㈠ 初一數學知識要點有哪些
初一數學概念
實數:
—有理數與無理數統稱為實數。
有理數:
整數和分數統稱為有理數。
無理數:
無理數是指無限不循環小數。
自然數:
表示物體的個數0、1、2、3、4~(0包括在內)都稱為自然數。
數軸:
規定了圓點、正方向和單位長度的直線叫做數軸。
相反數:
符號不同的兩個數互為相反數。
倒數:
乘積是1的兩個數互為倒數。
絕對值:
數軸上表示數a的點與圓點的距離稱為a的絕對值。一個正數的絕對值是本身,一個負數的絕對值是它的相反數,0的絕對值是0。
數學定理公式
有理數的運演算法則
⑴加法法則:同號兩數相加,取相同的符號,並把絕對值相加;異號兩數相加,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值,互為相反數的兩個數相加得0。
⑵減法法則:減去一個數,等於加上這個數的相反數。
⑶乘法法則:兩數相乘,同號得正,異號得負,並把絕對值相乘;任何數與0相乘都得0。
⑷除法法則:除以一個數等於乘上這個數的倒數;兩數相除,同號得正,異號得負,並把絕對值相除;0除以任何一個不等於0的數,都得0。
角的平分線:從角的一個頂點引出一條射線,能把這個角平均分成兩份,這條射線叫做這個角的角平分線。
數學第一章相交線
一、鄰補角:兩條直線相交所成的四個角中,有公共頂點,並且有一條公共邊,這樣的角叫做鄰補角。鄰補角是一種特殊位置關系和數量關系的角,即鄰補角一定是補角,但補角不一定是鄰補角。
二、對頂角:是兩條直線相交形成的。兩個角的兩邊互為反向延長線,因此對頂角也可以說成「把一個角的兩邊反向延長而形成的兩個角叫做對頂角」。
對頂角的性質:對頂角相等。
三、垂直
1、垂直:兩條直線所成的四個角中,有一個是直角時,就說這兩條直線互相垂直。其中一條叫做另一條的垂線,它們的交點叫做垂足。記做a⊥b
垂直是相交的一種特殊情形。
2、垂線的性質:
①過一點有且只有一條直線與已知直線垂直;
②連接直線外一點與直線上各點的所有線段中,垂線段最短。
直線外一點到這條直線的垂線段的長度,叫做點到直線的距離。
3、畫法:①一靠(已知直線)②二過(定點)③三畫(垂線)
4、空間的垂直關系
四、平行線
1、 平行線:在同一平面內,不相交的兩條直線叫做平行線。記做a‖b
2、 「三線八角」:兩條直線被第三條直線所截形成的
① 同位角:「同方同位」即在兩條直線的上方或下方,在第三條直線的同一側。
② 內錯角:「之間兩側」即在兩條直線之間,在第三條直線的兩側。
③ 同旁內角「之間同旁」即在兩條直線之間,在第三條直線的同旁。
3、 平行公理:經過直線外一點,有且只有一條直線與這條直線平行
平行公理的推論:如果兩條直線都與第三條直線平行,那麼這兩條直線也互相平行。
4、 平行線的判定方法
① 兩條直線被第三條直線所截,如果同位角相等,那麼這兩條直線平行;
② 兩條直線被第三條直線所截,如果內錯角相等,那麼這兩條直線平行;
③ 兩條直線被第三條直線所截,如果同旁內角互補,那麼這兩條直線平行;
④ 平行於同一條直線的兩條直線平行;
⑤ 垂直於同一條直線的兩條直線平行。
5、 平行線的性質:
①兩條平行線被第三條直線所截,同位角相等;
②兩條平行線被第三條直線所截,內錯角相等;
③兩條平行線被第三條直線所截,同旁內角互補。
6、 兩條平行線的距離:同時垂直於兩條平行線並且夾在這兩條平行線間的線段的長度,叫做這兩條平行線的距離。
7、 命題:判斷一件事情的語句,叫做命題,由題設和結論兩部分組成。
五平移
1、平移:在平面內將一個圖形沿某個方向移動一定的距離,這樣的圖形運動稱為平移。
說明:①、平移不改變圖形的形狀和大小,改變圖形的位置;②「將一個圖形沿某個方向移動一定的距離」意味著「圖形上的每一點都沿著同一方向移動了相同的距離 」這也是判斷一種運動是否為平移的關鍵。③圖形平移的方向,不一定是水平的
2、平移的性質:經過平移,對應線段、對應角分別相等,對應點所連的線段平行且相等。 初一數學知識點歸納 第一單元 位置1、 能在具體的情景中,確定位置的方法,說出某一物體的位置。2、 用「數對」表示位置,對應列上的數字在前,行上的數字在後,記為(x,y)。3、 「數對」表示位置,易錯的是(x,0),(0,y)。4、 認識方位,上北下南左西右東,兩個事物一個在另一個的方向。 第二單元 分數乘法一、分數乘整數1、 意義:表示幾個相同分數相加。2、 計算方法:(1)、分母不變,分子和整數相乘。 (2)、當分母和整數可以約分時,要先約分。二、分數乘分數1、意義:就是一個分數的幾分之幾。2、計算方法:(1)、分子乘分子,分母乘分母。。 (2)、分子和分母有能約分的要約分,再計算。三、運算律的運用1、整數乘法的運算律對於分數乘法同樣適用。2、應用運算律簡便計算。四、倒數1、乘積是1的兩個數互為倒數。2、求法:把數的分子和分母的位置顛倒。3、1的倒數就是1本身,0沒有倒數。五、解決問題1、求一個數的幾分之幾。列式:標准量×幾分之幾2、求一個數多(或少)幾分之幾。列式:標准量×(1±幾分之幾) 標准量土標准量×幾分之幾3、 求一個數占另一個數的幾分之幾。列式:幾分之幾4、 用畫線段圖分析分數乘法應用題的數量關系。 第三單元 分數除法一、 類型1、 分數除以整數,表示把分數平均分成整數份。2、 分數除以分數,表示b/a中有多少個d/c。3、 整數除以分數,表示a中有多少個c/d。二、 計算方法:除以一個數等於乘這個數的倒數(0除外)。三、 分數除法的意義與整數除法相同,都是乘法的逆運算。四、 分數混合運算順序,簡便演算法。五、 解決問題1、 甲數是乙數的幾分之幾。列式:甲/乙。2、 乙數的幾分之幾等於甲數。列式:甲數=乙數×幾分之幾。乙數=甲數÷幾分之幾。3、 甲數比乙數多(或少)幾分之幾。列式:甲數=乙數×(1土幾分之幾)甲數=乙數土乙數×幾分之幾。標准量:「比」字後面的為標准量。4、 若求長方形的長是寬的幾倍:就是求長和寬的比:長/寬。若求長方形的寬是長的幾分之幾,就是求長和寬的比:長/寬。六、 比的意義:用兩個數相除,又叫兩個數的比,符號「:」比的結果叫做比值。1、 在a:b中,a叫比的前項,b叫比的後項。2、 比與除法和分數的關系。a:b=a÷b=a/b。3、 求比值兩項的單位名稱要統一,比值是一個數,沒有單位。4、 比的基本性質a:b=am:bma:b=a÷m:b÷m5、 比化成最簡整數比:(1) 有分數,前項和後項都乘分母的最小公倍數。(2) 無分數,前項和後項都除以最大公約數。(3) 有小數,可先化為整數或分數。6、解決問題總量×被分份數/總份數=要求的量 第四單元圓一、 圓的認識,由曲線圍成,外形美,易滾動。1、 圓心,用o表示。2、 半徑,連接圓心和圓上任意一點的線段叫半徑,用r表示。3、 直徑,通過圓心並且兩端都在圓上的線段叫直徑,用d表示。4、 半徑和直徑的關系。5、 軸對稱圖形及對稱軸,圓又無數條對稱軸,是直徑所在的直線。二、 圓的周長1、 圓周率,是周長與直徑的比,是無限不循環小數。2、 公式:c=πd或c=2πr3、 已知圓的周長求半徑和直徑。三、 圓的面積1、公式S=πR22、已知圓的半徑、直徑或周長能分別求圓的面積。3、環形面積公式S=πR2-πr24、扇形、弧、圓心角。5、在周長一定的情況下,圓的面積最大。在面積一定的情況下,圓的周長最短。6、 確定起跑線的位置。 第五單元百分數1、 百分數的寫法。百分號「%」2、 百分數的意義:表示一個數是另一個數的百分之幾。3、 百分數與分數的區別:分數既可以表示一個具體的數,又可以表示兩個數之間的關系。百分數表示一個數是另一個數的百分之幾,只表示兩個數的關系,不是具體的數,不能寫單位名稱。另外百分數的分子可以是小數和大於一百的數。4、 百分數與分數、小數的互化。百分數化為小數:去掉百分號,小數點向左移動兩位;小數化為百分數:小數點向右移動兩位,添上百分號;百分數化為分數:可先化為分母是一百的分數,能約分的要約分;分數化為百分數:先把分數化為小數,再化為百分數。5、解決問題①、達標率,發芽率的公式。(甲占乙的百分之幾。)達標率=達標的人數/總人數×100%發芽率=發芽的數量/種子的總數×100%②、甲比乙少(或多)百分之幾。確定單位「1」。③、甲增加了百分之幾是多少?增加了多少?6、折扣,表示十分之幾,也就是百分之幾十。折扣問題求實求一個數的百分之幾是多少的問題。7、納稅。①、根據國家各種稅法的規定,按照一定的比率,把集體或個人的收入的一部分繳納給國家叫做納稅。②、繳納的稅款叫做應納稅額。按一定的比率納稅叫做稅率。③、稅率=應納稅款/各種收入×100%應納稅款=稅率×各種收入。8、利率。①、存款的好處。②、利息=本金×利率×時間③、取款=本金+利息-利息稅(本金+稅後利息)。 第六單元統計一、 扇形統計圖1、 能反映部分量同總量之間的關系2、 用整個圓表示總量,用各個扇形表示各部分數量占總量的百分之幾。3、 利用扇形統計圖計算分析。二、 合理存款1、 教育儲蓄。2、 國債利率3、 設計存款方案4、 合理存款 第七單元數學廣角雞兔同籠問題利用解方程的方法解決問題。
㈡ 初一第一單元數學知識歸納
很多同學都需要整理知識點,我整理了一些初一數學第一單元的知識點,一起來看看數學有哪些常考內容吧。
初一數學常考知識點
1.有理數:
(1)凡能寫成形式的數,都是有理數.正整數、0、負整數統稱整數;正分數、負分數統稱分數;整數和分數統稱有理數.注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;不是有理數;
2.數軸:數軸是規定了原點、正方向、單位長度的一條直線.
3.相反數:
(1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0;
(2)相反數的和為0a+b=0a、b互為相反數.
4.絕對值:
(1)正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;注意:絕對值的意義是數軸上表示某數的點離開原點的距離;
(2)絕對值可表示為:或;絕對值的問題經常分類討論;
5.有理數比大小:(1)正數的絕對值越大,這個數越大;(2)正數永遠比0大,負數永遠比0小;(3)正數大於一切負數;(4)兩個負數比大小,絕對值大的反而小;(5)數軸上的兩個數,右邊的數總比左邊的數大;(6)大數-小數>0,小數-大數<0.
6.互為倒數:乘積為1的兩個數互為倒數;注意:0沒有倒數;若a≠0,那麼的倒數是;若ab=1a、b互為倒數;若ab=-1a、b互為負倒數.
7.有理數加法法則:
(1)同號兩數相加,取相同的符號,並把絕對值相加;
(2)異號兩數相加,取絕對值較大的符號,並用較大的絕對值減去較小的絕對值;
(3)一個數與0相加,仍得這個數.
8.有理數加法的運算律:
(1)加法的交換律:a+b=b+a;(2)加法的結合律:(a+b)+c=a+(b+c).
9.有理數減法法則:減去一個數,等於加上這個數的相反數;即a-b=a+(-b).
10.有理數乘法法則:
(1)兩數相乘,同號為正,異號為負,並把絕對值相乘;
(2)任何數同零相乘都得零;
(3)幾個數相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數決定.
11.有理數乘法的運算律:
(1)乘法的交換律:ab=ba;(2)乘法的結合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac.
12.有理數除法法則:除以一個數等於乘以這個數的倒數;注意:零不能做除數,.
13.有理數乘方的法則:
(1)正數的任何次冪都是正數;
(2)負數的奇次冪是負數;負數的偶次冪是正數;注意:當n為正奇數時:(-a)n=-an或(a-b)n=-(b-a)n,當n為正偶數時:(-a)n=an或(a-b)n=(b-a)n.
14.乘方的定義:
(1)求相同因式積的運算,叫做乘方;
(2)乘方中,相同的因式叫做底數,相同因式的個數叫做指數,乘方的結果叫做冪;
15.科學記數法:把一個大於10的數記成a×10n的形式,其中a是整數數位只有一位的數,這種記數法叫科學記數法.
16.近似數的精確位:一個近似數,四捨五入到那一位,就說這個近似數的精確到那一位.
17.有效數字:從左邊第一個不為零的數字起,到精確的位數止,所有數字,都叫這個近似數的有效數字。
18.混合運演算法則:先乘方,後乘除,最後加減。
數學常用計算公式表
(1)長方形面積=長×寬,計算公式s=a b
(2)正方形面積=邊長×邊長,計算公式s=a × a
(3)長方形周長:(長+寬)× 2,計算公式s=(a+b)× 2
(4)正方形周長=邊長× 4,計算公式s= 4a i
(5)平形四邊形面積=底×高,計算公式s=a h.
(6)三角形面積=底×高÷2,計算公式s=a×h÷2
(7)梯形面積=(上底+下底)×高÷2,計算公式s=(a+b)×h÷2
(8)長方體體積=長×寬×高,計算公式v=a bh
(9)圓的面積=圓周率×半徑平方,計算公式s=лr2
(10)正方體體積=棱長×棱長×棱長,計算公式v=a3
以上就是一些數學常用計算的相關信息,供大家參考。
㈢ 初一上冊數學第一單元知識
復雜的勞動包含著需要耗費或多或少的辛勞、時間和金錢去獲得的技巧和知識的運用。下面我給大家分享一些初一上冊數學第一單元知識點,希望能夠幫助大家,歡迎閱讀!
初一上冊數學第一單元知識1
第一章有理數
(一)正負數1.正數:大於0的數。2.負數:小於0的數。
3.0即不是正數也不是負數。
4.正數大於0,負數小於0,正數大於負數。
(二)有理數1.有理數:由整數和分數組成的數。包括:正整數、0、負整數,正分數、負分數。可以寫成兩個整之比的形式。(無理數是不能寫成兩個整數之比的形式,它寫成小數形式,小數點後的數字是無限不循環的。如:π)2.整數:正整數、0、負整數,統稱整數。3.分數:正分數、負分數。
(三)數軸1.數軸:用直線上的點表示數,這條直線叫做數軸。(畫一條直線,在直線上任取一點表示數0,這個零點叫做原點,規定直線上從原點向右或向上為正方向;選取適當的長度為單位長度,以便在數軸上取點。)2.數軸的三要素:原點、正方向、單位長度。3.相反數:只有符號不同的兩個數叫做互為相反數。0的相反數還是0。4.絕對值:正數的絕對值是它本身,負數的絕對值是它的相反數;0的絕對值是0,兩個負數,絕對值大的反而小。
(四)有理數的加減法
1.先定符號,再算絕對值。2.加法運演算法則:同號相加,到相同符號,並把絕對值相加。異號相加,取絕對值大的加數的符號,並用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0。一個數同0相加減,仍得這個數。3.加法交換律:a+b=b+a兩個數相加,交換加數的位置,和不變。4.加法結合律:(a+b)+c=a+(b+c)三個數相加,先把前兩個數相加,或者先把後兩個數相加,和不變。
5.a-b=a+(-b)減去一個數,等於加這個數的相反數。
(五)有理數乘法(先定積的符號,再定積的大小)
1.同號得正,異號得負,並把絕對值相乘。任何數同0相乘,都得0。
2.乘積是1的兩個數互為倒數。3.乘法交換律:ab=ba
4.乘法結合律:(ab)c=a(bc)5.乘法分配律:a(b+c)=ab+ac
(六)有理數除法
1.先將除法化成乘法,然後定符號,最後求結果。
2.除以一個不等於0的數,等於乘這個數的倒數。
3.兩數相除,同號得正,異號得負,並把絕對值相除,0除以任何一個不等於0的數,都得0。
(七)乘方
1.求n個相同因數的積的運算,叫做乘方。寫作an。(乘方的結果叫冪,a叫底數,n叫指數)
2.負數的奇數次冪是負數,負數的偶次冪是正數;0的任何正整數次冪都是0。
3.同底數冪相乘,底不變,指數相加。
4.同底數冪相除,底不變,指數相減。
(八)有理數的加減乘除混合運演算法則
1.先乘方,再乘除,最後加減。
2.同級運算,從左到右進行。
3.如有括弧,先做括弧內的運算,按小括弧、中括弧、大括弧依次進行。
(九)科學記數法、近似數、有效數字。
初一上冊數學第一單元知識2
第二章整式
(一)整式1.整式:單項式和多項式的統稱叫整式。
2.單項式:數與字母的乘積組成的式子叫單項式。單獨的一個數或一個字母也是單項式。
3.系數:一個單項式中,數字因數叫做這個單項式的系數。
4. 次數:一個單項式中,所有字母的指數和叫做這個單項式的次數。
5.多項式:幾個單項式的和叫做多項式。
6.項:組成多項式的每個單項式叫做多項式的項。
7.常數項:不含字母的項叫做常數項。
8.多項式的次數:多項式中,次數最高的項的次數叫做這個多項式的次數。
9.同類項:多項式中,所含字母相同,並且相同字母的指數也相同的項叫做同類項。
10.合並同類項:把多項式中的同類項合並成一項,叫做合並同類項。
(二)整式加減整式加減運算時,如果遇到括弧先去括弧,再合並同類項。
1.去括弧:一般地,幾個整式相加減,如果有括弧就先去括弧,然後再合並同類項。如果括弧外的因數是正數,去括弧後原括弧內各項的符號與原來的符號相同。如果括弧外的因數是負數,去括弧後原括弧內各項的符號與原來的符號相反。
2.合並同類項:把多項式中的同類項合並成一項,叫做合並同類項。合並同類項後,所得項的系數是合並前各同類項的系數的和,且字母部分不變。
初中 數學 學習 方法
1.求教與自學相結合
在學習過程中,即要爭取教師的指導和幫助,但是又不能處處依--教師, 必須自己主動地去學習、去探索、去獲取,應該在自己認真學習和研究的基礎上去尋求教師和同學的幫助。
2.學習與思考相結合
在學習過程中,對課本的內容要認真研究,提出疑問,追本究源。對每一個概念、公式、定理都要弄清其來龍去脈、前因後果、內在聯系,以及蘊含於推導過程中的數學思想和方法。在解決問題時,要盡量採用不同的途徑和方法,要克服那種死守書本、機械呆板、不知變通的學習方法。
3.學用結合,勤於實踐
在學習過程中,要准確地掌握抽象概念的本質含義,了解從實際模型中抽象為理論的演變過程。對所學理論知識,要在更大范圍內尋求它的具體實例,使之具體化,盡量將所學的理論知識和思維方法應用於實踐。
4.博觀約取,由博返約
課本是學生獲得知識的主要來源,但不是唯一的來源。在學習過程中,除了認真研究課本以外,還要閱讀有關的課外資料,來擴大知識領域。同時在廣泛閱讀的基礎上,進行認真研究,掌握其知識結構。
5.既有模仿,又有創新
模仿是數學學習中不可缺少的學習方法,但是決不能機械地模仿,應該在消化理解的基礎上,開動腦筋,提出自己的見解和看法,而不拘泥於已有的框框,不囿於現成的模式。
6.及時復習增強記憶
課堂上學習的內容,必須當天消化,要先復習,後做練習,復習工作必須經常進行,每一單元結束後,應將所學知識進行概括整理,使之系統化、深刻化。
初一上冊數學第一單元知識相關 文章 :
★ 初一數學上冊知識點歸納
★ 初一上冊數學知識點歸納整理
★ 七年級數學上冊知識歸納
★ 初一數學上冊重點知識整理
★ 七年級上冊數學知識點總結三篇
★ 初一數學上冊知識點
★ 初一上冊數學第一單元的思維導圖
★ 初一上學期數學知識點歸納
★ 七年級數學上冊知識點匯總
★ 七年級數學上冊知識點總結第一章
㈣ 初一第一單元數學知識總結歸納
對於初一的學生來說,數學是很重要的一門學科,我整理了數學第一單元的知識點。
正數和負數
1、以前學過的0以外的數前面加上負號「-」的書叫做負數。
2、以前學過的0以外的數叫做正數。
3、數0既不是正數也不是負數,0是正數與負數的分界。
4、在同一個問題中,分別用正數和負數表示的量具有相反的意義
有理數
正整數、0、負整數統稱整數,正分數和負分數統稱分數。
整數和分數統稱有理數。
數軸
1、規定了原點、正方向、單位長度的直線叫做數軸。
2、數軸的作用:所有的有理數都可以用數軸上的點來表達。
注意事項:(1)數軸的原點、正方向、單位長度三要素,缺一不可。
(2)同一根數軸,單位長度不能改變。
一般地,設是一個正數,則數軸上表示a的點在原點的右邊,與原點的距離是a個單位長度;表示數-a的點在原點的左邊,與原點的距離是a個單位長度。
相反數
1、只有符號不同的兩個數叫做互為相反數。
2、數軸上表示相反數的兩個點關於原點對稱。
3、在任意一個數前面添上「-」號,新的數就表示原數的相反數。
絕對值
1、一般地,數軸上表示數a的點與原點的距離叫做數a的絕對值。
2、一個正數的絕對值是它的本身;一個負數的絕對值是它的相反數;0的絕對值是0。
3、比較有理數的大小
(1)正數大於0,0大於負數,正數大於負數。
(2)兩個負數,絕對值大的反而小。
有理數的運算
1、有理數的加法:
(1)有理數加法法則:
①同號兩數相加,去相同的符號,並把絕對值相加;
②絕對值不相等的異號兩數相加,取絕對值較大數的符號,並用較大的絕對值減去較小的絕對值;
③互為相反數的兩個數相加結果為0;
④一個數同0相加,仍得這個數。
(2)有理數加法的運算律:
加法的交換律:a+b+c=a+(b+c);
加法的結合律:(a+b)+c=a+(b+c)
用加法的運算路進行簡便運算的基本思路是:先把互為相反數得數相加;把同分母的分數先相加;把相加得整數的數先相加。
2、有理數的減法:
(1)有理數減法法則:減去一個數等於加上這個數的相反數。
(2)有理數減法常見錯誤:顧此失彼,沒有顧到結果的符號;仍用小學計算的習慣不把減法變加法;只改變運算符號,不改變減數的符號,沒有把減數變成相反數。
(3)有理數加法混合運算步驟:先把減法變成加法,再按有理數加法法則進行運算。
3、有理數的乘法
(1)有理數乘法的法則:兩個有理數相乘,同號得正,異號得負,並把絕對值相乘;任何數與0相乘都得0。
(2)有理數乘法的運算律:交換律:ab=ba;結合律:(ab)c=a(bc);交換律:a(b+c)=ab+ac
(3)倒數的定義:乘積是1的兩個有理數互為倒數,即ab=1,那麼a和b互為倒數;倒數也可以看成是把分子分母的位置顛倒過來。
4、有理數的除法
有理數除法法則:除以一個數,等於乘上這個數的倒數,0不能做除數。這個法則可以把除法轉化為乘法;除法法則也可以看成是:兩個數相除,同號得正,異號得負,並把絕對值相除,0除以任何一個不等於0的數都等於0.5。
以上是我整理的數學的知識點,希望能幫到你。
㈤ 初一數學單元知識點歸納5篇(精選)
每一門科目都有自己的 學習 方法 ,但其實都是萬變不離其中的,數學其實和語文英語一樣,也是要記、要背、要講練的。下面是我給大家整理的一些初一數學的知識點,希望對大家有所幫助。
初一數學第一單元知識點
1.有理數:
(1)凡能寫成形式的數,都是有理數.正整數、0、負整數統稱整數;正分數、負分數統稱分數;整數和分數統稱有理數.注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;不是有理數;
2.數軸:數軸是規定了原點、正方向、單位長度的一條直線.
3.相反數:
(1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0;
(2)相反數的和為0a+b=0a、b互為相反數.
4.絕對值:
(1)正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;注意:絕對值的意義是數軸上表示某數的點離開原點的距離;
(2)絕對值可表示為:或;絕對值的問題經常分類討論;
5.有理數比大小:(1)正數的絕對值越大,這個數越大;(2)正數永遠比0大,負數永遠比0小;(3)正數大於一切負數;(4)兩個負數比大小,絕對值大的反而小;(5)數軸上的兩個數,右邊的數總比左邊的數大;(6)大數-小數>0,小數-大數<0.
6.互為倒數:乘積為1的兩個數互為倒數;注意:0沒有倒數;若a≠0,那麼的倒數是;若ab=1a、b互為倒數;若ab=-1a、b互為負倒數.
7.有理數加法法則:
(1)同號兩數相加,取相同的符號,並把絕對值相加;
(2)異號兩數相加,取絕對值較大的符號,並用較大的絕對值減去較小的絕對值;
(3)一個數與0相加,仍得這個數.
8.有理數加法的運算律:
(1)加法的交換律:a+b=b+a;(2)加法的結合律:(a+b)+c=a+(b+c).
9.有理數減法法則:減去一個數,等於加上這個數的相反數;即a-b=a+(-b).
10.有理數乘法法則:
(1)兩數相乘,同號為正,異號為負,並把絕對值相乘;
(2)任何數同零相乘都得零;
(3)幾個數相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數決定.
11.有理數乘法的運算律:
(1)乘法的交換律:ab=ba;(2)乘法的結合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac.
12.有理數除法法則:除以一個數等於乘以這個數的倒數;注意:零不能做除數,.
13.有理數乘方的法則:
(1)正數的任何次冪都是正數;
(2)負數的奇次冪是負數;負數的偶次冪是正數;注意:當n為正奇數時:(-a)n=-an或(a-b)n=-(b-a)n,當n為正偶數時:(-a)n=an或(a-b)n=(b-a)n.
14.乘方的定義:
(1)求相同因式積的運算,叫做乘方;
(2)乘方中,相同的因式叫做底數,相同因式的個數叫做指數,乘方的結果叫做冪;
15.科學記數法:把一個大於10的數記成a×10n的形式,其中a是整數數位只有一位的數,這種記數法叫科學記數法.
16.近似數的精確位:一個近似數,四捨五入到那一位,就說這個近似數的精確到那一位.
17.有效數字:從左邊第一個不為零的數字起,到精確的位數止,所有數字,都叫這個近似數的有效數字。
18.混合運演算法則:先乘方,後乘除,最後加減。
2數學常用計算公式表(1)長方形面積=長×寬,計算公式s=a b
(2)正方形面積=邊長×邊長,計算公式s=a × a
(3)長方形周長:(長+寬)× 2,計算公式s=(a+b)× 2
(4)正方形周長=邊長× 4,計算公式s= 4a i
(5)平形四邊形面積=底×高,計算公式s=a h.
(6)三角形面積=底×高÷2,計算公式s=a×h÷2
(7)梯形面積=(上底+下底)×高÷2,計算公式s=(a+b)×h÷2
(8)長方體體積=長×寬×高,計算公式v=a bh
(9)圓的面積=圓周率×半徑平方,計算公式s=лr2
(10)正方體體積=棱長×棱長×棱長,計算公式v=a3
初一下冊數學知識點 總結
1.1正數與負數
在以前學過的0以外的數前面加上負號「-」的數叫負數(negativenumber)。
與負數具有相反意義,即以前學過的0以外的數叫做正數(positivenumber)(根據需要,有時在正數前面也加上「+」)。
1.2有理數
正整數、0、負整數統稱整數(integer),正分數和負分數統稱分數(fraction)。
整數和分數統稱有理數(rationalnumber)。
通常用一條直線上的點表示數,這條直線叫數軸(numberaxis)。
數軸三要素:原點、正方向、單位長度。
在直線上任取一個點表示數0,這個點叫做原點(origin)。
只有符號不同的兩個數叫做互為相反數(oppositenumber)。(例:2的相反數是-2;0的相反數是0)
數軸上表示數a的點與原點的距離叫做數a的絕對值(absolutevalue),記作|a|。
一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;0的絕對值是0。兩個負數,絕對值大的反而小。
1.3有理數的加減法
有理數加法法則:
1.同號兩數相加,取相同的符號,並把絕對值相加。
2.絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0。
3.一個數同0相加,仍得這個數。
有理數減法法則:減去一個數,等於加這個數的相反數。
1.4有理數的乘除法
有理數乘法法則:兩數相乘,同號得正,異號得負,並把絕對值相乘。任何數同0相乘,都得0。
乘積是1的兩個數互為倒數。
有理數除法法則:除以一個不等於0的數,等於乘這個數的倒數。
兩數相除,同號得正,異號得負,並把絕對值相除。0除以任何一個不等於0的數,都得0。mì
求n個相同因數的積的運算,叫乘方,乘方的結果叫冪(power)。在a的n次方中,a叫做底數(basenumber),n叫做指數(exponent)。
負數的奇次冪是負數,負數的偶次冪是正數。正數的任何次冪都是正數,0的任何次冪都是0。
把一個大於10的數表示成a×10的n次方的形式,使用的就是科學計數法。
從一個數的左邊第一個非0數字起,到末位數字止,所有數字都是這個數的有效數字(significantdigit)。
初中 一年級數學 上冊知識
整式的加減
一、代數式
1、用運算符號把數或表示數的字母連結而成的式子,叫做代數式。單獨的一個數或字母也是代數式。
2、用數值代替代數式里的字母,按照代數式里的運算關系計算得出的結果,叫做代數式的值。
二、整式
1、單項式:
(1)由數和字母的乘積組成的代數式叫做單項式。
(2)單項式中的數字因數叫做這個單項式的系數。
(3)一個單項式中,所有字母的指數的和叫做這個單項式的次數。
2、多項式
(1)幾個單項式的和,叫做多項式。
(2)每個單項式叫做多項式的項。
(3)不含字母的項叫做常數項。
3、升冪排列與降冪排列
(1)把多項式按x的指數從大到小的順序排列,叫做降冪排列。
(2)把多項式按x的指數從小到大的順序排列,叫做升冪排列。
三、整式的加減
1、整式加減的理論根據是:去括弧法則,合並同類項法則,以及乘法分配率。
去括弧法則:如果括弧前是「十」號,把括弧和它前面的「+」號去掉,括弧里各項都不變符號;如果括弧前是「一」號,把括弧和它前面的「一」號去掉,括弧里各項都改變符號。
2、同類項:所含字母相同,並且相同字母的指數也相同的項叫做同類項。
合並同類項:
(1)合並同類項的概念:把多項式中的同類項合並成一項叫做合並同類項。
(2)合並同類項的法則:同類項的系數相加,所得結果作為系數,字母和字母的指數不變。
(3)合並同類項步驟:
a.准確的找出同類項。
b.逆用分配律,把同類項的系數加在一起(用小括弧),字母和字母的指數不變。
c.寫出合並後的結果。
(4)在掌握合並同類項時注意:
a.如果兩個同類項的系數互為相反數,合並同類項後,結果為0.
b.不要漏掉不能合並的項。
c.只要不再有同類項,就是結果(可能是單項式,也可能是多項式)。
說明:合並同類項的關鍵是正確判斷同類項。
3、幾個整式相加減的一般步驟:
(1)列出代數式:用括弧把每個整式括起來,再用加減號連接。
(2)按去括弧法則去括弧。
(3)合並同類項。
初一數學上冊知識點歸納
代數初步知識
1. 代數式:用運算符號「+ - × ÷ …… 」連接數及表示數的字母的式子稱為代數式(字母所取得數應保證它所在的式子有意義,其次字母所取得數還應使實際生活或生產有意義;單獨一個數或一個字母也是代數式)
2.列代數式的幾個注意事項:
(1)數與字母相乘,或字母與字母相乘通常使用「? 」 乘,或省略不寫;
(2)數與數相乘,仍應使用「×」乘,不用「? 」乘,也不能省略乘號;
(3)數與字母相乘時,一般在結果中把數寫在字母前面,如a×5應寫成5a;
(4)帶分數與字母相乘時,要把帶分數改成假分數形式,如a× 應寫成 a;
(5)在代數式中出現除法運算時,一般用 分數線 將被除式和除式聯系,如3÷a寫成 的形式;
(6)a與b的差寫作a-b,要注意字母順序;若只說兩數的差,當分別設兩數為a、b時,則應分類,寫做a-b和b-a .
3.幾個重要的代數式:(m、n表示整數)
(1)a與b的平方差是: a2-b2 ; a與b差的平方是:(a-b)2 ;
(2)若a、b、c是正整數,則兩位整數是: 10a+b ,則三位整數是:100a+10b+c;
(3)若m、n是整數,則被5除商m余n的數是: 5m+n ;偶數是:2n ,奇數是:2n+1;三個連續整數是: n-1、n、n+1 ;
(4)若b>0,則正數是:a2+b ,負數是: -a2-b ,非負數是: a2 ,非正數是:-a2 .
初一數學 復習方法
考試與作業邏輯不同:
我們的考試不同於作業,有些孩子作業寫的還可以,准確率挺高的,但是考試成績不理想。比如學校上完課,回家就寫當天的作業,但是考試不一樣,它是階段性的、綜合性的;再比如寫作業,可以看資料,不會的可以請教同學,但是考試就得靠自己;還有寫作業時格式不一定規范,不一定符合標准,但是考試老師會要求很嚴格;另外有些孩子考試比較焦慮,考試之前,爸爸媽媽給孩子加油鼓勁,反倒孩子考不好,有些孩子甚至在考試前後一定要上廁所,排解壓力,甚至影響到考試成績。
那具體涉及到數學的復習,我以北師大版為例,可以分4個步驟:
復習方法總結
1回歸書本,梳理章節概念公式、性質定理等
就像蓋房子,房子的地基是否扎實穩固。比如我們在復習課中,要求孩子們默寫公式等,記憶單項式、多項式、整式的概念,以及冪的運算、整式乘除的法則,而且一定要記住平方差和完全平方公式以及變形。有些孩子能夠背下完全平方公式,但是一旦用的時候,就偏偏不用,因為不夠熟練,怕出錯,所以就用最復雜的公式推導一遍,費時費力,還總錯,而且重要的公式更加生疏。
比如知識點填空:
知識點填空
我們的孩子在學校大題普遍做的多,考試也能拿到一些分數,但是選擇填空老錯,考完試下來一看,錯就錯在概念不清。
比如平行線是怎麼定義,性質定理有幾條,判定定理有幾條?他們之間有什麼聯系和區別?在這一章中,哪些地方一定要加「同一平面內」這5個字?家長們可以讓孩子找找看,捋一捋。
再比如說,三角形一章,涉及到三邊關系,角的關系,以及三角形的重要線段和它們的性質,等腰等邊三角形的性質,這些一定是期末選擇題的備選項。
還有全等的幾種證明方法,常見的輔助線做法這是幾何證明題的思路。
2題型突破,對各章節常見的 熱點 問題歸納練習。
我們的數學、物理這些理科都是要做題型的,而不僅僅是做題,一定要明白思路。
大多數孩子要考的題型和難度,學校每天的作業以及每周的考試卷,你都必須分析一下,對題型歸類,你可以用不同的筆標記一下,比如第2題和第8題是一類題,是化簡求值還是公式的變形應用?通過這樣一遍的分析,孩子們都會發現,其實考來考去,就是那幾種題型反復的出,反復的練。這是非常高效的學習方法。
3、熟悉套路、模型
平行線常見的模型:鉛筆模型、豬蹄模型,比如我經常和大家說的,遇見拐點,就做平行線。
三角形倒角常見模型:8字型、飛鏢型、折角型。
三角形全等模型:角平分線的性質模型,等腰直角三角形模型,三垂直模型,翻折(對稱)。
學好這些模型相等於我們是拿著工具箱考試,效率很高,比起其他同學,省去了推導的過程,速度又快,又准確。當然前提要掌握好基礎內容,不要本末倒置。
如果孩子們能把前面的步驟都做好了,基本知識點,題型都掌握了,計算也不會出錯,那你們考試一定沒有問題,除了有些學校本來要求考很難,比如壓軸題,不在於做的多,而是在精練,你做完之後不斷的復盤,用自己的語言說出思路來,找找看裡面的邏輯關系。
4、堅持改錯題
把整個學期的試卷裝訂在一起,每周花半天的時間,訂正錯題,不會的標記星號,問老師問同學,直到會了為止,下周繼續改,看自己是否真的懂了,對於錯題,就像駱駝吃草一樣,不停地咀嚼,錯題也需要孩子們不斷反復的看思路,才能在考試的時候避免在同類型的題上反復錯。
初一數學單元知識點歸納相關 文章 :
★ 初一數學上冊知識點歸納
★ 初一數學第一單元知識點歸納
★ 初一上冊數學知識點歸納整理
★ 初一數學上冊知識點匯總歸納
★ 初一數學知識點小歸納
★ 初中七年級數學知識點歸納整理
★ 初一數學知識點梳理歸納
★ 初一數學的知識點歸納
★ 初一數學知識點歸納
★ 初一數學知識點歸納與學習方法
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();㈥ 七年級上冊數學知識點總結三篇
學習是每個一個學生的職責,而學習的動力是靠自己的夢想,也可以這樣說沒有自己的夢想就是對自己的一種不責任的表現,也就和人失走肉沒啥兩樣,只是改變命運,同時知識也不是也不是隨意的摘取。要通過自己的努力,要把我自己生命的鑰匙。以下是我為您整理的七年級上冊數學知識點 總結 三篇,供大家學習參考。
七年級上冊數學知識點總結篇一
單項式與多項式
1、沒有加減運算的整式叫做單項式。(數字與字母的積---包括單獨的一個數或字母)
2、幾個單項式的和,叫做多項式。其中每個單項式叫做多項式的項,不含字母的項叫做常數項。
說明:①根據除式中有否字母,將整式和分式區別開;根據整式中有否加減運算,把單項式、多項式區分開。②進行代數式分類時,是以所給的代數式為對象,而非以變形後的代數式為對象。劃分代數式類別時,是從外形來看。
單項式
1、都是數字與字母的乘積的代數式叫做單項式。
2、單項式的數字因數叫做單項式的系數。
3、單項式中所有字母的指數和叫做單項式的次數。
4、單獨一個數或一個字母也是單項式。
5、只含有字母因式的單項式的系數是1或―1。
6、單獨的一個數字是單項式,它的系數是它本身。
7、單獨的一個非零常數的次數是0。
8、單項式中只能含有乘法或乘方運算,而不能含有加、減等其他運算。
9、單項式的系數包括它前面的符號。
10、單項式的系數是帶分數時,應化成假分數。
11、單項式的系數是1或―1時,通常省略數字「1」。
12、單項式的次數僅與字母有關,與單項式的系數無關。
多項式
1、幾個單項式的和叫做多項式。
2、多項式中的每一個單項式叫做多項式的項。
3、多項式中不含字母的項叫做常數項。
4、一個多項式有幾項,就叫做幾項式。
5、多項式的每一項都包括項前面的符號。
6、多項式沒有系數的概念,但有次數的概念。
7、多項式中次數的項的次數,叫做這個多項式的次數。
整式
1、單項式和多項式統稱為整式。
2、單項式或多項式都是整式。
3、整式不一定是單項式。
4、整式不一定是多項式。
5、分母中含有字母的代數式不是整式;而是今後將要學習的分式。
七年級上冊數學知識點總結篇二
第一單元有理數
1.1正數和負數
以前學過的0以外的數前面加上負號「-」的書叫做負數。
以前學過的0以外的數叫做正數。
數0既不是正數也不是負數,0是正數與負數的分界。
在同一個問題中,分別用正數和負數表示的量具有相反的意義
1.2有理數
1.2.1有理數
正整數、0、負整數統稱整數,正分數和負分數統稱分數。
整數和分數統稱有理數。
1.2.2數軸
規定了原點、正方向、單位長度的直線叫做數軸。
數軸的作用:所有的有理數都可以用數軸上的點來表達。
注意事項:⑴數軸的原點、正方向、單位長度三要素,缺一不可。
⑵同一根數軸,單位長度不能改變。
一般地,設是一個正數,則數軸上表示a的點在原點的右邊,與原點的距離是a個單位長度;表示數-a的點在原點的左邊,與原點的距離是a個單位長度。
1.2.3相反數
只有符號不同的兩個數叫做互為相反數。
數軸上表示相反數的兩個點關於原點對稱。
在任意一個數前面添上「-」號,新的數就表示原數的相反數。
1.2.4絕對值
一般地,數軸上表示數a的點與原點的距離叫做數a的絕對值。
一個正數的絕對值是它的本身;一個負數的絕對值是它的相反數;0的絕對值是0。
在數軸上表示有理數,它們從左到右的順序,就是從小到大的順序,即左邊的數小於右邊的數。
比較有理數的大小:⑴正數大於0,0大於負數,正數大於負數。
⑵兩個負數,絕對值大的反而小。
1.3有理數的加減法
1.3.1有理數的加法
有理數的加法法則:
⑴同號兩數相加,取相同的符號,並把絕對值相加。
⑵絕對值不相等的餓異號兩數相加,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0。
⑶一個數同0相加,仍得這個數。
兩個數相加,交換加數的位置,和不變。
加法交換律:a+b=b+a
三個數相加,先把前面兩個數相加,或者先把後兩個數相加,和不變。
加法結合律:(a+b)+c=a+(b+c)
1.3.2有理數的減法
有理數的減法可以轉化為加法來進行。
有理數減法法則:
減去一個數,等於加這個數的相反數。
a-b=a+(-b)
1.4有理數的乘除法
1.4.1有理數的乘法
有理數乘法法則:
兩數相乘,同號得正,異號得負,並把絕對值相乘。
任何數同0相乘,都得0。
乘積是1的兩個數互為倒數。
幾個不是0的數相乘,負因數的個數是偶數時,積是正數;負因數的個數是奇數時,積是負數。
兩個數相乘,交換因數的位置,積相等。
ab=ba
三個數相乘,先把前兩個數相乘,或者先把後兩個數相乘,積相等。(ab)c=a(bc)
一個數同兩個數的和相乘,等於把這個數分別同這兩個數相乘,再把積相加。a(b+c)=ab+ac
數字與字母相乘的書寫規范:
⑴數字與字母相乘,乘號要省略,或用「」
⑵數字與字母相乘,當系數是1或-1時,1要省略不寫。
⑶帶分數與字母相乘,帶分數應當化成假分數。
用字母x表示任意一個有理數,2與x的乘積記為2x,3與x的乘積記為3x,則式子2x+3x是2x與3x的和,2x與3x叫做這個式子的項,2和3分別是著兩項的系數。
一般地,合並含有相同字母因數的式子時,只需將它們的系數合並,所得結果作為系數,再乘字母因數,即
ax+bx=(a+b)x
上式中x是字母因數,a與b分別是ax與bx這兩項的系數。
去括弧法則:
括弧前是「+」,把括弧和括弧前的「+」去掉,括弧里各項都不改變符號。括弧前是「-」,把括弧和括弧前的「-」去掉,括弧里各項都改變符號。括弧外的因數是正數,去括弧後式子各項的符號與原括弧內式子相應各項的符號相同;括弧外的因數是負數,去括弧後式子各項的符號與原括弧內式子相應各項的符號相反。
1.4.2有理數的除法
有理數除法法則:
除以一個不等於0的數,等於乘這個數的倒數。
a÷b=a〃1
b(b≠0)
兩數相除,同號得正,異號得負,並把絕對值相除。0除以任何一個不等於
0的數,都得0。
因為有理數的除法可以化為乘法,所以可以利用乘法的運算性質簡化運算。乘除混合運算往往先將除法化成乘法,然後確定積的符號,最後求出結果。
1.5有理數的乘方
1.5.1乘方
求n個相同因數的積的運算,叫做乘方,乘方的結果叫做冪。在an中,a叫做底數,n叫做指數,當an看作a的n次方的結果時,也可以讀作a的n次冪。
負數的奇次冪是負數,負數的偶次冪是正數。
正數的任何次冪都是正數,0的任何正整數次冪都是0。
有理數混合運算的運算順序:
⑴先乘方,再乘除,最後加減;
⑵同極運算,從左到右進行;
⑶如有括弧,先做括弧內的運算,按小括弧、中括弧、大括弧依次進行
1.5.2科學記數法
把一個大於10的數表示成a×10n的形式(其中a是整數數位只有一位的數,n是正整數),使用的是科學記數法。
用科學記數法表示一個n位整數,其中10的指數是n-1。
1.5.3近似數和有效數字
接近實際數目,但與實際數目還有差別的數叫做近似數。
精確度:一個近似數四捨五入到哪一位,就說精確到哪一位。
從一個數的左邊第一個非0數字起,到末位數字止,所有數字都是這個數的有效數字。
對於用科學記數法表示的數a×10n,規定它的有效數字就是a中的有效數字。
七年級上冊數學知識點總結篇三
整式的加減
一、代數式
1、用運算符號把數或表示數的字母連結而成的式子,叫做代數式。單獨的一個數或字母也是代數式。
2、用數值代替代數式里的字母,按照代數式里的運算關系計算得出的結果,叫做代數式的值。
二、整式
1、單項式:
(1)由數和字母的乘積組成的代數式叫做單項式。
(2)單項式中的數字因數叫做這個單項式的系數。
(3)一個單項式中,所有字母的指數的和叫做這個單項式的次數。
2、多項式
(1)幾個單項式的和,叫做多項式。
(2)每個單項式叫做多項式的項。
(3)不含字母的項叫做常數項。
3、升冪排列與降冪排列
(1)把多項式按x的指數從大到小的順序排列,叫做降冪排列。
(2)把多項式按x的指數從小到大的順序排列,叫做升冪排列。
三、整式的加減
1、整式加減的理論根據是:去括弧法則,合並同類項法則,以及乘法分配率。
去括弧法則:如果括弧前是「十」號,把括弧和它前面的「+」號去掉,括弧里各項都不變符號;如果括弧前是「一」號,把括弧和它前面的「一」號去掉,括弧里各項都改變符號。
2、同類項:所含字母相同,並且相同字母的指數也相同的項叫做同類項。
合並同類項:
(1)合並同類項的概念:把多項式中的同類項合並成一項叫做合並同類項。
(2)合並同類項的法則:同類項的系數相加,所得結果作為系數,字母和字母的指數不變。
(3)合並同類項步驟:
a.准確的找出同類項。
b.逆用分配律,把同類項的系數加在一起(用小括弧),字母和字母的指數不變。
c.寫出合並後的結果。
(4)在掌握合並同類項時注意:
a.如果兩個同類項的系數互為相反數,合並同類項後,結果為0.
b.不要漏掉不能合並的項。
c.只要不再有同類項,就是結果(可能是單項式,也可能是多項式)。
說明:合並同類項的關鍵是正確判斷同類項。
3、幾個整式相加減的一般步驟:
(1)列出代數式:用括弧把每個整式括起來,再用加減號連接。
(2)按去括弧法則去括弧。
(3)合並同類項。
4、代數式求值的一般步驟:
(1)代數式化簡
(2)代入計算
(3)對於某些特殊的代數式,可採用「整體代入」進行計算。
圖形的初步認識
一、立體圖形與平面圖形
1、長方體、正方體、球、圓柱、圓錐等都是立體圖形。此外稜柱、棱錐也是常見的立體圖形。
2、長方形、正方形、三角形、圓等都是平面圖形。
3、許多立體圖形是由一些平面圖形圍成的,將它們適當地剪開,就可以展開成平面圖形。
二、點和線
1、經過兩點有一條直線,並且只有一條直線。
2、兩點之間線段最短。
3、點C線段AB分成相等的兩條線段AM與MB,點M叫做線段AB的中點。類似的還有線段的三等分點、四等分點等。
4、把線段向一方無限延伸所形成的圖形叫做射線。
三、角
1、角是由兩條有公共端點的射線組成的圖形。
2、繞著端點旋轉到角的終邊和始邊成一條直線,所成的角叫做平角。
3、繞著端點旋轉到終邊和始邊再次重合,所成的角叫做周角。
4、度、分、秒是常用的角的度量單位。
把一個周角360等分,每一份就是一度的角,記作1°;把1度的角60等分,每份叫做1分的角,記作1′;把1分的角60等分,每份叫做1秒的角,記作1″。
四、角的比較
從一個角的頂點出發,把這個角分成相等的兩個角的射線,叫做這個角的平分線。類似的,還有叫的三等分線。
五、餘角和補角
1、如果兩個角的和等於90(直角),就說這兩個角互為餘角。
2、如果兩個角的和等於180(平角),就說這兩個角互為補角。
3、等角的補角相等。
4、等角的餘角相等。
六、相交線
1、定義:兩條直線相交,所成的四個角中有一個角是直角,那麼這兩條直線互相垂直。其中一條直線叫做另一條直線的垂線,它們的交點叫做垂足。
2、注意:
⑴垂線是一條直線。
⑵具有垂直關系的兩條直線所成的4個角都是90。
⑶垂直是相交的特殊情況。
⑷垂直的記法:a⊥b,AB⊥CD。
3、畫已知直線的垂線有無數條。
4、過一點有且只有一條直線與已知直線垂直。
5、連接直線外一點與直線上各點的所有線段中,垂線段最短。簡單說成:垂線段最短。
6、直線外一點到這條直線的垂線段的長度,叫做點到直線的距離。
7、有一個公共的頂點,有一條公共的邊,另外一邊互為反向延長線,這樣的兩個角叫做鄰補角。
兩條直線相交有4對鄰補角。
8、有公共的頂點,角的兩邊互為反向延長線,這樣的兩個角叫做對頂角。兩條直線相交,有2對對頂角。對頂角相等。
七、平行線
1、在同一平面內,兩條直線沒有交點,則這兩條直線互相平行,記作:a∥b。
2、平行公理:經過直線外一點,有且只有一條直線與這條直線平行。
3、如果兩條直線都與第三條直線平行,那麼這兩條直線也互相平行。
4、判定兩條直線平行的 方法 :
(1)兩條直線被第三條直線所截,如果同位角相等,那麼這兩條直線平行。簡單說成:同位角相等,兩直線平行。
(2)兩條直線被第三條直線所截,如果內錯角相等,那麼這兩條直線平行。簡單說成:內錯角相等,兩直線平行。
(3)兩條直線被第三條直線所截,如果同旁內角互補,那麼這兩條直線平行。簡單說成:同旁內角互補,兩直線平行。
5、平行線的性質
(1)兩條平行線被第三條直線所截,同位角相等。簡單說成:兩直線平行,同位角相等。
(2)兩條平行線被第三條直線所截,內錯角相等。簡單說成:兩直線平行,內錯角相等。
(3)兩條平行線被第三條直線所截,同旁內角互補。簡單說成:兩直線平行,同旁內角互補。
相關 文章 :
1. 初一數學復習三篇
2. 初一上冊數學知識點歸納整理
3. 初一數學上冊知識點歸納
4. 初一數學課本知識點總結
㈦ 七年級數學單元知識點
各個科目都有自己的 學習 方法 ,但其實都是萬變不離其中的,基本離不開背、記,練,數學作為最燒腦的科目之一,也是一樣的。下面是我給大家整理的一些 七年級數學 的知識點,希望對大家有所幫助。
初一下冊數學知識點 總結
相交線
有一個公共的頂點,有一條公共的邊,另外一邊互為反向延長線,這樣的兩個角叫做鄰補角。
兩條直線相交有4對鄰補角。
有公共的頂點,角的兩邊互為反向延長線,這樣的兩個角叫做對頂角。
兩條直線相交,有2對對頂角。
對頂角相等。
兩條直線相交,所成的四個角中有一個角是直角,那麼這兩條直線互相垂直。其中一條直線叫做另一條直線的.垂線,它們的交點叫做垂足。
平行線及其判定
性質1:兩直線平行,同位角相等。
性質2:兩直線平行,內錯角相等。
性質3:兩直線平行,同旁內角互補。
平行線的性質
性質1兩條平行線被第三條直線所截,同位角相等。簡單說成:兩直線平行,同位角相等。
性質2兩條平行線被第三條直線所截,內錯角相等。簡單說成:兩直線平行,內錯角相等。
性質3兩條平行線被第三條直線所截,同旁內角互補。簡單說成:兩直線平行,同旁內角互補。
平移
向左平移a個單位長度,可以得到對應點(x-a,y)
向上平移b個單位長度,可以得到對應點(x,y+b)
向下平移b個單位長度,可以得到對應點(x,y-b)
初一下冊數學知識點
多項式除以單項式
一、單項式
1、都是數字與字母的乘積的代數式叫做單項式。
2、單項式的數字因數叫做單項式的系數。
3、單項式中所有字母的指數和叫做單項式的次數。
4、單獨一個數或一個字母也是單項式。
5、只含有字母因式的單項式的系數是1或―1。
6、單獨的一個數字是單項式,它的系數是它本身。
7、單獨的一個非零常數的次數是0。
8、單項式中只能含有乘法或乘方運算,而不能含有加、減等其他運算。
9、單項式的系數包括它前面的符號。
10、單項式的系數是帶分數時,應化成假分數。
11、單項式的系數是1或―1時,通常省略數字「1」。
12、單項式的次數僅與字母有關,與單項式的系數無關。
二、多項式
1、幾個單項式的和叫做多項式。
2、多項式中的每一個單項式叫做多項式的項。
3、多項式中不含字母的項叫做常數項。
4、一個多項式有幾項,就叫做幾項式。
5、多項式的每一項都包括項前面的符號。
6、多項式沒有系數的概念,但有次數的概念。
7、多項式中次數的項的次數,叫做這個多項式的次數。
三、整式
1、單項式和多項式統稱為整式。
2、單項式或多項式都是整式。
3、整式不一定是單項式。
4、整式不一定是多項式。
5、分母中含有字母的代數式不是整式;而是今後將要學習的分式。
四、整式的加減
1、整式加減的理論根據是:去括弧法則,合並同類項法則,以及乘法分配率。
2、幾個整式相加減,關鍵是正確地運用去括弧法則,然後准確合並同類項。
3、幾個整式相加減的一般步驟:
(1)列出代數式:用括弧把每個整式括起來,再用加減號連接。
(2)按去括弧法則去括弧。
(3)合並同類項。
4、代數式求值的一般步驟:
(1)代數式化簡。
(2)代入計算
(3)對於某些特殊的代數式,可採用「整體代入」進行計算。
七年級 數學學習方法 技巧
1、做好預習:
單元預習時粗讀,了解近階段的學習內容,課時預習時細讀,注重知識的形成過程,對難以理解的概念、公式和法則等要做好記錄,以便帶著問題聽課。
2、認真聽課:
聽課應包括聽、思、記三個方面。聽,聽知識形成的來龍去脈,聽重點和難點,聽例題的解法和要求。思,一是要善於聯想、類比和歸納,二是要敢於質疑,提出問題。記,指課堂筆記——記方法,記疑點,記要求,記注意點。
3、認真解題:
課堂練習是最及時最直接的反饋,一定不能錯過。不要急於完成作業,要先看看你的 筆記本 ,回顧學習內容,加深理解,強化記憶。
4、及時糾錯:
課堂練習、作業、檢測,反饋後要及時查閱,分析錯題的原因,必要時強化相關計算的訓練。不明白的問題要及時向同學和老師請教了,不能將問題處於懸而未解的狀態,養成今日事今日畢的好習慣。
5、學會總結:
馮老師說:「數學一環扣一環,知識間的聯系非常緊密,階段性總結,不僅能夠起到復習鞏固的作用,還能找到知識間的聯系,做到瞭然於心,融會貫通。
6、學會管理:
管理好自己的筆記本,作業本,糾錯本,還有做過的所有練習卷和測試卷。馮老師稱,這可是大考復習時最有用的資料,千萬不可疏忽。
七年級數學單元知識點相關 文章 :
★ 初一數學上冊知識點歸納
★ 初一數學第一單元知識點歸納
★ 初中七年級數學知識點歸納整理
★ 初一上冊數學第一單元知識點
★ 七年級數學知識點整理大全
★ 初一上冊數學知識點歸納整理
★ 七年級數學上冊知識點匯總
★ 七年級數學知識點歸納
★ 七年級上冊數學知識點總結三篇
★ 七年級數學知識點整理
㈧ 初一數學的知識點歸納
學習從來無捷徑。每一門科目都有自己的 學習 方法 ,但其實都是萬變不離其中的,數學作為主科之一,和語文英語一樣,也是要記、要背、要講練的。下面是我給大家整理的一些初一數學的知識點,希望對大家有所幫助。
初中 一年級數學 上冊知識點
圖形的初步認識
一、立體圖形與平面圖形
1、長方體、正方體、球、圓柱、圓錐等都是立體圖形。此外稜柱、棱錐也是常見的立體圖形。
2、長方形、正方形、三角形、圓等都是平面圖形。
3、許多立體圖形是由一些平面圖形圍成的,將它們適當地剪開,就可以展開成平面圖形。
二、點和線
1、經過兩點有一條直線,並且只有一條直線。
2、兩點之間線段最短。
3、點C線段AB分成相等的兩條線段AM與MB,點M叫做線段AB的中點。類似的還有線段的三等分點、四等分點等。
4、把線段向一方無限延伸所形成的圖形叫做射線。
三、角
1、角是由兩條有公共端點的射線組成的圖形。
2、繞著端點旋轉到角的終邊和始邊成一條直線,所成的角叫做平角。
3、繞著端點旋轉到終邊和始邊再次重合,所成的角叫做周角。
4、度、分、秒是常用的角的度量單位。
把一個周角360等分,每一份就是一度的角,記作1°;把1度的角60等分,每份叫做1分的角,記作1′;把1分的角60等分,每份叫做1秒的角,記作1″。
初一下冊數學知識點
1.認識三角形,了解三角形的意義,認識三角形的邊、內角、頂點,能用符號語言表示三角形。
2.經歷度量三角形邊長的實踐活動中,理解三角形三邊不等的關系。
3.懂得判斷三條線段可否構成一個三角形的方法,並能運用它解決有關的問題。
4.三角形的內角和定理,能用平行線的性質推出這一定理。
5.能應用三角形內角和定理解決一些簡單的實際問題。
二、重點
三角形內角和定理;
對三角形有關概念的了解,能用符號語言表示三條形。
三、難點
三角形內角和定理的推理的過程;
在具體的圖形中不重復,且不遺漏地識別所有三角形;
用三角形三邊不等關系判定三條線段可否組成三角形。
四、知識框架
五、知識點、概念 總結
1.三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
2.三角形的分類
3.三角形的三邊關系:三角形任意兩邊的和大於第三邊,任意兩邊的差小於第三邊。
4.高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。
5.中線:在三角形中,連接一個頂點和它的對邊中點的線段叫做三角形的中線。
6.角平分線:三角形的一個內角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。
7.高線、中線、角平分線的意義和做法
8.三角形的穩定性:三角形的形狀是固定的,三角形的這個性質叫三角形的穩定性。
9.三角形內角和定理:三角形三個內角的和等於180°
推論1直角三角形的兩個銳角互余;
推論2三角形的一個外角等於和它不相鄰的兩個內角和;
推論3三角形的一個外角大於任何一個和它不相鄰的內角;
初一下學期數學知識點
相交線與平行線
一、知識網路結構
二、知識要點
1、在同一平面內,兩條直線的位置關系有兩種:相交和平行,垂直是相交的一種特殊情況。
2、在同一平面內,不相交的兩條直線叫平行線。如果兩條直線只有一個公共點,稱這兩條直線相交;如果兩條直線沒有公共點,稱這兩條直線平行。
3、兩條直線相交所構成的四個角中,有公共頂點且有一條公共邊的兩個角是
鄰補角。鄰補角的性質:鄰補角互補。如圖1所示,與互為鄰補角,
與互為鄰補角。+=180°;+=180°;+=180°;
+=180°。
4、兩條直線相交所構成的四個角中,一個角的兩邊分別是另一個角的兩邊的反向延長線,這樣的兩個角互為對頂角。對頂角的性質:對頂角相等。如圖1所示,與互為對頂角。=;
=。
5、兩條直線相交所成的角中,如果有一個是直角或90°時,稱這兩條直線互相垂直,
其中一條叫做另一條的垂線。如圖2所示,當=90°時,⊥。
垂線的性質:
性質1:過一點有且只有一條直線與已知直線垂直。
性質2:連接直線外一點與直線上各點的所有線段中,垂線段最短。
性質3:如圖2所示,當a⊥b時,====90°。
點到直線的距離:直線外一點到這條直線的垂線段的長度叫點到直線的距離。
6、同位角、內錯角、同旁內角基本特徵:
①在兩條直線(被截線)的同一方,都在第三條直線(截線)的同一側,這樣
的兩個角叫同位角。圖3中,共有對同位角:與是同位角;
與是同位角;與是同位角;與是同位角。
②在兩條直線(被截線)之間,並且在第三條直線(截線)的兩側,這樣的兩個角叫內錯角。圖3中,共有對內錯角:與是內錯角;與是內錯角。
③在兩條直線(被截線)的之間,都在第三條直線(截線)的同一旁,這樣的兩個角叫同旁內角。圖3中,共有對同旁內角:與是同旁內角;與是同旁內角。
初一數學第一章知識點相關 文章 :
★ 初一數學上冊第一章知識點歸納
★ 初一數學上冊第一章知識點總結
★ 初一數學第一章知識點總結
★ 初一數學第一章知識點總結歸納
★ 初一數學重要知識點總結
★ 初一數學上冊知識點歸納
★ 初一數學第1章有理數知識點總結
★ 七年級數學上冊知識點總結第一章
★ 初一數學第一單元知識點歸納
★ 初一數學上知識點