當前位置:首頁 » 基礎知識 » 高中經典數學知識
擴展閱讀
社保基礎保障包含哪些 2024-11-08 06:46:04
泰拉瑞亞經典如何變困難 2024-11-08 06:43:56
pr怎麼導入歌詞做字幕 2024-11-08 06:43:55

高中經典數學知識

發布時間: 2022-12-10 01:18:30

① 高中數學知識點有哪些

01
高中數學是全國高中生學習的一門學科。包括《集合與函數》《三角函數》《不等式》《數列》《立體幾何》《平面解析幾何》等部分, 高中數學主要分為代數和幾何兩大部分。代數主要是一次函數,二次函數,反比例函數和三角函數。幾何又分為平面解析幾何和立體幾何兩大部分。

平面解析幾何初步:
(1)直線與方程
1在平面直角坐標系中,結合具體圖形,探索確定直線位置的幾何要素。
2理解直線的傾斜角和斜率的概念,經歷用代數方法刻畫直線斜率的過程,掌握過兩點的直線斜率的計算公式。
3能根據斜率判定兩條直線平行或垂直。
4根據確定直線位置的幾何要素,探索並掌握直線方程的幾種形式(點斜式、兩點式及一般式),體會斜截式與一次函數的關系。
5能用解方程組的方法求兩直線的交點坐標。
6探索並掌握兩點間的距離公式、點到直線的距離公式,會求兩條平行直線間的距離。
(2)圓與方程
1回顧確定圓的幾何要素,在平面直角坐標系中,探索並掌握圓的標准方程與一般方程。
2能根據給定直線、圓的方程,判斷直線與圓、圓與圓的位置關系。
3能用直線和圓的方程解決一些簡單的問題。
(3)在平面解析幾何初步的學習過程中,體會用代數方法處理幾何問題的思想。
(4)空間直角坐標系
1通過具體情境,感受建立空間直角坐標系的必要性,了解空間直角坐標系,會用空間直角坐標系刻畫點的位置。
2通過表示特殊長方體(所有棱分別與坐標軸平行)頂點的坐標,探索並得出空間兩點間的距離公式。

② 高中數學知識有哪些簡單概括

第一部分是集合,雖說內容並不復雜,但卻是高中數學的基礎。然後要學習簡單的幾個基本初等函數,如冪函數,指數函數,對數函數等,只有對這些簡單的函數的性質熟悉了,才能解決更復雜的問題。尤其是等到學完了導數相關內容以後,這方面就更重要了,所見到的函數無非是各種基本初等函數復合而成的。立體幾何要有一定的想像能力,在還沒有學到空間解析幾何的時候,把這種能力就要訓練好,這是很重要的。三角函數的公式比較多,至少要把最基本的常用的變形公式牢記,不僅解決三角函數問題,還有解三角形問題,甚至應用於各個方面。數列掌握基本的求通項的方法,以及求和的方法,無論多復雜的數列都不可能拋開等差數列和等比數列。向量的難點在於最值,一般的求數量積等問題很容易,最值無非有兩種方法,一種通過幾何來求,簡單但不易想到,一種通過坐標來求,計算量大些。概率和統計以及後面分布列等問題,都不是什麼難事,重點在導數和圓錐曲線上。選修4中還有平面幾何,不等式,參數方程,以及行列式的相關內容,根據安排來學習。

③ 高中必背知識點數學

教版高中數學必背知識點

1.課程內容:

必修課程由5個模塊組成:

必修1:集合、函數概念與基本初等函數(指、對、冪函數)

必修2:立體幾何初步、平面解析幾何初步。

必修3:演算法初步、統計、概率。

必修4:基本初等函數(三角函數)、平面向量、三角恆等變換。

必修5:解三角形、數列、不等式。

以上是每一個高中學生所必須學習的。

上述內容覆蓋了高中階段傳統的數學基礎知識和基本技能的主要部分,其中包括集合、函數、數列、不等式、解三角形、立體幾何初步、平面解析幾何初步等。不同的是在保證打好基礎的同時,進一步強調了這些知識的發生、發展過程和實際應用,而不在技巧與難度上做過高的要求。

此外,基礎內容還增加了向量、演算法、概率、統計等內容。

2.重難點及考點:

重點:函數,數列,三角函數,平面向量,圓錐曲線,立體幾何,導數

難點:函數、圓錐曲線

高考相關考點:

⑴集合與簡易邏輯:集合的概念與運算、簡易邏輯、充要條件

⑵函數:映射與函數、函數解析式與定義域、值域與最值、反函數、三大性質、函數圖象、指數與指數函數、對數與對數函數、函數的應用

⑶數列:數列的有關概念、等差數列、等比數列、數列求和、數列的應用

⑷三角函數:有關概念、同角關系與誘導公式、和、差、倍、半公式、求值、化簡、證明、三角函數的圖象與性質、三角函數的應用

⑸平面向量:有關概念與初等運算、坐標運算、數量積及其應用

⑹不等式:概念與性質、均值不等式、不等式的證明、不等式的解法、絕對值不等式、不等式的應用

⑺直線和圓的方程:直線的方程、兩直線的位置關系、線性規劃、圓、直線與圓的位置關系

⑻圓錐曲線方程:橢圓、雙曲線、拋物線、直線與圓錐曲線的位置關系、軌跡問題、圓錐曲線的應用

⑼直線、平面、簡單幾何體:空間直線、直線與平面、平面與平面、稜柱、棱錐、球、空間向量

⑽排列、組合和概率:排列、組合應用題、二項式定理及其應用

⑾概率與統計:概率、分布列、期望、方差、抽樣、正態分布

⑿導數:導數的概念、求導、導數的應用

⒀復數:復數的概念與運算

④ 高中數學基礎知識大全

學過的知識與 方法 很可能被遺忘,要想牢固掌握,並形成能力,就必須科學而有效地進行復習,以期達到溫故知新的目的!接下來是我為大家整理的高中數學基礎 知識大全 ,希望大家喜歡!

高中數學基礎知識大全一

球的定義:

第一定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的旋轉體叫球體,簡稱球。

半圓的圓心叫做球的球心,半圓的半徑叫做球的半徑,半圓的直徑叫做球的直徑。

第二定義:球面是空間中與定點的距離等於定長的所有點的集合。

球:

以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的旋轉體叫做球體(solid sphere),簡稱球。

高中數學基礎知識大全二

專題一:集合

考點1:集合的基本運算

考點2:集合之間的關系

專題二:函數

考點3:函數及其表示

考點4:函數的基本性質

考點5:一次函數與二次函數.

考點6:指數與指數函數

考點7:對數與對數函數

考點8:冪函數

考點9:函數的圖像

考點10:函數的值域與最值

考點11:函數的應用

專題三:立體幾何初步

考點12:空間幾何體的結構、三視圖和直視圖

考點13:空間幾何體的表面積和體積

考點14:點、線、面的位置關系

考點15:直線、平面平行的性質與判定

考點16:直線、平面垂直的判定及其性質

考點17:空間中的角

考點18:空間向量

高中數學基礎知識大全三

1. 高中數學新增內容命題走向

新增內容:向量的基礎知識和應用、概率與統計的基礎知識和應用、初等函數的導數和應用。

命題走向:試卷盡量覆蓋新增內容;難度控制與中學教改的深化同步,逐步提高要求;注意體現新增內容在解題中的獨特功能。

(1)導數試題的三個層次

第一層次:導數的概念、求導的公式和求導的法則;

第二層次:導數的簡單應用,包括求函數的極值、單調區間,證明函數的增減性等;

第三層次:綜合考查,包括解決應用問題,將導數內容和傳統內容中有關不等式和函數的單調性等結合在一起。

(2)平面向量的考查要求

a.考查平面向量的性質和運演算法則及基本運算技能。要求考生掌握平面向量的和、差、數乘和內積的運演算法則,理解其直觀的幾何意義,並能正確地進行運算。

b.考查向量的坐標表示,向量的線性運算。

c.和其他數學內容結合在一起,如可和函數、曲線、數列等基礎知識結合,考查邏輯推理和運算能力等綜合運用數學知識解決問題的能力。題目對基礎知識和技能的考查一般由淺入深,入手不難,但要圓滿完成解答,則需要嚴密的邏輯推理和准確的計算。

(3)概率與統計部分

基本題型:等可能事件概率題型、互斥事件有一個發生的概率題型、相互獨立事件的概率題型、獨立重復試驗概率題型,以上四種與數字特徵計算一起構成的綜合題。

復習建議:牢固掌握基本概念;正確分析隨機試驗;熟悉常見概率模型;正確計算隨機變數的數字特徵。

2. 高中數學的知識主幹

函數的基礎理論應用,不等式的求解、證明和綜合應用,數列的基礎知識和應用;三角函數和三角變換;直線與平面,平面與平面的位置關系;曲線方程的求解,直線、圓錐曲線的性質和位置關系。

3. 傳統主幹知識的命題變化及基本走向

(1)函數、數列、不等式

a.函數考查的變化

函數中去掉了冪函數,指數方程、對數方程和不等式中去掉了「無理不等式的解法、指數不等式和對數不等式的解法」等內容,這類問題的命題熱度將變冷,但仍有可能以等式或不等式的形式出現。

b.不等式與遞歸數列的綜合題解決方法

化歸為等差或等比數列問題解決;藉助教學歸納法解決;推出通項公式解決;直接利用遞推公式推斷數列性質。

c.函數、數列、不等式命題基本走向:創造新情境,運用新形式,考查基本概念及其性質;函數具有抽象化趨勢,即通過函數考查抽象能力;函數、數列、不等式的交匯與融合;利用導數研究函數性質,證明不等式;歸納法、數學歸納法的考查方式由主體轉向局部。

(2)三角函數

結合實際,利用少許的三角變換(尤其是餘弦的倍角公式和特殊情形下公式的應用),考查三角函數性質的命題;與導數結合,考查三角函數性質及圖象;以三角形為載體,考查三角變換能力,及正弦定理、餘弦定理靈活運用能力;與向量結合,考查靈活運用知識能力。

(3)立體幾何

由考查論證和計算為重點,轉向既考查空間觀念,又考查幾何論證和計算;由以公式、定理為載體,轉向對觀察、實驗、操作、設計等的適當關注;加大向量工具應用力度;改變設問方式。

(4)解析幾何

a.運算量減少,對推理和論證的要求提高。

b.考查范圍擴大,由求軌跡、討論曲線本身的性質擴大到考查:曲線與點、曲線與直線的關系,與曲線有關的直線的性質;運用曲線與方程的思想方法,研究直線、圓錐曲線之外的其他曲線;根據定義確定曲線的類型。

c.注重用代數的方法證明幾何問題,把代數、解析幾何、平面幾何結合起來。

d.向量、導數與解析幾何有機結合。

4. 關注試題創新

(1)知識內容出新:可能表現為高觀點題;避開 熱點 問題、返璞歸真。

a.高觀點題指與高等數學相聯系的問題,這樣的問題或以高等數學知識為背景,或體現高等數學中常用的數學思想方法和推理方法。高觀點題的起點高,但落點低,也就是所謂的「高題低做」,即試題的設計來源於高等數學,但解決的方法是中學所學的初等數學知識,所以並沒將高等數學引進高中教學的必要。考生不必驚慌,只要坦然面對,較易突破。

b.避開熱點問題、返璞歸真:回顧近年來的試題,那些最有沖擊力的題,往往在我們的意料之外,而又在情理之中。

(2)試題形式創新:可能表現為:題目情景的創設、條件的呈現方式、設問的角度改變等題目的外在形式。

另請注意:研究性課題內容與高考(高考新聞,高考說吧)命題內容的關系、應用題的試題內容與試題形式。

(3)解題方法求新:指用新教材中的導數、向量方法解決舊問題。

5. 高考數學命題展望

主幹內容重點考:基礎知識全面考,重點知識重點考,淡化特殊技巧。

新增知識加大考:考查力度及所佔分數比例會超過課時比例,將新增知識與傳統知識綜合考是趨勢。

思想方法更深入:考查與數學知識聯系的基本方法、解決數學問題的科學方法。

突出思維能力考核:主要考查學生空間想像能力、學習能力、探究能力、應用能力和創新能力。

在知識重組上做 文章 :注意信息的重組及知識網路的交叉點。

運算能力有所提高:淡化繁瑣、強調能力,提倡學生用簡潔方法得出結論。

空間想像能力平穩過渡:形式不會大變,但將向量作為工具來解立體幾何是趨勢。

實踐應用能力進一步加強:從實際問題中產生的應用題是真正的應用題,而試題只是構建一種模式的是主幹應用題。

考查創新學習能力:學生能選擇有效的方法和手段,要有自己的思路,創造性地解決問題。

個性品質得以彰顯。


⑤ 高中數學知識點總結

進入高中之後,數學對於許多學生來說,是一個學習較難的科目,且一些學生在數學這門課上都是越學越不會,那麼高中數學知識點有哪些?下面是我給大家帶來的高中數學知識點 總結 _高中數學知識點最全版,以供大家參考!

高中數學知識點總結1

1、命題的四種形式及其相互關系是什麼?

(互為逆否關系的命題是等價命題。)

原命題與逆否命題同真、同假;逆命題與否命題同真同假。

2、對映射的概念了解嗎?映射f:A→B,是否注意到A中元素的任意性和B中與之對應元素的唯一性,哪幾種對應能構成映射?

(一對一,多對一,允許B中有元素無原象。)

3、 函數的三要素是什麼?如何比較兩個函數是否相同?

(定義域、對應法則、值域)

4、反函數存在的條件是什麼?

(一一對應函數)

求反函數的步驟掌握了嗎?

(①反解x;②互換x、y;③註明定義域)

5、反函數的性質有哪些?

①互為反函數的圖象關於直線y=x對稱;

②保存了原來函數的單調性、奇函數性;

6、 函數f(x)具有奇偶性的必要(非充分)條件是什麼?

(f(x)定義域關於原點對稱)

高中數學知識點總結2

1、三類角的求法:

①找出或作出有關的角。

②證明其符合定義,並指出所求作的角。

③計算大小(解直角三角形,或用餘弦定理)。

2、正稜柱——底面為正多邊形的直稜柱

正棱錐——底面是正多邊形,頂點在底面的射影是底面的中心。

正棱錐的計算集中在四個直角三角形中:

3、怎樣判斷直線l與圓C的位置關系?

圓心到直線的距離與圓的半徑比較。

直線與圓相交時,注意利用圓的「垂徑定理」。

4、 對線性規劃問題:作出可行域,作出以目標函數為截距的直線,在可行域內平移直線,求出目標函數的最值。

不看後悔!清華名師揭秘學好高中數學的 方法

培養興趣是關鍵。學生對數學產生了興趣,自然有動力去鑽研。如何培養興趣呢?

(1) 欣賞數學的美感

比如幾何圖形中的對稱、變換前後的不變數、概念的嚴謹、邏輯的嚴密……

舉個例子,

通過對旋轉變換及其不變數的討論,我們可以證明反比例函數、「對勾函數」的圖象都是雙曲線——平面上到兩個定點的距離之差的絕對值為定值(小於兩個定點之間的距離)的點的集合。

(2)注意到數學在實際生活中的應用。

例如和日常生活息息相關的等額本金、等額本息兩種不同的還款方式,用數列的知識就可以理解.

學好數學,是現代公民的 基本素養 之一啊.

(3)採用靈活的教學手段,與時俱進。

利用多種技術手段,聲、光、電多管齊下,老師可以藉此把一些知識講得更具體形象,學生也更容易接受,理解更深。

(4)適當看一些科普類的書籍和 文章 。

比如:學圓錐曲線的時候,可以看看一些建築物的外形,它們被平面所截出的曲線往往就是各種圓錐曲線,很多文章對此都有介紹;還有圓錐曲線光學性質的應用,這方面的文章也不少。

高中數學知識點總結3

1、抽樣方法主要有:簡單隨機抽樣(抽簽法、隨機數表法)常常用於總體個數較少時,它的特徵是從總體中逐個抽取;系統抽樣,常用於總體個數較多時,它的主要特徵是均衡成若幹部分,每部分只取一個;分層抽樣,主要特徵是分層按比例抽樣,主要用於總體中有明顯差異,它們的共同特徵是每個個體被抽到的概率相等,體現了抽樣的客觀性和平等性。

2、對總體分布的估計——用樣本的頻率作為總體的概率,用樣本的期望(平均值)和方差去估計總體的期望和方差。

3、向量——既有大小又有方向的量。在此規定下向量可以在平面(或空間)平行移動而不改變。

4、並線向量(平行向量)——方向相同或相反的向量。規定零向量與任意向量平行。


高中數學知識點總結相關文章:

★ 高中數學學習方法:知識點總結最全版

★ 高中數學知識點全總結最全版

★ 高中數學知識點總結

★ 高中高一數學知識點總結

★ 高一數學知識點全面總結

★ 高中數學知識點全總結

★ 高中數學知識點總結及公式大全

★ 高二數學知識點總結

★ 高中數學知識點歸納最新

★ 高中數學知識點大全

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

⑥ 高中數學知識點有哪些

高中數學知識點如下:

1、判斷命題的真假關鍵是抓住關聯字詞。注意:不或即且,不且即或。

2、函數圖像與軸垂線至多一個公共點,但與軸垂線的公共點可能沒有,也可任意個。

3、數列的通項、數列項的項數,遞推公式與遞推數列,數列的通項與數列的前項和公式的關系。

4、兩數的等差中項惟一存在,在遇到三數或四數成等差數列時,常考慮選用「中項關系」轉化求解。

5、半平面:平面內的一條直線把這個平面分成兩個部分,其中每一個部分叫做半平面。

⑦ 高中數學基本知識點

新世紀更加關注素質教育,在基礎教育中,高中數學素質教育的實施顯得更為突出。數學接下來我為你整理了高中數學基本知識點,一起來看看吧。

高中數學基本知識點:集合間的基本關系

1.子集:一般地,對於兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,我們就說集合A包含於集合B,或集合B包含集合A,記作:AB(或BA),讀作“A包含於B”(或“B包含A”),這時我們說集合是集合的子集.

當集合A不包含於集合B,或集合B不包含集合A時,記作A B(或B A),讀作:A不包含於B(或B不包含A).

2.由子集的定義可知子集有這樣三條主要的性質:

a.規定: 空集(不含任何元素的集合叫做空集,記為f)是任何集合的子集,即f集合間的基本關系A

b. 任何一個集合是它本身的子集.即A

集合間的基本關系A;

c. 子集具有傳遞性,對於集合A、B、C,A

集合間的基本關系B,B

集合間的基本關系C,那麼A

集合間的基本關系C.

⑧ 高中數學知識點有哪些

高中數學知識點有:

1、在公共定義域內:兩個奇函數的乘積是偶函數;兩個偶函數的乘積是偶函數;一個偶函數與奇函數的乘積是奇函數。

2、函數圖像一定是坐標系中的曲線,但坐標系中的曲線不一定能成為函數圖像。

3、函數圖像與軸垂線至多一個公共點,但與軸垂線的公共點可能沒有,也可是任意個。

4、偶函數在關於原點對稱的區間上若有單調性,則其單調性恰恰相反。

5、奇函數在關於原點對稱的區間上若有單調性,則其單調性完全相同。

⑨ 高中數學知識點有哪些

  • 01

    高中數學是全國高中生學習的一門學科。包括《集合與函數》《三角函數》《不等式》《數列》《立體幾何》《平面解析幾何》等部分, 高中數學主要分為代數和幾何兩大部分。代數主要是一次函數,二次函數,反比例函數和三角函數。幾何又分為平面解析幾何和立體幾何兩大部分。

    一、集合

    (1)集合的含義與表示

    ①通過實例,了解集合的含義,體會元素與集合的“屬於”關系。

    ②能選擇自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題,感受集合語言的意義和作用。

    (2)集合間的基本關系

    ①理解集合之間包含與相等的含義,能識別給定集合的子集。

    ②在具體情境中,了解全集與空集的含義。

    (3)集合的基本運算

    ①理解兩個集合的並集與交集的含義,會求兩個簡單集合的並集與交集。

    ②理解在給定集合中一個子集的補集的含義,會求給定子集的補集。

    ③能使用Venn圖表達集合的關系及運算,體會直觀圖示對理解抽象概念的作用。

    函數概念與基本初等函數:

    (1)函數

    ①進一步體會函數是描述變數之間的依賴關系的重要數學模型,在此基礎上學慣用集合與對應的語言來刻畫函數,體會對應關系在刻畫函數概念中的作用;了解構成函數的要素,會求一些簡單函數的定義域和值域;了解映射的概念。

    ②在實際情境中,會根據不同的需要選擇恰當的方法(如圖象法、列表法、解析法)表示函數。

    ③了解簡單的分段函數,並能簡單應用。

    ④通過已學過的函數特別是二次函數,理解函數的單調性、最大(小)值及其幾何意義;結合具體函數,了解奇偶性的含義。

    ⑤學會運用函數圖象理解和研究函數的性質(參見例1)。

    (2)指數函數

    ①(細胞的分裂,考古中所用的C的衰減,葯物在人體內殘留量的變化等),了解指數函數模型的實際背景。

    ②理解有理指數冪的含義,通過具體實例了解實數指數冪的意義,掌握冪的運算。

    ③理解指數函數的概念和意義,能藉助計算器或計算機畫出具體指數函數的圖象,探索並理解指數函數的單調性與特殊點。

    ④在解決簡單實際問題的過程中,體會指數函數是一類重要的函數模型。

    (3)對數函數

    ①理解對數的概念及其運算性質,知道用換底公式能將一般對數轉化成自然對數或常用對數;通過閱讀材料,了解對數的產生歷史以及對簡化運算的作用。

    ②通過具體實例,直觀了解對數函數模型所刻畫的數量關系,初步理解對數函數的概念,體會對數函數是一類重要的函數模型;能藉助計算器或計算機畫出具體對數函數的圖象,探索並了解對數函數的單調性與特殊點。

    ③知道指數函數 與對數函數 互為反函數(a>0,a≠1)。

    (4)冪函數

    通過實例,了解冪函數的概念;結合函數 的圖象,了解它們的變化情況。

    (5)函數與方程

    ①結合二次函數的圖象,判斷一元二次方程根的存在性及根的個數,從而了解函數的零點與方程根的聯系。

    ②根據具體函數的圖象,能夠藉助計算器用二分法求相應方程的近似解,了解這種方法是求方程近似解的常用方法。

    (6)函數模型及其應用

    ①利用計算工具,比較指數函數、對數函數以及冪函數增長差異;結合實例體會直線上升、指數爆炸、對數增長等不同函數類型增長的含義。

    ②收集一些社會生活中普遍使用的函數模型(指數函數、對數函數、冪函數、分段函數等)的實例,了解函數模型的廣泛應用。

    二、三角函數

    (1)任意角、弧度

    了解任意角的概念和弧度制,能進行弧度與角度的互化。

    (2)三角函數

    ①藉助單位圓理解任意角三角函數(正弦、餘弦、正切)的定義。

    ②藉助單位圓中的三角函數線推導出誘導公式( 的正弦、餘弦、正切),能畫出 的圖象,了解三角函數的周期性。

    ③藉助圖象理解正弦函數、餘弦函數在 ,正切函數在 上的性質(如單調性、最大和最小值、圖象與x軸交點等)。

    ④理解同角三角函數的基本關系式:

    ⑤結合具體實例,了解 的實際意義;能藉助計算器或計算機畫出 的圖象,觀察參數A,ω, 對函數圖象變化的影響。

    ⑥會用三角函數解決一些簡單實際問題,體會三角函數是描述周期變化現象的重要函數模型。

    三、數列

    (1)數列的概念和簡單表示法

    了解數列的概念和幾種簡單的表示方法(列表、圖象、通項公式),了解數列是一種特殊函數。

    (2)等差數列、等比數列

    ①理解等差數列、等比數列的概念。

    ②探索並掌握等差數列、等比數列的通項公式與前n項和的公式。

    ③能在具體的問題情境中,發現數列的等差關系或等比關系,並能用有關知識解決相應的問題(參見例1)。

    ④體會等差數列、等比數列與一次函數、指數函數的關系。

    四、不等式

    (1)不等關系

    感受在現實世界和日常生活中存在著大量的不等關系,了解不等式(組)的實際背景。

    (2)一元二次不等式

    ①經歷從實際情境中抽象出一元二次不等式模型的過程。

    ②通過函數圖象了解一元二次不等式與相應函數、方程的聯系。

    ③會解一元二次不等式,對給定的一元二次不等式,嘗試設計求解的程序框圖。

    (3)二元一次不等式組與簡單線性規劃問題

    ①從實際情境中抽象出二元一次不等式組。

    ②了解二元一次不等式的幾何意義,能用平面區域表示二元一次不等式組。

    ③從實際情境中抽象出一些簡單的二元線性規劃問題,並能加以解決(。

    (4)基本不等式:

    ①探索並了解基本不等式的證明過程。

    ②會用基本不等式解決簡單的最大(小)值問題。

    五、立體幾何初步

    (1)空間幾何體

    ①利用實物模型、計算機軟體觀察大量空間圖形,認識柱、錐、台、球及其簡單組合體的結構特徵,並能運用這些特徵描述現實生活中簡單物體的結構。

    ②能畫出簡單空間圖形(長方體、球、圓柱、圓錐、稜柱等的簡易組合)的三視圖,能識別上述的三視圖所表示的立體模型,會使用材料(如紙板)製作模型,會用斜二側法畫出它們的直觀圖。

    ③通過觀察用兩種方法(平行投影與中心投影)畫出的視圖與直觀圖,了解空間圖形的不同表示形式。

    ④完成實習作業,如畫出某些建築的視圖與直觀圖(在不影響圖形特徵的基礎上,尺寸、線條等不作嚴格要求)。

    ⑤了解球、稜柱、棱錐、台的表面積和體積的計算公式(不要求記憶公式)。

    (2)點、線、面之間的位置關系

    ①藉助長方體模型,在直觀認識和理解空間點、線、面的位置關系的基礎上,抽象出空間線、面位置關系的定義,並了解如下可以作為推理依據的公理和定理。

    公理1:如果一條直線上的兩點在一個平面內,那麼這條直線在此平面內。

    公理2:過不在一條直線上的三點,有且只有一個平面。

    公理3:如果兩個不重合的平面有一個公共點,那麼它們有且只有一條過該點的公共直線。

    公理4:平行於同一條直線的兩條直線平行。

    定理:空間中如果兩個角的兩條邊分別對應平行,那麼這兩個角相等或互補。

    ②以立體幾何的上述定義、公理和定理為出發點,通過直觀感知、操作確認、思辨論證,認識和理解空間中線面平行、垂直的有關性質與判定。

    操作確認,歸納出以下判定定理。

    平面外一條直線與此平面內的一條直線平行,則該直線與此平面平行。

    一個平面內的兩條相交直線與另一個平面平行,則這兩個平面平行。

    一條直線與一個平面內的兩條相交直線垂直,則該直線與此平面垂直。

    一個平面過另一個平面的垂線,則兩個平面垂直。

    操作確認,歸納出以下性質定理,並加以證明。

    一條直線與一個平面平行,則過該直線的任一個平面與此平面的交線與該直線平行。

    兩個平面平行,則任意一個平面與這兩個平面相交所得的交線相互平行。

    垂直於同一個平面的兩條直線平行。

    兩個平面垂直,則一個平面內垂直於交線的直線與另一個平面垂直。

    ③能運用已獲得的結論證明一些空間位置關系的簡單命題。

    平面解析幾何初步:

    (1)直線與方程

    ①在平面直角坐標系中,結合具體圖形,探索確定直線位置的幾何要素。

    ②理解直線的傾斜角和斜率的概念,經歷用代數方法刻畫直線斜率的過程,掌握過兩點的直線斜率的計算公式。

    ③能根據斜率判定兩條直線平行或垂直。

    ④根據確定直線位置的幾何要素,探索並掌握直線方程的幾種形式(點斜式、兩點式及一般式),體會斜截式與一次函數的關系。

    ⑤能用解方程組的方法求兩直線的交點坐標。

    ⑥探索並掌握兩點間的距離公式、點到直線的距離公式,會求兩條平行直線間的距離。

    (2)圓與方程

    ①回顧確定圓的幾何要素,在平面直角坐標系中,探索並掌握圓的標准方程與一般方程。

    ②能根據給定直線、圓的方程,判斷直線與圓、圓與圓的位置關系。

    ③能用直線和圓的方程解決一些簡單的問題。

    (3)在平面解析幾何初步的學習過程中,體會用代數方法處理幾何問題的思想。

    (4)空間直角坐標系

    ①通過具體情境,感受建立空間直角坐標系的必要性,了解空間直角坐標系,會用空間直角坐標系刻畫點的位置。

    ②通過表示特殊長方體(所有棱分別與坐標軸平行)頂點的坐標,探索並得出空間兩點間的距離公式。

⑩ 高中數學必考知識點歸納大全

總結 是指社會團體、企業單位和個人對某一階段的學習、工作或其完成情況加以回顧和分析,得出教訓和一些規律性認識的一種書面材料,下面是我給大家帶來的數學必考知識點歸納大全,以供大家參考!

高中數學必考知識點歸納大全

1、 高一數學 知識點總結:集合一、集合有關概念

1.集合的含義

2.集合的中元素的三個特性:

(1)元素的確定性如:世界上最高的山

(2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}

(3)元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個集合

3.集合的表示:{…}如:{我校的 籃球 隊員},{太平洋,大西洋,印度洋,北冰洋}

(1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

(2)集合的表示 方法 :列舉法與描述法。

注意:常用數集及其記法:

非負整數集(即自然數集)記作:N

正整數集N或N+整數集Z有理數集Q實數集R

1)列舉法:{a,b,c……}

2)描述法:將集合中的元素的公共屬性描述出來,寫在大

括弧內表示集合的方法。{x∈R|x-3>2},{x|x-3>2}

3)語言描述法:例:{不是直角三角形的三角形}

4)Venn圖:

4、集合的分類:

(1)有限集含有有限個元素的集合

(2)無限集含有無限個元素的集合

(3)空集不含任何元素的集合例:{x|x2=-5}

2、高一數學知識點總結:集合間的基本關系

1.「包含」關系—子集

注意:A?B有兩種可能(1)A是B的一部分;(2)A與B是同一集合。

反之:集合A不包含於集合B,或集合B不包含集合A,記作A?/B或B?/A

2.「相等」關系:A=B(5≥5,且5≤5,則5=5)

實例:設A={x|x2

-1=0}B={-1,1}「元素相同則兩集合相等」即:①任何一個集合是它本身的子集。A?A

②真子集:如果A?B,且A≠B那就說集合A是集合B的真子集,記作AB(或BA)

③如果A?B,B?C,那麼A?C

④如果A?B同時B?A那麼A=B

3.不含任何元素的集合叫做空集,記為Φ

規定:空集是任何集合的子集,空集是任何非空集合的真子集。

有n個元素的集合,含有2n個子集,2n-1個真子集,一般我們把不含任何元素的集合叫做空集。

3、高一數學知識點總結:集合的分類(1)按元素屬性分類,如點集,數集。(2)按元素的個數多少,分為有/無限集

關於集合的概念:

(1)確定性:作為一個集合的元素,必須是確定的,這就是說,不能確定的對象就不能構成集合,也就是說,給定一個集合,任何一個對象是不是這個集合的元素也就確定了。

(2)互異性:對於一個給定的集合,集合中的元素一定是不同的(或說是互異的),這就是說,集合中的任何兩個元素都是不同的對象,相同的對象歸入同一個集合時只能算作集合的一個元素。

(3)無序性:判斷一些對象時候構成集合,關鍵在於看這些對象是否有明確的標准。

集合可以根據它含有的元素的個數分為兩類:

含有有限個元素的集合叫做有限集,含有無限個元素的集合叫做無限集。

非負整數全體構成的集合,叫做自然數集,記作N;

在自然數集內排除0的集合叫做正整數集,記作N+或N;

整數全體構成的集合,叫做整數集,記作Z;

有理數全體構成的集合,叫做有理數集,記作Q;(有理數是整數和分數的統稱,一切有理數都可以化成分數的形式。)

實數全體構成的集合,叫做實數集,記作R。(包括有理數和無理數。其中無理數就是無限不循環小數,有理數就包括整數和分數。數學上,實數直觀地定義為和數軸上的點一一對應的數。)

1.列舉法:如果一個集合是有限集,元素又不太多,常常把集合的所有元素都列舉出來,寫在花括弧「{}」內表示這個集合,例如,由兩個元素0,1構成的集合可表示為{0,1}.

有些集合的元素較多,元素的排列又呈現一定的規律,在不致於發生誤解的情況下,也可以列出幾個元素作為代表,其他元素用省略號表示。

例如:不大於100的自然數的全體構成的集合,可表示為{0,1,2,3,…,100}.

無限集有時也用上述的列舉法表示,例如,自然數集N可表示為{1,2,3,…,n,…}.

2.描述法:一種更有效地描述集合的方法,是用集合中元素的特徵性質來描述。

例如:正偶數構成的集合,它的每一個元素都具有性質:「能被2整除,且大於0」

而這個集合外的其他元素都不具有這種性質,因此,我們可以用上述性質把正偶數集合表示為

{x∈R│x能被2整除,且大於0}或{x∈R│x=2n,n∈N+},

大括弧內豎線左邊的X表示這個集合的任意一個元素,元素X從實數集合中取值,在豎線右邊寫出只有集合內的元素x才具有的性質。

一般地,如果在集合I中,屬於集合A的任意一個元素x都具有性質p(x),而不屬於集合A的元素都不具有的性質p(x),則性質p(x)叫做集合A的一個特徵性質。於是,集合A可以用它的性質p(x)描述為{x∈I│p(x)}

它表示集合A是由集合I中具有性質p(x)的所有元素構成的,這種表示集合的方法,叫做特徵性質描述法,簡稱描述法。

例如:集合A={x∈R│x2-1=0}的特徵是X2-1=0

高一數學必修一知識點摘要

(1)直線的傾斜角

定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°

(2)直線的斜率

①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。

②過兩點的直線的斜率公式:

注意下面四點:

(1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;

(2)k與P1、P2的順序無關;

(3)以後求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;

(4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到。

(3)直線方程

①點斜式:直線斜率k,且過點

注意:當直線的斜率為0°時,k=0,直線的方程是y=y1。當直線的斜率為90°時,直線的斜率不存在,它的方程不能用點斜式表示.但因l上每一點的橫坐標都等於x1,所以它的方程是x=x1。

②斜截式:,直線斜率為k,直線在y軸上的截距為b

③兩點式:()直線兩點,

④截矩式:其中直線與軸交於點,與軸交於點,即與軸、軸的截距分別為。

⑤一般式:(A,B不全為0)

⑤一般式:(A,B不全為0)

注意:○1各式的適用范圍

○2特殊的方程如:平行於x軸的直線:(b為常數);平行於y軸的直線:(a為常數);

(4)直線系方程:即具有某一共同性質的直線

高一數學知識點小結

1.二次函數y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點坐標及對稱軸如下表:

解析式

頂點坐標

對稱軸

y=ax^2

(0,0)

x=0

y=a(x-h)^2

(h,0)

x=h

y=a(x-h)^2+k

(h,k)

x=h

y=ax^2+bx+c

(-b/2a,[4ac-b^2]/4a)

x=-b/2a

當h>0時,y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動h個單位得到,

當h<0時,則向左平行移動|h|個單位得到.

當h>0,k>0時,將拋物線y=ax^2向右平行移動h個單位,再向上移動k個單位,就可以得到y=a(x-h)^2+k的圖象;

當h>0,k<0時,將拋物線y=ax^2向右平行移動h個單位,再向下移動|k|個單位可得到y=a(x-h)^2+k的圖象;

當h<0,k>0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y=a(x-h)^2+k的圖象;

當h<0,k<0時,將拋物線向左平行移動|h|個單位,再向下移動|k|個單位可得到y=a(x-h)^2+k的圖象;

因此,研究拋物線y=ax^2+bx+c(a≠0)的圖象,通過配方,將一般式化為y=a(x-h)^2+k的形式,可確定其頂點坐標、對稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便.

2.拋物線y=ax^2+bx+c(a≠0)的圖象:當a>0時,開口向上,當a<0時開口向下,對稱軸是直線x=-b/2a,頂點坐標是(-b/2a,[4ac-b^2]/4a).

3.拋物線y=ax^2+bx+c(a≠0),若a>0,當x≤-b/2a時,y隨x的增大而減小;當x≥-b/2a時,y隨x的增大而增大.若a<0,當x≤-b/2a時,y隨x的增大而增大;當x≥-b/2a時,y隨x的增大而減小.

4.拋物線y=ax^2+bx+c的圖象與坐標軸的交點:

(1)圖象與y軸一定相交,交點坐標為(0,c);

(2)當△=b^2-4ac>0,圖象與x軸交於兩點A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0

(a≠0)的兩根.這兩點間的距離AB=|x?-x?|

當△=0.圖象與x軸只有一個交點;

當△<0.圖象與x軸沒有交點.當a>0時,圖象落在x軸的上方,x為任何實數時,都有y>0;當a<0時,圖象落在x軸的下方,x為任何實數時,都有y<0.

5.拋物線y=ax^2+bx+c的最值:如果a>0(a<0),則當x=-b/2a時,y最小(大)值=(4ac-b^2)/4a.

頂點的橫坐標,是取得最值時的自變數值,頂點的縱坐標,是最值的取值.

6.用待定系數法求二次函數的解析式

(1)當題給條件為已知圖象經過三個已知點或已知x、y的三對對應值時,可設解析式為一般形式:

y=ax^2+bx+c(a≠0).

(2)當題給條件為已知圖象的頂點坐標或對稱軸時,可設解析式為頂點式:y=a(x-h)^2+k(a≠0).

(3)當題給條件為已知圖象與x軸的兩個交點坐標時,可設解析式為兩根式:y=a(x-x?)(x-x?)(a≠0).

7.二次函數知識很容易與 其它 知識綜合應用,而形成較為復雜的綜合題目。因此,以二次函數知識為主的綜合性題目是中考的 熱點 考題,往往以大題形式出現.


高中數學必考知識點歸納大全相關 文章 :

★ 高中數學必考知識點歸納整理

★ 高中數學必考知識點歸納

★ 高中數學知識點全總結最全版

★ 高一數學有用必考知識點歸納

★ 高考數學必考知識點考點2020大全總結

★ 高中數學知識點大全

★ 高中數學全部知識點提綱整理

★ 高中數學考點整理歸納

★ 高中數學知識點總結及公式大全

★ 高中數學知識點全總結