梳理相關 文章 :

★ 高一數學必修一知識點匯總

★ 高一數學必修1知識點歸納

★ 高中數學必修1知識點總結

★ 高一數學必修一公式歸納

★ 高一數學必修一知識點總結

★ 高中數學高一數學必修一知識點

★ 高中必修一數學知識點歸納

★ 高一人教版數學必修一第一章知識點整理

★ 高一數學知識點匯總大全

★ 高一數學知識點總結