① 新初二年級下冊數學知識點
初二下學期學習的難度增加了,知識范圍更廣,課程的內容更加抽象,更加難以理解,應屆畢業生考試網為您整理了人教版新初二年級下冊數學知識點,歡迎大家閱讀收藏。
第一章 分式
1 分式及其基本性質
分式的分子和分母同時乘以(或除以)一個不等於零的整式,分式的只不變
2 分式的運算
(1)分式的乘除
乘法法則:分式乘以分式,用分子的積作為積的分子,分母的積作為積的分母
除法法則:分式除以分式,把除式的分子、分母顛倒位置後,與被除式相乘。
(2) 分式的加減
加減法法則:同分母分式相加減,分母不變,把分子相加減;
異分母分式相加減,先通分,變為同分母的分式,再加減
3 整數指數冪的加減乘除法
4 分式方程及其解法
第二章 反比例函數
1 反比例函數的表達式、圖像、性質
圖像:雙曲線
表達式:y=k/x(k不為0)
性質:兩支的增減性相同;
2 反比例函數在實際問題中的應用
第三章 勾股定理
1 勾股定理:直角三角形的兩個直角邊的平方和等於斜邊的平方
2 勾股定理的逆定理:如果一個三角形中,有兩個邊的平方和等於第三條邊的平方,那麼這個三角形是直角三角形。
第四章 四邊形
1 平行四邊形
性質:對邊相等;對角相等;對角線互相平分。
判定:兩組對邊分別相等的四邊形是平行四邊形;
兩組對角分別相等的四邊形是平行四邊形;
對角線互相平分的四邊形是平行四邊形;
一組對邊平行而且相等的四邊形是平行四邊形。
推論:三角形的中位線平行第三邊,並且等於第三邊的一半。
2 特殊的平行四邊形:矩形、菱形、正方形
(1) 矩形
性質:矩形的四個角都是直角;
矩形的對角線相等;
矩形具有平行四邊形的所有性質
判定: 有一個角是直角的平行四邊形是矩形;
對角線相等的平行四邊形是矩形;
推論: 直角三角形斜邊的中線等於斜邊的一半。
(2) 菱形
性質:菱形的四條邊都相等;
菱形的對角線互相垂直,並且每一條對角線平分一組對角;
菱形具有平行四邊形的一切性質
判定:有一組鄰邊相等的平行四邊形是菱形;
對角線互相垂直的平行四邊形是菱形;
四邊相等的四邊形是菱形。
(3) 正方形:既是一種特殊的矩形,又是一種特殊的菱形,所以它具有矩形和菱形的所有性質。
3 梯形:直角梯形和等腰梯形
等腰梯形:等腰梯形同一底邊上的兩個角相等;
等腰梯形的兩條對角線相等;
同一個底上的`兩個角相等的梯形是等腰梯形。
第五章 數據的分析
加權平均數、中位數、眾數、極差、方差
拓展:初中數學知識點全總結
某些數列前n項和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
知識拓展:數列是一種特殊的函數。其特殊性主要表現在其定義域和值域上。
初中數學知識點總結:平面直角坐標系
下面是對平面直角坐標系的內容學習,希望同學們很好的掌握下面的內容。
平面直角坐標系
平面直角坐標系: 在平面內畫兩條互相垂直、原點重合的數軸,組成平面直角坐標系。
水平的數軸稱為x軸或橫軸,豎直的數軸稱為y軸或縱軸,兩坐標軸的交點為平面直角坐標系的原點。
平面直角坐標系的要素:①在同一平面②兩條數軸③互相垂直④原點重合
三個規定:
①正方向的規定橫軸取向右為正方向,縱軸取向上為正方向
②單位長度的規定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數軸上必須相同。
③象限的規定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對平面直角坐標系知識的講解學習,同學們已經能很好的掌握了吧,希望同學們都能考試成功。
初中數學知識點:平面直角坐標系的構成
對於平面直角坐標系的構成內容,下面我們一起來學習哦。
平面直角坐標系的構成
在同一個平面上互相垂直且有公共原點的兩條數軸構成平面直角坐標系,簡稱為直角坐標系。通常,兩條數軸分別置於水平位置與鉛直位置,取向右與向上的方向分別為兩條數軸的正方向。水平的數軸叫做X軸或橫軸,鉛直的數軸叫做Y軸或縱軸,X軸或Y軸統稱為坐標軸,它們的公共原點O稱為直角坐標系的原點。
通過上面對平面直角坐標系的構成知識的講解學習,希望同學們對上面的內容都能很好的掌握,同學們認真學習吧。
初中數學知識點:點的坐標的性質
下面是對數學中點的坐標的性質知識學習,同學們認真看看哦。
點的坐標的性質
建立了平面直角坐標系後,對於坐標系平面內的任何一點,我們可以確定它的坐標。反過來,對於任何一個坐標,我們可以在坐標平面內確定它所表示的一個點。
對於平面內任意一點C,過點C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應點a,b分別叫做點C的橫坐標、縱坐標,有序實數對(a,b)叫做點C的坐標。
一個點在不同的象限或坐標軸上,點的坐標不一樣。
希望上面對點的坐標的性質知識講解學習,同學們都能很好的掌握,相信同學們會在考試中取得優異成績的。
初中數學知識點:因式分解的一般步驟
關於數學中因式分解的一般步驟內容學習,我們做下面的知識講解。
因式分解的一般步驟
如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,
通常採用分組分解法,最後運用十字相乘法分解因式。因此,可以概括為:「一提」、「二套」、「三分組」、「四十字」。
注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內因式分解,應該是指在有理數范圍內因式分解,因此分解因式的結果,必須是幾個整式的積的形式。
相信上面對因式分解的一般步驟知識的內容講解學習,同學們已經能很好的掌握了吧,希望同學們會考出好成績。
初中數學知識點:因式分解
下面是對數學中因式分解內容的知識講解,希望同學們認真學習。
因式分解
因式分解定義 :把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。
因式分解要素 :
①結果必須是整式
②結果必須是積的形式
③結果是等式
④因式分解與整式乘法的關系:m(a+b+c)
公因式: 一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。
公因式確定方法 :
①系數是整數時取各項最大公約數。
②相同字母取最低次冪
③系數最大公約數與相同字母取最低次冪的積就是這個多項式各項的公因式。
提取公因式步驟:
①確定公因式。
②確定商式
③公因式與商式寫成積的形式。
分解因式注意;
①不準丟字母
②不準丟常數項注意查項數
③雙重括弧化成單括弧
④結果按數單字母單項式多項式順序排列
⑤相同因式寫成冪的形式
⑥首項負號放括弧外
⑦括弧內同類項合並。
通過上面對因式分解內容知識的講解學習,相信同學們已經能很好的掌握了吧,希望上面的內容給同學們的學習很好的幫助。
② 初二下冊數學知識點總結歸納
初二下冊數學知識點總結歸納
數學家也研究純數學,也就是數學本身,而不以任何實際應用為目標.雖然有許多工作以研究純數學為開端,但之後也許會發現合適的應用.下面是我整理的數學知識點總結歸納,歡迎大家參考!
第一章分式
1分式及其基本性質分式的分子和分母同時乘以(或除以)一個不等於零的整式,分式的只不變
2分式的運算
(1)分式的乘除乘法法則:分式乘以分式,用分子的積作為積的分子,分母的積作為積的分母除法法則:分式除以分式,把除式的分子、分母顛倒位置後,與被除式相乘。
(2)分式的加減加減法法則:同分母分式相加減,分母不變,把分子相加減;異分母分式相加減,先通分,變為同分母的分式,再加減
3整數指數冪的加減乘除法
4分式方程及其解法
第二章反比例函數
1反比例函數的表達式、圖像、性質
圖像:雙曲線
表達式:y=k/x(k不為0)
性質:兩支的增減性相同;
2反比例函數在實際問題中的應用
第三章勾股定理
1勾股定理:直角三角形的兩個直角邊的平方和等於斜邊的平方
2勾股定理的逆定理:如果一個三角形中,有兩個邊的平方和等於第三條邊的平方,那麼這個三角形是直角三角形
第四章四邊形
1平行四邊形
性質:對邊相等;對角相等;對角線互相平分。
判定:兩組對邊分別相等的四邊形是平行四邊形;
兩組對角分別相等的四邊形是平行四邊形;
對角線互相平分的四邊形是平行四邊形;
一組對邊平行而且相等的`四邊形是平行四邊形。
推論:三角形的中位線平行第三邊,並且等於第三邊的一半。
2特殊的平行四邊形:矩形、菱形、正方形
(1)矩形
性質:矩形的四個角都是直角;
矩形的對角線相等;
矩形具有平行四邊形的所有性質
判定:有一個角是直角的平行四邊形是矩形;對角線相等的平行四邊形是矩形;
推論:直角三角形斜邊的中線等於斜邊的一半。
(2)菱形性質:菱形的四條邊都相等;菱形的對角線互相垂直,並且每一條對角線平分一組對角;菱形具有平行四邊形的一切性質
判定:有一組鄰邊相等的平行四邊形是菱形;對角線互相垂直的平行四邊形是菱形;四邊相等的四邊形是菱形。
(3)正方形:既是一種特殊的矩形,又是一種特殊的菱形,所以它具有矩形和菱形的所有性質。
3梯形:直角梯形和等腰梯形
等腰梯形:等腰梯形同一底邊上的兩個角相等;等腰梯形的兩條對角線相等;同一個底上的兩個角相等的梯形是等腰梯形。
第五章數據的分析
加權平均數、中位數、眾數、極差、方差
;③ 八年級數學上冊知識點總結
失敗乃成功之母,重復是學習之母。學習,需要不斷的重復重復,重復學過的知識,加深印象,其實任何科目的 學習 方法 都是不斷重復學習。下面是我給大家整理的一些 八年級 數學的知識點,希望對大家有所幫助。
初二上學期數學知識點歸納
一、勾股定理
1、勾股定理
直角三角形兩直角邊a,b的平方和等於斜邊c的平方,即a2+b2=c2。
2、勾股定理的逆定理
如果三角形的三邊長a,b,c有這種關系,那麼這個三角形是直角三角形。
3、勾股數
滿足的三個正整數,稱為勾股數。
常見的勾股數組有:(3,4,5);(5,12,13);(8,15,17);(7,24,25);(20,21,29);(9,40,41);……(這些勾股數組的倍數仍是勾股數)。
二、證明
1、對事情作出判斷的 句子 ,就叫做命題。即:命題是判斷一件事情的句子。
2、三角形內角和定理:三角形三個內角的和等於180度。
(1)證明三角形內角和定理的思路是將原三角形中的三個角湊到一起組成一個平角。一般需要作輔助。
(2)三角形的外角與它相鄰的內角是互為補角。
3、三角形的外角與它不相鄰的內角關系
(1)三角形的一個外角等於和它不相鄰的兩個內角的和。
(2)三角形的一個外角大於任何一個和它不相鄰的內角。
4、證明一個命題是真命題的基本步驟
(1)根據題意,畫出圖形。
(2)根據條件、結論,結合圖形,寫出已知、求證。
(3)經過分析,找出由已知推出求證的途徑,寫出證明過程。在證明時需注意:①在一般情況下,分析的過程不要求寫出來。②證明中的每一步推理都要有根據。如果兩條直線都和第三條直線平行,那麼這兩條直線也相互平行。
八年級上冊數學知識點
(一)運用公式法
我們知道整式乘法與因式分解互為逆變形。如果把乘法公式反過來就是把多項式分解因式。於是有:
a2-b2=(a+b)(a-b)
a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
如果把乘法公式反過來,就可以用來把某些多項式分解因式。這種分解因式的方法叫做運用公式法。
(二)平方差公式
平方差公式
(1)式子:a2-b2=(a+b)(a-b)
(2)語言:兩個數的平方差,等於這兩個數的和與這兩個數的差的積。這個公式就是平方差公式。
(三)因式分解
1.因式分解時,各項如果有公因式應先提公因式,再進一步分解。
2.因式分解,必須進行到每一個多項式因式不能再分解為止。
(四)完全平方公式
(1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反過來,就可以得到:
a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
這就是說,兩個數的平方和,加上(或者減去)這兩個數的積的2倍,等於這兩個數的和(或者差)的平方。
把a2+2ab+b2和a2-2ab+b2這樣的式子叫完全平方式。
上面兩個公式叫完全平方公式。
(2)完全平方式的形式和特點
①項數:三項
②有兩項是兩個數的的平方和,這兩項的符號相同。
③有一項是這兩個數的積的兩倍。
(3)當多項式中有公因式時,應該先提出公因式,再用公式分解。
(4)完全平方公式中的a、b可表示單項式,也可以表示多項式。這里只要將多項式看成一個整體就可以了。
(5)分解因式,必須分解到每一個多項式因式都不能再分解為止。
初二數學知識點歸納
第一章分式
1分式及其基本性質分式的分子和分母同時乘以(或除以)一個不等於零的整式,分式的只不變
2分式的運算
(1)分式的乘除乘法法則:分式乘以分式,用分子的積作為積的分子,分母的積作為積的分母除法法則:分式除以分式,把除式的分子、分母顛倒位置後,與被除式相乘。
(2)分式的加減加減法法則:同分母分式相加減,分母不變,把分子相加減;異分母分式相加減,先通分,變為同分母的分式,再加減
3整數指數冪的加減乘除法
4分式方程及其解法
第二章反比例函數
1反比例函數的表達式、圖像、性質
圖像:雙曲線
表達式:y=k/x(k不為0)
性質:兩支的增減性相同;
2反比例函數在實際問題中的應用
八年級數學上冊知識點 總結 相關 文章 :
★ 人教版八年級數學上冊知識點總結
★ 初二數學上冊知識點總結
★ 八年級數學知識點整理歸納
★ 八年級數學上冊知識點歸納
★ 初二上冊數學知識點歸納總結
★ 初二數學上冊知識點
★ 八年級上冊數學的知識點歸納
★ 初二數學上冊知識點總結
★ 初二數學上冊知識點總結人教版
★ 初二數學知識點歸納上冊人教版
④ 初二數學知識點歸納整理
學習從來無捷徑。每一門科目都有自己的 學習 方法 ,但其實都是萬變不離其中的,數學其實和語文英語一樣,也是要記、要背、要練的。下面是我給大家整理的一些初二數學的知識點,希望對大家有所幫助。
初二下冊數學知識點歸納
第一章一元一次不等式和一元一次不等式組
一、不等關系
1、一般地,用符號"<"(或"≤"),">"(或"≥")連接的式子叫做不等式.
2、要區別方程與不等式:方程表示的是相等的關系;不等式表示的是不相等的關系.
3、准確"翻譯"不等式,正確理解"非負數"、"不小於"等數學術語.
非負數<===>大於等於0(≥0)<===>0和正數<===>不小於0
非正數<===>小於等於0(≤0)<===>0和負數<===>不大於0
二、不等式的基本性質
1、掌握不等式的基本性質,並會靈活運用:
(1)不等式的兩邊加上(或減去)同一個整式,不等號的方向不變,即:
如果a>b,那麼a+c>b+c,a-c>b-c.
(2)不等式的兩邊都乘以(或除以)同一個正數,不等號的方向不變,即
如果a>b,並且c>0,那麼ac>bc,.
(3)不等式的兩邊都乘以(或除以)同一個負數,不等號的方向改變,即:
如果a>b,並且c<0,那麼ac
2、比較大小:(a、b分別表示兩個實數或整式)
一般地:
如果a>b,那麼a-b是正數;反過來,如果a-b是正數,那麼a>b;
如果a=b,那麼a-b等於0;反過來,如果a-b等於0,那麼a=b;
如果a
即:
a>b<===>a-b>0
a=b<===>a-b=0
aa-b<0
(由此可見,要比較兩個實數的大小,只要考察它們的差就可以了.
三、不等式的解集:
1、能使不等式成立的未知數的值,叫做不等式的解;一個不等式的所有解,組成這個不等式的解集;求不等式的解集的過程,叫做解不等式.
2、不等式的解可以有無數多個,一般是在某個范圍內的所有數,與方程的解不同.
3、不等式的解集在數軸上的表示:
用數軸表示不等式的解集時,要確定邊界和方向:
①邊界:有等號的是實心圓圈,無等號的是空心圓圈;
②方向:大向右,小向左
八年級 上冊期末數學復習資料
第一章勾股定理
1.勾股定理:直角三角形兩直角邊的平方和等於斜邊的平方;即。
2.勾股定理的證明:用三個正方形的面積關系進行證明(兩種方法)。
3.勾股定理逆定理:如果三角形的三邊長,,滿足,那麼這個三角形是直角三角形。滿足的三個正整數稱為勾股數。
第二章實數
1.平方根和算術平方根的概念及其性質:
(1)概念:如果,那麼是的平方根,記作:;其中叫做的算術平方根。
(2)性質:①當≥0時,≥0;當<0時,無意義;②=;③。
2.立方根的概念及其性質:
(1)概念:若,那麼是的立方根,記作:;
(2)性質:①;②;③=
3.實數的概念及其分類:
(1)概念:實數是有理數和無理數的統稱;
(2)分類:按定義分為有理數可分為整數的分數;按性質分為正數、負數和零。無理數就是無限不循環小數;小數可分為有限小數、無限循環小數和無限不循環小數;其中有限小數和無限循環小數稱為分數。
4.與實數有關的概念:在實數范圍內,相反數,倒數,絕對值的意義與有理數范圍內的意義完全一致;在實數范圍內,有理數的運演算法則和運算律同樣成立。每一個實數都可以用數軸上的一個點來表示;反過來,數軸上的每一個點都表示一個實數,即實數和數軸上的點是一一對應的。因此,數軸正好可以被實數填滿。
5.算術平方根的運算律:(≥0,≥0);(≥0,>0)。
第三章圖形的平移與旋轉
1.平移:在平面內,將一個圖形沿某個方向移動一定的距離,這樣的圖形運動稱為平移。平移不改變圖形大小和形狀,改變了圖形的位置;經過平移,對應點所連的線段平行且相等;對應線段平行且相等,對應角相等。
2.旋轉:在平面內,將一個圖形繞一個定點沿某個方向轉動一個角度,這樣的圖形運動稱為旋轉。這點定點稱為旋轉中心,轉動的角稱為旋轉角。旋轉不改變圖形大小和形狀,改變了圖形的位置;經過旋轉,圖形點的每一個點都繞旋轉中心沿相同方向轉動了相同和角度;任意一對對應點與旋轉中心的連線所成的角都是旋轉角;對應點到旋轉中心的距離相等。
3.作平移圖與旋轉圖。
八年級數學 學習方法技巧
自學能力的培養是深化學習的必由之路
在學習新概念、新運算時,老師們總是通過已有知識自然而然過渡到新知識,水到渠成,亦即所謂「溫故而知新」。因此說,數學是一門能自學的學科,自學成才最典型的例子就是數學家華羅庚。
我們在課堂上聽老師講解,不光是學習新知識,更重要的是潛移默化老師的那種數學思維習慣,逐漸地培養起自己對數學的一種悟性。
自學能力越強,悟性就越高。隨著年齡的增長,同學們的依賴性應不斷減弱,而自學能力則應不斷增強。因此,要養成預習的習慣。
因此,以前的數學學得扎實,就為以後的進取奠定了基礎,就不難自學新課。同時,在預習新課時,碰到什麼自己解決不了的問題,帶著問題去聽老師講解新課,收獲之大是不言而喻的。
學來學去,知識還是別人的。檢驗數學學得好不好的標准就是會不會解題。聽懂並記憶有關的定義、法則、公式、定理,只是學好數學的必要條件,能獨立解題、解對題才是學好數學的標志。
自信才能自強
在考試中,總是看見有些同學的試卷出現許多空白,即有好幾題根本沒有動手去做。當然,俗話說,藝高膽大,藝不高就膽不大。但是,做不出是一回事,沒有去做則是另一回事。稍為難一點的數學題都不是一眼就能看出它的解法和結果的。要去分析、探索、比比畫畫、寫寫算算,經過迂迴曲折的推理或演算,才顯露出條件和結論之間的某種聯系,整個思路才會明朗清晰起來。
具體解題時,一定要認真審題,緊緊抓住題目的所有條件不放,不要忽略了任何一個條件。一道題和一類題之間有一定的共性,可以想想這一類題的一般思路和一般解法,但更重要的是抓住這一道題的特殊性,抓住這一道題與這一類題不同的地方。數學的題目幾乎沒有相同的,總有一個或幾個條件不盡相同,因此思路和解題過程也不盡相同。有些同學老師講過的題會做, 其它 的題就不會做,只會依樣畫瓢,題目有些小的變化就乾瞪眼,無從下手。
數學題目是無限的,但數學的思想和方法卻是有限的。我們只要學好了有關的基礎知識,掌握了必要的數學思想和方法,就能順利地對付那無限的題目。題目並不是做得越多越好,題海無邊,總也做不完。關鍵是你有沒有培養起良好的數學思維習慣,有沒有掌握正確的數學解題方法。
解題需要豐富的知識,更需要自信心。沒有自信就會畏難,就會放棄;只有自信,才能勇往直前,才不會輕言放棄,才會加倍努力地學習,才有希望攻克難關,迎來屬於自己的春天。
初二數學知識點歸納整理相關 文章 :
★ 初二數學知識點復習整理
★ 初二數學知識點歸納
★ 初二數學知識點歸納上冊人教版
★ 八年級數學知識點整理歸納
★ 八年級下冊數學知識點整理
★ 初二數學上冊知識點總結
★ 初二數學知識點整理
★ 初二數學重點知識歸納整理
★ 初二數學知識點歸納總結
★ 初二數學知識點整理歸納
⑤ 初二數學都有哪些知識點
《新初二曹.笑數學秋季培優班(人教版高清視頻)》網路網盤資源下載
鏈接:
若資源有問題歡迎追問~
⑥ 初二數學上冊知識點
初二數學上冊知識點 篇1
(一)運用公式法:
我們知道整式乘法與因式分解互為逆變形。如果把乘法公式反過來就是把多項式分解因式。於是有:
a2-b2=(a+b)(a-b)
a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
如果把乘法公式反過來,就可以用來把某些多項式分解因式。這種分解因式的方法叫做運用公式法。
(二)平方差公式
平方差公式
(1)式子:a2-b2=(a+b)(a-b)
(2)語言:兩個數的平方差,等於這兩個數的和與這兩個數的差的積。這個公式就是平方差公式。
(三)因式分解
1.因式分解時,各項如果有公因式應先提公因式,再進一步分解。
2.因式分解,必須進行到每一個多項式因式不能再分解為止。
(四)完全平方公式
(1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反過來,就可以得到:
a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
這就是說,兩個數的平方和,加上(或者減去)這兩個數的積的2倍,等於這兩個數的和(或者差)的平方。
把a2+2ab+b2和a2-2ab+b2這樣的式子叫完全平方式。
上面兩個公式叫完全平方公式。
(2)完全平方式的形式和特點
①項數:三項
②有兩項是兩個數的的平方和,這兩項的符號相同。
③有一項是這兩個數的積的兩倍。
(3)當多項式中有公因式時,應該先提出公因式,再用公式分解。
(4)完全平方公式中的a、b可表示單項式,也可以表示多項式。這里只要將多項式看成一個整體就可以了。
(5)分解因式,必須分解到每一個多項式因式都不能再分解為止。
(五)分組分解法
我們看多項式am+an+bm+bn,這四項中沒有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.
如果我們把它分成兩組(am+an)和(bm+bn),這兩組能分別用提取公因式的方法分別分解因式.
原式=(am+an)+(bm+bn)
=a(m+n)+b(m+n)
做到這一步不叫把多項式分解因式,因為它不符合因式分解的意義.但不難看出這兩項還有公因式(m+n),因此還能繼續分解,所以
原式=(am+an)+(bm+bn)
=a(m+n)+b(m+n)
=(m+n)×(a+b).
全等三角形的性質:全等三角形對應邊相等、對應角相等。
全等三角形的判定:三邊相等(SSS)、兩邊和它們的夾角相等(SAS)、兩角和它們的夾邊(ASA)、兩角和其中一角的對邊對應相等(AAS)、斜邊和直角邊相等的兩直角三角形(HL)。
角平分線的性質:角平分線平分這個角,角平分線上的點到角兩邊的距離相等
角平分線推論:角的內部到角的兩邊的距離相等的點在叫的平分線上。
證明兩三角形全等或利用它證明線段或角的相等的基本方法步驟:①、確定已知條件(包括隱含條件,如公共邊、公共角、對頂角、角平分線、中線、高、等腰三角形、等所隱含的邊角關系),②、回顧三角形判定,搞清我們還需要什麼,③、正確地書寫證明格式(順序和對應關系從已知推導出要證明的問題).
這種利用分組來分解因式的方法叫做分組分解法.從上面的例子可以看出,如果把一個多項式的項分組並提取公因式後它們的另一個因式正好相同,那麼這個多項式就可以用分組分解法來分解因式.
(六)提公因式法
1.在運用提取公因式法把一個多項式因式分解時,首先觀察多項式的結構特點,確定多項式的公因式.當多項式各項的公因式是一個多項式時,可以用設輔助元的方法把它轉化為單項式,也可以把這個多項式因式看作一個整體,直接提取公因式;當多項式各項的公因式是隱含的時候,要把多項式進行適當的變形,或改變符號,直到可確定多項式的公因式.
2.運用公式x2+(p+q)x+pq=(x+q)(x+p)進行因式分解要注意:
1.必須先將常數項分解成兩個因數的積,且這兩個因數的代數和等於
一次項的系數.
2.將常數項分解成滿足要求的兩個因數積的多次嘗試,一般步驟:
①列出常數項分解成兩個因數的積各種可能情況;
②嘗試其中的哪兩個因數的和恰好等於一次項系數.
3.將原多項式分解成(x+q)(x+p)的形式.
(七)分式的乘除法
1.把一個分式的分子與分母的公因式約去,叫做分式的約分.
2.分式進行約分的目的是要把這個分式化為最簡分式.
3.如果分式的分子或分母是多項式,可先考慮把它分別分解因式,得到因式乘積形式,再約去分子與分母的公因式.如果分子或分母中的多項式不能分解因式,此時就不能把分子、分母中的某些項單獨約分.
4.分式約分中注意正確運用乘方的符號法則,如x-y=-(y-x),(x-y)2=(y-x)2,(x-y)3=-(y-x)3.
5.分式的分子或分母帶符號的n次方,可按分式符號法則,變成整個分式的符號,然後再按-1的偶次方為正、奇次方為負來處理.當然,簡單的分式之分子分母可直接乘方.
6.注意混合運算中應先算括弧,再算乘方,然後乘除,最後算加減.
(八)分數的加減法
1.通分與約分雖都是針對分式而言,但卻是兩種相反的變形.約分是針對一個分式而言,而通分是針對多個分式而言;約分是把分式化簡,而通分是把分式化繁,從而把各分式的分母統一起來.
2.通分和約分都是依據分式的基本性質進行變形,其共同點是保持分式的值不變.
3.一般地,通分結果中,分母不展開而寫成連乘積的形式,分子則乘出來寫成多項式,為進一步運算作準備.
4.通分的依據:分式的基本性質.
5.通分的關鍵:確定幾個分式的公分母.
通常取各分母的所有因式的最高次冪的積作公分母,這樣的公分母叫做最簡公分母.
6.類比分數的通分得到分式的通分:
把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分.
7.同分母分式的加減法的法則是:同分母分式相加減,分母不變,把分子相加減。
同分母的分式加減運算,分母不變,把分子相加減,這就是把分式的運算轉化為整式運算。
8.異分母的分式加減法法則:異分母的分式相加減,先通分,變為同分母的分式,然後再加減.
9.同分母分式相加減,分母不變,只須將分子作加減運算,但注意每個分子是個整體,要適時添上括弧.
10.對於整式和分式之間的加減運算,則把整式看成一個整體,即看成是分母為1的分式,以便通分.
11.異分母分式的加減運算,首先觀察每個公式是否最簡分式,能約分的先約分,使分式簡化,然後再通分,這樣可使運算簡化.
12.作為最後結果,如果是分式則應該是最簡分式.
(九)含有字母系數的一元一次方程
1.含有字母系數的一元一次方程
引例:一數的a倍(a≠0)等於b,求這個數。用x表示這個數,根據題意,可得方程ax=b(a≠0)
在這個方程中,x是未知數,a和b是用字母表示的已知數。對x來說,字母a是x的系數,b是常數項。這個方程就是一個含有字母系數的一元一次方程。
含有字母系數的方程的解法與以前學過的只含有數字系數的方程的解法相同,但必須特別注意:用含有字母的式子去乘或除方程的兩邊,這個式子的值不能等於零
元一次方程
1.二元一次方程的定義含有兩個未知數,並且未知項的次數是1,系數不是O,這樣的整式方程,叫做二元一次方程.
二元一次方程指的是有兩個未知數的,而且未知數的質數都是1的方程式。由二元一次方程衍生出了二元一次方程組、二元一次方程的解等方面的知識,一般來說,解二元一次方程都需要把方程中的未知數的個數減少,然後再解,它的方程式是X-Y=1。
2.二元一次方程的一般形式ax+by=c(其中x、y少是未知數,a、b、c是字母已知數,且ab≠O).
3.判斷一個方程是二元一次方程,它必須同時滿足下列四個條件
(l)含有兩個未知數;
(2)未知項的次數都是1;
(3)未知項的系數都不是仇
(4)等號兩邊的代數式是整式,即方程是整式方程.
二元一次方程解題技巧:
每個人初學二元一次方程的時候,總是會覺得十分難解的,但是只要你掌握了解題技巧,自然而然就能解開。首先要想解開一個二元一次方程,就應該是解開二元一次方程組,第一步做的就是把第一個和第二個方程組合並,然後把需要解開的項移到一旁,然後合並同類項,最後就可以將解得的一個未知數帶入原先的方程中,就可以得知兩個未知數的值。
通常求一個二元一次方程解的方法是:用含有一個未知數的代數式表示另一個未知數,如3x-x/2=7變形為y=2(3x-7),給出二的一個值,就可以求出少的對應值,這樣就得到了一個方程的解。適合一個二元一次方程的每一對未知數的值叫做二元一次方程的一個解.由於任何一個二元一次方程,讓其中一個未知數取任意一個值,都可以求出與其對應的另一個未知數的值,因此,任何一個二元一次方程都有無數多個解.但若對未知數的取值附加某些條件限制時,方程的解可能只有有限個.
初二數學上冊知識點 篇2
第一章勾股定理
定義:如果直角三角形兩條直角邊分別為a,b,斜邊為c,即直角三角形兩直角邊的平方和等於斜邊的平方。
判定:如果三角形的三邊長a,b,c滿足a +b = c,那麼這個三角形是直角三角形。
定義:滿足a +b =c的三個正整數,稱為勾股數。
第二章實數
定義:任何有限小數或無限循環小數都是有理數。無限不循環小數叫做無理數
(有理數總可以用有限小數或無限循環小數表示)
一般地,如果一個正數x的平方等於a,那麼這個正數x就叫做a的算術平方根。
特別地,我們規定0的算術平方根是0。
一般地,如果一個數x的平方等於a,那麼這個數x就叫做a的平方根(也叫二次方根)
一個正數有兩個平方根;0隻有一個平方根,它是0本身;負數沒有平方根。
求一個數a的平方根的運算,叫做開平方,其中a叫做被開方數。
一般地,如果一個數x的立方等於a,那麼這個數x就叫做a的立方根(也叫做三次方根)。
正數的立方根是正數;0的立方根是0;負數的立方根是負數。
求一個數a的立方根的運算,叫做開立方,其中a叫做被開方數。
有理數和無理數統稱為實數,即實數可以分為有理數和無理數。
每一個實數都可以用數軸上的一個點來表示;反過來,數軸上的每一個點都表示一個實數。即實數和數軸上的點是一一對應的。
在數軸上,右邊的點表示的數比左邊的點表示的數大。
第三章圖形的平移與旋轉
定義:在平面內,將一個圖形沿某個方向移動一定的距離,這樣的圖形運動稱為平移。平移不改變圖形的形狀和大小。
經過平移,對應點所連的線段平行也相等;對應線段平行且相等,對應角相等。
在平面內,將一個圖形繞一個定點沿某個方向轉動一個角度,這樣的圖形運動稱為旋轉,這個定點稱旋轉中心,轉動的角稱為旋轉角。旋轉不改變圖形的大小和形狀。
任意一對對應點與旋轉中心的連線所成的角都是旋轉角,對應點到旋轉中心的距離相等。
第四章、三角形
一、知識框架:
二、知識概念:
1.三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
2.三邊關系:三角形任意兩邊的和大於第三邊,任意兩邊的差小於第三邊。
3.高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。
4.中線:在三角形中,連接一個頂點和它對邊中點的線段叫做三角形的中線。
5.角平分線:三角形的一個內角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。
6.三角形的穩定性:三角形的形狀是固定的,三角形的這個性質叫三角形的穩定性。
7.多邊形:在平面內,由一些線段首尾順次相接組成的圖形叫做多邊形。
8.多邊形的內角:多邊形相鄰兩邊組成的角叫做它的內角。
9.多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的'外角。
10.多邊形的對角線:連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線。
11.正多邊形:在平面內,各個角都相等,各條邊都相等的多邊形叫正多邊形。
12.平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做多邊形覆蓋平面(平面鑲嵌)。
鑲嵌的條件:當圍繞一點拼在一起的幾個多邊形的內角加在一起恰好組成一個時,就能拼成一個平面圖形。
13.公式與性質:
⑴三角形的內角和:三角形的內角和為180°
⑵三角形外角的性質:
性質1:三角形的一個外角等於和它不相鄰的兩個內角的和。
性質2:三角形的一個外角大於任何一個和它不相鄰的內角。
⑶多邊形內角和公式:邊形的內角和等於·180°
⑷多邊形的外角和:多邊形的外角和為360°。
⑸多邊形對角線的條數:①從邊形的一個頂點出發可以引條對角線,把多邊形分成個三角形.②邊形共有條對角線。
第五章:軸對稱
1.基本概念:
⑴軸對稱圖形:如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形就叫做軸對稱圖形。
⑵兩個圖形成軸對稱:把一個圖形沿某一條直線折疊,如果它能夠與另一個圖形重合,那麼就說這兩個圖形關於這條直線對稱。
⑶線段的垂直平分線:經過線段中點並且垂直於這條線段的直線,叫做這條線段的垂直平分線。
⑷等腰三角形:有兩條邊相等的三角形叫做等腰三角形.相等的兩條邊叫做腰,另一條邊叫做底邊,兩腰所夾的角叫做頂角,底邊與腰的夾角叫做底角。
⑸等邊三角形:三條邊都相等的三角形叫做等邊三角形。
2.基本性質:
⑴對稱的性質:
①不管是軸對稱圖形還是兩個圖形關於某條直線對稱,對稱軸都是任何一對對應點所連線段的垂直平分線。
②對稱的圖形都全等。
⑵線段垂直平分線的性質:
①線段垂直平分線上的點與這條線段兩個端點的距離相等。
②與一條線段兩個端點距離相等的點在這條線段的垂直平分線上。
⑶關於坐標軸對稱的點的坐標性質
⑷等腰三角形的性質:
①等腰三角形兩腰相等。
②等腰三角形兩底角相等(等邊對等角)。
③等腰三角形的頂角角平分線、底邊上的中線,底邊上的高相互重合。
④等腰三角形是軸對稱圖形,對稱軸是三線合一(1條)。
⑸等邊三角形的性質:
①等邊三角形三邊都相等。
②等邊三角形三個內角都相等,都等於60°
③等邊三角形每條邊上都存在三線合一。
④等邊三角形是軸對稱圖形,對稱軸是三線合一(3條)。
3.基本判定:
⑴等腰三角形的判定:
①有兩條邊相等的三角形是等腰三角形。
②如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)。
⑵等邊三角形的判定:
①三條邊都相等的三角形是等邊三角形。
②三個角都相等的三角形是等邊三角形。
③有一個角是60°的等腰三角形是等邊三角形。
4.基本方法:
⑴做已知直線的垂線:
⑵做已知線段的垂直平分線:
⑶作對稱軸:連接兩個對應點,作所連線段的垂直平分線。
⑷作已知圖形關於某直線的對稱圖形:
⑸在直線上做一點,使它到該直線同側的兩個已知點的距離之和最短。
初二數學上冊知識點 篇3
一次函數
(1)正比例函數:一般地,形如y=kx(k是常數,k?0)的函數,叫做正比例函數,其中k叫做比例系數;
(2)正比例函數圖像特徵:一些過原點的直線;
(3)圖像性質:
①當k>0時,函數y=kx的圖像經過第一、三象限,從左向右上升,即隨著x的增大y也增大;②當k<0時,函數y=kx的圖像經過第二、四象限,從左向右下降,即隨著x的增大y反而減小;
(4)求正比例函數的解析式:已知一個非原點即可;
(5)畫正比例函數圖像:經過原點和點(1,k);(或另外一個非原點)
(6)一次函數:一般地,形如y=kx+b(k、b是常數,k?0)的函數,叫做一次函數;
(7)正比例函數是一種特殊的一次函數;(因為當b=0時,y=kx+b即為y=kx)
(8)一次函數圖像特徵:一些直線;
(9)性質:
①y=kx與y=kx+b的傾斜程度一樣,y=kx+b可看成由y=kx平移|b|個單位長度而得;(當b>0,向上平移;當b<0,向下平移)
②當k>0時,直線y=kx+b由左至右上升,即y隨著x的增大而增大;
③當k<0時,直線y=kx+b由左至右下降,即y隨著x的增大而減小;
④當b>0時,直線y=kx+b與y軸正半軸有交點為(0,b);
⑤當b<0時,直線y=kx+b與y軸負半軸有交點為(0,b);
(10)求一次函數的解析式:即要求k與b的值;
(11)畫一次函數的圖像:已知兩點;
用函數觀點看方程(組)與不等式
(1)解一元一次方程可以轉化為:當某個一次函數的值為0時,求相應的自變數的值;從圖像上看,這相當於已知直線y=kx+b,確定它與x軸交點的橫坐標的值;
(2)解一元一次不等式可以看作:當一次函數值大(小)於0時,求自變數相應的取值范圍;
(3)每個二元一次方程都對應一個一元一次函數,於是也對應一條直線;
(4)一般地,每個二元一次方程組都對應兩個一次函數,於是也對應兩條直線。從「數」的角度看,解方程組相當於考慮自變數為何值時兩個函數的值相等,以及這個函數值是何值;從「形」的角度看,解方程組相當於確定兩條直線交點的坐標;
⑦ 初二下冊數學知識點
初二下冊數學知識點有哪些你知道嗎?初二是學習數學的一個關鍵時期,想要學好數學需要有一個好的 學習 方法 ,其實最簡單又有效的學習方法就是對知識點進行歸納 總結 了。一起來看看初二下冊數學知識點,歡迎查閱!
初二下冊數學總結
第一章分式
1分式及其基本性質分式的分子和分母同時乘以(或除以)一個不等於零的整式,分式的只不變
2分式的運算
(1)分式的乘除乘法法則:分式乘以分式,用分子的積作為積的分子,分母的積作為積的分母除法法則:分式除以分式,把除式的分子、分母顛倒位置後,與被除式相乘。
(2)分式的加減加減法法則:同分母分式相加減,分母不變,把分子相加減;異分母分式相加減,先通分,變為同分母的分式,再加減
3整數指數冪的加減乘除法
4分式方程及其解法
第二章反比例函數
1反比例函數的表達式、圖像、性質
圖像:雙曲線
表達式:y=k/x(k不為0)
性質:兩支的增減性相同;
2反比例函數在實際問題中的應用
第三章勾股定理
1勾股定理:直角三角形的`兩個直角邊的平方和等於斜邊的平方
2勾股定理的逆定理:如果一個三角形中,有兩個邊的平方和等於第三條邊的平方,那麼這個三角形是直角三角形
第四章四邊形
1平行四邊形
性質:對邊相等;對角相等;對角線互相平分。
判定:兩組對邊分別相等的四邊形是平行四邊形;
兩組對角分別相等的四邊形是平行四邊形;
對角線互相平分的四邊形是平行四邊形;
一組對邊平行而且相等的四邊形是平行四邊形。
推論:三角形的中位線平行第三邊,並且等於第三邊的一半。
2特殊的平行四邊形:矩形、菱形、正方形
(1)矩形
性質:矩形的四個角都是直角;
矩形的對角線相等;
矩形具有平行四邊形的所有性質
判定:有一個角是直角的平行四邊形是矩形;對角線相等的平行四邊形是矩形;
推論:直角三角形斜邊的中線等於斜邊的一半。
(2)菱形性質:菱形的四條邊都相等;菱形的對角線互相垂直,並且每一條對角線平分一組對角;菱形具有平行四邊形的一切性質
判定:有一組鄰邊相等的平行四邊形是菱形;對角線互相垂直的平行四邊形是菱形;四邊相等的四邊形是菱形。
(3)正方形:既是一種特殊的矩形,又是一種特殊的菱形,所以它具有矩形和菱形的所有性質。
3梯形:直角梯形和等腰梯形
等腰梯形:等腰梯形同一底邊上的兩個角相等;等腰梯形的兩條對角線相等;同一個底上的兩個角相等的梯形是等腰梯形。
第五章數據的分析
加權平均數、中位數、眾數、極差、方差
初二必備數學知識
位置與坐標
1、確定位置
在平面內,確定物體的位置一般需要兩個數據。
2、平面直角坐標系及有關概念
①平面直角坐標系
在平面內,兩條互相垂直且有公共原點的數軸,組成平面直角坐標系。其中,水平的數軸叫做x軸或橫軸,取向右為正方向;鉛直的數軸叫做y軸或縱軸,取向上為正方向;x軸和y軸統稱坐標軸。它們的公共原點O稱為直角坐標系的原點;建立了直角坐標系的平面,叫做坐標平面。
②坐標軸和象限
為了便於描述坐標平面內點的位置,把坐標平面被x軸和y軸分割而成的四個部分,分別叫做第一象限、第二象限、第三象限、第四象限。
注意:x軸和y軸上的點(坐標軸上的點),不屬於任何一個象限。
③點的坐標的概念
對於平面內任意一點P,過點P分別x軸、y軸向作垂線,垂足在上x軸、y軸對應的數a,b分別叫做點P的橫坐標、縱坐標,有序數對(a,b)叫做點P的坐標。
點的坐標用(a,b)表示,其順序是橫坐標在前,縱坐標在後,中間有「,」分開,橫、縱坐標的位置不能顛倒。平面內點的坐標是有序實數對,(a,b)和(b,a)是兩個不同點的坐標。
平面內點的與有序實數對是一一對應的。
④不同位置的點的坐標的特徵
a、各象限內點的坐標的特徵
點P(x,y)在第一象限→ x>0,y>0
點P(x,y)在第二象限 → x<0,y>0
點P(x,y)在第三象限 → x<0,y<0
點P(x,y)在第四象限 → x>0,y<0
b、坐標軸上的點的特徵
點P(x,y)在x軸上 → y=0,x為任意實數
點P(x,y)在y軸上 → x=0,y為任意實數
點P(x,y)既在x軸上,又在y軸上→ x,y同時為零,即點P坐標為(0,0)即原點
c、兩條坐標軸夾角平分線上點的坐標的特徵
點P(x,y)在第一、三象限夾角平分線(直線y=x)上 → x與y相等
點P(x,y)在第二、四象限夾角平分線上 → x與y互為相反數
d、和坐標軸平行的.直線上點的坐標的特徵
位於平行於x軸的直線上的各點的縱坐標相同。
位於平行於y軸的直線上的各點的橫坐標相同。
e、關於x軸、y軸或原點對稱的點的坐標的特徵
點P與點p』關於x軸對稱 橫坐標相等,縱坐標互為相反數,即點P(x,y)關於x軸的對稱點為P』(x,-y)
點P與點p』關於y軸對稱 縱坐標相等,橫坐標互為相反數,即點P(x,y)關於y軸的對稱點為P』(-x,y)
點P與點p』關於原點對稱,橫、縱坐標均互為相反數,即點P(x,y)關於原點的對稱點為P』(-x,-y)
f、點到坐標軸及原點的距離
點P(x,y)到坐標軸及原點的距離:
點P(x,y)到x軸的距離等於 ?y?
點P(x,y)到y軸的距離等於 ?x?
點P(x,y)到原點的距離等於 √x2+y2
初二數學常考知識
一次函數
1、函數
一般地,在某一變化過程中有兩個變數x與y,如果給定一個x值,相應地就確定了一個y值,那麼我們稱y是x的函數,其中x是自變數,y是因變數。
2、自變數取值范圍
使函數有意義的自變數的取值的全體,叫做自變數的取值范圍。一般從整式(取全體實數),分式(分母不為0)、二次根式(被開方數為非負數)、實際意義幾方面考慮。
3、函數的三種表示法及其優缺點
關系式(解析)法兩個變數間的函數關系,有時可以用一個含有這兩個變數及數字運算符號的等式表示,這種表示法叫做關系式(解析)法。
列表法把自變數x的一系列值和函數y的對應值列成一個表來表示函數關系,這種表示法叫做列表法。
圖象法用圖象表示函數關系的方法叫做圖象法。
4、由函數關系式畫其圖像的一般步驟
列表:列表給出自變數與函數的一些對應值。
描點:以表中每對對應值為坐標,在坐標平面內描出相應的點。
連線:按照自變數由小到大的順序,把所描各點用平滑的曲線連接起來。
5、正比例函數和一次函數
①正比例函數和一次函數的概念
一般地,若兩個變數x,y間的關系可以表示成y=kx+b (k,b為常數,k不等於 0)的形式,則稱y是x的一次函數(x為自變數,y為因變數)。
特別地,當一次函數y=kx+b中的b=0時(k為常數,k 不等於0),稱y是x的正比例函數。②一次函數的圖像:
所有一次函數的圖像都是一條直線。
③一次函數、正比例函數圖像的主要特徵
一次函數y=kx+b的圖像是經過點(0,b)的直線;
初二下冊數學知識點相關 文章 :
★ 八年級下冊數學知識點整理
★ 初二數學下冊知識點歸納與數學學習方法
★ 八年級下冊數學知識點總結歸納
★ 初二數學知識點整理歸納
★ 八年級數學知識點整理歸納
★ 八年級數學知識點總結
★ 初二數學知識點復習整理
★ 初二數學知識點小結
★ 初中數學八年級重點
★ 初二數學知識點歸納上冊人教版
⑧ 初二數學下冊知識點歸納
初二數學下冊知識點歸納
在平平淡淡的學習中,大家都沒少背知識點吧?知識點就是「讓別人看完能理解」或者「通過練習我能掌握」的內容。掌握知識點有助於大家更好的學習。以下是我整理的初二數學下冊知識點歸納,歡迎閱讀與收藏。
初二數學下冊知識點歸納 篇1
第一章分式
1、分式及其基本性質
分式的分子和分母同時乘以(或除以)一個不等於零的整式,分式的只不變
2、分式的運算
(1)分式的乘除乘法法則:分式乘以分式,用分子的積作為積的分子,分母的積作為積的分母除法法則:分式除以分式,把除式的分子、分母顛倒位置後,與被除式相乘。
(2)分式的加減加減法法則:同分母分式相加減,分母不變,把分子相加減;異分母分式相加減,先通分,變為同分母的分式,再加減
3、整數指數冪的加減乘除法
4、分式方程及其解法
第二章反比例函數
1、反比例函數的表達式、圖像、性質
圖像:雙曲線
表達式:y=k/x(k不為0)
性質:兩支的增減性相同;
2、反比例函數在實際問題中的應用
第三章勾股定理
1、勾股定理:直角三角形的兩個直角邊的平方和等於斜邊的平方
2、勾股定理的逆定理:如果一個三角形中,有兩個邊的平方和等於第三條邊的平方,那麼這個三角形是直角三角形
第四章四邊形
1、平行四邊形
性質:對邊相等;對角相等;對角線互相平分。
判定:兩組對邊分別相等的四邊形是平行四邊形;
兩組對角分別相等的四邊形是平行四邊形;
對角線互相平分的四邊形是平行四邊形;
一組對邊平行而且相等的四邊形是平行四邊形。
推論:三角形的中位線平行第三邊,並且等於第三邊的一半。
2、特殊的平行四邊形:矩形、菱形、正方形
(1)矩形
性質:矩形的四個角都是直角;
矩形的對角線相等;
矩形具有平行四邊形的所有性質
判定:有一個角是直角的平行四邊形是矩形;對角線相等的平行四邊形是矩形;
推論:直角三角形斜邊的中線等於斜邊的一半。
(2)菱形性質:菱形的四條邊都相等;菱形的對角線互相垂直,並且每一條對角線平分一組對角;菱形具有平行四邊形的一切性質
判定:有一組鄰邊相等的平行四邊形是菱形;對角線互相垂直的平行四邊形是菱形;四邊相等的四邊形是菱形。
(3)正方形:既是一種特殊的矩形,又是一種特殊的菱形,所以它具有矩形和菱形的所有性質。
3、梯形:直角梯形和等腰梯形
等腰梯形:等腰梯形同一底邊上的兩個角相等;等腰梯形的兩條對角線相等;同一個底上的兩個角相等的梯形是等腰梯形。
第五章數據的分析
加權平均數、中位數、眾數、極差、方差
初二數學下冊知識點歸納 篇2
1、分式的定義:
如果A、B表示兩個整式,並且B中含有字母,那麼式子B叫做分式。
2、對於分式概念的理解,應把握以下幾點:
(1)分式是兩個整式相除的商。其中分子是被除式,分母是除式,分數線起除號和括弧的作用;
(2)分式的分子可以含有字母,也可以不含字母,但分式的分母一定要含有字母才是分式;
(3)分母不能為零。
3、分式有意義、無意義的條件
(1)分式有意義的條件:分式的分母不等於0;
(2)分式無意義的條件:分式的分母等於0。
4、分式的值為0的條件:
當分式的分子等於0,而分母不等於0時,分式的值為0。即,使B=0的條件是:A=0,B≠0。
5、有理式整式和分式統稱為有理式。整式分為單項式和多項式。分類:有理式
單項式:由數與字母的乘積組成的代數式;多項式:由幾個單項式的和組成的代數式。
只要這樣踏踏實實完成每天的計劃和小目標,就可以自如地應對新學習,達到長遠目標。由數學網為您提供的初二下冊數學知識點歸納:分式的概念,祝您學習愉快!
初二數學下冊知識點歸納 篇3
含義:分母中含有未知數的方程叫做分式方程。
分式方程的解法:
①去分母{方程兩邊同時乘以最簡公分母(最簡公分母:①系數取最小公倍數②出現的字母取最高次冪③出現的因式取最高次冪),將分式方程化為整式方程;若遇到互為相反數時。不要忘了改變符號};
②按解整式方程的步驟(移項,若有括弧應去括弧,注意變號,合並同類項,系數化為1)求出未知數的值;
③驗根(求出未知數的值後必須驗根,因為在把分式方程化為整式方程的過程中,擴大了未知數的取值范圍,可能產生增根)。
一般地驗根,只需把整式方程的根代入最簡公分母,如果最簡公分母等於0,這個根就是增根,否則這個根就是原分式方程的根。若解出的根是增根,則原方程無解。如果分式本身約分了,也要代進去檢驗。
初二數學下冊知識點歸納 篇4
1、正方形的概念
有一組鄰邊相等並且有一個角是直角的平行四邊形叫做正方形。
2、正方形的性質
(1)具有平行四邊形、矩形、菱形的一切性質;
(2)正方形的四個角都是直角,四條邊都相等;
(3)正方形的兩條對角線相等,並且互相垂直平分,每一條對角線平分一組對角;
(4)正方形是軸對稱圖形,有4條對稱軸;
(5)正方形的一條對角線把正方形分成兩個全等的等腰直角三角形,兩條對角線把正方形分成四個全等的小等腰直角三角形;
(6)正方形的一條對角線上的一點到另一條對角線的兩端點的距離相等。
3、正方形的判定
(1)判定一個四邊形是正方形的主要依據是定義,途徑有兩種:
先證它是矩形,再證有一組鄰邊相等。
先證它是菱形,再證有一個角是直角。
(2)判定一個四邊形為正方形的一般順序如下:
先證明它是平行四邊形;
再證明它是菱形(或矩形);
最後證明它是矩形(或菱形)。
初二數學下冊知識點歸納 篇5
一、一般地,用符號"<"(或"≤"),">"(或"≥")連接的式子叫做不等式。
能使不等式成立的未知數的值,叫做不等式的解.不等式的解不唯一,把所有滿足不等式的解集合在一起,構成不等式的解集.求不等式解集的過程叫解不等式.
由幾個一元一次不等式組所組成的不等式組叫做一元一次不等式組
不等式組的解集:一元一次不等式組各個不等式的解集的公共部分。
等式基本性質1:在等式的兩邊都加上(或減去)同一個數或整式,所得的結果仍是等式.基本性質2:在等式的兩邊都乘以或除以同一個數(除數不為0),所得的結果仍是等式.
二、不等式的基本性質
1:不等式的兩邊都加上(或減去)同一個整式,不等號的方向不變.(註:移項要變號,但不等號不變。)
性質2:不等式的兩邊都乘以(或除以)同一個正數,不等號的方向不變.
性質3:不等式的兩邊都乘以(或除以)同一個負數,不等號的方向改變.不等式的基本性質<1>、若a>b,則a+c>b+c;<2>、若a>b,c>0則ac>bc若c<0,則ac<bc
不等式的其他性質:反射性:若a>b,則bb,且b>c,則a>c
三、解不等式的步驟:
1、去分母;
2、去括弧;
3、移項合並同類項;
4、系數化為1。
四、解不等式組的步驟:
1、解出不等式的解集
2、在同一數軸表示不等式的解集。
五、列一元一次不等式組解實際問題的一般步驟:
(1)審題;
(2)設未知數,找(不等量)關系式;
(3)設元,(根據不等量)關系式列不等式(組)(4)解不等式組;檢驗並作答。
六、常考題型:
1、求4x-67x-12的非負數解.
2、已知3(x-a)=x-a+1r的解適合2(x-5)8a,求a的范圍.
3、當m取何值時,3x+m-2(m+2)=3m+x的解在-5和5之間。
初二數學下冊知識點歸納 篇6
一、 基本情況分析
1、學生情況分析:
上學期期末考試的成績總體來看,成績較好,優等生較多。在學生所學知識的掌握程度上,一部分學生能夠理解知識,知識間的內在聯系也較為清楚,但個別學生連簡單的基礎知識還不能有效的掌握,成績較差。
2、教材分析:
本學期教學內容共計五章,知識的前後聯系,教材的教學目標,重、難點分析如下:
第十六章 二次根式
本節課的主要內容是二次根式的乘除運算和二次根式的化簡。通過本節課應使學生掌握二次根式的乘除運演算法則和化簡二次根式的常用方法。
第十七章 勾股定理
直角三角形是一種特殊的三角形,它有許多重要的性質,如兩個銳角互余, 30度角所對的直角邊等於斜邊的一半,本章所研究的勾股定理,也是直角三角形的性質,而且是一條非常重要的性質,本章分為兩節,第一節介紹勾股定理及其應用,第二節介紹勾股定理的逆定理。
本章重點是勾股定理和逆定理,難點是靈活運用勾股定理和逆定理解題。
第十八章 平行四邊形
四邊形是人們日常生活中應用較廣泛的一種圖形,尤其是平行四邊形、矩形、菱形、正方形、梯形等特殊四邊形的用處更多。因此,四邊形既是幾何中的基本圖形,也是「空間與圖形」領域研究的主要對象之一。本章是在學生前面學段已經學過的四邊形知識、本學段學過的多邊形、平行線、三角形的有關知識的基礎上來學習的,也可以說是在已有知識的基礎上做進一步系統的整理和研究,本章內容的學習也反復運用了平行線和三角形的知識。從這個角度來看,本章的內容也是前面平行線和三角形等內容的應用和深化。
本章重點是平行四邊形的定義、性質和判定,難點是平行四邊形與各種特殊平行四邊形之間的聯系與區別。
第十九章 一次函數
函數是研究現實世界變化規律的一個重要模型,本單元學生在學習了一次函數後,進一步研究反比例函數。學生在本章中經歷:反比例函數概念的抽象概括過程,體會建立數學模型的思想,進一步發展學生的抽象思維能力;經歷反比例函數的圖象及其性質的探索過程,在交流中發展能力這是本章的重點之一;經歷本章的重點之二:利用反比例函數及圖象解決實際問題的過程,發展學生的數學應用能力;經歷函數圖象信息的識別應用過程,發展學生形象思維;能根據所給信息確定反比例函數表達式,會作反比例函數圖象,並利用它們解決
簡單的實際問題。本章的難點在於對學生抽象思維的培養,以及提高數形結合的意識和能力。
第二十章 數據的分析
本章主要研究平均數、中位數、眾數以及極差、方差等統計量的統計意義,學習如何利用這些統計量分析數據的集中趨勢和離散情況,並通過研究如何用樣本的平均數和方差估計總體的平均數和方差,進一步體會用樣本估計總體的思想。
本章重點是平均數、中位數、眾數以及極差、方差等知識,難點是運用統計相關的知識解決實際問題。
二、 教學目標和要求
1、知識與技能目標
學生通過學習二次根式、勾股定理、平行四邊形、一次函數、數據分析,掌握有關規律、概念、性質和定理,並能進行簡單的應用。進一步提高必要的運算技能和作圖技能。加強雙基訓練。
2、過程與方法目標
掌握提取實際問題中的數學信息的能力,並用有關的代數和幾何知識表達數量之間的相互關系;通過探究勾股定理、平行四邊形的有關判定、性質進一步培養學生的識圖能力;初步建立數形結合的數學模式;通過對二次根式和一次函數的探究,培養學生發現規律和總結規律的能力,建立數學類比思想。
3、情感與態度目標
通過對數學知識的探究,進一步認識數學與生活的'密切聯系,明確學習數學的意義,並用數學知識去解決實際問題,獲得成功的體驗,樹立學好數學的信心。體會到數學是解決實際問題的重要工具,了解數學對促進社會進步和發展的重要作用。認識數學學習是一個充滿觀察、實踐、探究、歸納、類比、推理和創造性的過程。養成獨立思考和合作交流。
三、 提高教學質量的主要措施?
1、認真做好教學工作,也是提高成績的主要方法:認真研讀新課程標准,鑽研新教材,根據新課程標准,擴充教材內容,認真上課,批改作業,認真輔導,認真製作測試試卷,也讓學生學會認真學習,快樂生活。
2、興趣是最好的老師,愛因斯坦如是說。激發學生的興趣,給學生介紹數學家,數學史,介紹相應的數學趣題,給出數學課外思考題,激發學生的興趣。
3、引導學生積極參與知識的構建,營造民主、和諧、平等、自主、探究、合作、交流、分享發現快樂的高效的學習課堂,讓學生體會學習的快樂,享受學習。引導學生寫小論文,寫復習提綱,使知識來源於學生的構造。
4、引導學生積極歸納解題規律,引導學生一題多解,多解歸一,以題類題,觸類旁通。培養學生透過現象看本質,提高學生舉一反三的能力,這是提高學生素質的根本途徑之一,培養學生的發散思維,讓學生處於一種思如泉湧的狀態。
初二數學下冊知識點歸納 篇7
分式方程:
含分式,並且分母中含未知數的方程——分式方程。
解分式方程的過程,實質上是將方程兩邊同乘以一個整式(最簡公分母),把分式方程轉化為整式方程。
解分式方程時,方程兩邊同乘以最簡公分母時,最簡公分母有可能為0,這樣就產生了增根,因此分式方程一定要驗根。
解分式方程的步驟 :
(1)能化簡的先化簡
(2)方程兩邊同乘以最簡公分母,化為整式方程;
(3)解整式方程;
(4)驗根. 增根應滿足兩個條件:一是其值應使最簡公分母為0,二是其值應是去分母後所的整式方程的根。
分式方程檢驗方法 :
將整式方程的解帶入最簡公分母,如果最簡公分母的值不為0,則整式方程的解是原分式方程的解;否則,這個解不是原分式方程的解。
列方程應用題的步驟是什麼?
(1)審;
(2)設;
(3)列;
(4)解;
(5)答.
應用題有幾種類型;基本公式是什麼?基本上有五種:
(1)行程問題:
基本公式:路程=速度×時間而行程問題中又分相遇問題、追及問題.
(2)數字問題
在數字問題中要掌握十進制數的表示法.
(3)工程問題
基本公式:工作量=工時×工效.
(4)順水逆水問題
v順水=v靜水+v水. v逆水=v靜水-v水.
初二數學下冊知識點歸納 篇8
五大知識點:
1、一元二次方程的定義、一元二次方程的一般形式、一元二次方程的解的概念及應用
2、一元二次方程的四種解法(因式分解法、開平方法和配方法、配方法的拓展運用、公式法)
3、根的判別式
4、一元二次方程的應用(銷售問題和增長率問題、面積問題和動態問題)
5、一元二次方程根與系數的關系(韋達定理)
【課本相關知識點】
1、一元二次方程:只含有 未知數,並且未和數的 是2,這樣的整式方程叫做一元二次方程。
2、能使一元二次方程 的未知數的值叫做一元二次方程的解(或根)
3、一元二次方程的一般形式:任何一個一元二次方程經過化簡、整理都可以轉化為 的形式,這個形式叫做一元二次方程的一般形式。其中ax2是 ,a是 ,bx是 ,b是 ,c是常數項
初二數學下冊知識點歸納 篇9
1.乘法規定:(a≥0,b≥0)
二次根式相乘,把被開方數相乘,根指數不變。
推廣:
(1)(a≥0,b≥0,c≥0)
(2)(b≥0,d≥0)
2.乘法逆用:(a≥0,b≥0)
積的算術平方根等於積中各因式的算術平方根的積。
注意:公式中的a、b可以是數,也可以是代數式,但必須滿足a≥0,b≥0;
3.除法規定:(a≥0,b>0)
二次根式相處,把被開方數相除,根指數不變。
推廣:其中a≥0,b>0,。
方法歸納:兩個二次根式相除,可採用根號前的系數與系數對應相除,根號內的被開方數與被開方數對應相除,再把除得得結果相乘。
4.除法逆用:(a≥0,b>0)
商的算術平方根等於被除式的算術平方根除以除式的算術平方根。
初二數學下冊知識點歸納 篇10
無理數:無限不循環小數叫無理數
平方根:①如果一個正數X的平方等於A,那麼這個正數X就叫做A的算術平方根。②如果一個數X的平方等於A,那麼這個數X就叫做A的平方根。③一個正數有2個平方根/0的平方根為0/負數沒有平方根。④求一個數A的平方根運算,叫做開平方,其中A叫做被開方數。
立方根:①如果一個數X的立方等於A,那麼這個數X就叫做A的立方根。②正數的立方根是正數、0的立方根是0、負數的立方根是負數。③求一個數A的立方根的運算叫開立方,其中A叫做被開方數。
實數:①實數分有理數和無理數。②在實數范圍內,相反數,倒數,絕對值的意義和有理數范圍內的相反數,倒數,絕對值的意義完全一樣。③每一個實數都可以在數軸上的一個點來表示。
;⑨ 初二數學知識點
如果想要初三的我也可以全部給你。自己歸納的。求採納啊
過兩點有且只有一條直線
2 兩點之間線段最短
3 同角或等角的補角相等
4 同角或等角的餘角相等
5 過一點有且只有一條直線和已知直線垂直
6 直線外一點與直線上各點連接的所有線段中,垂線段最短
7 平行公理 經過直線外一點,有且只有一條直線與這條直線平行
8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9 同位角相等,兩直線平行
10 內錯角相等,兩直線平行
11 同旁內角互補,兩直線平行
12 兩直線平行,同位角相等
13 兩直線平行,內錯角相等
14 兩直線平行,同旁內角互補
15 定理 三角形兩邊的和大於第三邊
16 推論 三角形兩邊的差小於第三邊
17 三角形內角和定理 三角形三個內角的和等於180°
18 推論1 直角三角形的兩個銳角互余
19 推論2 三角形的一個外角等於和它不相鄰的兩個內角的和
20 推論3 三角形的一個外角大於任何一個和它不相鄰的內角
21 全等三角形的對應邊、對應角相等
22 邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等
23 角邊角公理( ASA)有兩角和它們的夾邊對應相等的兩個三角形全等
24 推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等
25 邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等
26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等
27 定理1 在角的平分線上的點到這個角的兩邊的距離相等
28 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上
29 角的平分線是到角的兩邊距離相等的所有點的集合
30 等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角)
31 推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊
32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33 推論3 等邊三角形的各角都相等,並且每一個角都等於60°
34 等腰三角形的判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)
35 推論1 三個角都相等的三角形是等邊三角形
36 推論 2 有一個角等於60°的等腰三角形是等邊三角形
37 在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半
38 直角三角形斜邊上的中線等於斜邊上的一半
39 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等
40 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42 定理1 關於某條直線對稱的兩個圖形是全等形
43 定理 2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線
44 定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上
45 逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱
46 勾股定理 直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a^2+b^2=c^2
47 勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a^2+b^2=c^2 ,那麼這個三角形是直角三角形
一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根與系數的關系 X1+X2=-b/a X1*X2=c/a 註:韋達定理
判別式
b2-4ac=0 註:方程有兩個相等的實根
b2-4ac>0 註:方程有兩個不等的實根
b2-4ac<0 註:方程沒有實根