㈠ 小學數學知識點有哪些
小學數學知識點:
1、算式:加,減,乘,除。
2、對三角形的認識、三角形的面積計算公式、三角形的周長計算公式。
3、長方形的周長計算公式、長方形的面積計算公式。
4、對圓的認識、圓的面積計算公式、圓的周長計算公式、圓柱的表面積計算公式。
5、小數、分數,分數又包括帶分數、假分數、真分數。
6、對百分數的認識、百分數的運用。
7、比的認識、化簡比、求比值。
8、正方形的面積計算公式、正方形的周長計算公式。
9, 什麼叫一元一次方程式 答:含有一個未知數,並且未知數的次 數是一次的等式叫做一元一次方程式。
學會一元一次方程式的例法及計算。即例出代有χ的算式並計算。
10,分數:把單位「1」平均分成若干份,表示這樣的一份或幾分的數,叫做分數。
11,分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
12,分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。
異分母的分數相比較,先通分然後再比較;若分子相同,分母大的反而小。
13,分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。
14,分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。
15,分數除以整數(0除外),等於分數乘以這個整數的倒數。
㈡ 小學數學基礎知識點整理
小學數學知識點有哪些?哪些基礎知識是我們一定要整理的?下面是我為大家整理的關於小學數學基礎知識點整理,希望對您有所幫助。歡迎大家閱讀參考學習!
小學數學基礎知識整理(一到六年級)
小學一年級 初步認識加減法。學會基礎加減。
小學二年級 完善加減法,表內乘法,學會應用題,基礎幾何圖形。
小學三年級 學會萬以內加減法,長度單位和質量單位,倍數的認知,多位數乘一位數,時間量及單位。長方形和正方形幾何圖形、分數的初步認識。
小學四年級 億萬數的認識、面積單位(公頃和平方千米)、角的度量,兩位數的乘數法、平行四邊形和梯形幾何圖形及條形統計圖的了解。
小學五年級 小數乘除法,簡易方程運算,圖形面積計算,可能性和植樹問題了解。
小學六年級 掌握分數乘除法,比和百分數,圓和扇形。
必背定義、定理公式
三角形的面積=底×高÷2。 公式 S= a×h÷2
正方形的面積=邊長×邊長 公式 S= a×a
長方形的面積=長×寬 公式 S= a×b
平行四邊形的面積=底×高 公式 S= a×h
梯形的面積=(上底+下底)×高÷2 公式 S=(a+b)h÷2
內角和:三角形的內角和=180度。
長方體的體積=長×寬×高 公式:V=abh
長方體(或正方體)的體積=底面積×高 公式:V=abh
正方體的體積=棱長×棱長×棱長 公式:V=aaa
圓的周長=直徑×π 公式:L=πd=2πr
圓的面積=半徑×半徑×π 公式:S=πr2
圓柱的表(側)面積:圓柱的表(側)面積等於底面的周長乘高。公式:S=ch=πdh=2πrh
圓柱的表面積:圓柱的表面積等於底面的周長乘高再加上兩頭的圓的面積。公式:S=ch+2s=ch+2πr2
圓柱的體積:圓柱的體積等於底面積乘高。公式:V=Sh
圓錐的體積=1/3底面×積高。公式:V=1/3Sh
分數的加、減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
分數的乘法則:用分子的積做分子,用分母的積做分母。
分數的除法則:除以一個數等於乘以這個數的倒數。
定義定理性質公式
1、加法交換律:兩數相加交換加數的位置,和不變。
2、加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第三個數相加,和不變。
3、乘法交換律:兩數相乘,交換因數的位置,積不變。
4、乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。
5、乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。如:(2+4)×5=2×5+4×5
6、除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。 0除以任何不是0的數都得0。
簡便乘法:被乘數、乘數末尾有0的乘法,可以先把0前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。
7、什麼叫等式?等號左邊的數值與等號右邊的數值相等的式子叫做等式。
等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,等式仍然成立。
8、什麼叫方程式?答:含有未知數的等式叫方程式。
9、 什麼叫一元一次方程式?答:含有一個未知數,並且未知數的次 數是一次的等式叫做一元一次方程式。
學會一元一次方程式的例法及計算。即例出代有χ的算式並計算。
10、分數:把單位"1"平均分成若干份,表示這樣的一份或幾分的數,叫做分數。
11、分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
12、分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。異分母的分數相比較,先通分然後再比較;若分子相同,分母大的反而小。
13、分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。
14、分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。
15、分數除以整數(0除外),等於分數乘以這個整數的倒數。
16、真分數:分子比分母小的分數叫做真分數。
17、假分數:分子比分母大或者分子和分母相等的分數叫做假分數。假分數大於或等於1。
18、帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。
19、分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小不變。
20、一個數除以分數,等於這個數乘以分數的倒數。
21、甲數除以乙數(0除外),等於甲數乘以乙數的倒數。
數量關系計算公式方面
1、單價×數量=總價
2、單產量×數量=總產量
3、速度×時間=路程
4、工效×時間=工作總量
5、加數+加數=和 一個加數=和+另一個加數
被減數-減數=差 減數=被減數-差 被減數=減數+差
因數×因數=積 一個因數=積÷另一個因數
被除數÷除數=商 除數=被除數÷商 被除數=商×除數
有餘數的除法: 被除數=商×除數+余數
一個數連續用兩個數除,可以先把後兩個數相乘,再用它們的積去除這個數,結果不變。例:90÷5÷6=90÷(5×6)
6、 1公里=1千米 1千米=1000米
1米=10分米 1分米=10厘米 1厘米=10毫米
1平方米=100平方分米 1平方分米=100平方厘米
1平方厘米=100平方毫米
1立方米=1000立方分米 1立方分米=1000立方厘米
1立方厘米=1000立方毫米
1噸=1000千克 1千克= 1000克= 1公斤= 1市斤
1公頃=10000平方米。 1畝=666.666平方米。
1升=1立方分米=1000毫升 1毫升=1立方厘米
7、什麼叫比:兩個數相除就叫做兩個數的比。如:2÷5或3:6或1/3
比的前項和後項同時乘以或除以一個相同的數(0除外),比值不變。
8、什麼叫比例:表示兩個比相等的式子叫做比例。如3:6=9:18
9、比例的基本性質:在比例里,兩外項之積等於兩內項之積。
10、解比例:求比例中的未知項,叫做解比例。如3:χ=9:18
11、正比例:兩種相關聯的量,一種量變化,另一種量也隨著化,如果這兩種量中相對應的的比值(也就是商k)一定,這兩種量就叫做成正比例的量,它們的關系就叫做正比例關系。如:y/x=k( k一定)或kx=y
12、反比例:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,它們的關系就叫做反比例關系。如:x×y = k( k一定)或k / x = y
百分數:表示一個數是另一個數的百分之幾的數,叫做百分數。百分數也叫做百分率或百分比。
13、把小數化成百分數,只要把小數點向右移動兩位,同時在後面添上百分號。其實,把小數化成百分數,只要把這個小數乘以100%就行了。
把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。
14、把分數化成百分數,通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。其實,把分數化成百分數,要先把分數化成小數後,再乘以100%就行了。
把百分數化成分數,先把百分數改寫成分數,能約分的要約成最簡分數。
15、要學會把小數化成分數和把分數化成小數的化發。
16、最大公約數:幾個數都能被同一個數一次性整除,這個數就叫做這幾個數的最大公約數。(或幾個數公有的約數,叫做這幾個數的公約數。其中最大的一個,叫做最大公約數。)
17、互質數: 公約數只有1的兩個數,叫做互質數。
18、最小公倍數:幾個數公有的倍數,叫做這幾個數的公倍數,其中最小的一個叫做這幾個數的最小公倍數。
19、通分:把異分母分數的分別化成和原來分數相等的同分母的分數,叫做通分。(通分用最小公倍數)
20、約分:把一個分數化成同它相等,但分子、分母都比較小的分數,叫做約分。(約分用最大公約數)
21、最簡分數:分子、分母是互質數的分數,叫做最簡分數。
分數計算到最後,得數必須化成最簡分數。
個位上是0、2、4、6、8的數,都能被2整除,即能用2進行約分。個位上是0或者5的數,都能被5整除,即能用5進行約分。在約分時應注意利用。
22、偶數和奇數:能被2整除的數叫做偶數。不能被2整除的數叫做奇數。
23、質數(素數):一個數,如果只有1和它本身兩個約數,這樣的數叫做質數(或素數)。
24、合數:一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數。1不是質數,也不是合數。
28、利息=本金×利率×時間(時間一般以年或月為單位,應與利率的單位相對應)
29、利率:利息與本金的比值叫做利率。一年的利息與本金的比值叫做年利率。一月的利息與本金的比值叫做月利率。
30、自然數:用來表示物體個數的整數,叫做自然數。0也是自然數。
31、循環小數:一個小數,從小數部分的某一位起,一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做循環小數。如3. 141414
32、不循環小數:一個小數,從小數部分起,沒有一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做不循環小數。
如3. 141592654
33、無限不循環小數:一個小數,從小數部分起到無限位數,沒有一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做無限不循環小數。如3. 141592654……
34、什麼叫代數? 代數就是用字母代替數。
35、什麼叫代數式?用字母表示的式子叫做代數式。如:3x =ab+c
一般運算規則
1、 每份數×份數=總數總數÷每份數=份數 總數÷份數=每份數
2、 1倍數×倍數=幾倍數幾倍數÷1倍數=倍數 幾倍數÷倍數=1倍數
3、 速度×時間=路程路程÷速度=時間 路程÷時間=速度
4、 單價×數量=總價總價÷單價=數量 總價÷數量=單價
5、工作效率×工作時間=工作總量工作總量÷工作效率=工作時間 工作總量÷工作時間=工作效率
6、 加數+加數=和和-一個加數=另一個加數
7、 被減數-減數=差被減數-差=減數 差+減數=被減數
8、 因數×因數=積積÷一個因數=另一個因數
9、 被除數÷除數=商被除數÷商=除數 商×除數=被除數
小學數學圖形計算公式
1、正方形 C周長 S面積 a邊長
周長=邊長×4 C=4a
面積=邊長×邊長 S=a×a
2、正方體 V:體積 a:棱長
表面積=棱長×棱長×6 S表=a×a×6
體積=棱長×棱長×棱長 V=a×a×a
3、長方形 C周長 S面積 a邊長
周長=(長+寬)×2 C=2(a+b)
面積=長×寬 S=ab
4、長方體 V:體積 s:面積 a:長 b: 寬 h:高
表面積(長×寬+長×高+寬×高)×2 S=2(ab+ah+bh)
體積=長×寬×高 V=abh
5、三角形 s面積 a底 h高
面積=底×高÷2 s=ah÷2
三角形高=面積 ×2÷底三角形底=面積 ×2÷高
6、平行四邊形 s面積 a底 h高
面積=底×高 s=ah
7、梯形 s面積 a上底 b下底 h高
面積=(上底+下底)×高÷2 s=(a+b)× h÷2
8、圓形 S面積 C周長 πd=直徑 r=半徑
周長=直徑×π=2×π×半徑 C=πd=2πr
面積=半徑×半徑×π
9、圓柱體 v:體積 h:高 s;底面積 r:底面半徑 c:底面周長
側面積=底面周長×高表面積=側面積+底面積×2
體積=底面積×高體積=側面積÷2×半徑
10、圓錐體 v:體積 h:高 s;底面積 r:底面半徑體積=底面積×高÷3
相關 文章 :
1. 小升初數學基礎知識點順口溜
2. 小學三年級數學學習內容重點知識匯總
3. 小升初數學知識點匯總與常見易錯點
4. 小學數學六年級圓的知識要點解析
5. 六年級上冊數學知識點整理歸納
㈢ 小升初數學知識點總結
小升初數學知識點總結大全
引導語:小升初是作為學生要面臨的第一個大考,以下是我搜集整理的小升初數學知識點總結大全,歡迎大家閱讀!
一、整數和小數
1.最小的一位數是1,最小的自然數是
2.小數的意義:把整數1平均分成10份、100份、1000份這樣的一份或幾份分別是十分之幾、百分之幾、千分之幾可以用小數來表示。
3.小數點左邊依次是整數部分,小數點右邊是小數部分,依次是十分位、百分位、千分位
4.小數的分類:小數 有限小數 無限循環小數無限小數無限不循環小數
5.整數和小數都是按照十進制計數法寫出的數。
6.小數的性質:小數的末尾添上0或者去掉0,小數的大小不變。
7.小數點向右移動一位、二位、三位原來的數分別擴大10倍、100倍、1000倍
小數點向左移動一位、二位、三位原來的數分別縮小10倍、100倍、1000倍
二、數的整除
1.整除:整數a除以整數b(b0),除得的商正好是整數而且沒有餘數,我們就說a能被b整除,或者說b能整除a。
2.約數、倍數:如果數a能被數b整除,a就叫做b的倍數,b就叫做a的約數。
3.一個數倍數的個數是無限的,最小的倍數是它本身,沒有最大的倍數。
一個數約數的個數是有限的,最小的約數是1,最大的約數是它本身。
4.按能否被2整除,非0的自然數分成偶數和奇數兩類,能被2整除的數叫做偶數,不能被2整除的數叫做奇數。
5.按一個數約數的個數,非0自然數可分為1、質數、合數三類。
質數:一個數,如果只有1和它本身兩個約數,這樣的數叫做質數。質數都有2個約數。
合數:一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數。合數至少有3個約數。
最小的質數是2,最小的合數是
1~20以內的質數有:2、3、5、7、11、13、17、
1~20以內的合數有4、6、8、9、10、12、14、15、16、
6.能被2整除的數的特徵:個位上是0、2、4、6、8的數,都能被2整除。
能被5整除的數的特徵:個位上是0或者5的數,都能被5整除。
能被3整除的數的特徵:一個數的各位上 數的和能被3整除,這個數就能被3整除。
7.質因數:如果一個自然數的因數是質數,這個因數就叫做這個自然數的質因數。
8.分解質因數:把一個合數用質因數相乘的形式表示出來,叫做分解質因數。
9.公約數、公倍數:幾個數公有的約數,叫做這幾個數的公約數;其中最大的一個,叫做這幾個數的最大公約數。
幾個數公有的倍數,叫做這幾個數的公倍數;其中最小的一個,叫做這幾個數的最小公倍數。
10.一般關系的兩個數的最大公約數、最小公倍數用短除法來求;互質關系的兩個數最大公約數是1,最小公倍數是兩數之積;倍數關系的兩個數的最大公約數是小數,最小公倍數是大數。
11.互質數:公約數只有1的兩個數叫做互質數。
12.兩數之積等於最小公倍數和最大公約數的積。
三、四則運算
1.一個加數=和-另一個加數 被減數=差+減數 減數=被減數-差
一個因數=積另一個因數 被除數=商除數 除數=被除數商
2.在四則運算中,加、減法叫做第一級運算,乘、除法叫做第二級運算。
3.運算定律:
(1)加法交換律:a+b=b+a 乘法交換律:ab=b
兩個數相加,交換加數的位置,它們的和不變。
兩個數相加,交換因數的位置,它們的積不變。
(2)加法結合律:(a+b)+c=a+(b+c) 乘法結合律:(ab)c=a(b
三個數相加,先把前兩個數相加,再同第三個數相加;或者先把後兩個數相加,再同第一個數相加,它們的和不變。
三個數相乘,先把前兩個數相乘,再同第三個數相乘;或者先把後兩個數相乘,再同第一個數相乘,它們的積不變。
(3)乘法分配律:(a+b)c=ac+b
兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。
(4)減法的性質:a-b-c=a-(b+c) 除法的性質:abc=a(b
從一個數里連續減去兩個數,等於從這個數里減去兩個減數的和。
一個數連續除以兩個數,等於這個數除以兩個除數的積。
四、關系式
速度時間=路程 路程時間=速度 路程速度=時間
工作效率工作時間=工作總量 工作總量工作效率=工作時間 工作總量工作時間=工作效率
單價數量=總價 總價數量=單價 總價單價=數量
五、方程
1.方程:含有未知數的等式叫做方程。
2.方程的解:使方程左右兩邊相等的未知數的值,叫做方程的解。
3.解方程:求方程解的過程叫做解方程。
六、分數和百分數
1.分數的意義:把單位1平均分成若干份,表示這樣的一份或幾份的數叫做分數。
2.分數單位:把單位1平均分成若干份,表示其中一份的數,叫做分數單位。
3.分數和除法的聯系:分數的分子就是除法中的被除數,分母就是除法中的除數。
分數和小數的聯系:小數實際上就是分母是10、100、1000的分數。
分數和比的聯系:分數的分子就是比的前項,分數的分母就是比的後項。
4.分數的分類:分數可以分為真分數和假分數。
5.真分數:分子小於分母的分數叫做真分數。真分數小於1。
假分數:分子大於或等於分母的分數叫做假分數。假分數大於或者等於1。
6.最簡分數:分子與分母互質的分數叫做最簡分數。
7.分數的基本性質:分數的分子和分母同時乘或除以相同的數(零除外),分數的大小不變。
8.這樣的分數可以化成有限小數:前提是這個分數要是最簡分數,如果分母只含有2、5這2個質因數,這樣的分數就能化成有限小數。
9.百分數:表示一個數是另一個數的百分之幾的數叫做百分數。百分數也叫做百分率或者百分比。百分數通常用%來表示。
七、量的計量
1.長度單位有:千米、米、分米、厘米、毫米,寫出它們之間的進率
面積單位有:平方千米、公頃、平方米、平方分米、平方厘米,寫出它們之間的進率。
體積(容積)單位有:立方米、立方分米(升)、立方厘米(毫升),寫出它們之間的進率。
質量單位有:噸、千克、克,寫出它們之間的進率。
時間單位有:世紀、年、月、日、時、分、秒,寫出它們之間的進率。
2.一年中的大月有:1、3、5、7、8、10、12月,共7個,每月31天。
小月有:4、6、9、11月,共4個,每月30天。
二月平年是28天,閏年是29天。
左拳記月法
3.一年有4個季度,每個季度3個月。
4.平年閏年:公歷年份是4的倍數的一般是閏年,公歷年份是整百數的,必須是400的倍數才是閏年。
5.名數:把計量得到的數和單位名稱合起來叫做名數。
單名數:只帶有一個單位名稱的叫做單名數。
復名數:帶有兩個或兩個以上單位名稱的叫做復名數。
6.名數的改寫:高級單位的名數化成低級單位的名數乘進率,低級單位的名數化成高級單位的名數除以進率。
八、幾何初步知識
1.線段、射線、直線的聯系與區別:聯系是三者都是直的,區別是線段有兩個端點,可以量出長度;射線只有一個端點,可以無限延長;直線沒有端點,兩端都可以無限延長。射線和直線是無限長的。
2.角:從一點引出兩條射線所組成的圖形叫做角。
3.角的大小:角的大小看兩條邊叉開的大小,叉開的越大,角越大。
1.計量角的大小的單位:度,用符號表示。
2.小於90的角叫做銳角;大於90而小於180的角叫做鈍角。角的兩邊在一條直線上的角叫做平角。平角180。
3.垂線:兩條直線相交成直角時,這兩條直線互相垂直,其中一條直線是另一條直線的垂線,這兩條直線的交點叫做垂足。(畫圖說明)
4.平行線:在同一平面內不相交的兩條直線叫做平行線。也可以說這兩條直線互相平行。
(畫圖說明)平行線之間垂直線段的長度都相等。
5.三角形:有三條線段圍成的圖形叫做三角形。
6.三角形的分類:
(1)按角分:銳角三角形、鈍角三角形、直角三角形。
(2)按邊分:一般三角形、等腰三角形、等邊三角形。
10.三角形三個內角和是180。
11.四邊形:由四條線段圍成的圖形。
12.圓是一種曲線圖形。圓上任意一點到圓心的距離都相等,這個距離就是圓的半徑的長。
13.圓的半徑、直徑都有無數條。在同一個圓里,直徑是半徑的2倍,半徑是直徑的二分之一。
14.軸對稱圖形:如果一個圖形沿著一條直線對折,直線兩惻的圖形能夠完全重合,這個圖形就是軸對稱圖形。摺痕所在的這條直線叫做對稱軸。
15.學過的圖形中的軸對稱圖形有:圓、等腰三角形、等邊三角形、長方形、正方形、等腰梯形
16.周長:圍成一個圖形的所有邊長的總和就是這個圖形的周長。
面積:物體的表面或圍成的平面圖形的大小,叫做它們的面積。
17.表面積:立體圖形所有面的面積的和,叫做這個立體圖形的表面積。
體積:物體所佔空間的大小叫做物體的體積。
18.長方體、正方體都有12條棱,6個面,8個頂點。
正方體是特殊的長方體,等邊三角形是特殊的等腰三角形。
19.圓柱的三個特點:(1)上下一樣粗細(2)側面是曲面(3)兩個底面是相同的圓
20.圓柱的高:圓柱兩個底面之間的距離叫做圓柱的高。圓柱的高有無數條,這些高都平行且相等。
21.把圓柱的側面展開,得到一個長方形,這個長方形的長等於圓柱的底面的周長,寬等於圓柱的.高。
22.圓周率是一個無限不循環小數。=3.141592653
23.把圓等份成若干份,拼成的圖形接近於長方形。這個長方形的長相當於圓周長的一半,寬就是圓的半徑。
24.圓錐的高:從圓錐的頂點到底面圓心的距離是圓錐的高。
25.等底等高的圓錐的體積是圓柱的,等底等高的圓柱的體積是圓錐的三倍。
體積和底面積相等的圓柱和圓錐,圓柱的高是圓錐的,圓錐的高是圓柱的3倍。
九、比和比例
1.比的意義:兩個數相除又叫做兩個數的比。
比例的意義:表示兩個比相等的式子叫做比例。
2.求比值:比的前項除以比的後項所得的商叫做比值。
3.比的基本性質:比的前項和後項都乘或除以相同的數(0除外),比值不變。
比例的基本性質:在比例里,兩個外項的積等於兩個內項的積。
4.應用比的基本性質可以化簡比;
應用比例的基本性質可以判斷兩個比是否能組成比例,也可以求比例里的未知項,也就是解比例。
5.用字母表示比與除法和分數的關系。
a:b=ab=(b0)
6.比例尺:我們把圖上距離和實際距離的比,叫做這幅圖的比例尺。
7.圖上距離:實際距離=比例尺
或=比例尺 實際距離=圖上距離比例尺 圖上距離=實際距離比例尺
8.求比值的方法:根據比值的意義,用前項除以後項,結果是一個數。
化簡比的方法:根據比的基本性質,把比的前項和後項都乘或除以相同的數(零除外),結果是一個最簡整數比。
9.正比例關系:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的比的比值(也就是商)一定,這兩種量就叫做成正比例的量,它們之間的關系叫做正比例關系。
用式子表示:=k(一定),用圖表示正比例關系是一條直線。
10.反比例關系:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,它們之間的關系叫做反比例關系。
用式子表示:xy=k(一定),用圖表示反比例關系是一條曲線。
十、簡單的統計
1.常見的統計圖有條形統計圖、折線統計圖和扇形統計圖。
2.條形統計圖特點:(1)用一個單位長度表示一定的數量。(2)用直條的長短來表示數量的多少。 作用:從圖中能清楚地看出各數量的多少,便於相互比較。
折線統計圖的特點:(1)用一個單位長度表示一定的數量。(2)用折線的起伏來表示數量的增減變化。 作用:從圖中能清楚地看出數量的增減變化情況,也能看出數量的多少。
十一、公式的整理
平面圖形:
1.長方形:
周長=(長+寬)2 C長=(a+b)2
面積=長寬 S長=a b
2.正方形:
周長=邊長4 C正=a4
面積=邊長邊長 S正=aa
3.平行四邊形的面積=底高 S平=ah
4.三角形的面積=底高2 S三=ah2
5.梯形的面積=(上底+下底)高2 S梯=(a+b)h
6.圓的周長=直徑3.14 C圓=
圓的周長=半徑23.14 C圓=2
圓的面積=半徑的平方圓周率 S圓=
立體圖形:
1.長方體
表面積=(長寬+長高+寬高)2 S長表=(ab+ah+bh)2
體積=長寬高 V長=abh
2.正方體
表面積=棱長棱長6 S正表=aa
體積=棱長棱長棱長 V正=a3
3.圓柱
側面積=底面周長高
表面積=側面積+兩個底面積
體積=底面積高
4.以上立體圖形的表面積、體積可以統一成公式為:
表面積=底面周長高+兩個底面積 體積=底面積高
5.圓錐的體積=圓柱的體積3 V錐=sh3
;㈣ 小升初數學知識點總結
數學知識點多如毛發。不積跬步,無以至千里;不積小流,無以成江海。對於考試而言,每天進步一點點,基礎扎實一點點,通過考試就會更容易一點點。接下來是我為大家整理的小升初數學知識點 總結 ,希望大家喜歡!
↓↓↓點擊獲取更多"小升初知識點"↓↓↓
★ 歷年小升初作文題目 ★
★ 小升初語文陳述句反問句互改 ★
★ 小升初英語語法必背知識點 ★
★ 小升初一至六年級數學知識點 ★
小升初數學知識點總結一
計演算法則【整數、小數、分數】
一、計算整數加、減法要把相同數位對齊,從低位算起。
二、計算小數加、減法要把小數點對齊,從低位算起。
三、小數乘法:1、先按整數乘法算出積是多少,看因數中一共有幾位小數,就從積的右邊起數出幾位,點上小數點。
2、注意:在積里點小數點時,位數不夠的,要在前面用0補足。
四、小數除法:
1、商的小數點要和被除數的小數點對齊;
2、有餘數時,要在後面添0,繼續往下除;
3、個位不夠商1時,要在商的整數部分寫0,點上小數點,再繼續除。
4、把除數轉化成整數時,除數的小數點向右移動幾位,被除數的小數點也要向右移動幾位。
5、當被除數的小數位數少於除數的小數位數時,要在被除數的末尾用0補足。
五、一個小數乘10、100、1000……只要把這個小數的小數點向右移動一位、兩位、三位……
六、一個小數除以10、100、1000……只要把這個小數的小數點向左移動一位、兩位、三位……
七、分數加、減法:1同分母分數相加減,把分子相加減,分母不變。2異分母分數相加減,要先通分化成同分母分數,然後再相加減。
八、分數大小的比較:1同分母分數相比較,分子大的大,分子小的小。2異分母的分數相比較,先通分然後再比較;若分子相同,分母大的反而小。
九、分數乘分數,用分子相乘的積作分子,分母相乘的積作分母。
十、甲數除以乙數(0除外),等於甲數乘乙數的倒數。
小升初數學知識點總結二
用字母表示數
1、用字母表示數的意義和作用
_字母表示數,可以把數量關系簡明的表達出來,同時也可以表示運算的結果。
2、用字母表示常見的數量關系、運算定律和性質、幾何形體的計算公式
(1)常見的數量關系
路程用s表示,速度v用表示,時間用t表示,三者之間的關系:
s=vt
v=s/t
t=s/v
總價用a表示,單價用b表示,數量用c表示,三者之間的關系:
a=bc
b=a/c
c=a/b
(2)運算定律和性質
加法交換律:a+b=b+a
加法結合律:(a+b)+c=a+(b+c)
乘法交換律:ab=ba
乘法結合律:(ab)c=a(bc)
乘法分配律:(a+b)c=ac+bc
減法的性質:a-(b+c)=a-b-c
(3)用字母表示幾何形體的公式
長方形的長用a表示,寬用b表示,周長用c表示,面積用s表示。
c=2(a+b)
s=ab
正方形的邊長a用表示,周長用c表示,面積用s表示。
c=4a
s=a2
平行四邊形的底a用表示,高用h表示,面積用s表示。
s=ah
三角形的底用a表示,高用h表示,面積用s表示。
s=ah/2
梯形的上底用a表示,下底b用表示,高用h表示,中位線用m表示,面積用s表示。
s=(a+b)h/2
s=mh
圓的半徑用r表示,直徑用d表示,周長用c表示,面積用s表示。
c=∏d=2∏r
s=∏r2
扇形的半徑用r表示,n表示圓心角的度數,面積用s表示。
s=∏nr2/360
長方體的長用a表示,寬用b表示,高用h表示,表面積用s表示,體積用v表示。
v=sh
s=2(ab+ah+bh)
v=abh
正方體的棱長用a表示,底面周長c用表示,底面積用s表示,體積用v表示.
s=6a2
v=a3
圓柱的高用h表示,底面周長用c表示,底面積用s表示,體積用v表示.
s側=ch
s表=s側+2s底
v=sh
圓錐的高用h表示,底面積用s表示,體積用v表示.
v=sh/3
3、用字母表示數的寫法
數字和字母、字母和字母相乘時,乘號可以記作「.」,或者省略不寫,數字要寫在字母的前面。
當「1」與任何字母相乘時,「1」省略不寫。
在一個問題中,同一個字母表示同一個量,不同的量用不同的字母表示。
用含有字母的式子表示問題的答案時,除數一般寫成分母,如果式子中有加號或者減號,要先用括弧把含字母的式子括起來,再在括弧後面寫上單位的名稱。
4、將數值代入式子求值
_具體的數代入式子求值時,要注意書寫格式:先寫出字母等於幾,然後寫出原式,再把數代入式子求值。字母表示的是數,後面不寫單位名稱。
_一個式子,式子中所含字母取不同的數值,那麼所求出的式子的值也不相同。
小升初數學知識點總結三
年齡問題
年齡問題的主要特點是兩人的年齡差不變,而倍數差卻發生變化。
常用的計算公式是:
成倍時小的年齡=大小年齡之差÷(倍數-1)
幾年前的年齡=小的現年-成倍數時小的年齡
幾年後的年齡=成倍時小的年齡-小的現在年齡
例父親今年54歲,兒子今年12歲。幾年後父親的年齡是兒子年齡的4倍?
(54-12)÷(4-1) =42÷3 =14(歲)→兒子幾年後的年齡
14-12=2(年)→2年後
答:2年後父親的年齡是兒子的4倍。
例2、父親今年的年齡是54歲,兒子今年有12歲。幾年前父親的年齡是兒子年齡的7倍?
(54-12)÷(7-1) =42÷6=7(歲)→兒子幾年前的年齡
12-7=5(年)→5年前
答:5年前父親的年齡是兒子的7倍。
例3、王剛父母今年的年齡和是148歲,父親年齡的3倍與母親年齡的差比年齡和多4歲。王剛父母親今年的年齡各是多少歲?
(148×2+4)÷(3+1) =300÷4 =75(歲)→父親的年齡
148-75=73(歲)→母親的年齡
答:王剛的父親今年75歲,母親今年73歲。
或:(148+2)÷2 =150÷2 =75(歲) 75-2=73(歲)
小升初數學知識點總結四
數的性質和規律
一、商不變的規律
在除法里,被除數和除數同時擴大或者同時縮小相同的倍,商不變。
二、小數的性質
在小數的末尾添上零或者去掉零小數的大小不變。
三、小數點位置的移動引起小數大小的變化
1. 小數點向右移動一位,原來的數就擴大10倍;小數點向右移動兩位,原來的數就擴大100倍;小數點向右移動三位,原來的數就擴大1000倍……
2. 小數點向左移動一位,原來的數就縮小10倍;小數點向左移動兩位,原來的數就縮小100倍;小數點向左移動三位,原來的數就縮小1000倍……
3. 小數點向左移或者向右移位數不夠時,要用「0"補足位。
四、分數的基本性質
分數的分子和分母都乘以或者除以相同的數(零除外),分數的大小不變。
五、分數與除法的關系
1. 被除數÷除數= 被除數/除數
2. 因為零不能作除數,所以分數的分母不能為零。
3. 被除數相當於分子,除數相當於分母。
小升初數學知識點總結五
速算口訣
1、十幾乘十幾:
口訣:頭乘頭,尾加尾,尾乘尾。
例:12×14=?
解:1×1=1
2+4=6
2×4=8
12×14=168
註:個位相乘,不夠兩位數要用0佔位。
2、頭相同,尾互補(尾相加等於10):
口訣:一個頭加1後,頭乘頭,尾乘尾。
例:23×27=?
解:2+1=3
2×3=6
3×7=21
23×27=621
註:個位相乘,不夠兩位數要用0佔位。
3、第一個乘數互補,另一個乘數數字相同:
口訣:一個頭加1後,頭乘頭,尾乘尾。
例:37×44=?
解:3+1=4
4×4=16
7×4=28
37×44=1628
註:個位相乘,不夠兩位數要用0佔位。
4、幾十一乘幾十一:
口訣:頭乘頭,頭加頭,尾乘尾。
例:21×41=?
解:2×4=8
2+4=6
1×1=1
21×41=861
5、11乘任意數:
口訣:首尾不動下落,中間之和下拉。
例:11×23125=?
解:2+3=5
3+1=4
1+2=3
2+5=7
2和5分別在首尾
11×23125=254375
註:和滿十要進一。
6、十幾乘任意數:
口訣:第二乘數首位不動向下落,第一因數的個位乘以第二因數後面每一個數字,加下一位數,
再向下落。
例:13×326=?
解:13個位是3
3×3+2=11
3×2+6=12
3×6=18
13×326=4238
註:和滿十要進一。
小升初數學知識點總結相關 文章 :
★ 小升初數學知識考點歸納
★ 小升初數學知識點總結
★ 小升初數學考試知識點整理
★ 小升初數學知識點匯總與常見易錯點
★ 小升初數學考試必備知識點與易錯點
★ 小升初總復習數學
★ 小升初考試必備數學10大難點和34個重難點公式
★ 小升初數學考試易錯點大總結
★ 小升初數學經典必考題型50道
★ 小升初數學知識點:統計圖的意義與分類
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();㈤ 六年級數學考試重點小升初數學知識點
很多同學都對數學十分上心,數學知識一直都是很多同學的難點。那麼六年級有哪些考試重點?小升初考試又考哪些知識點?
小升初數學考試公式
一、體積和表面積
三角形的面積=底×高÷2。公式S=a×h÷2
正方形的面積=邊長×邊長公式S=a2
長方形的面積=長×寬公式S=a×b
平行四邊形的面積=底×高公式S=a×h
梯形的面積=(上底+下底)×高÷2公式S=(a+b)h÷2
內角和:三角形的內角和=180度。
長方體的表面積=(長×寬+長×高+寬×高)×2公式:S=(a×b+a×c+b×c)×2
正方體的表面積=棱長×棱長×6公式:S=6a2
長方體的體積=長×寬×高公式:V=abh
長方體(或正方體)的體積=底面積×高公式:V=abh
正方體的體積=棱長×棱長×棱長公式:V=a3
圓的周長=直徑×π公式:L=πd=2πr
圓的面積=半徑×半徑×π公式:S=πr2
圓柱的表(側)面積:圓柱的表(側)面積等於底面的周長乘高。公式:S=ch=πdh=2πrh
圓柱的表面積:圓柱的表面積等於底面的周長乘高再加上兩頭的圓的面積。公式:S=ch+2s=ch+2πr2
圓柱的體積:圓柱的體積等於底面積乘高。公式:V=Sh
圓錐的體積=1/3底面×積高。公式:V=1/3Sh
小學數學的重要內容
1.分數乘除法。
分數乘、除法屬於分數的基本知識和技能,而且兩者關系密切,教材將這兩部分內容集中安排。教材首先通過一組題目,強調分數乘除法的關系,即分數除法是分數乘法的逆運算。同時對分數乘除法的計算方法進行了復習。
2.百分數。
百分數內容的復習重點放在百分數的應用,緊接在用分數乘除法解決問題後編排,這樣可以使學生看到它們在結構、解題思路上的一致性,便於加強知識間的聯系。
3.空間與圖形。
這部分內容包括位置與圓的復習。
在第一學段中,學生已經會用第幾組、第幾個來表示物體的位置,本學期進一步學慣用數對表示物體的位置。圓的認識包括直徑、半徑、π、軸對稱圖形等概念以及圓的周長和面積、圓的畫法等內容,教材重點復習了圓的周長、面積計算公式和軸對稱圖形。
4.統計。
統計的內容主要是認識扇形統計圖。學生進一步體會扇形統計圖的特點,即能清楚地表明各部分數量同總數之間的關系,並根據給出的信息解決一些問題,以促使學生分析信息、解決問題能力的提高。
數學學習方法
只要自己課堂上面把握好時間,那麼自己的數學成績自然而然地就會提高。上課的時候,千萬不能馬虎大意。這一點是非常的重要,自己平時一定要牢記。
學習好的學生一般都會有自己的錯題集,錯題集非常的重要,學習過程當中,自己容易做錯的題目完全可以抄寫在數學錯題集上面。這樣做的目的就是能夠查漏補缺,數學學好是一個緩慢的過程。
㈥ 小升初數學重要知識點整理
小升初數學重要知識點整理
孩子的教育始終是家長關心的頭等大事,所有的家長都希望自己的孩子能夠接受最好的教育,有更好的未來。為此為大家提供小升初數學重要知識點。希望對廣大家長和小學生們都有所幫助!
小升初數學重要知識點:整數
數和數的運算
一 概念
(一)整數
1 .整數的意義
自然數和0都是整數。
2 .自然數
我們在數物體的時候,用來表示物體個數的1,2,3叫做自然數。
一個物體也沒有,用0表示。0也是自然數。
3.計數單位 :一(個)、十、百、千、萬、十萬、百萬、千萬、億都是計數單位。
每相鄰兩個計數單位之間的進率都是10。這樣的計數法叫做十進制計數法。
4. 數位
計數單位按照一定的順序排列起來,它們所佔的位置叫做數位。
5.數的整除
整數a除以整數b(b 0),除得的商是整數而沒有餘數,我們就說a能被b整除,或者說b能整除a 。
如果數a能被數b(b 0)整除,a就叫做b的倍數,b就叫做a的約數(或a的因數)。倍數和約數是相互依存的。
因為35能被7整除,所以35是7的倍數,7是35的約數。
一個數的約數的'個數是有限的,其中最小的約數是1,最大的 約數是它本身。例如:10的約數有1、2、5、10,其中最小的約數是1,最大的約數是10。
一個數的倍數的個數是無限的,其中最小的倍數是它本身。3的倍數有:3、6、9、12其中最小的倍數是3 ,沒有最大的倍數。
個位上是0、2、4、6、8的數,都能被2整除,例如:202、480、304,都能被2整除。。
個位上是0或5的數,都能被5整除,例如:5、30、405都能被5整除。。
一個數的各位上的數的和能被3整除,這個數就能被3整除,例如:12、108、204都能被3整除。
一個數各位數上的和能被9整除,這個數就能被9整除。
能被3整除的數不一定能被9整除,但是能被9整除的數一定能被3整除。
一個數的末兩位數能被4(或25)整除,這個數就能被4(或25)整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。
一個數的末三位數能被8(或125)整除,這個數就能被8(或125)整除。例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。
能被2整除的數叫做偶數。
不能被2整除的數叫做奇數。
0也是偶數。自然數按能否被2 整除的特徵可分為奇數和偶數。
一個數,如果只有1和它本身兩個約數,這樣的數叫做質數(或素數),100以內的質數有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數,例如 4、6、8、9、12都是合數。
1不是質數也不是合數,自然數除了1外,不是質數就是合數。如果把自然數按其約數的個數的不同分類,可分為質數、合數和1。
每個合數都可以寫成幾個質數相乘的形式。其中每個質數都是這個合數的因數,叫做這個合數的質因數,例如15=35,3和5 叫做15的質因數。
把一個合數用質因數相乘的形式表示出來,叫做分解質因數。
例如把28分解質因數
幾個數公有的約數,叫做這幾個數的公約數。其中最大的一個,叫做這幾個數的最大公約數,例如12的約數有1、2、3、4、6、12;18的約數有1、2、3、6、9、18。其中,1、2、3、6是12和1 8的公約數,6是它們的最大公約數。
公約數只有1的兩個數,叫做互質數,成互質關系的兩個數,有下列幾種情況:
1和任何自然數互質。
相鄰的兩個自然數互質。
兩個不同的質數互質。
當合數不是質數的倍數時,這個合數和這個質數互質。
兩個合數的公約數只有1時,這兩個合數互質,如果幾個數中任意兩個都互質,就說這幾個數兩兩互質。
如果較小數是較大數的約數,那麼較小數就是這兩個數的最大公約數。
如果兩個數是互質數,它們的最大公約數就是1。
幾個數公有的倍數,叫做這幾個數的公倍數,其中最小的一個,叫做這幾個數的最小公倍數,如2的倍數有2、4、6 、8、10、12、14、16、18
3的倍數有3、6、9、12、15、18 其中6、12、18是2、3的公倍數,6是它們的最小公倍數。。
如果較大數是較小數的倍數,那麼較大數就是這兩個數的最小公倍數。
如果兩個數是互質數,那麼這兩個數的積就是它們的最小公倍數。
幾個數的公約數的個數是有限的,而幾個數的公倍數的個數是無限的。
;㈦ 小升初數學知識點
小升初數學知識點
考試近在咫尺了,考生們是否已經准備好考試了呢?考試前的復習是很重要的哦,下面是我為大家准備的考試實用的知識點復習,希望能夠幫助大家高效復習,這里先預祝考生們考試順利。
一、數學知識點:方陣問題
1、概念和分類
學生排隊,士兵列隊,橫著排叫做行,豎著排叫做列。如果行數與列數都相等,則正好排成一個正方形,這種圖形就叫方隊,也叫做方陣。
方陣包括實心方陣和空心方陣。如果方陣排滿物體,叫做實心方陣;如果方陣的中間不排物體,叫做空心方陣。而實心方陣的每一層又可以單獨看成一個空心方陣,因此空心方陣的規律對它也是適用的。
2、基本規律
(1)方陣不論哪一層,每邊上的人(或物)數量都相同,每向里一層,每邊上的人數就少2,
四周上的人數就少8。(可應用等差數列相關知識進行解題)
(2)每層總數=[每邊人(或物)數-1]×4
每邊人(或物)數=每層總數÷4+1
(3)實心方陣
總人(或物)數=每邊人(或物)數×每邊人(或物)數
(4)空心方陣
總人(或物)數=(最外層每邊人(或物)數-層數)×層數×4
總人(或物)數=(最外層人(或物)數+最內層人(或物)數)*層數/2
最外層每邊數=總人(或物)數÷4÷層數+層數
二、數學知識點:雞兔同籠
1、雞兔同籠問題的來歷
這個問題,是我國古代著名趣題之一.大約在1500年前,《孫子算經》中就記載了這個有趣的問題.書中是這樣敘述的:「今有雞兔同籠,上有三十五頭,下有九十四足,問雞兔各幾何?這四句話的意思是:有若干只雞兔同在一個籠子里,從上面數,有35個頭;從下面數,有94隻腳.求籠中各有幾只雞和兔?
你會解答這個問題嗎?你想知道《孫子算經》中是如何解答這個問題的嗎?
2、雞兔同籠的解題思路
(1)砍足法
解答思路是這樣的:假如砍去每隻雞、每隻兔一半的腳,則每隻雞就變成了「獨腳雞」,每隻兔就變成了「雙腳兔」.這樣,雞和兔的腳的.總數就由94隻變成了47隻;如果籠子里有一隻兔子,則腳的總數就比頭的總數多1.因此,腳的總只數47與總頭數35的差,就是兔子的只數,即47-35=12(只).顯然,雞的只數就是35-12=23(只)了。
;㈧ 小升初數學知識點歸納
小升初數學知識點歸納1
一、算術
1、加法交換律:兩數相加交換加數的位置,和不變。
2、加法結合律:a + b = b + a
3、乘法交換律:a × b = b × a
4、乘法結合律:a × b × c = a ×(b × c)
5、乘法分配律:a × b + a × c = a × b + c
6、除法的性質:a ÷ b ÷ c = a ÷(b × c)
7、除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。 O除以任何不是O的數都得O。簡便乘法:被乘數、乘數末尾有O的乘法,可以先把O前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。
8、有餘數的除法:被除數=商×除數+余數
二、方程、代數與等式
等式:等號左邊的數值與等號右邊的數值相等的式子叫做等式。等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,等式仍然成立。
方程式:含有未知數的等式叫方程式。
一元一次方程式:含有一個未知數,並且未知數的次數是一次的等式叫做一元一次方程式。學會一元一次方程式的例法及計算。即例出代有χ的算式並計算。
代數:代數就是用字母代替數。
代數式:用字母表示的式子叫做代數式。如:3x =ab+c
三、體積和表面積
三角形的面積=底×高÷2。公式S= a×h÷2
正方形的面積=邊長×邊長公式S= a2
長方形的面積=長×寬公式S= a×b
平行四邊形的面積=底×高公式S= a×h
梯形的面積=(上底+下底)×高÷2公式S=(a+b)h÷2
內角和:三角形的內角和=180度。
長方體的表面積=(長×寬+長×高+寬×高) ×2公式:S=(a×b+a×c+b×c)×2
正方體的表面積=棱長×棱長×6公式:S=6a2
長方體的體積=長×寬×高公式:V = abh
長方體(或正方體)的體積=底面積×高公式:V = abh
正方體的體積=棱長×棱長×棱長公式:V = a3
圓的周長=直徑×π公式:L=πd=2πr
圓的面積=半徑×半徑×π公式:S=πr2
圓柱的表(側)面積:圓柱的表(側)面積等於底面的周長乘高。公式:S=ch=πdh=2πrh
圓柱的表面積:圓柱的表面積等於底面的周長乘高再加上兩頭的圓的面積。公式:S=ch+2s=ch+2πr2
圓柱的體積:圓柱的體積等於底面積乘高。公式:V=Sh
圓錐的體積=1/3底面×積高。公式:V=1/3Sh
四、分數
分數:把單位「1」平均分成若干份,表示這樣的一份或幾分的數,叫做分數。
分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。異分母的分數相比較,先通分然後再比較;若分子相同,分母大的反而小。
分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。
分數乘分數,用分子相乘的積作分子,分母相乘的'積作為分母。
分數的加、減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
倒數的概念:1.如果兩個數乘積是1,我們稱一個是另一個的倒數。這兩個數互為倒數。1的倒數是1,0沒有倒數。
分數除以整數(0除外),等於分數乘以這個整數的倒數。
分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小
分數的除法則:除以一個數(0除外),等於乘這個數的倒數。
真分數:分子比分母小的分數叫做真分數。
假分數:分子比分母大或者分子和分母相等的分數叫做假分數。假分數大於或等於1。
帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。
分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小不變。
小升初數學知識點歸納2
一.整數和小數
1.最小的一位數是1,最小的自然數是0
2.小數的意義:把整數「1」平均分成10份、100份、1000份……這樣的一份或幾份分別是十分之幾、百分之幾、千分之幾……可以用小數來表示。
3.小數點左邊依次是整數部分,小數點右邊是小數部分,依次是十分位、百分位、千分位……
4.小數的分類:小數 有限小數
無限循環小數
無限小數
無限不循環小數
5.整數和小數都是按照十進制計數法寫出的數。
6.小數的性質:小數的末尾添上0或者去掉0,小數的大小不變。
7.小數點向右移動一位、二位、三位……原來的數分別擴大10倍、100倍、1000倍……
小數點向左移動一位、二位、三位……原來的數分別縮小10倍、100倍、1000倍……
二.數的整除
1.整除:整數a除以整數b(b≠0),除得的商正好是整數而且沒有餘數,我們就說a能被b整除,或者說b能整除a。
2.約數、倍數:如果數a能被數b整除,a就叫做b的倍數,b就叫做a的約數。
3.一個數倍數的個數是無限的,最小的倍數是它本身,沒有最大的倍數。
一個數約數的個數是有限的,最小的約數是1,最大的約數是它本身。
4.按能否被2整除,非0的自然數分成偶數和奇數兩類,能被2整除的數叫做偶數,不能被2整除的數叫做奇數。
5.按一個數約數的個數,非0自然數可分為1、質數、合數三類。
質數:一個數,如果只有1和它本身兩個約數,這樣的數叫做質數。質數都有2個約數。
合數:一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數。合數至少有3個約數。
最小的質數是2,最小的合數是4
1~20以內的質數有:2、3、5、7、11、13、17、19
1~20以內的合數有「4、6、8、9、10、12、14、15、16、18
6.能被2整除的數的特徵:個位上是0、2、4、6、8的數,都能被2整除。
能被5整除的數的特徵:個位上是0或者5的數,都能被5整除。
小升初數學知識點歸納3
一、數列求和
等差數列:在一列數中,任意相鄰兩個數的差是一定的,這樣的一列數,就叫做等差數列。
基本概念:首項:等差數列的第一個數,一般用a1表示;
項數:等差數列的所有數的個數,一般用n表示;
公差:數列中任意相鄰兩個數的差,一般用d表示;
通項:表示數列中每一個數的公式,一般用an表示;
數列的和:這一數列全部數字的和,一般用Sn表示.
基本思路:等差數列中涉及五個量:a1 ,an,d, n, sn,,通項公式中涉及四個量,如果己知其中三個,就可求出第四個;求和公式中涉及四個量,如果己知其中三個,就可以求這第四個。
基本公式:通項公式:an = a1+(n-1)d;
通項=首項+(項數一1) ×公差;
數列和公式:sn,= (a1+ an)×n÷2;
數列和=(首項+末項)×項數÷2;
項數公式:n= (an- a1)÷d+1;
項數=(末項-首項)÷公差+1;
公差公式:d =(an-a1))÷(n-1);
公差=(末項-首項)÷(項數-1);
關鍵問題:確定已知量和未知量,確定使用的公式。
二、加法乘法原理和幾何計數
加法原理:如果完成一件任務有n類方法,在第一類方法中有m1種不同方法,在第二類方法中有m2種不同方法……,在第n類方法中有mn種不同方法,那麼完成這件任務共有:m1+ m2....... +mn種不同的方法。
關鍵問題:確定工作的分類方法。
基本特徵:每一種方法都可完成任務。
乘法原理:如果完成一件任務需要分成n個步驟進行,做第1步有m1種方法,不管第1步用哪一種方法,第2步總有m2種方法……不管前面n-1步用哪種方法,第n步總有mn種方法,那麼完成這件任務共有:m1×m2....... ×mn種不同的方法。
關鍵問題:確定工作的完成步驟
基本特徵:每一步只能完成任務的一部分。
直線:一點在直線或空間沿一定方向或相反方向運動,形成的軌跡。
直線特點:沒有端點,沒有長度。
線段:直線上任意兩點間的距離。這兩點叫端點。
線段特點:有兩個端點,有長度。
射線:把直線的一端無限延長。
射線特點:只有一個端點;沒有長度
①數線段規律:總數=1+2+3+…+(點數一1);
②數角規律=1+2+3+…+(射線數一1);
③數長方形規律:個數=長的線段數×寬的線段數:
④數長方形規律:個數=1×1+2×2+3×3+…+行數×列數。
小升初數學知識點:加法乘法原理和幾何計數
三、質數與合數
質數:一個數除了1和它本身之外,沒有別的約數,這個數叫做質數,也叫做素數。
合數:一個數除了1和它本身之外,還有別的約數,這個數叫做合數。
質因數:如果某個質數是某個數的約數,那麼這個質數叫做這個數的質因數。
分解質因數:把一個數用質數相乘的形式表示出來,叫做分解質因數。通常用短除法分解質因數。任何一個合數分解質因數的結果是唯一的。
分解質因數的標准表示形式:N= ,其中a1、a2、a3……an都是合數N的質因數,且a1……。
求約數個數的公式:P=(r1+1)×(r2+1)×(r3+1)×……×(rn+1)
互質數:如果兩個數的最大公約數是1,這兩個數叫做互質數。
四、約數與倍數
約數和倍數:若整數a能夠被b整除,a叫做b的倍數,b就叫做a的約數。
公約數:幾個數公有的約數,叫做這幾個數的公約數;其中最大的一個,叫做這幾個數的最大公約數。
最大公約數的性質:
1、幾個數都除以它們的最大公約數,所得的幾個商是互質數
2、幾個數的最大公約數都是這幾個數的約數
3、幾個數的公約數,都是這幾個數的最大公約數的約數。
4、幾個數都乘以一個自然數m,所得的積的最大公約數等於這幾個數的最大公約數乘以m。
例如:12的約數有1、2、3、4、6、12;
18的約數有:1、2、3、6、9、18;
那麼12和18的公約數有:1、2、3、6;
那麼12和18最大的公約數是:6,記作(12,18)=6;
求最大公約數基本方法:
1、分解質因數法:先分解質因數,然後把相同的因數連乘起來。
2、短除法:先找公有的約數,然後相乘。
3、輾轉相除法:每一次都用除數和余數相除,能夠整除的那個余數,就是所求的最大公約數。
公倍數:幾個數公有的倍數,叫做這幾個數的公倍數;其中最小的一個,叫做這幾個數的最小公倍數。
12的倍數有:12、24、36、48……;
18的倍數有:18、36、54、72……;
那麼12和18的公倍數有:36、72、108……;
那麼12和18最小的公倍數是36,記作[12,18]=36;
最小公倍數的性質:
1、兩個數的任意公倍數都是它們最小公倍數的倍數。
2、兩個數最大公約數與最小公倍數的乘積等於這兩個數的乘積。
求最小公倍數基本方法:1、短除法求最小公倍數;2、分解質因數的方法。
20172017小升初數學復習重點大全 :約數與倍數
五、數的整除
一、基本概念和符號:
1、整除:如果一個整數a,除以一個自然數b,得到一個整數商c,而且沒有餘數,那麼叫做a能被b整除或b能整除a,記作b|a。
2、常用符號:整除符號「|」,不能整除符號「 」;因為符號「∵」,所以的符號「∴」;
二、整除判斷方法:
1. 能被2、5整除:末位上的數字能被2、5整除。
2. 能被4、25整除:末兩位的數字所組成的數能被4、25整除。
3. 能被8、125整除:末三位的數字所組成的數能被8、125整除。
4. 能被3、9整除:各個數位上數字的和能被3、9整除。
5. 能被7整除:
①末三位上數字所組成的數與末三位以前的數字所組成數之差能被7整除
②逐次去掉最後一位數字並減去末位數字的2倍後能被7整除。
6. 能被11整除:
①末三位上數字所組成的數與末三位以前的數字所組成的數之差能被11整除。
②奇數位上的數字和與偶數位數的數字和的差能被11整除。
③逐次去掉最後一位數字並減去末位數字後能被11整除。
7. 能被13整除:
①末三位上數字所組成的數與末三位以前的數字所組成的數之差能被13整除。
②逐次去掉最後一位數字並減去末位數字的9倍後能被13整除
三、整除的性質:
1. 如果a、b能被c整除,那麼(a+b)與(a-b)也能被c整除。
2. 如果a能被b整除,c是整數,那麼a乘以c也能被b整除。
3. 如果a能被b整除,b又能被c整除,那麼a也能被c整除。
4. 如果a能被b、c整除,那麼a也能被b和c的最小公倍數整除。
20172017小升初數學復習重點大全 :數的整除
六、余數問題
余數的性質:
①余數小於除數。
②若a、b除以c的余數相同,則c|a-b或c|b-a。
③a與b的和除以c的余數等於a除以c的余數加上b除以c的余數的和除以c的余數。
④a與b的積除以c的余數等於a除以c的余數與b除以c的余數的積除以c的余數
余數、同餘與周期
一、同餘的定義:
①若兩個整數a、b除以m的余數相同,則稱a、b對於模m同餘。
②已知三個整數a、b、m,如果m|a-b,就稱a、b對於模m同餘,記作a≡b(mod m),讀作a同餘於b模m
二、同餘的性質:
①自身性:a≡a(mod m);
②對稱性:若a≡b(mod m),則b≡a(mod m);
③傳遞性:若a≡b(mod m),b≡c(mod m),則a≡ c(mod m);
④和差性:若a≡b(mod m),c≡d(mod m),則a+c≡b+d(mod m),a-c≡b-d(mod m);
⑤相乘性:若a≡ b(mod m),c≡d(mod m),則a×c≡ b×d(mod m);
⑥乘方性:若a≡b(mod m),則an≡bn(mod m);
⑦同倍性:若a≡ b(mod m),整數c,則a×c≡ b×c(mod m×c);
三、關於乘方的預備知識:
①若A=a×b,則MA=Ma×b=(Ma)b
②若B=c+d則MB=Mc+d=Mc×Md
四、被3、9、11除後的余數特徵:
①一個自然數M,n表示M的各個數位上數字的和,則M≡n(mod 9)或(mod 3);
②一個自然數M,X表示M的各個奇數位上數字的和,Y表示M的各個偶數數位上數字的和,則M≡Y-X或M≡11-(X-Y)(mod 11);
五、費爾馬小定理:如果p是質數(素數),a是自然數,且a不能被p整除,則ap-1(mod p)。
數學是小升初考試中的一個重要科目,所以我們在小升初總復習的時候,都會把數學作為一個重點。因為相對於其他科目來說,數學是拉分比較大的一個科目。為了使大家能夠更好的復習,我們為大家整理了2017年小升初數學常見知識點,僅供參考。
小升初數學知識點歸納4
和差問題的公式
(和+差)÷2=大數
(和-差)÷2=小數
和倍問題
和÷(倍數-1)=小數
小數×倍數=大數
(或者和-小數=大數)
差倍問題
差÷(倍數-1)=小數
小數×倍數=大數
(或小數+差=大數)
植樹問題
1非封閉線路上的植樹問題主要可分為以下三種情形:
⑴如果在非封閉線路的兩端都要植樹,那麼:
株數=段數+1=全長÷株距-1
全長=株距×(株數-1)
株距=全長÷(株數-1)
⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那麼:
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
⑶如果在非封閉線路的兩端都不要植樹,那麼:
株數=段數-1=全長÷株距-1
全長=株距×(株數+1)
株距=全長÷(株數+1)
2封閉線路上的植樹問題的數量關系如下
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
㈨ 小升初數學考試知識點整理
小升初數學對於很多孩子來說並不容易、孩子在數學方面脫穎而出是十分必要的。前面幾年所學的知識都能反映在小升初那張試卷上的,無非也就那麼幾個知識點。而在這些知識點中,重要的無非也就是這么幾個——"數、行、形、算"。接下來是我為大家整理的小升初數學考試知識點整理!
↓↓↓點擊獲取更多"小升初知識點"↓↓↓
★ 小升初一至六年級數學知識點 ★
★ 歷年小升初作文題目 ★
★ 小升初語文陳述句反問句互改 ★
★ 小升初英語語法必背知識點 ★
小升初數學考試知識點整理一
數的改寫知識點
一個較大的多位數,為了讀寫方便,常常把它改寫成用「萬」或「億」作單位的數。有時還可以根據需要,省略這個數某一位後面的數,寫成近似數。
1. 准確數:在實際生活中,為了計數的簡便,可以把一個較大的數改寫成以萬或億為單位的數。改寫後的數是原數的准確數。 例如把 1254300000 改寫成以萬做單位的數是 125430 萬;改寫成 以億做單位 的數 12.543 億。
2. 近似數:根據實際需要,我們還可以把一個較大的數,省略某一位後面的尾數,用一個近似數來表示。 例如: 1302490015 省略億後面的尾數是 13 億。
3. 四捨五入法:要省略的尾數的最高位上的數是4 或者比4小,就把尾數去掉;如果尾數的.最高位上的數是5或者比5大,就把尾數捨去,並向它的前一位進1。例如:省略 345900 萬後面的尾數約是 35 萬。省略 4725097420 億後面的尾數約是 47 億。
4. 大小比較
1. 比較整數大小:比較整數的大小,位數多的那個數就大,如果位數相同,就看最高位,最高位上的數大,那個數就大;最高位上的數相同,就看下一位,哪一位上的數大那個數就大。
2. 比較小數的大小:先看它們的整數部分,,整數部分大的那個數就大;整數部分相同的,十分位上的數大的那個數就大;十分位上的數也相同的,百分位上的數大的那個數就大……
3. 比較分數的大小:分母相同的分數,分子大的分數比較大;分子相同的數,分母小的分數大。分數的分母和分子都不相同的,先通分,再比較兩個數的大小。
小升初數學考試知識點整理二
基本定義與運算定律
一、數與數字的區別
數字(也就是數碼),是用來記數的符號,通常用國際通用的阿拉伯數字 0~9這十個數字。其他還有中國小寫數字,大寫數字,羅馬數字等等。
數是由數字和數位組成。
1.0的意義:0既可以表示「沒有」,也可以作為某些數量的界限。如溫度等。0是一個完全有確定意義的數。0是最小的自然數,是一個偶數。00是最小的自然數,是一個偶數。是任何自然數(0除外)的倍數。0不能作除數。
2.自然數:用來表示物體個數的0、1、2、3、4、5、6、7、8、9、10……叫做自然數。簡單說就是大於等於零的整數。
3.整數: 自然數都是整數,整數不都是自然數。
4.小數:小數是特殊形式的分數,所有分數都可以表示成小數,小數中的圓點叫做小數點。但是不能說小數就是分數。
5.混小數(帶小數):小數的整數部分不為零的小數叫混小數,也叫帶小數。
5.純小數:小數的整數部分為零的小數,叫做純小數。
7.有限小數:小數的小數部分只有有限個數字的小數(不全為零)叫做有限小數。
8.無限小數:小數的小數部分有無數個數字(不包含全為零)的小數,叫做無限小數。循環小數都是無限小數,無限小數不一定都是循環小數。例如,圓周率π也是無限小數。
9.循環小數:小數部分一個數字或幾個數字依次不斷地重復出現,這樣的小數叫做循環小數。例如:0.333……,1.2470470470……都是循環小數。
10.純循環小數:循環節從十分位就開始的循環小數,叫做純循環小數。
11.混循環小數:與純循環小數有的區別,不是從十分位開始循環的循環小數,叫混循環小數。
12.無限不循環小數:一個小數,從小數部分起到無限位數,沒有一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做無限不循環小數。
二、分數
表示把 「單位1」平均分成若干份,取其中的一份或幾份的數,叫做分數。
小升初數學考試知識點整理三
運算的意義
一、整數四則運算
1 、整數加法
把兩個數合並成一個數的運算叫做加法。 在加法里,相加的數叫做加數,加得的數叫做和。加數是部分數,和是總數。
【公式】
加數+加數=和
一個加數=和-另一個加數
2 、整數減法
已知兩個加數的和與其中的一個加數,求另一個加數的運算叫做減法。
在減法里,已知的和叫做被減數,已知的加數叫做減數,未知的加數叫做差。被減數是總數,減數和差分別是部分數。
加法和減法互為逆運算。
3、 整數乘法
求幾個相同加數的和的簡便運算叫做乘法。
在乘法里,相同的加數和相同加數的個數都叫做因數。相同加數的和叫做積。
在乘法里,0和任何數相乘都得0. 1和任何數相乘都的任何數。
【公式】
一個因數× 一個因數 =積
一個因數=積÷另一個因數
4 、整數除法
已知兩個因數的積與其中一個因數,求另一個因數的運算叫做除法。
在除法里,已知的積叫做被除數,已知的一個因數叫做除數,所求的因數叫做商。
乘法和除法互為逆運算。
在除法里,0不能做除數。因為0和任何數相乘都得0,所以任何一個數除以0,均得不到一個確定的商。
【公式】
被除數÷除數=商
除數=被除數÷商
被除數=商×除數
二、小數四則運算
1、小數加法
小數加法的意義與整數加法的意義相同。是把兩個數合並成一個數的運算。
2、小數減法
小數減法的意義與整數減法的意義相同。已知兩個加數的和與其中的一個加數,求另一個加數的運算.
3、小數乘法
小數乘整數的意義和整數乘法的意義相同,就是求幾個相同加數和的簡便運算;一個數乘純小數的意義是求這個數的十分之幾、百分之幾、千分之幾……是多少。
4、小數除法
小數除法的意義與整數除法的意義相同,就是已知兩個因數的積與其中一個因數,求另一個因數的運算。
5、乘方
求幾個相同因數的積的運算叫做乘方。例如 3 × 3 =32
三、分數四則運算
1. 分數加法
分數加法的意義與整數加法的意義相同。 是把兩個數合並成一個數的運算。
2. 分數減法
分數減法的意義與整數減法的意義相同。已知兩個加數的和與其中的一個加數,求另一個加數的運算。
3. 分數乘法
分數乘法的意義與整數乘法的意義相同,就是求幾個相同加數和的簡便運算。
4. 乘積是1的兩個數叫做互為倒數。
5. 分數除法
分數除法的意義與整數除法的意義相同。就是已知兩個因數的積與其中一個因數,求另一個因數的運算。
小升初數學考試知識點整理四
一、體積和表面積
三角形的面積=底×高÷2。 公式 S= a×h÷2
正方形的面積=邊長×邊長 公式 S= a2
長方形的面積=長×寬 公式 S= a×b
平行四邊形的面積=底×高 公式 S= a×h
梯形的面積=(上底+下底)×高÷2 公式 S=(a+b)h÷2
內角和:三角形的內角和=180度。
長方體的表面積=(長×寬+長×高+寬×高 ) ×2 公式:S=(a×b+a×c+b×c)×2
正方體的表面積=棱長×棱長×6 公式: S=6a2
長方體的體積=長×寬×高 公式:V = abh
長方體(或正方體)的體積=底面積×高 公式:V = abh
正方體的體積=棱長×棱長×棱長 公式:V = a3
圓的周長=直徑×π 公式:L=πd=2πr
圓的面積=半徑×半徑×π 公式:S=πr2
圓柱的表(側)面積:圓柱的表(側)面積等於底面的周長乘高。公式:S=ch=πdh=2πrh
圓柱的表面積:圓柱的表面積等於底面的周長乘高再加上兩頭的圓的面積。 公式:S=ch+2s=ch+2πr2
圓柱的體積:圓柱的體積等於底面積乘高。公式:V=Sh
圓錐的體積=1/3底面×積高。公式:V=1/3Sh
二、算術
加法交換律:兩數相加交換加數的位置,和不變。
加法結合律:a + b = b + a
乘法交換律:a × b = b × a
乘法結合律:a × b × c = a ×(b × c)
乘法分配律:a × b + a × c = a × b + c
除法的性質:a ÷ b ÷ c = a ÷(b × c)
除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。 O除以任何不是O的數都得O。 簡便乘法:被乘數、乘數末尾有O的乘法,可以先把O前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。
有餘數的除法: 被除數=商×除數+余數
三、方程、代數與等式
等式:等號左邊的數值與等號右邊的數值相等的式子叫做等式。 等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,等式仍然成立。
方程式:含有未知數的等式叫方程式。
一元一次方程式:含有一個未知數,並且未知數的次 數是一次的等式叫做一元一次方程式。學會一元一次方程式的例法及計算。即例出代有χ的算式並計算。
代數: 代數就是用字母代替數。
代數式:用字母表示的式子叫做代數式。如:3x =ab+c
四、分數
分數:把單位「1」平均分成若干份,表示這樣的一份或幾分的數,叫做分數。
分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。異分母的分數相比較,先通分然後再比較;若分子相同,分母大的反而小。
分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。
分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。
分數的加、減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
倒數的概念:1.如果兩個數乘積是1,我們稱一個是另一個的倒數。這兩個數互為倒數。1的倒數是1,0沒有倒數。
分數除以整數(0除外),等於分數乘以這個整數的倒數。
分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小
分數的除法則:除以一個數(0除外),等於乘這個數的倒數。
真分數:分子比分母小的分數叫做真分數。
假分數:分子比分母大或者分子和分母相等的分數叫做假分數。假分數大於或等於1。
帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。
分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小不變。
五、數量關系計算公式
單價×數量=總價
單產量×數量=總產量
速度×時間=路程
工效×時間=工作總量
加數+加數=和 一個加數=和+另一個加數
被減數-減數=差 減數=被減數-差 被減數=減數+差
因數×因數=積 一個因數=積÷另一個因數
被除數÷除數=商 除數=被除數÷商 被除數=商×除數
六、長度單位
1公里=1千米 1千米=1000米
1米=10分米 1分米=10厘米 1厘米=10毫米
七、面積單位
1平方千米=100公頃 1公頃=10000平方米
1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米
1畝=666.666平方米。
小升初數學考試知識點整理五
整數和小數
1.最小的一位數是1,最小的自然數是0
2.小數的意義:把整數「1」平均分成10份、100份、1000份……這樣的一份或幾份分別是十分之幾、百分之幾、千分之幾……可以用小數來表示。
3.小數點左邊依次是整數部分,小數點右邊是小數部分,依次是十分位、百分位、千分位……
4.小數的分類:小數 有限小數
無限循環小數
無限小數
無限不循環小數
5.整數和小數都是按照十進制計數法寫出的數。
6.小數的性質:小數的末尾添上0或者去掉0,小數的大小不變。
7.小數點向右移動一位、二位、三位……原來的數分別擴大10倍、100倍、1000倍……
小數點向左移動一位、二位、三位……原來的數分別縮小10倍、100倍、1000倍……
小升初數學考試知識點整理相關 文章 :
★ 小升初數學知識考點歸納
★ 小升初數學知識點總結
★ 小升初數學考試必備知識點與易錯點
★ 小升初一至六年級數學知識點整理
★ 小升初數學備考必知:常考知識點大全
★ 小升初考試必備數學10大難點和34個重難點公式
★ 小升初總復習數學
★ 小升初考試必備數學一到六年級的知識點
★ 小升初數學考試易錯點大總結
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();㈩ 小學數學知識點有哪些
小學數學知識點歸納:數學概念。
1.加法交換律:兩數相加交換加數的位置,和不變。
2.加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第三個數相加,和不變。
3.乘法交換律:兩數相乘,交換因數的位置,積不變。
4.乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。
5.乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。
如:(2+4)×5=2×5+4×5。
簡便乘法:被乘數、乘數末尾有0的乘法,可以先把0前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。
6.除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。0除以任何不是0的數都得0。
7.等式:等號左邊的數值與等號右邊的數值相等的式子叫做等式。
等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,等式仍然成立。
8.方程式:含有未知數的等式叫方程式。
9.一元一次方程式:含有一個未知數,並且未知數的次數是一次的等式叫做一元一次方程式。
學會一元一次方程式的例法及計算。即例出代有χ的算式並計算。