當前位置:首頁 » 基礎知識 » 初中數學知識順口溜
擴展閱讀
白月初是哪個動漫人物 2024-11-07 20:59:34
鎮南王府是哪個動漫 2024-11-07 20:47:00

初中數學知識順口溜

發布時間: 2022-12-08 19:10:37

㈠ 人教版初中數學小口訣整理 初中數學知識

初中數學對於很多同學們來說是一門費心學習的一個科目,那數學怎麼才能好學呢?我整理了一些人教版初中數學的小口訣,供大家參考,希望對大家有所幫助。

初中數學小口訣1、

中學數學一線牽,代數幾何兩珠連;

三個基本記心間,四種能力非等閑。

常規五法天天練,策略六項時時變,

精研數學七思想,誘思導學樂無邊。

函數一條主線(貫穿教材始終)

代數、幾何珠聯璧合(注重知識交匯)

初中數學小口訣2、

方法(熟)知識(牢)技能(巧)

能力

概念運算(准確)、邏輯推理(嚴謹)、

空間想像(豐富)、分解問題(靈活)

換元法、配方法、待定系數法、分析法、歸納法。

策略

以簡馭繁,正難則反,

以退為進,化異為同,

移花接木,以靜思動。

初中數學小口訣3、

思想

函數方程最重要,分類整合常用到,

數形結合千般好,化歸轉化離不了;

有限自將無限描,或然終被必然表,

特殊一般多辨證,知識交匯步步高。

數學知識方法分論集合與邏輯

集合邏輯互表裡,子交並補歸全集。

對錯難知開語句,是非分明即命題;

縱橫交錯原否逆,充分必要四關系。

真非假時假非真,或真且假運算奇。

初中數學小口訣4、

函數與數列

數列函數子母胎,等差等比自成排。

數列求和幾多法?通項遞推思路開;

變數分離無好壞,函數復合有內外。

同增異減定單調,區間挖隱最值來。

三角函數

三角定義比值生,弧度互化實數融;

同角三類善誘導,和差倍半巧變通。

解前若能三平衡,解後便有一脈承;

角值計算大化小,弦切相逢異化同。

初中數學小口訣5、

方程與不等式

函數方程不等根,常使參數范圍生;

一正二定三相等,均值定理最值成。

參數不定比大小,兩式不同三法證;

等與不等無絕對,變數分離方有恆。

解析幾何

聯立方程解交點,設而不求巧判別;

韋達定理表弦長,斜率轉化過中點。

選參建模求軌跡,曲線對稱找距離;

動點相關歸定義,動中求靜助解析。

初中數學小口訣6、

立體幾何

多點共線兩面交,多線共面一法巧;

空間三垂優弦大,球面兩點劣弧小。

線線關系線面找,面面成角線線表;

等積轉化連射影,能割善補架通橋。

排列與組合

分步則乘分類加,欲鄰需捆欲隔插;

有序則排無序組,正難則反排除它。

元素重復連乘法,特元特位你先拿;

平均分組階乘除,多元少位我當家。

㈡ 數學十字相乘法順口溜

十字相乘法是初中數學階段非常重要的一個知識,下面為大家整理了十字相乘法順口溜,僅供大家參考。

十字相乘法順口溜

1.首尾分解,交叉相乘,求和湊中,平行書寫。豎分常數交叉驗,橫寫因式不能亂。

2.豎分常數交叉驗

(1)豎分二次項和常數項, 即把二次項和常數項的系數豎向寫出來,

(2)交叉相乘, 和相加, 即斜向相乘然後相加,得出一次項系數,

(3)檢驗確定, 檢驗一次項系數是否正確。

3.橫寫因式不能亂,即把因式橫向寫,而不是交叉寫, 這里不能搞亂。

十字相乘法的注意事項

十字分解法的方法簡單來講就是:十字左邊相乘等於二次項系數,右邊相乘等於常數項,交叉相乘再相加等於一次項系數。其實就是運用乘法公式(x+a)(x+b)=x²+(a+b)x+ab的逆運算來進行因式分解。

(1)用來解決兩者之間的比例問題。

(2)得出的比例關系是基數的比例關系。

(3)總均值放中央,對角線上,大數減小數,結果放在對角線上。

㈢ 初中數學學習小口訣是什麼》》》

數學是必考科目之一,故從初一開始就要認真地學習數學。那麼,怎樣才能學好數學呢?現介紹幾種方法以供參考:

一、課內重視聽講,課後及時復習。

新知識的接受,數學能力的培養主要在課堂上進行,所以要特點重視課內的學習效率,尋求正確的學習方法。上課時要緊跟老師的思路,積極展開思維預測下面的步驟,比較自己的解題思路與教師所講有哪些不同。特別要抓住基礎知識和基本技能的學習,課後要及時復習不留疑點。首先要在做各種習題之前將老師所講的知識點回憶一遍,正確掌握各類公式的推理過程,慶盡量回憶而不採用不清楚立即翻書之舉。認真獨立完成作業,勤於思考,從某種意義上講,應不造成不懂即問的學習作風,對於有些題目由於自己的思路不清,一時難以解出,應讓自己冷靜下來認真分析題目,盡量自己解決。在每個階段的學習中要進行整理和歸納總結,把知識的點、線、面結合起來交織成知識網路,納入自己的知識體系。

二、適當多做題,養成良好的解題習慣。

要想學好數學,多做題目是難免的,熟悉掌握各種題型的解題思路。剛開始要從基礎題入手,以課本上的習題為准,反復練習打好基礎,再找一些課外的習題,以幫助開拓思路,提高自己的分析、解決能力,掌握一般的解題規律。對於一些易錯題,可備有錯題集,寫出自己的解題思路和正確的解題過程兩者一起比較找出自己的錯誤所在,以便及時更正。在平時要養成良好的解題習慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進入最佳狀態,在考試中能運用自如。實踐證明:越到關鍵時候,你所表現的解題習慣與平時練習無異。如果平時解題時隨便、粗心、大意等,往往在大考中充分暴露,故在平時養成良好的解題習慣是非常重要的。

三、調整心態,正確對待考試。

首先,應把主要精力放在基礎知識、基本技能、基本方法這三個方面上,因為每次考試占絕大部分的也是基礎性的題目,而對於那些難題及綜合性較強的題目作為調劑,認真思考,盡量讓自己理出頭緒,做完題後要總結歸納。調整好自己的心態,使自己在任何時候鎮靜,思路有條不紊,克服浮躁的情緒。特別是對自己要有信心,永遠鼓勵自己,除了自己,誰也不能把我打倒,要有自己不垮,誰也不能打垮我的自豪感。

在考試前要做好准備,練練常規題,把自己的思路展開,切忌考前去在保證正確率的前提下提高解題速度。對於一些容易的基礎題要有十二分把握拿全分;對於一些難題,也要盡量拿分,考試中要學會嘗試得分,使自己的水平正常甚至超常發揮。

由此可見,要把數學學好就得找到適合自己的學習方法,了解數學學科的特點,使自己進入數學的廣闊天地中去。

*****************************************************************************************************

一、 高中數學課的設置

高中數學內容豐富,知識面廣泛,將有:《代數》上、下冊、《立體幾何》和《平面解析幾何》四本課本,高一年級學習完《代數》上冊和《立體幾何》兩本書。高二將學習完《代數》下冊和《平面解析幾何》兩本書。一般地,在高一、高二全部學習完高中的所有高中三年的知識內容,高三進行全面復習,高三將有數學「會考」和重要的「高考」。

二、初中數學與高中數學的差異。

1、知識差異。

初中數學知識少、淺、難度容易、知識面笮。高中數學知識廣泛,將對初中的數學知識推廣和引伸,也是對初中數學知識的完善。如:初中學習的角的概念只是「0—1800」范圍內的,但實際當中也有7200和「—300」等角,為此,高中將把角的概念推廣到任意角,可表示包括正、負在內的所有大小角。又如:高中要學習《立體幾何》,將在三維空間中求一些幾何實體的體積和表面積;還將學習「排列組合」知識,以便解決排隊方法種數等問題。如:①三個人排成一行,有幾種排隊方法,( =6種);②四人進行乒乓球雙打比賽,有幾種比賽場次?(答: =3種)高中將學習統計這些排列的數學方法。初中中對一個負數開平方無意義,但在高中規定了i2=-1,就使-1的平方根為±i.即可把數的概念進行推廣,使數的概念擴大到復數范圍等。這些知識同學們在以後的學習中將逐漸學習到。

2、學習方法的差異。

(1)初中課堂教學量小、知識簡單,通過教師課堂教慢的速度,爭取讓全面同學理解知識點和解題方法,課後老師布置作業,然後通過大量的課堂內、外練習、課外指導達到對知識的反反復復理解,直到學生掌握。而高中數學的學習隨著課程開設多(有九們課學生同時學習),每天至少上六節課,自習時間三節課,這樣各科學習時間將大大減少,而教師布置課外題量相對初中減少,這樣集中數學學習的時間相對比初中少,數學教師將相初中那樣監督每個學生的作業和課外練習,就能達到相初中那樣把知識讓每個學生掌握後再進行新課。

(2)模仿與創新的區別。

初中學生模仿做題,他們模仿老師思維推理教多,而高中模仿做題、思維學生有,但隨著知識的難度大和知識面廣泛,學生不能全部模仿,即就是學生全部模仿訓練做題,也不能開拓學生自我思維能力,學生的數學成績也只能是一般程度。現在高考數學考察,旨在考察學生能力,避免學生高分低能,避免定勢思維,提倡創新思維和培養學生的創造能力培養。初中學生大量地模仿使學生帶來了不利的思維定勢,對高中學生帶來了保守的、僵化的思想,封閉了學生的豐富反對創造精神。如學生在解決:比較a與2a的大小時要不就錯、要不就答不全面。大多數學生不會分類討論。

3、學生自學能力的差異

初中學生自學那能力低,大凡考試中所用的解題方法和數學思想,在初中教師基本上已反復訓練,老師把學生要學生自己高度深刻理解的問題,都集中表現在他的耐心的講解和大量的訓練中,而且學生的聽課只需要熟記結論就可以做題(不全是),學生不需自學。但高中的知識面廣,知識要全部要教師訓練完高考中的習題類型是不可能的,只有通過較少的、較典型的一兩道例題講解去融會貫通這一類型習題,如果不自學、不靠大量的閱讀理解,將會使學生失去一類型習題的解法。另外,科學在不斷的發展,考試在不斷的改革,高考也隨著全面的改革不斷的深入,數學題型的開發在不斷的多樣化,近年來提出了應用型題、探索型題和開放型題,只有靠學生的自學去深刻理解和創新才能適應現代科學的發展。
其實,自學能力的提高也是一個人生活的需要,他從一個方面也代表了一個人的素養,人的一生只有18---24年時間是有導師的學習,其後半生,最精彩的人生是人在一生學習,靠的自學最終達到了自強。
4、思維習慣上的差異
初中學生由於學習數學知識的范圍小,知識層次低,知識面笮,對實際問題的思維受到了局限,就幾何來說,我們都接觸的是現實生活中三維空間,但初中只學了平面幾何,那麼就不能對三維空間進行嚴格的邏輯思維和判斷。代數中數的范圍只限定在實數中思維,就不能深刻的解決方程根的類型等。高中數學知識的多元化和廣泛性,將會使學生全面、細致、深刻、嚴密的分析和解決問題。也將培養學生高素質思維。提高學生的思維遞進性。
5、定量與變數的差異
初中數學中,題目、已知和結論用常數給出的較多,一般地,答案是常數和定量。學生在分析問題時,大多是按定量來分析問題,這樣的思維和問題的解決過程,只能片面地、局限地解決問題,在高中數學學習中我們將會大量地、廣泛地應用代數的可變性去探索問題的普遍性和特殊性。如:求解一元二次方程時我們採用對方程ax2+bx+c=0 (a≠0)的求解,討論它是否有根和有根時的所有根的情形,使學生很快的掌握了對所有一元二次方程的解法。另外,在高中學習中我們還會通過對變數的分析,探索出分析、解決問題的思路和解題所用的數學思想。

三、如何學好高中數學
良好的開端是成功的一半,高中數學課即將開始與初中知識有聯系,但比初中數學知識系統。高一數學中我們將學習函數,函數是高中數學的重點,它在高中數學中是起著提綱的作用,它融匯在整個高中數學知識中,其中有數學中重要的數學思想方法;如:函數與方程思想、數形結合思想等,它也是高考的重點,近年來,高考壓軸題都以函數題為考察方法的。高考題中與函數思想方法有關的習題占整個試題的60%以上。
1、 有良好的學習興趣
兩千多年前孔子說過:「知之者不如好之者,好之者不如樂之者。」意思說,干一件事,知道它,了解它不如愛好它,愛好它不如樂在其中。「好」和「樂」就是願意學,喜歡學,這就是興趣。興趣是最好的老師,有興趣才能產生愛好,愛好它就要去實踐它,達到樂在其中,有興趣才會形成學習的主動性和積極性。在數學學習中,我們把這種從自發的感性的樂趣出發上升為自覺的理性的「認識」過程,這自然會變為立志學好數學,成為數學學習的成功者。那麼如何才能建立好的學習數學興趣呢?
(1)課前預習,對所學知識產生疑問,產生好奇心。
(2)聽課中要配合老師講課,滿足感官的興奮性。聽課中重點解決預習中疑問,把老師課堂的提問、停頓、教具和模型的演示都視為欣賞音樂,及時回答老師課堂提問,培養思考與老師同步性,提高精神,把老師對你的提問的評價,變為鞭策學習的動力。
(3)思考問題注意歸納,挖掘你學習的潛力。
(4)聽課中注意老師講解時的數學思想,多問為什麼要這樣思考,這樣的方法怎樣是產生的?
(5)把概念回歸自然。所有學科都是從實際問題中產生歸納的,數學概念也回歸於現實生活,如角的概念、至交坐標系的產生、極坐標系的產生都是從實際生活中抽象出來的。只有回歸現實才能使對概念的理解切實可靠,在應用概念判斷、推理時會准確。
2、 建立良好的學習數學習慣。
習慣是經過重復練習而鞏固下來的穩重持久的條件反射和自然需要。建立良好的學習數學習慣,會使自己學習感到有序而輕松。高中數學的良好習慣應是:多質疑、勤思考、好動手、重歸納、注意應用。學生在學習數學的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,並永久記憶在自己的腦海中。另外還要保證每天有一定的自學時間,以便加寬知識面和培養自己再學習能力。
3、 有意識培養自己的各方面能力
數學能力包括:邏輯推理能力、抽象思維能力、計算能力、空間想像能力和分析解決問題能力共五大能力。這些能力是在不同的數學學習環境中得到培養的。在平時學習中要注意開發不同的學習場所,參與一切有益的學習實踐活動,如數學第二課堂、數學競賽、智力競賽等活動。平時注意觀察,比如,空間想像能力是通過實例凈化思維,把空間中的實體高度抽象在大腦中,並在大腦中進行分析推理。其它能力的培養都必須學習、理解、訓練、應用中得到發展。特別是,教師為了培養這些能力,會精心設計「智力課」和「智力問題」比如對習題的解答時的一題多解、舉一反三的訓練歸類,應用模型、電腦等多媒體教學等,都是為數學能力的培養開設的好課型,在這些課型中,學生務必要用全身心投入、全方位智力參與,最終達到自己各方面能力的全面發展。
四、其它注意事項
1、注意化歸轉化思想學習。
人們學習過程就是用掌握的知識去理解、解決未知知識。數學學習過程都是用舊知識引出和解決新問題,當新的知識掌握後再利用它去解決更新知識。初中知識是基礎,如果能把新知識用舊知識解答,你就有了化歸轉化思想了。可見,學習就是不斷地化歸轉化,不斷地繼承和發展更新舊知識。
2、學會數學教材的數學思想方法。
數學教材是採用蘊含披露的方式將數學思想溶於數學知識體系中,因此,適時對數學思想作出歸納、概括是十分必要的。概括數學思想一般可分為兩步進行:一是揭示數學思想內容規律,即將數學對象其具有的屬性或關系抽取出來,二是明確數學思想方法知識的聯系,抽取解決全體的框架。實施這兩步的措施可在課堂的聽講和課外的自學中進行。
課堂學習是數學學習的主戰場。課堂中教師通過講解、分解教材中的數學思想和進行數學技能地訓練,使高中學生學習所得到豐富的數學知識,教師組織的科研活動,使教材中的數學概念、定理、原理得到最大程度的理解、挖掘。如初中學習的相反數概念教學中,教師的課堂教學往往有以下理解:①從定義角度求3、-5的相反數,相反數是 的數是_____.②從數軸角度理解:什麼樣的兩點表示數是互為相反數的。(關於原點對稱的點)③從絕對值角度理解:絕對值_______的兩個數是互為相反數的。④相加為零的兩個數互為相反數嗎?這些不同角度的教學會開闊學生思維,提高思維品質。望同學們把握好課堂這個學習的主戰場。
五、學數學的幾個建議。
1、記數學筆記,特別是對概念理解的不同側面和數學規律,教師為備戰高考而加的課外知識。
2、建立數學糾錯本。把平時容易出現錯誤的知識或推理記載下來,以防再犯。爭取做到:找錯、析錯、改錯、防錯。達到:能從反面入手深入理解正確東西;能由果朔因把錯誤原因弄個水落石出、以便對症下葯;解答問題完整、推理嚴密。
3、記憶數學規律和數學小結論。
4、與同學建立好關系,爭做「小老師」,形成數學學習「互助組」。
5、爭做數學課外題,加大自學力度。
6、反復鞏固,消滅前學後忘。
7、學會總結歸類。可:①從數學思想分類②從解題方法歸類③從知識應用上分類
參考資料:

*****************************************************************************************************

高中數學學習方法談

進入高中以後,往往有不少同學不能適應數學學習,進而影響到學習的積極性,甚至成績一落千丈。出現這樣的情況,原因很多。但主要是由於學生不了解高中數學教學內容特點與自身學習方法有問題等因素所造成的。在此結合高中數學教學內容的特點,談一下高中數學學習方法,供同學參考。

一、 高中數學與初中數學特點的變化

1、數學語言在抽象程度上突變

初、高中的數學語言有著顯著的區別。初中的數學主要是以形象、通俗的語言方式進行表達。而高一數學一下子就觸及非常抽象的集合語言、邏輯運算語言、函數語言、圖象語言等。

2、思維方法向理性層次躍遷

高一學生產生數學學習障礙的另一個原因是高中數學思維方法與初中階段大不相同。初中階段,很多老師為學生將各種題建立了統一的思維模式,如解分式方程分幾步,因式分解先看什麼,再看什麼等。因此,初中學習中習慣於這種機械的,便於操作的定勢方式,而高中數學在思維形式上產生了很大的變化,數學語言的抽象化對思維能力提出了高要求。這種能力要求的突變使很多高一新生感到不適應,故而導致成績下降。

3、知識內容的整體數量劇增

高中數學與初中數學又一個明顯的不同是知識內容的「量」上急劇增加了,單位時間內接受知識信息的量與初中相比增加了許多,輔助練習、消化的課時相應地減少了。

4、知識的獨立性大

初中知識的系統性是較嚴謹的,給我們學習帶來了很大的方便。因為它便於記憶,又適合於知識的提取和使用。但高中的數學卻不同了,它是由幾塊相對獨立的知識拼合而成(如高一有集合,命題、不等式、函數的性質、指數和對數函數、指數和對數方程、三角比、三角函數、數列等),經常是一個知識點剛學得有點入門,馬上又有新的知識出現。因此,注意它們內部的小系統和各系統之間的聯系成了學習時必須花力氣的著力點。

二、如何學好高中數學

1、養成良好的學習數學習慣。

建立良好的學習數學習慣,會使自己學習感到有序而輕松。高中數學的良好習慣應是:多質疑、勤思考、好動手、重歸納、注意應用。學生在學習數學的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,並永久記憶在自己的腦海中。良好的學習數學習慣包括課前自學、專心上課、及時復習、獨立作業、解決疑難、系統小結和課外學習幾個方面。

2、及時了解、掌握常用的數學思想和方法

學好高中數學,需要我們從數學思想與方法高度來掌握它。中學數學學習要重點掌握的的數學思想有以上幾個:集合與對應思想,分類討論思想,數形結合思想,運動思想,轉化思想,變換思想。有了數學思想以後,還要掌握具體的方法,比如:換元、待定系數、數學歸納法、分析法、綜合法、反證法等等。在具體的方法中,常用的有:觀察與實驗,聯想與類比,比較與分類,分析與綜合,歸納與演繹,一般與特殊,有限與無限,抽象與概括等。

解數學題時,也要注意解題思維策略問題,經常要思考:選擇什麼角度來進入,應遵循什麼原則性的東西。高中數學中經常用到的數學思維策略有:以簡馭繁、數形結合、進退互用、化生為熟、正難則反、倒順相還、動靜轉換、分合相輔等。

3、逐步形成 「以我為主」的學習模式

數學不是靠老師教會的,而是在老師的引導下,靠自己主動的思維活動去獲取的。學習數學就要積極主動地參與學習過程,養成實事求是的科學態度,獨立思考、勇於探索的創新精神;正確對待學習中的困難和挫折,敗不餒,勝不驕,養成積極進取,不屈不撓,耐挫折的優良心理品質;在學習過程中,要遵循認識規律,善於開動腦筋,積極主動去發現問題,注重新舊知識間的內在聯系,不滿足於現成的思路和結論,經常進行一題多解,一題多變,從多側面、多角度思考問題,挖掘問題的實質。學習數學一定要講究「活」,只看書不做題不行,只埋頭做題不總結積累也不行。對課本知識既要能鑽進去,又要能跳出來,結合自身特點,尋找最佳學習方法。

4、針對自己的學習情況,採取一些具體的措施

² 記數學筆記,特別是對概念理解的不同側面和數學規律,教師在課堂中

拓展的課外知識。記錄下來本章你覺得最有價值的思想方法或例題,以及你還存在的未解決的問題,以便今後將其補上。

² 建立數學糾錯本。把平時容易出現錯誤的知識或推理記載下來,以防再

犯。爭取做到:找錯、析錯、改錯、防錯。達到:能從反面入手深入理解正確東西;能由果朔因把錯誤原因弄個水落石出、以便對症下葯;解答問題完整、推理嚴密。

² 熟記一些數學規律和數學小結論,使自己平時的運算技能達到了自動化

或半自動化的熟練程度。

² 經常對知識結構進行梳理,形成板塊結構,實行「整體集裝」,如表格化,

使知識結構一目瞭然;經常對習題進行類化,由一例到一類,由一類到多類,由多類到統一;使幾類問題歸納於同一知識方法。

² 閱讀數學課外書籍與報刊,參加數學學科課外活動與講座,多做數學課

外題,加大自學力度,拓展自己的知識面。

² 及時復習,強化對基本概念知識體系的理解與記憶,進行適當的反復鞏

固,消滅前學後忘。

² 學會從多角度、多層次地進行總結歸類。如:①從數學思想分類②從解

題方法歸類③從知識應用上分類等,使所學的知識系統化、條理化、專題化、網路化。

² 經常在做題後進行一定的「反思」,思考一下本題所用的基礎知識,數學

思想方法是什麼,為什麼要這樣想,是否還有別的想法和解法,本題的分析方法與解法,在解其它問題時,是否也用到過。

² 無論是作業還是測驗,都應把准確性放在第一位,通法放在第一位,而

不是一味地去追求速度或技巧,這是學好數學的重要問題。

對新初三學生來說,學好數學,首先要抱著濃厚的興趣去學習數學,積極展開思維的翅膀,主動地參與教育全過程,充分發揮自己的主觀能動性,愉快有效地學數學。

其次要掌握正確的學習方法。鍛煉自己學數學的能力,轉變學習方式,要改變單純接受的學習方式,要學會採用接受學習與探究學習、合作學習、體驗學習等多樣化的方式進行學習,要在教師的指導下逐步學會「提出問題—實驗探究—開展討論—形成新知—應用反思」的學習方法。這樣,通過學習方式由單一到多樣的轉變,我們在學習活動中的自主性、探索性、合作性就能夠得到加強,成為學習的主人。

在新學期要上好每一節課,數學課有知識的發生和形成的概念課,有解題思路探索和規律總結的習題課,有數學思想方法提煉和聯系實際的復習課。要上好這些課來學會數學知識,掌握學習數學的方法。

概念課

要重視教學過程,要積極體驗知識產生、發展的過程,要把知識的來龍去脈搞清楚,認識知識發生的過程,理解公式、定理、法則的推導過程,改變死記硬背的方法,這樣我們就能從知識形成、發展過程當中,理解到學會它的樂趣;在解決問題的過程中,體會到成功的喜悅。

習題課

要掌握「聽一遍不如看一遍,看一遍不如做一遍,做一遍不如講一遍,講一遍不如辯一辯」的訣竅。除了聽老師講,看老師做以外,要自己多做習題,而且要把自己的體會主動、大膽地講給大家聽,遇到問題要和同學、老師辯一辯,堅持真理,改正錯誤。在聽課時要注意老師展示的解題思維過程,要多思考、多探究、多嘗試,發現創造性的證法及解法,學會「小題大做」和「大題小做」的解題方法,即對選擇題、填空題一類的客觀題要認真對待絕不粗心大意,就像對待大題目一樣,做到下筆如有神;對綜合題這樣的大題目不妨把「大」拆「小」,以「退」為「進」,也就是把一個比較復雜的問題,拆成或退為最簡單、最原始的問題,把這些小題、簡單問題想通、想透,找出規律,然後再來一個飛躍,進一步升華,就能湊成一個大題,即退中求進了。如果有了這種分解、綜合的能力,加上有扎實的基本功還有什麼題目難得倒我們。

復習課

在數學學習過程中,要有一個清醒的復習意識,逐漸養成良好的復習習慣,從而逐步學會學習。數學復習應是一個反思性學習過程。要反思對所學習的知識、技能有沒有達到課程所要求的程度;要反思學習中涉及到了哪些數學思想方法,這些數學思想方法是如何運用的,運用過程中有什麼特點;要反思基本問題(包括基本圖形、圖像等),典型問題有沒有真正弄懂弄通了,平時碰到的問題中有哪些問題可歸結為這些基本問題;要反思自己的錯誤,找出產生錯誤的原因,訂出改正的措施。在新學期大家准備一本數學學習「病例卡」,把平時犯的錯誤記下來,找出「病因」開出「處方」,並且經常拿出來看看、想想錯在哪裡,為什麼會錯,怎麼改正,通過你的努力,到中考時你的數學就沒有什麼「病例」了。並且數學復習應在數學知識的運用過程中進行,通過運用,達到深化理解、發展能力的目的,因此在新的一年要在教師的指導下做一定數量的數學習題,做到舉一反三、熟練應用,避免以「練」代「復」的題海戰術。

最後,要有意識地培養好自己個人的心理素質,全面系統地進行心理訓練,要有決心、信心、恆心,更要有一顆平常心

㈣ 初中數學正負數加減法則順口溜

正正相加,和為正。負負相加,和為負。正負數加減法則順口溜有利於我們更好的記憶,下面整理了一些順口溜,供大家參考。

正負數加減法則順口溜

正正相加,和為正。

負負相加,和為負。

正減負來,得為正。

負減正來,得為負。

其餘沒說,看大小。

誰大就往,誰邊倒。

有理數加減順口溜

同號相加值(絕對值)相加,符號同原不變它。

異號相加值(絕對值)相減,符號就把大的抓。

互為相反數,相加便得0。

0加一個數仍得這個數。

減正等於加負,減負等於加正。

正負數加減法則

1. 同號兩數相加,取相同的符號,並把他們的絕對值相加。

例題:(+1)+(+2 )= 1+2=3 (-1)+(-2 )=-1-2= -3

2.不同號兩數相加取絕對值較大的數的符號,並用絕對值較大的減去絕對值較小的。

例題:1+(-2)= -(2-1)= -1 +2+(-1)=2-1=+1

3.不同號兩數相減,負負得正 例題:2 -(-1)= 2+1=+3

4.零加減任何數都等於原數。

例題:0+(+1)=1;0-1 = -1

㈤ 初一數學要背什麼口訣

網路文庫





初中數學口訣 匯總 共享文檔
2018-07-01 10頁 4.8分
用App查看
最大公因數與最小公倍數初中數學口訣
同洲模範學校 宋立峰
有理數的加法運算
同號兩數來相加,絕對值加不變號。
異號相加大減小,大數決定和符號。
互為相反數求和,結果是零須記好。
【注】「大」減「小」是指絕對值的大小。
有理數的減法運算
減正等於加負,減負等於加正。
有理數的乘法運算符號法則
同號得正異號負,一項為零積是零。
合並同類項
說起合並同類項,法則千萬不能忘。
只求系數代數和,字母指數留原樣。
去、添括弧法則
去括弧或添括弧,關鍵要看連接號。
擴號前面是正號,去添括弧不變號。
括弧前面是負號,去添括弧都變號。
解方程
已知未知鬧分離,分離要靠移完成。
移加變減減變加,移乘變除除變乘。
平方差公式
兩數和乘兩數差,等於兩數平方差。
積化和差變兩項,完全平方不是它。

㈥ 初中數學必背公式口訣大全

初中數學里包含了很多公式,這些公式是解題的基礎。怎樣快速記下這些公式呢?下面我整理了初中數學必背公式口訣大全,供大家參考。

1、有理數的加法

同號相加一邊倒;異號相加"大"減"小",

符號跟著大的跑,絕對值相等"零"正好。

2、合並同類項

合並同類項,法則不能忘,

只求系數和,字母、指數不變樣。

3、去、添括弧

去括弧、添括弧,關鍵看符號,

括弧前面是正號,去、添括弧不變號,

括弧前面是負號,去、添括弧都變號。

4、一元一次方程

已知未知要分離,分離方法就是移,

加減移項要變號,乘除移了要顛倒。

5、平方差公式

平方差公式有兩項,符號相反切記牢,

首加尾乘首減尾,莫與完全公式相混淆。

6、因式分解

一提(公因式)二套(公式)三分組,

細看幾項不離譜,兩項只用平方差,

三項十字相乘法,陣法熟練不馬虎,

四項仔細看清楚,若有三個平方數(項),

就用一三來分組,否則二二去分組,

五項、六項更多項,二三、三三試分組,

以上若都行不通,拆項、添項看清楚。

7、「代入」口決

挖去字母換上數(式),數字、字母都保留;

換上分數或負數,給它帶上小括弧,

原括弧內出(現)括弧,逐級向下變括弧(小—中—大)。

8、一元一次不等式解題的一般步驟

去分母、去括弧,移項時候要變號,

同類項、合並好,再把系數來除掉,

兩邊除(以)負數時,不等號改向別忘了。

9、分式混合運演算法則

分式四則運算,順序乘除加減,

乘除同級運算,除法符號須變(乘);

乘法進行化簡,因式分解在先,

分子分母相約,然後再行運算;

加減分母需同,分母化積關鍵;

找出最簡公分母,通分不是很難;

變號必須兩處,結果要求最簡。

10、一次函數的圖象與性質的口訣

一次函數是直線,圖象經過三象限;

正比例函數更簡單,經過原點一直線;

兩個系數k與b,作用之大莫小看,

k是斜率定夾角,b與y軸來相見,

k為正來右上斜,x增減y增減;

k為負來左下展,變化規律正相反;

k的絕對值越大,線離橫軸就越遠。

11、二次函數的圖象與性質的口訣

二次函數拋物線,圖象對稱是關鍵;

開口、頂點和交點,它們確定圖象現;

開口、大小由a斷,c與y軸來相見,

b的符號較特別,符號與a相關聯;

頂點位置先找見,y軸作為參考線,

左同右異中為0,牢記心中莫混亂;

頂點坐標最重要,一般式配方它就現,

橫標即為對稱軸,縱標函數最值見,

若求對稱軸位置,符號反,一般、頂點、交點式,不同表達能互換。

12、特殊三角函數值記憶

首先記住30度、45度、60度的正弦值、餘弦值的分母都是2、正切、餘切的分母都是3,分子記口訣「123,321,三九二十七」既可。

13、平行四邊形的判定

要證平行四邊形,兩個條件才能行,

一證對邊都相等,或證對邊都平行,

一組對邊也可以,必須相等且平行.

對角線,是個寶,互相平分「跑不了」,

對角相等也有用,「兩組對角」才能成。

14、添加輔助線歌

輔助線,怎麼添?找出規律是關鍵,

題中若有角(平)分線,可向兩邊作垂線;

線段垂直平分線,引向兩端把線連,

三角形兩邊中點,連接則成中位線;

三角形中有中線,延長中線翻一番。

15、函數學習口決

正比例函數是直線,圖象一定過原點,

k的正負是關鍵,決定直線的象限,

負k經過二四限,x增大y在減,

上下平移k不變,由引得到一次線,

向上加b向下減,圖象經過三個限,

兩點決定一條線,選定系數是關鍵。

㈦ 初中數學公式及規律口訣

初中數學公式及規律口訣大全

為了更好的幫助大家學習初中數學,有人特地把初學數學的公式和規律,編成了口訣,下面就和我一起去看看吧。

一、最簡根式的條件

最簡根式三條件,

號內不把分母含,

冪指(數)根指(數)要互質,

冪指比根指小一點。

二、特殊點的坐標特徵

坐標平面點(x,y),橫在前來縱在後;

(+,+),(-,+),(-,-)和(+,-),四個象限分前後;

x軸上y為0,x為0在y軸。

三、象限角的平分線

象限角的平分線,

坐標特徵有特點,

一、三橫縱都相等,

二、四橫縱確相反。

四、平行某軸的直線

平行某軸的直線,

點的坐標有講究,

直線平行x軸,縱坐標相等橫不同;

直線平行於y軸,點的橫坐標仍照舊。

五、對稱點的坐標

對稱點坐標要記牢,

相反數位置莫混淆,

x軸對稱y相反,

y軸對稱,x前面添負號;

原點對稱最好記,

橫縱坐標變符號。

六、自變數的取值范圍

分式分母不為零,

偶次根下負不行;

零次冪底數不為零,

整式、奇次根全能行。

七、函數圖象的移動規律

若把一次函數解析式寫成y=k(x+0)+b,二次函數的解析式寫成y=a(x+h)2+k的`形式,則可用下面的口訣

左右平移在括弧,

上下平移在末稍,

左正右負須牢記,

上正下負錯不了。

八、一次函數的圖象與性質的口訣

一次函數是直線,圖象經過三象限;

正比例函數更簡單,經過原點一直線;

兩個系數k與b,作用之大莫小看,

k是斜率定夾角,b與y軸來相見,

k為正來右上斜,x增減y增減;

k為負來左下展,變化規律正相反;

k的絕對值越大,線離橫軸就越遠。

九、二次函數的圖象與性質的口訣

二次函數拋物線,圖象對稱是關鍵;

開口、頂點和交點,它們確定圖象現;

開口、大小由a斷,c與y軸來相見,

b的符號較特別,符號與a相關聯;

頂點位置先找見,y軸作為參考線,

左同右異中為0,牢記心中莫混亂;

頂點坐標最重要,一般 式配方它就現,

橫標即為對稱軸,縱標函數最值見。

若求對稱軸位置,符號反,

一般、頂點、交點式,不同表達能互換。

十、反比例函數的圖象與性質的口訣

反比例函數有特點,雙曲線相背離得遠;

k為正,圖在一、三(象)限,

k為負,圖在二、四(象)限;

圖在一、三函數減,兩個分支分別減。

圖在二、四正相反,兩個分支分別增;

線越長越近軸,永遠與軸不沾邊。

十一、巧記三角函數定義

初中所學的三角函數有正弦、餘弦、正切、餘切,它們實際是直角三角形的邊的比值,可以把兩個字用/隔開,再用下面的.

十二、一句話記定義

一位不高明的廚子教徒弟殺魚,說了這么一句話“正對魚磷(余鄰)直刀切。

”正正弦或正切,對對邊即正是對;余餘弦或餘弦,鄰鄰邊即余是鄰;切是直角邊.

十三、三角函數的增減性

正增余減

十四、特殊三角函數值記憶

首先記住30度、45度、60度的正弦值、餘弦值的分母都是2、正切、餘切的分母都是3,分子記口訣“123,321,三九二十七”既可。

十五、平行四邊形的判定

要證平行四邊形,兩個條件才能行

,一證對邊都相等,或證對邊都平行,

一組對邊也可以,必須相等且平行。

對角線,是個寶,互相平分“跑不了”,

對角相等也有用,“兩組對角”才能成。

十六、梯形問題的輔助線

移動梯形對角線,兩腰之和成一線;

平行移動一條腰,兩腰同在“△”現;

延長兩腰交一點,“△”中有平行線;

作出梯形兩高線,矩形顯示在眼前;

已知腰上一中線,莫忘作出中位線。

十七、添加輔助線歌

輔助線,怎麼添?

找出規律是關鍵,題中若有角(平)分線,可向兩邊作垂線;

線段垂直平分線,引向兩端把線連,三角形兩邊中點,連接則成中位線;

三角形中有中線,延長中線翻一番。

十八、圓的證明歌

圓的證明不算難,常把半徑直徑連;

有弦可作弦心距,它定垂直平分弦;

直徑是圓最大弦,直圓周角立上邊,

它若垂直平分弦,垂徑、射影響耳邊;

還有與圓有關角,勿忘相互有關聯,

圓周、圓心、弦切角,細找關系把線連;

同弧圓周角相等,證題用它最多見,

圓中若有弦切角,夾弧找到就好辦;

圓有內接四邊形,對角互補記心間,

外角等於內對角,四邊形定內接圓;

直角相對或共弦,試試加 個輔助圓;

若是證題打轉轉,四點共圓可解難;

要想證明圓切線,垂直半徑過外端,

直線與圓有共點,證垂直來半徑連,

直線與圓未給點,需證半徑作垂線;

四邊形 有內切圓,對邊和等是條件;

如果遇到圓與圓,弄清位置很關鍵,

兩圓相切作公切,兩圓相交連公弦。

十九、圓中比例線段

遇等積,改等比,橫找豎找定相似;

不相似,別生氣,等線等比來代替,

遇等比,改等積,引用射影和圓冪,

平行線,轉比例,兩端各自找聯系。

二十、正多邊形訣竅歌

份相等分割圓,n值必須大於三,

依次連接各分點,內接正n邊形在眼前。

經過分點做切線,切線相交n個點。

n個交點做頂點,外切正n邊形便出現。

正n邊形很美觀,它有內接、外切圓,

內接、外切都唯一,兩圓還是同心圓,

它的圖形軸對稱,n條對稱軸 都過圓心點,

如果n值為偶數,中心對稱很方便。

正n邊形做計算,邊心距、半徑是關鍵,

內切、外接圓半徑,邊心距、半徑分別換,

分成直角三角形2n個整,依此計算便簡單。

二十一、函數學習口決

正比例函數是直線,圖象一定過原點,

k的正負是關鍵,決定直線的象限,

負k經過二四限,x增大y在減,

上下平移k不變,由引得到一次線,

向上加b向下減,圖象經過三個限,

兩點決定一條線,選定系數是關鍵。

二十二、反比例函數雙曲線

待定只需一個點,

正k落在一三限,x增大y在減,

圖象上面任意點,矩形面積都不變,

對稱軸是角分線,x、y的順序可交換。

二十三、二次函數拋物線

選定需要三個點,

a的正負開口判,c的大小y軸看,

△的符號最簡便,x軸上數交點,

a、b同號軸左邊,拋物線平移a不變,

頂點牽著圖象轉,三種形式可變換,

配方法作用最關鍵。


;

㈧ 初中數學計算順口溜

初中數學順口溜

有理數的加法運算:同號相加一邊倒;異號相加「大」減「小」,符號跟著大的跑;絕對值相等「零」正好。[注]「大」減「小」是指絕對值的大小。
合並同類項:合並同類項,法則不能忘,只求系數和,字母、指數不變樣。

去、添括弧法則:去括弧、添括弧,關鍵看符號,括弧前面是正號,去、添括弧不變號,括弧前面是負號,去、添括弧都變號。

一元一次方程:已知未知要分離,分離方法就是移,加減移項要變號,乘除移了要顛倒。

恆等變換:兩個數字來相減,互換位置最常見,正負只看其指數,奇數變號偶不變。(a-b)2n+1=-(b-a)2n+1(a-b)2n=(b - a)2n平方差公式:平方差公式有兩項,符號相反切記牢,首加尾乘首減尾,莫與完全公式相混淆。

完全平方:完全平方有三項,首尾符號是同鄉,首平方、尾平方,首尾二倍放中央;首±尾括弧帶平方,尾項符號隨中央。

因式分解:一提(公因式)二套(公式)三分組,細看幾項不離譜,兩項只用平方差,三項十字相乘法,陣法熟練不馬虎,四項仔細看清楚,若有三個平方數(項),就用一三來分組,否則二二去分組,五項、六項更多項,二三、三三試分組,以上若都行不通,拆項、添項看清楚。

「代入」口決:挖去字母換上數(式),數字、字母都保留;換上分數或負數,給它帶上小括弧,原括弧內出(現)括弧,逐級向下變括弧(小—中—大)

單項式運算:加、減、乘、除、乘(開)方,三級運算分得清,系數進行同級(運)算,指數運算降級(進)行。

一元一次不等式解題的一般步驟:去分母、去括弧,移項時候要變號,同類項、合並好,再把系數來除掉,兩邊除(以)負數時,不等號改向別忘了。

一元一次不等式組的解集:大大取較大,小小取較小,小大,大小取中間,大小,小大無處找。

一元二次不等式、一元一次絕對值不等式的解集:大(魚)於(吃)取兩邊,小(魚)於(吃)取中間。

分式混合運演算法則:分式四則運算,順序乘除加減,乘除同級運算,除法符號須變(乘);乘法進行化簡,因式分解在先,分子分母相約,然後再行運算;加減分母需同,分母化積關鍵;找出最簡公分母,通分不是很難;變號必須兩處,結果要求最簡。

分式方程的解法步驟:同乘最簡公分母,化成整式寫清楚,求得解後須驗根,原(根)留、增(根)舍別含糊。

最簡根式的條件:最簡根式三條件,號內不把分母含,冪指(數)根指(數)要互質,冪指比根指小一點。

特殊點坐標特徵:坐標平面點(x,y),橫在前來縱在後;(+,+),(-,+),(-,-)和(+,-),四個象限分前後;X軸上y為0,x為0在Y軸。

象限角的平分線:象限角的平分線,坐標特徵有特點,一、三橫縱都相等,二、四橫縱確相反。

平行某軸的直線:平行某軸的直線,點的坐標有講究,直線平行X軸,縱坐標相等橫不同;直線平行於Y軸,點的橫坐標仍照舊。

對稱點坐標:對稱點坐標要記牢,相反數位置莫混淆,X軸對稱y相反, Y軸對稱,x前面添負號; 原點對稱最好記,橫縱坐標變符號。

自變數的取值范圍:分式分母不為零,偶次根下負不行;零次冪底數不為零,整式、奇次根全能行。

函數圖像的移動規律:

若把一次函數解析式寫成y=k(x+0)+b、二次函數的解析式寫成y=a(x+h)2+k的形式,則用下面的口訣「左右平移在括弧,上下平移在末稍,左正右負須牢記,上正下負錯不了」。

一次函數圖像與性質口訣:一次函數是直線,圖像經過仨象限;正比例函數更簡單,經過原點一直線;兩個系數k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來相見,k為正來右上斜,x增減y增減;k為負來左下展,變化規律正相反;k的絕對值越大,線離橫軸就越遠。

二次函數圖像與性質口訣:二次函數拋物線,圖象對稱是關鍵;開口、頂點和交點,它們確定圖象現;開口、大小由a斷,c與Y軸來相見,b的符號較特別,符號與a相關聯;頂點位置先找見,Y軸作為參考線,左同右異中為0,牢記心中莫混亂;頂點坐標最重要,一般式配方它就現,橫標即為對稱軸,縱標函數最值見。若求對稱軸位置,符號反,一般、頂點、交點式,不同表達能互換。

反比例函數圖像與性質口訣:反比例函數有特點,雙曲線相背離的遠;k為正,圖在一、三(象)限,k為負,圖在二、四(象)限;圖在一、三函數減,兩個分支分別減。圖在二、四正相反,兩個分支分別添;線越長越近軸,永遠與軸不沾邊。

巧記三角函數定義:初中所學的三角函數有正弦、餘弦、正切、餘切,它們實際是三角形邊的比值,可以把兩個字用/隔開,再用下面的一句話記定義:一位不高明的廚子教徒弟殺魚,說了這么一句話:正對魚磷(余鄰)直刀切。正:正弦或正切,對:對邊即正是對;余:餘弦或餘弦,鄰:鄰邊即余是鄰;切是直角邊。

三角函數的增減性:正增余減特殊三角函數值記憶:首先記住30度、45度、60度的正弦值、餘弦值的分母都是2、正切、餘切的分母都是3,分子記口訣「123,321,三九二十七」既可。

數字巧記: =1.414(意思意思而已) =1.7321(三人一起商量) =2.236(吾量量山路) =2.449(糧食是酒) =2.645(二流是我) =2.828(二爸二爸) =3.16(山葯,六兩)

平行四邊形的判定:要證平行四邊形,兩個條件才能行,一證對邊都相等,或證對邊都平行,一組對邊也可以,必須相等且平行。對角線,是個寶,互相平分「跑不了」,對角相等也有用,「兩組對角」才能成。

梯形問題的輔助線:移動梯形對角線,兩腰之和成一線;平行移動一條腰,兩腰同在「△」現;延長兩腰交一點,「△」中有平行線;作出梯形兩高線,矩形顯示在眼前;已知腰上一中線,莫忘作出中位線。

添加輔助線歌:輔助線,怎麼添?找出規律是關鍵,題中若有角(平)分線,可向兩邊作垂線;線段垂直平分線,引向兩端把線連,三角形邊兩中點,連接則成中位線;三角形中有中線,延長中線翻一番。

圓的證明歌:圓的證明不算難,常把半徑直徑連;有弦可作弦心距,它定垂直平分弦;直徑是圓最大弦,直圓周角立上邊,它若垂直平分弦,垂徑、射影響耳邊;還有與圓有關角,勿忘相互有關聯,圓周、圓心、弦切角,細找關系把線連。同弧圓周角相等,證題用它最多見,圓中若有弦切角,夾弧找到就好辦;圓有內接四邊形,對角互補記心間,外角等於內對角,四邊形定內接圓;直角相對或共弦,試試加個輔助圓;若是證題打轉轉,四點共圓可解難;要想證明圓切線,垂直半徑過外端,直線與圓有共點,證垂直來半徑連,直線與圓未給點,需證半徑作垂線;四邊形有內切圓,對邊和等是條件;如果遇到圓與圓,弄清位置很關鍵,兩圓相切作公切,兩圓相交連公弦。

圓中比例線段:遇等積,改等比,橫找豎找定相似;不相似,別生氣,等線等比來代替,遇等比,改等積,引用射影和圓冪,平行線,轉比例,兩端各自找聯系。

正多邊形訣竅歌:份相等分割圓,n值必須大於三,依次連接各分點,內接正n邊形在眼前。

經過分點做切線,切線相交n個點。n個交點做頂點,外切正n邊形便出現。正n邊形很美觀,它有內接,外切圓,內接、外切都唯一,兩圓還是同心圓,它的圖形軸對稱,n條對稱軸都過圓心點,如果n值為偶數,中心對稱很方便。正n邊形做計算,邊心距、半徑是關鍵,內切、外接圓半徑,邊心距、半徑分別換,分成直角三角形2n個整,依此計算便簡單。

函數學習口決:正比例函數是直線,圖象一定過圓點,k的正負是關鍵,決定直線的象限,負k經過二四限,x增大y在減,上下平移k不變,由引得到一次線,向上加b向下減,圖象經過三個限,兩點決定一條線,選定系數是關鍵。

反比例函數雙曲線,待定只需一個點,正k落在一三限,x增大y在減,圖象上面任意點,矩形面積都不變,對稱軸是角分線x、y的順序可交換。

二次函數拋物線,選定需要三個點,a的正負開口判,c的大小y軸看,△的符號最簡便,x軸上數交點,b的食物中毒結全算,a、b同號軸左邊拋物線平移a不變,頂點牽著圖象轉,三種形式可變換,配方法作用最關鍵。

㈨ 初中數學三角函數記憶順口溜

三角函數是數學中比較重要的知識內容,下面為大家總結了三角函數記憶順口溜,僅供大家參考。

三角函數記憶口訣

三角函數是函數,象限符號坐標注。函數圖像單位圓,周期奇偶增減現。

同角關系很重要,化簡證明都需要。正六邊形頂點處,從上到下弦切割;

中心記上數字一,連結頂點三角形。向下三角平方和,倒數關系是對角,

頂點任意一函數,等於後面兩根除。誘導公式就是好,負化正後大化小,

變成銳角好查表,化簡證明少不了。二的一半整數倍,奇數化余偶不變,

將其後者視銳角,符號原來函數判。兩角和的餘弦值,化為單角好求值,

餘弦積減正弦積,換角變形眾公式。和差化積須同名,互餘角度變名稱。

計算證明角先行,注意結構函數名,保持基本量不變,繁難向著簡易變。

逆反原則作指導,升冪降次和差積。條件等式的證明,方程思想指路明。

萬能公式不一般,化為有理式居先。公式順用和逆用,變形運用加巧用;

一加餘弦想餘弦,一減餘弦想正弦,冪升一次角減半,升冪降次它為范;

三角函數反函數,實質就是求角度,先求三角函數值,再判角取值范圍;

利用直角三角形,形象直觀好換名,簡單三角的方程,化為最簡求解集。

符號判斷口訣

全,S,T,C,正。這五個字口訣的意思就是說:第一象限內任何一個角的四種三角函數值都是「+」;第二象限內只有正弦是「+」,其餘全部是「-」;第三象限內只有正切是「+」,其餘全部是「-」;第四象限內只有餘弦是「+」,其餘全部是「-」。

也可以這樣理解:一、二、三、四指的角所在象限。全正、正弦、正切、餘弦指的是對應象限三角函數為正值的名稱。口訣中未提及的都是負值。

「ASTC」反Z。意即為「all(全部)」、「sin」、「tan」、「cos」按照將字母Z反過來寫所佔的象限對應的三角函數為正值。

㈩ 初中數學知識趣味記憶口訣

數學雖然是理科,但是要記憶的知識點是比較多,這也需要好的記憶方法或記憶口訣。下面是由我給大家帶來關於初中數學知識趣味記憶口訣,希望對大家有幫助!

初中數學知識記憶口訣
一、數與代數

Ⅰ、數與式

1.有理數的加法、乘法運算

同號相加一邊倒,異號相加“大”減“小”;符號跟著大的跑,絕對值相等“零”正好。

同號得正異號負,一項為零積是零。【注】“大”減“小”是指絕對值的大小。

2.合並同類項

合並同類項,法則不能忘;只求系數代數和,字母、指數不變樣。

3.去、添括弧法則

去括弧、添括弧,關鍵看符號;括弧前面是正號,去、添括弧不變號;

括弧前面是負號,去、添括弧都變號。

4.單項式運算

加、減、乘、除、乘(開)方,三級運算分得清;系數進行同級(運)算,指數運算降級(進)行。

5.分式混合運演算法則

分式四則運算,順序乘除加減;乘除同級運算,除法符號須變(乘);乘法進行化簡,因式分解在先;分子分母相約,然後再行運算;加減分母需同,分母化積關鍵;找出最簡公分母,通分不是很難;

變號必須兩處,結果要求最簡。

6.平方差公式

兩數和乘兩數差,等於兩數平方差;積化和差變兩項,完全平方不是它。

7.完全平方公式

首平方又末平方,二倍首末在中央;和的平方加再加,先減後加差平方。

8.因式分解

一提二套三分組,十字相乘也上數;四種方法都不行,拆項添項去重組;重組無望試求根,

換元或者算余數;多種方法靈活選,連乘結果是基礎;同式相乘若出現,乘方表示要記住。

【注】一提(提公因式)二套(套公式)

9.二次三項式的因式分解

先想完全平方式,十字相乘是其次;兩種方法行不通,求根分解去嘗試。

10.比和比例

兩數相除也叫比,兩比相等叫比例;基本性質第一條,外項積等內項積;

前後項和比後項,組成比例叫合比;前後項差比後項,組成比例是分比;

兩項和比兩項差,比值相等合分比;前項和比後項和,比值不變叫等比;

商定變數成正比,積定變數成反比;判斷四數成比例,兩端積等中間積。

11.根式和無理式

表示方根代數式,都可稱其為根式;根式異於無理式,被開方式無限制;

無理式都是根式,區分它們有標志;被開方式有字母,才能稱為無理式。

12.最簡根式的條件

最簡根式三條件:號內不把分母含,冪指(數)根指(數)要互質,冪指比根指小一點。

Ⅱ、方程與不等式

1.解一元一次方程

已知未知鬧分離,分離方法就是移,加減移項要變號,乘除移了要顛倒。

先去分母再括弧,移項合並同類項;系數化1還沒好,回代值等才算了。

2.解一元一次不等式

去分母、去括弧,移項時候要變號;同類項、合並好,再把系數來除掉;

兩邊除(以)負數時,不等號改向別忘了。

3.解一元一次絕對值不等式

大(魚)於(吃)取兩邊,小(魚)於(吃)取中間。

4.解一元一次不等式組

大大取較大,小小取較小;大小、小大取中間,大大,小小無處找。

5.解分式方程

同乘最簡公分母,化成整式寫清楚;求得解後須驗根,原(根)留、增(根)舍別含糊。

6.解一元二次方程

方程沒有一次項,直接開方最理想;如果缺少常數項,因式分解沒商量;

b、c相等都為零,等根是零不要忘;b、c同時不為零,因式分解或配方;

也可直接套公式,因題而異擇良方。

7.解一元二次不等式

首先化成一般式,構造函數第二站;判別式值若非負,曲線橫軸有交點;

a正開口它向上,大於零則取兩邊;代數式若小於零,解集交點數之間;

方程若無實數根,口上大零解為全;小於零將沒有解,開口向下正相反。

Ⅲ、函數

1.坐標繫上坐標點

坐標平面點(x,y),橫在前來縱在後;X軸上y為0,x為0在Y軸。

象限角的平分線,坐標特徵有特點;一、三橫縱都相等,二、四橫縱恰相反。

平行某軸的直線,點的坐標有講究;平行於X軸,縱等橫不同;平行於Y軸,橫等縱不同。

對稱點坐標要記牢,相反位置莫混淆;X軸對稱y相反,Y軸對稱X反;原點對稱最好記,橫縱坐標變符號。

2.函數自變數的取值

分式分母不為零,偶次根下負不行;零次冪底數不為零,整式、奇次根全能行。

3.判斷正比例函數:

判斷正比例函數,檢驗當分兩步走;一量表示另一量,是與否;若有還要看取值,全體實數都要有。

4.正比例函數()圖像與性質

正比函數很簡單,經過原點一直線;K正一三負二四,變化趨勢記心間;

K正左低右邊高,同大同小向爬山;K負左高右邊低,一大另小下山巒。

5.反比例函數()圖像與性質

反比函數雙曲線,所有都不過原點;K正一三負二四,兩軸是它漸近線;

K正左高右邊低,一三象限滑下山;K負左低右邊高,二四象限如爬山。

6.一次函數()圖像與性質

一次函數是直線,圖像經過仨象限;兩個系數k與b,作用之大莫小看;

k為正來右上斜,x增減y增減;k為負來左下展,變化規律正相反;

k是斜率定夾角,b與Y軸來相見;k的絕對值越大,線離橫軸就越遠。

7.一次函數()圖像與性質

二次方程零換y,二次函數便出現;全體實數定義域,圖像叫做拋物線;

拋物線有對稱軸,兩邊單調正相反;開口、頂點和交點,它們確定圖象現;

開口、大小由a斷,c與Y軸來相見;b的符號較特別,符號與a相關聯;

頂點非高即最低。上低下高很顯眼,如果要畫拋物線,平移也可去描點;

提取配方定頂點,兩條途徑再挑選,若要平移也不難,先畫基礎拋物線,

列表描點後連線,平移規律記心間,左加右減括弧內,號外上加下要減。

8.三角函數

三角函數的增減性:正增余減。

特殊三角函數值(30度、45度、60度)記憶:正弦(值)、餘弦(值)分母2、正切(值)、餘切(值)分母3。

二、空間與圖形

Ⅰ、線與角

1.直線、射線與線段

直線射線與線段,形狀相似有關聯;直線長短不確定,可向兩方無限延;

射線僅有一端點,反向延長成直線;線段定長兩端點,雙向延伸變直線。

兩點定線是共性,組成圖形最常見。

2.角

一點出發兩射線,組成圖形叫做角;共線反向是平角,平角之半叫直角;

平角兩倍成周角,小於直角叫銳角;直平之間是鈍角,平周之間叫優角;

和為直角叫互余,和為平角叫互補。

3.兩點間距離公式

同軸兩點求距離,大減小數就為之;與軸等距兩個點,間距求法亦如此;

平面任意兩個點,橫縱標差先求值;差方相加開平方,距離公式要牢記。

Ⅱ、平面圖形

1.平行四邊形的判定

要證平行四邊形,兩個條件才能行;一證對邊都相等,或證對邊都平行;

一組對邊也可以,必須相等且平行;

對角線,是個寶,互相平分“跑不了”;對角相等也有用,“兩組對角”才能成。

2.矩形的判定

任意一個四邊形,三個直角成矩形;對角線等互平分,四邊形它是矩形。

已知平行四邊形,一個直角叫矩形;兩對角線若相等,理所當然為矩形。

3.菱形的判定

任意一個四邊形,四邊相等成菱形;四邊形的對角線,垂直互分是菱形;

已知平行四邊形,鄰邊相等叫菱形;兩對角線若垂直,順理成章為菱形。

4.梯形的輔助線

移動梯形對角線,兩腰之和成一線;平行移動一條腰,兩腰同在“△”現;

延長兩腰交一點,“△”中有平行線;作出梯形兩高線,矩形顯示在眼前;

已知腰上一中線,莫忘作出中位線。

5.三角形的輔助線

題中若有角(平)分線,可向兩邊作垂線;線段垂直平分線,引向兩端把線連;

三角形邊兩中點,連接則成中位線;三角形中有中線,延長中線翻一番。

6.圓內的正多邊形

份相等分割圓,n值必須大於三,依次連接各分點,內接正n邊形在眼前.

7.圓中比例線段

遇等積,改等比,橫找豎找定相似;不相似,別生氣,等線等比來代替;

遇等比,改等積,引用射影和圓冪;平行線,轉比例,兩端各自找聯系。
初中數學幾何面積8個速背口訣
求幾何圖形的面積有“三板斧”

(1)直接用三角形,特殊四邊形,圓,扇形的面積公式來求。

(2)間接割補法,把不規則圖形面積通過割補、運動、變形轉化為規則易求圖形面積的和或差。

(3)特殊求法,即利用相似圖形的面積比等於相似比的平方,等底(等高)的三角形面積比等於高(底)比的性質來解。

其次有些乘法公式、勾股定理、三角形的一邊平行四邊形的比例式等性質,也可用面積法來推導。

面積法是什麼?

運用面積關系解決平面幾何體的方法,稱為面積法。

它是幾何中常用的一種方法。特點是把已知和未知各量用面積公式聯系起來,通過運算達到求證的結果。所以用面積法來解幾何題,幾何元素之間關系會變成數量之間的關系。這個時候,問題就化繁為簡了,只需要計算,有事甚至可以不添置補助線就迎刃而解了!

此外,用面積法還可以用來求線段長,證明線段相等(不等),角相等,比例式或等積式,求線段比等。雖然這些幾乎都可以用其他方法來解決,但是面積法無疑是一種更直接、簡易、有效的方法。

面積法的常用理論口訣

1.三角形的中線把三角形分成兩個面積相等的部分。

2.同底同高或等底等高的兩個三角形面積相等。

3.平行四邊形的對角線把其分成兩個面積相等的部分。

4.同底(等底)的兩個三角形面積的比等於高的比。

同高(或等高)的兩個三角形面積的比等於底的比。

5.三角形的面積等於等底等高的平行四邊形的面積的一半。

6.三角形的中位線截三角形所得的三角形的面積等於原三角形面積的1/4

7.三角形三邊中點的連線所成的三角形的面積等於原三角形面積的1/4

8.有一個角相等或互補的兩個三角形的面積的比等於夾角的兩邊的乘積的比。

面積法的常用解題思路

1.分解法:通常把一個復雜的圖形,分解成幾個三角形。

2.作平行線法:通過平行線找出同高(或等高)的三角形。

3.利用有關性質法:比如利用中點、中位線等的性質。

4.還可以利用面積解決其它問題。

猜你喜歡:

1. 趣味智力題|數學智力題

2. 2016初中數學知識點總結大全

3. 數學知識要如何記

4. 數學知識的快速記憶方法

5. 初中語文記憶法口訣

6. 人教版初中數學知識點匯總中考復習資料