當前位置:首頁 » 基礎知識 » 初一數學上期必須掌握知識點
擴展閱讀
給班上的同學寫什麼贈言 2024-11-07 12:52:36
怎麼快速掌握數學基礎題 2024-11-07 12:50:57
景區基礎設施欠缺怎麼說 2024-11-07 12:35:08

初一數學上期必須掌握知識點

發布時間: 2022-12-08 01:26:47

A. 七年級數學上冊知識點總結

七年級數學上冊知識點總結(通用8篇)
總結在一個時期、一個年度、一個階段對學習和工作生活等情況加以回顧和分析的一種書面材料,它可以促使我們思考,為此要我們寫一份總結。那麼如何把總結寫出新花樣呢?下面是小編為大家整理的七年級數學上冊知識點總結(通用8篇),歡迎大家分享。

七年級數學上冊知識點總結 篇1
數軸
1、數軸的概念
規定了原點,正方向,單位長度的直線叫做數軸。
注意:(1)數軸是一條向兩端無限延伸的直線;(2)原點、正方向、單位長度是數軸的三要素,三者缺一不
可;(3)同一數軸上的單位長度要統一;(4)數軸的三要素都是根據實際需要規定的。
2、數軸上的點與有理數的關系
(1)所有的有理數都可以用數軸上的點來表示,正有理數可用原點右邊的點表示,負有理數可用原點左邊的點表示,0用原點表示。
(2)所有的有理數都可以用數軸上的點表示出來,但數軸上的點不都表示有理數,也就是說,有理數與數軸上的點不是一一對應關系。(如,數軸上的點π不是有理數)
3、利用數軸表示兩數大小
(1)在數軸上數的大小比較,右邊的數總比左邊的數大;
(2)正數都大於0,負數都小於0,正數大於負數;
(3)兩個負數比較,距離原點遠的數比距離原點近的數小。
4、數軸上特殊的(小)數
(1)最小的自然數是0,無的自然數;
(2)最小的正整數是1,無的正整數;
(3)的負整數是-1,無最小的負整數
5、a可以表示什麼數
(1)a>0表示a是正數;反之,a是正數,則a>0;
(2)a
(3)a=0表示a是0;反之,a是0,,則a=0
七年級數學上冊知識點總結 篇2
第一章 有理數
(一)正負數
1、正數:大於0的數。
2、負數:小於0的數。
3、0即不是正數也不是負數。
4、正數大於0,負數小於0,正數大於負數。
(二)有理數
1、有理數:由整數和分數組成的數。包括:正整數、0、負整數,正分數、負分數。可以寫成兩個整數之比的形式。(無理數是不能寫成兩個整數之比的形式,它寫成小數形式,小數點後的數字是無限不循環的。如:π)
2、整數:正整數、0、負整數,統稱整數。
3、分數:正分數、負分數。
(三)數軸
1、數軸:用直線上的點表示數,這條直線叫做數軸。(畫一條直線,在直線上任取一點表示數0,這個零點叫做原點,規定直線上從原點向右或向上為正方向;選取適當的長度為單位長度,以便在數軸上取點。)
2、數軸的三要素:原點、正方向、單位長度。
3、相反數:只有符號不同的兩個數叫做互為相反數。0的相反數還是0。
4、絕對值:正數的絕對值是它本身,負數的絕對值是它的相反數;0的絕對值是0,兩個負數比較大小,絕對值大的反而小。
(四)有理數的加減法
1、先定符號,再算絕對值。
2、加法運演算法則:同號相加,取相同符號,並把絕對值相加。異號相加,取絕對值大的加數的符號,並用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0。一個數同0相加減,仍得這個數。
3、加法交換律:a+b= b+ a 兩個數相加,交換加數的位置,和不變。
4、加法結合律:(a+b)+ c = a +(b+ c )三個數相加,先把前兩個數相加,或者先把後兩個數相加,和不變。
5、 ab = a +(b) 減去一個數,等於加這個數的相反數。
(五)有理數乘法(先定積的符號,再定積的大小)
1、同號得正,異號得負,並把絕對值相乘。任何數同0相乘,都得0。
2、乘積是1的兩個數互為倒數。
3、乘法交換律:ab= ba
4、乘法結合律:(ab)c = a (b c)
5、乘法分配律:a(b +c)= a b+ ac
(六)有理數除法
1、先將除法化成乘法,然後定符號,最後求結果。
2、除以一個不等於0的數,等於乘這個數的倒數。
3、兩數相除,同號得正,異號得負,並把絕對值相除,0除以任何一個不等於0的數,都得0。
(七)乘方
1、求n個相同因數的積的運算,叫做乘方。寫作an。(乘方的結果叫冪,a叫底數,n叫指數)
2、負數的奇數次冪是負數,負數的偶次冪是正數;0的任何正整數次冪都是0。
(八)有理數的加減乘除混合運演算法則
1、先乘方,再乘除,最後加減。
2、同級運算,從左到右進行。
3、如有括弧,先做括弧內的運算,按小括弧、中括弧、大括弧依次進行。
(九)科學記數法、近似數、有效數字。
第二章 整式
(一)整式
1、整式:單項式和多項式的統稱叫整式。
2、單項式:數與字母的乘積組成的式子叫單項式。單獨的一個數或一個字母也是單項式。
3、系數:一個單項式中,數字因數叫做這個單項式的系數。
4、次數:一個單項式中,所有字母的指數和叫做這個單項式的次數。
5、多項式:幾個單項式的和叫做多項式。
6、項:組成多項式的每個單項式叫做多項式的項。
7、常數項:不含字母的項叫做常數項。
8、多項式的次數:多項式中,次數最高的項的次數叫做這個多項式的次數。
9、同類項:多項式中,所含字母相同,並且相同字母的指數也相同的項叫做同類項。
10、合並同類項:把多項式中的同類項合並成一項,叫做合並同類項。
(二)整式加減
整式加減運算時,如果遇到括弧先去括弧,再合並同類項。
1、去括弧:一般地,幾個整式相加減,如果有括弧就先去括弧,然後再合並同類項。
如果括弧外的因數是正數,去括弧後原括弧內各項的符號與原來的符號相同。如果括弧外的因數是負數,去括弧後原括弧內各項的符號與原來的符號相反。
2、合並同類項:把多項式中的同類項合並成一項,叫做合並同類項。
合並同類項後,所得項的系數是合並前各同類項的系數的和,且字母部分不變
第三章 一元一次方程
分析實際問題中的數量關系,利用其中的相等關系列出方程,是用數學解決實際問題的一種方法。
(一)方程:先設字母表示未知數,然後根據相等關系,寫出含有未知數的等式叫方程。
(二)一元一次方程:
1、一元一次方程:方程里只含有一個未知數(元),未知數的次數都是1,這樣的方程叫做一元一次方程。
2、解:求出的方程中未知數的值叫做方程的解。
(二)等式的性質
1、等式兩邊加(或減)同一個數(或式子),結果仍相等。
如果a= b,那麼a± c= b± c
2、等式兩邊乘同一個數,或除以同一個不為0的數,結果仍相等。
如果a= b,那麼a c= b c;
如果a= b,(c0),那麼a ?Mc = b ?M c。
(三)解方程的步驟
解一元一次方程的步驟:去分母、去括弧、移項、合並同類項,未知數系數化為1。
1、去分母:把系數化成整數。
2、去括弧
3、移項:把等式一邊的某項變號後移到另一邊。
4、合並同類項
5、系數化為1
第四章 圖形認識初步
一、圖形認識初步
1、幾何圖形:把從實物中抽象出來的各種圖形的統稱。
2、平面圖形:有些幾何圖形的各部分都在同一平面內,這樣的圖形是平面圖形。
3、立體圖形:有些幾何圖形的各部分不都在同一平面內,這樣的圖形是立體圖形。
4、展開圖:有些立體圖形是由一些平面圖形圍成的,將它們的表面適當剪開,可以展開成平面圖形,這樣的平面圖形稱為相應立體圖形的展開圖。
5、點,線,面,體
1圖形是由點,線,面構成的。
2線與線相交得點,面與面相交得線。
3點動成線,線動成面,面動成體。
二、直線、線段、射線
1、線段:線段有兩個端點。
2、射線:將線段向一個方向無限延長就形成了射線。射線只有一個端點。
3、直線:將線段的兩端無限延長就形成了直線。直線沒有端點。
4、兩點確定一條直線:經過兩點有一條直線,並且只有一條直線。
5、相交:兩條直線有一個公共點時,稱這兩條直線相交。
6、兩條直線相交有一個公共點,這個公共點叫交點。
7、中點:M點把線段AB分成相等的兩條線段AM與MB,點M叫做線段AB的中點。
8、線段的性質:兩點的所有連線中,線段最短。(兩點之間,線段最短)
9、距離:連接兩點間的線段的長度,叫做這兩點的距離。
三、角
1、角:有公共端點的兩條射線組成的圖形叫做角。
2、角的度量單位:度、分、秒。
3、角的度量與表示:
1角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點。
2一度的1/60是一分,一分的1/60是一秒。角的度、分、秒是60進制。
4、角的比較:
1角也可以看成是由一條射線繞著他的端點旋轉而成的。
2平角和周角:一條射線繞著他的端點旋轉,當終邊和始邊成一條直線時,所成的角叫做平角。始邊繼續旋轉,當他又和始邊重合時,所成的角叫做周角。平角等於180度。周角等於360度。直角等於90度。
3平分線:從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。
4工具:量角器、三角尺、經緯儀。
5、餘角和補角
1餘角:兩個角的和等於90度,這兩個角互為餘角。即其中每一個是另一個角的餘角。
2補角:兩個角的和等於180度,這兩個角互為補角。即其中一個是另一個角的補角。
3補角的性質:等角的補角相等。
4餘角的性質:等角的餘角相等。
七年級數學上冊知識點總結 篇3
1、用加、減、乘(乘方)、除等運算符號把數或表示數的字母連接而成的式子,叫做代數式。(注:單獨一個數字或字母也是代數式)
2、代數式的寫法:數學與字母相乘時,「×」號省略,數字寫在字母前;字母與字母相乘時,相同字母寫成冪的形式;數字與數字相乘時,「×」號不能省略;式中出現除法時,一般寫成分數形式。式中出現帶分數時,一般寫成假分數形式。
3、分段問題書寫代數式時要分段考慮,有單位時要考慮是否要();如:電費、水費、計程車、商店優惠。
4、單項式:由數字和字母乘積組成的式子。單獨一個數或一個字母也是單項式、因此,判斷代數式是否是單項式,關鍵要看代數式中數與字母是否是乘積關系,若1分母中不含有字母,2式子中含有加、減運算關系,也不是單項式、
單項式的系數:是指單項式中的數字因數;(不要漏負號和分母)
單項數的次數:是指單項式中所有字母的指數的和、(注意指數1)
5、多項式:幾個單項式的和。判斷代數式是否是多項式,關鍵要看代數式中的每一項是否是單項式、每個單項式稱項,(其中不含字母的項叫常數項)多項式的次數是指多項式里次數最高項的次數(選代表);多項式的項是指在多項式中每一個單項式、特別注意多項式的項包括它前面的性質符號、它們都是用字母表示數或列式表示數量關系。注意單項式和多項式的每一項都包括它前面的符號。

B. 初一上冊數學必考知識點 學霸早已爛熟於心

馬上就到期末考試了,而初一的期末考試中,數學對整個初中的學習有舉足輕重的影響,它將很大程度上影響你初中的學習成績水平。下面我整理了初一上冊數學必考知識點,供大家參考!

初一上冊數學重要知識點

一元一次方程

1.列方程時,要先設字母表示未知數,然後根據問題中的相等關系,寫出還有未知數的等式——方程。

2.含有一個未知數(元),未知數的次數都是1,這樣的方程叫做一元一次方程。

3.分析實際問題中的數量關系,利用其中的等量關系列出方程,是用數學解決實際問題的一種方法。

4.等式的性質1:等式兩邊加(或減)同一個數(或式子),結果仍相等。

5.等式的性質2:等式兩邊乘同一個數,或除以一個不為0的數,結果仍相等。

6.把等式一邊的某項變號後移到另一邊,叫做移項。

7.應用:行程問題:s=v×t

工程問題:工作總量=工作效率×時間

盈虧問題:利潤=售價-成本 利率=利潤÷成本×100%

售價=標價×折扣數×10% 儲蓄利潤問題:利息=本金×利率×時間 本息和=本金+利息

圖形初步認識

1. 我們把實物中抽象的各種圖形統稱為幾何圖形。

2.有些幾何圖形(如長方體.正方體.圓柱.圓錐.球等)的各部分不都在同一平面內,它們是立體圖形。

3.有些幾何圖形(如線段.角.三角形.長方形.圓等)的各部分都在同一平面內,它們是平面圖形。

4.將由平面圖形圍成的立體圖形表面適當剪開,可以展開成平面圖形,這樣的平面圖形稱為相應立體圖形的展開圖。

5.幾何體簡稱為體。

6.包圍著體的是面,面有平的面和曲的面兩種。

7.面與面相交的地方形成線,線和線相交的地方是點。

8.點動成面,面動成線,線動成體。

9.經過探究可以得到一個基本事實:經過兩點有一條直線,並且只有一條直線。 簡述為:兩點確定一條直線(公理)。

10.當兩條不同的直線有一個公共點時,我們就稱這兩條直線相交,這個公共點叫做它們的交點。

11.點M把線段AB分成相等的兩條線段AM和MB,點M叫做線段AB的中點。

12.經過比較,我們可以得到一個關於線段的基本事實:兩點的所有連線中,線段最短。簡單說成:兩點之間,線段最短。(公理)

13.連接兩點間的線段的長度,叫做這兩點的距離。

整式的加減

1.都是數或字母的積的式子叫做單項式,單獨的一個數或一個字母也是單項式。

2.單項式中的數字因數叫做這個單項式的系數。

3. 一個單項式中,所有字母的指數的和叫做這個單項式的次數。

4.幾個單項的和叫做多項式,其中,每個單項式叫做多項式的項,不含字母的項叫做常數項。

5.多項式里次數最高項的次數,叫做這個多項式的次數。

6.把多項式中的同類項合並成一項,叫做合並同類項。

合並同類項後,所得項的系數是合並前各同類項的系數的和,且字母部分不變。

7.如果括弧外的因數是正數,去括弧後原括弧內各項的符號與原來的符號相同。

8.如果括弧外的因數是負數,去括弧後原括弧內各項的符號與原來的符號相反。

9.一般地,幾個整式相加減,如果有括弧就先去括弧,然後再合並同類項。

如何學好初一上冊數學

一定要預習,預習是很重要的,初中數學不像小學數學,有很多知識過渡的東西摻進,所以一旦跟不上是很可怕的,一定要找老師或同學問。建議多做一些題,培養起手感,這樣學數學才會比較輕松,會舉一反三。

養成良好的習慣,上課該做筆記做筆記,尤其是老師講有些題目的方法,記下要多看,多去理解,順便多做些類似題型鞏固。

上課一定認真聽講。這要求或許高點,其實很多人對數學都不感興趣。上課只是例行公事那麼樣聽講,甚至走神了還不知道。

C. 七年級數學上冊知識點匯總

一個沒有幾分詩人氣的數學家永遠成不了一個完全的數學家.下面給大家帶來一些關於 七年級數學 上冊知識點匯總,希望對大家有所幫助。

1、有理數減法法則:減去一個數等於加上這個數的相反數,即:a-b=a+(-b).

2、加減法統一成加法:有理數的加減法運算可以通過有理數的減法法則將減法轉化為加法,統一成只有加法運算的和式.

3、和式的寫法:在和式里,通常把各個加數的括弧和它前面的加號省略不寫,寫成省略加

號的和的形式.

4、加減混合運算的 方法 和步驟

(1)將減法統一成加法,並寫成省略加號的和的形式;

(2)運用加法的交換律和結合律,簡化運算.

5、有理數乘法法則:兩數相乘,同號得正,異號得負,並把絕對值相乘;任何數與零相乘,都得0.

6、有理數乘法步驟:先確定積的符號;再計算絕對值的積.

7、倒數:乘積是1的兩個數互為倒數.

8、有理數的除法法則

(1)除以一個數等於乘以這個數的倒數;

(2)兩數相除,同號得正,異號得負,並把絕對值相除;

(3)0除以任何一個不等於零的數,都得0.

9、乘方的有關概念

(1)求n個相同因數的積的運算叫乘方,乘方的結果叫冪,a叫底,n叫指數,a n讀作:a的n 次方(或a的n次冪).

(2)正數的任何次冪都是正數;負數的奇次方冪是負數,偶次方冪是正數.

10、科學計數法

把一個大於10的數記成a×10n的形式,其中0≤a<10,n是正數,這種計數法叫做科學計數法.

11、有理數的混合運算順序

(1)先算乘方,再算乘除,最後算加減;

(2)同級運算,按照從左至右的順序依次進行;

(3)如果有括弧,就先算小括弧,再算中括弧,然後算大括弧.

12、近似數:與實際很接近的數.

13、精確度:反映近似數的精確程度的量.一般地,一個近似數四捨五入到某一位,就說這個

近似數精確到那一位.

14、計算器的組成:計算器的面板由 顯示器 和按鍵組成.

第3章整式的加減

1、用字母表示數後,有些數量之間的關系用含有字母的式子表示,看上去更加簡明,更具有普

遍意義.

2、用字母表示數後,字母的取值要根據實際情景來確定.

3、用運算符號把數或表示數的字母連接而成的式子,稱為代數式.

4、單獨一個數或單獨一個字母也是代數式.

5、列代數式的實質就是把文字語言轉化為符號語言.

6、列代數式的一般方法有:

(1)抓住關鍵詞,由關鍵詞確定相應的運算符號;

(2)理清運算順序,一般是先讀的先算,必要時添上括弧;

(3)較復雜的數量關系,可分段處理;

(4)根據實際問題中的基本數量關系或公式列代數式.

7、用數值代替代數式中的字母,按照代數式中的運算關系計算得出結果,叫做代數式的值.

8、求代數式的值的步驟:先代入,再求值.

9、數與字母的乘積所組成的代數式叫做單項式,單獨的數或字母也是單項式.

10、單項式中的數字因數叫做這個單項式的系數,所有字母指數之和叫做這個單項式的次數.

11、幾個單項式的和叫做多項式,在多項式中,每個單項式叫做多項式的項,其中不含字母

的項叫做常數項.

12、在多項式里,最高次項的次數就是這個多項式的次數.

13、單項式和多項式統稱為整式.

14、把一個多項式按某一個字母的指數從大到小的順序排列起來,叫做把這個多項式按這個

字母的降冪排列.

15、把一個多項式按某一個字母的指數從小到大的順序排列起來,叫做把這個多項式按這個

字母的升冪排列.

16、所含字母相同,並且相同字母的指數也相等的項叫做同類項,所有的常數項都是同類項.

17、把多項式中的同類項合並成一項,叫做合並同類項.

18、合並同類項的法則:把同類項的系數相加,所得結果作為系數,字母和字母的指數不變.

19、去括弧法則:

(1)括弧前面是「+」,把括弧和它前面的「+」號去掉,括弧里各項不改變正負號;

(2)括弧前面是「—」,把括弧和它前面的「—」號去掉,括弧里各項改變正負號;

20、添括弧法則:

(1)所添括弧前面是「+」號,括到括弧里的各項不改變正負號;

(2)所添括弧前面是「—」號,括到括弧里的各項改變正負號;

21、整式加減的一般步驟:先去括弧,再合並同類項.

第4章生活中的立體圖形

1、生活中的立體圖形有很多,常見的有柱體、錐體和球體,其中柱體分為圓柱和稜柱,錐體分

為圓錐和棱錐

2、從正面、上面和側面(左面或右面)三個不同的方向看一個物體,然後描繪出三幅所看到的

圖,即視圖.

3、從正面看到的圖形,稱為主視圖;從上面看到的圖形,稱為俯視圖;從側面看到的圖形,稱

為側視圖,依觀看的方向不同,有左視圖和右視圖.

4、單一的規則的立體圖形的三視圖,如果主視圖和側視圖是三角形,一般和錐體有關,可根據

俯視圖是圓形或n邊形,可以判斷是圓錐或,n棱錐;對於主視圖和側視圖是長方形的,一般和柱體有關,再觀察俯視圖是圓形或n邊形,可以判斷是圓柱或n稜柱.

5、圓柱的側面展開圖是矩形(長方形或正方形),圓錐的側面展開圖是扇形.

6、同一個立體圖形,按不同的方式展開得到的平面展開圖是不同的.

7、圓是由曲面圍成的封閉圖形;多邊形是由線段圍成的封閉圖形.

8、在多邊形中,最基本的圖形是三角形.

9、兩點之間線段最短.

10、經過兩點有1條直線,並且只有1條直線,即兩點確定一條直線.

11、線段的長短比較有兩種方法:一種是度量的方法;一種是疊合的方法.

12、把一條線段分成兩條相等線段的點,叫做這條線段的中點.

13、角是由兩條有公共端點的射線組成的圖形,角也可以看做是一條射線繞著它的端點旋轉

而成的圖形.

14、角的表示方法

(1)當頂點處只有一個角時,用一個大寫字母表示;

(2)用三個大寫字母表示,注意頂點字母必須寫在中間;

(3)用希臘字母或阿拉伯數字表示.

15、角的大小比較:

(1)「形的比較」——疊合法;

(2)「數的比較」——度量法.

16、從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的

角平分線.

17、兩個角的和等於90°(直角),就說這兩個角互為餘角;兩個角的和等於180°(平角),

就說這兩個角互為補角.

18、同角(或等角)的餘角相等;同角(或等角)的補角相等.

第5章相交線與平行線

1、對頂角相等.

2、在同一平面內,經過直線外或直線上一點,有且只有1條直線與已知直線垂直.

3、直線外一點與直線上各點連接的所有線段中,垂線段最短.

4、兩條直線被第三條直線所截,位於截線的同側,被截直線的同一方的兩個角叫做同位角;位

於截線的兩側,被截直線之間的兩個角叫做內錯角;位於截線的同側,被截直線之間的兩個角叫做同旁內角.

5、在同一平面內不相交的兩條直線叫做平行線.

6、經過直線外一點,有1條直線與這條直線平行.

7、如果兩條直線都和第三條直線平行,那麼這兩條直線也互相平行.

8、平行線的判定方法

(1)同位角相等,兩直線平行;

(2)內錯角相等,兩直線平行;

(3)同旁內角互補,兩直線平行;

(4)如果有兩條直線與第三條直線平行,那麼這兩條直線也互相平行;

(5)在同一平面內,垂直於同一條直線的兩條直線互相平行.

9、平行線的性質

(1)兩直線平行,同位角相等;

(2)兩直線平行,內錯角相等;

(3)兩直線平行,同旁內角互補.

第1章走進數學世界

1、數學伴我們成長,測量、稱重、計算等都與數學有關.

2、數學與現實生活密切聯系,人類離不開數學.

3、人人都能學好數學.

第2章有理數

1、相反意義的量:像向東和向西、零上和零下、收入和支出、升高和降低、買入和賣出等都表

示具有相反意義的量.

2、正數和負數

(1)正數都大於零;

(2)在正數前面加上一個「—」號的數叫做負數,負數都小於零;

(3)0既不是正數也不是負數,它是正數和負數的分界點.

3、有理數

(4)有理數:正數和分數統稱為有理數;

(5)整數包括正整數、0、負整數;

(6)分數包括正分數、負分數.

4、有理數的分類:0和正數統稱為非負數,0和負數統稱為非正數.

5、數軸的概念:規定了正方向、原點和單位長度的直線叫做數軸.

6、有理數的大小比較

(1)利用數軸:在數軸上表示兩個數,右邊的數總比左邊的數大;

(2)利用比較法則:正數都大於零,負數都小於零,正數大於負數.

7、相反數的意義

(1)代數意義:只有符號不同的兩個數稱互為相反數,零的相反數是0;

(2)幾何意義:在數軸上表示互為相反數的兩個點分別位於原點的兩側,且與原點的距離相等.

8、相反數的表示方法:數a的相反數是-a,這里的a可以表示任何一個數.

9、絕對值的意義

(1)幾何意義:把數軸上表示數a的點與原點的距離叫做數a的絕對值,記做|a|;

(2)代數意義:一個正數的絕對值等於本身,零的絕對值是0,一個負數的絕對值等於相反數.

10、絕對值的非負性:對於任何有理數a,都有|a|≥0.

11、兩個負數的大小比較法則:兩個負數,絕對值大的反而小.

12、有理數大小的比較方法

(1)利用數軸:在數軸上表示兩個數,右邊的數總比左邊的數大;

(2)利用比較法則:正數都大於零,負數都小於零,正數大於負數.

兩個正數,絕對值大的數大;兩個負數絕對值大的數反而小.

13、有理數的加法法則

(1)同號兩數相加,取加數的符號,並把絕對值相加;

(2)絕對值不相等的異號兩數相加,取絕對值較大加數的符號,並用較大的絕對值減較小的絕對值;

(3)互為相反數的兩個數相加得0;

(4)一個數同0相加仍得這個數.

14、在進行有理數的加法運算時,應分兩步:首先,判斷符號;然後,再計算絕對值.

15、有理數的加法運算律

(1)交換律:兩個數相加,交換加數的位置,和不變,即:a+b=b+a;(用字母表示)

(2)結合律:三個數相加,先把前面兩個數相加,或者先把後兩個數相加,和不變,即:(a+b)+c=a+(b+c).(用字母表示)

16、運用加法運算律的技巧:正負結合;湊整結合;相反數結合;同分母結合;整分結合.

七年級數學上冊知識點匯總相關 文章 :

★ 初一數學上冊知識點歸納

★ 初一上冊數學知識點歸納整理

★ 初一數學上冊重點知識整理

★ 初一數學上冊基本概念匯總與學習方法

★ 七年級上冊數學知識點總結三篇

★ 七年級數學知識點整理大全

★ 初中七年級數學知識點歸納整理

★ 初一數學有理數知識點

★ 七年級上冊數學全冊概念總結復習

★ 初一年級上冊數學的21個熱門知識點

D. 數學初一上冊知識點匯總

要想學好數學一定要理清書本上的重點知識,接下來給大家分享初一數學上冊的重要知識點,供參考!

有理數

1.大於0的數叫做正數。

2.在正數前面加上負號「-」的數叫做負數。

3.整數和分數統稱為有理數。

4.人們通常用一條直線上的點表示數,這條直線叫做數軸。

5.在直線上任取一個點表示數0,這個點叫做原點。

6.一般的,數軸上表示數a的點與原點的距離叫做數a的絕對值。

7.由絕對值的定義可知:

一個正數的絕對值是它本身;

一個負數的絕對值是它的相反數;

0的絕對值是0。

8.正數大於0,0大於負數,正數大於負數。

9.兩個負數,絕對值大的反而小。

10.有理數加法法則:

(1)同號兩數相加,取相同的符號,並把絕對值相加。

(2)絕對值不相等的異號兩數相加,取絕對值較大的加數的負號,並用較大的絕對值減去較小的絕對值,互為相反數的兩個數相加得0。

(3)一個數同0相加,仍得這個數。

11.有理數的加法中,兩個數相加,交換交換加數的位置,和不變。

12.有理數的加法中,三個數相加,先把前兩個數相加,或者先把後兩個數相加,和不變。

13.有理數減法法則:減去一個數,等於加上這個數的相反數。

14.有理數乘法法則:兩數相乘,同號得正,異號得負,並把絕對值向乘。任何數同0相乘,都得0。

15.有理數中仍然有:乘積是1的兩個數互為倒數。

16.一般的,有理數乘法中,兩個數相乘,交換因數的位置,積相等。

17.三個數相乘,先把前兩個數相乘,或者先把後兩個數相乘,積相等。

18.一般地,一個數同兩個數的和相乘,等於把這個數分別同這兩個數相乘,再把積相加。

19.有理數除法法則:除以一個不等於0的數,等於乘這個數的倒數。

20.兩數相除,同號得正,異號得負,並把絕對值相除。0除以任何一個不等於0的數,都得0。

21.求n個相同因數的積的運算,叫做乘方,乘方的結果叫做冪。在an中,a叫做底數,n叫做指數。

22.根據有理數的乘法法則可以得出:

負數的奇次冪是負數,負數的偶次冪是正數。

顯然,正數的任何次冪都是正數,0的任何次冪都是0。

23.做有理數混合運算時,應注意以下運算順序:

(1)先乘方,再乘除,最後加減;

(2)同級運算,從左到右進行;

(3)如有括弧,先做括弧內的運算,按小括弧.中括弧.大括弧依次進行。

相反數和絕對值

1.相反數:只有符號不同的兩個數互為相反數,0的相反數是0。在數軸上位於原點兩側且離原點距離相等。

2.絕對值的幾何意義:一個數所對應的點離原點的距離叫做該數的絕對值。

3.絕對值的代數定義:(1)一個正數的絕對值是它本身;(2)一個負數數的絕對值是它的相反數;(3)0的絕對值是0;(4)|a|大於或者等於0。

4.比較兩個數的大小關系

在數軸上表示有理數,它們從左到右的順序,就是從大到小的順序,即左邊的數小於右邊的數。由此可知:(1)正數大於0,0大於負數,正數大於負數;(2)兩個負數,絕對值大的反而小。

平行線

1.在同一平面內,兩條直線沒有交點,則這兩條直線互相平行,記作:a∥b。

2.平行公理:經過直線外一點,有且只有一條直線與這條直線平行。

3.如果兩條直線都與第三條直線平行,那麼這兩條直線也互相平行。

4.判定兩條直線平行的方法:

(1)兩條直線被第三條直線所截,如果同位角相等,那麼這兩條直線平行。簡單說成:同位角相等,兩直線平行。

(2)兩條直線被第三條直線所截,如果內錯角相等,那麼這兩條直線平行。簡單說成:內錯角相等,兩直線平行。

(3)兩條直線被第三條直線所截,如果同旁內角互補,那麼這兩條直線平行。簡單說成:同旁內角互補,兩直線平行。

5.平行線的性質

(1)兩條平行線被第三條直線所截,同位角相等。簡單說成:兩直線平行,同位角相等。

(2)兩條平行線被第三條直線所截,內錯角相等。簡單說成:兩直線平行,內錯角相等。

(3)兩條平行線被第三條直線所截,同旁內角互補。簡單說成:兩直線平行,同旁內角互補。

E. 七年級上冊數學知識點歸納總結

下面是我整理的七年級上冊數學知識點,便於同學們預習時可以更准確的知道知識點的重點是什麼,供大家參考。

第一章:有理數的運算

本章節主要介紹概念性知識,通過圖形或符號來區分數之間的關系。定義如下:

1、有理數的概念:正整數、0、負整數、正分數、負分數統稱為有理數;數軸與原點:用一條直線上的點表示數,這條直線就叫做數軸,在這條直線上任取一個點表示0,這個點叫做原點,在原點的左邊或原點下邊的點到原點的距離用負數表示,在原點的右邊或上邊的數到原點的距離用正數表示,在數軸上與原點距離相反相等的兩個點代表的兩個數為相反數,在數軸上表示的點a到原點的距離叫這個數的絕對值。

2、有理數的加減法:同號的兩個數相加,符號不變,絕對值相加;絕對值不相等的異號兩數相加,和取絕對值較大的加數的符號,並用較大的數的絕對值減較小的數的絕對值,互為相反數的兩個數相加得0;一個有理數減去另一個有理數,相當於加這個數的相反數;

3、有理數的乘除法:同號兩個數相乘,同號得正,異號得負,乘法的積為他們的絕對值相乘,除法為被除數乘以除數的倒數,除數不能為0;乘積是1的兩個數互為倒數,0沒有倒數;整數的乘法交換率和結合率同樣適用於有理數;求n個相同因數的積的運算叫乘方,乘方的結果叫做冪,在a的n次方中a叫做底數,n叫做指數,寫作a∧n;

4、有理數的混合運算:先乘方,再乘除,最後加減;同級運算,從左到右進行;如有括弧,先做括弧內的運算,按小括弧、中括弧、大括弧依次進行;

5、科學記數法:把一個大於10的數表示成a×10∧n的形式叫做科學計數法,其中a大於或等於1且小於10,n為正整數。

第二章:整式的加減

整式的加減即是合並同類項的計算;在一個式子中,所含字母相同,並且相同字母的指數也相同的項叫做同類項,幾個常數項也是同類項;把多項式中的同類項合並成一項叫做合並同類項,合並同類項後,所得項的系數是合並前各同類項的系數和,且字母連同他的指數不變;一般幾個整數相加,如果有括弧先去括弧,然後在合並同類項,如果括弧外的因數是正數,去括弧後原括弧內各項的符號與原來的符號相同,如果括弧外的因數是負數,去括弧後原括弧內各項的符號與原來的符號相反。

第三章:一元一次方程

一個方程中,只含有一個未知數,且未知數的次數都是1,等號兩邊都是整數,這樣的方程叫做一元一次方程;方程的兩邊同時加上或減去同一個數或式子結果仍相等,方程兩邊同時乘同一個數,或除以同一個不為0的數,結果仍相等。

第四章:立體圖形及幾何圖形

本章主要介紹立體圖形及幾何圖形的認識;點、線、面、體的關系的認識;直線、射線、線段的認識;不同角的概念及大小的比較。

1、平面圖形和立體圖形:各部分都在同一個平面內的幾何圖形叫做平面圖形;有些幾何圖形的各部分不在同一個平面上,它們被稱為立體圖形,如長方體、圓柱、圓錐等;有些立體圖形是由一些平面圖形圍成的,將它們展開成平面圖形,展開的平面圖形就叫做這個立體圖形的展開圖;

2、點、線、面、體的認識:幾何體叫做體,包圍著體的叫做面,面和面相交的地方叫作線,線和線相交的地方叫做點,線由無數個點構成;

3、直線、射線、線段的認識:經過兩個點由且只有一條直線,兩點確定一條直線,兩個點之間的連線,最短的叫做線段,線段的長度叫做這兩點的距離,由線段向一端無限延長,叫射線;

4、角:如果兩個角的和等於90°,那麼這兩個角互為餘角;如果兩個角的和等於180°,那麼這兩個角互為補角;從一個角的頂點出發。把這個角分成兩個相等的角的射線叫做這個角的平分線,把這3個相等角的兩條射線叫這個角的三分線。

第五章:整式

(一)整式

1.整式:單項式和多項式的統稱叫整式。

2.單項式:數與字母的乘積組成的式子叫單項式。單獨的一個數或一個字母也是單項式。

3.系數;一個單項式中,數字因數叫做這個單項式的系數。

4.次數:一個單項式中,所有字母的指數和叫做這個單項式的次數。

5.多項式:幾個單項式的和叫做多項式。

6.項:組成多項式的每個單項式叫做多項式的項。

7.常數項:不含字母的項叫做常數項。

8.多項式的次數:多項式中,次數最高的項的次數叫做這個多項式的次數。

9.同類項:多項式中,所含字母相同,並且相同字母的指數也相同的項叫做同類項。

10.合並同類項:把多項式中的同類項合並成一項,叫做合並同類項。

(二)整式加減整式加減運算時,如果遇到括弧先去括弧,再合並同類項。

1.去括弧:一般地,幾個整式相加減,如果有括弧就先去括弧,然後再合並同類項。如果括弧外的因數是正數,去括弧後原括弧內各項的符號與原來的符號相同。如果括弧外的因數是負數,去括弧後原括弧內各項的符號與原來的符號相反。

2.合並同類項:把多項式中的同類項合並成一項,叫做合並同類項。合並同類項後,所得項的系數是合並前各同類項的系數的和,且字母部分不變。

F. 初一上冊數學知識點總結歸納

初一數學是初中數學的基礎,這篇文章我給大家總結歸納了初一上冊數學課本的重要知識點,供同學們參考。

有理數

(1)定義:由整數和分數組成的數。包括:正整數、0、負整數,正分數、負分數。可以寫成兩個整之比的形式。

(2)數軸:在數學中,可以用一條直線上的點表示數,這條直線叫做數軸。

(3)相反數:相反數是一個數學術語,指絕對值相等,正負號相反的兩個數互為相反數。

(4)絕對值:絕對值是指一個數在數軸上所對應點到原點的距離。正數的絕對值是它本身,負數的絕對值是它的相反數;0的絕對值是0,兩個負數,絕對值大的反而小。

(5)有理數的加減法

同號相加,到相同符號,並把絕對值相加。異號相加,取絕對值大的加數的符號,並用較大的絕對值減去較小的絕對值。

(6)有理數的乘法

兩數相乘,同號得正,異號得負,並把絕對值相乘。

任何數與0相乘,積為0.例:0×1=0

(7)有理數的除法

除以一個不為0的數,等於乘這個數的倒數。

兩數相除,同號得正,異號得負,並把絕對值相除。0除

以任何一個不為0的數,都得0。

(8)有理數的乘方

求n個相同因數乘積的運算,叫做乘方,乘方的結果叫做冪。其中,a叫做底數,n叫做指數。當aⁿ看作a的n次乘方的結果時,也可讀作「a的n次冪」或「a的n次方」。

一元一次方程

(1)方程:先設字母表示未知數,然後根據相等關系,寫出含有未知數的等式叫做方程。

(2)一元一次方程

一元一次方程指只含有一個未知數、未知數的最高次數為1且兩邊都為整式的等式,叫做一元一次方程。求出方程中未知數的值叫做方程式的解。

(3)等式的性質

①等式兩邊同時加上(或減去)同一個整式,等式仍然成立。

若a=b

那麼a+c=b+c

②等式兩邊同時乘或除以同一個不為0的整式,等式仍然成立。

若a=b

那麼有a·c=b·c或a÷c=b÷c(c≠0)

③等式具有傳遞性。

若a1=a2,a2=a3,a3=a4,……an=an,那麼a1=a2=a3=a4=……=an

(3)解方程式的步驟

解一元一次方程的步驟:去分母、去括弧、移項、合並同類項、未知數系數化為1。

①去分母:把系數化成整數。

②去括弧

③移項:把等式一邊的某項變號後移到另一邊。

④合並同類項

⑤系數化為1。

角的知識點

1.角:角是由兩條有公共端點的射線組成的幾何對象。

2.角的度量單位:度、分、秒

3.頂點:角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點

4.角的比較:

(1)角可以看成是由一條射線繞著他的端點旋轉而成的。

(2)平角和周角:一條射線繞著他的端點旋轉,當始邊和終邊成一條直線時,所成的角叫平角。當它又和始邊重合的時候,所成的角角周角。平角等於108度,周角等於360度,直角等於90度。

(3)平分線:從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。

5.餘角和補角:

(1)餘角:如果兩個角的和是90度,那麼稱這兩個角「互為餘角」,簡稱「互余」。

性質:等角的餘角相等。

(2)補角:如果兩個角的和是180度,那麼稱這兩個角「互為補角」,簡稱「互補」。

性質:等角的補角相等。

G. 初一上學期數學知識點歸納有哪些

初一上學期數學知識點如下:

1、有理數:由整數和分數組成的數。

2、等式兩邊同時乘以或除以同一個數除數不能為0,所得結果仍是等式。

3、長方形面積公式:S=ab,a為長,b為寬,S為面積。

4、數軸:用直線上的點表示數,這條直線叫做數軸。

5、加法結合律:(a+b)+c=a+(b+c)三個數相加,先把前兩個數相加,或者先把後兩個數相加,和不變。

H. 七年級上冊數學重要知識點總結

學好數學最重要的就是整理好知識點,下面我就大家整理一下七年級上冊數學重要知識點總結,僅供參考。

負有理數 分數

2、相反數:只有符號不同的兩個數叫做互為相反數,零的相反數是零

3、數軸:規定了原點、正方向和單位長度的直線叫做數軸(畫數軸時,三要素缺一不可)。任何一個有理數都可以用數軸上的一個點來表示。

4、倒數:如果a與b互為倒數,則有ab=1,反之亦成立。倒數等於本身的數是1和-1。零沒有倒數。

5、絕對值:在數軸上,一個數所對應的點與原點的距離,叫做該數的絕對值,(|a|≥0)。若|a|=a,則a≥0;若|a|=-a,則a≤0。

正數的絕對值是它本身;負數的絕對值是它的相反數;0的絕對值是0。互為相反數的兩個數的絕對值相等。

6、有理數比較大小:正數大於0,負數小於0,正數大於負數;數軸上的兩個點所表示的數,右邊的總比左邊的大;兩個負數,絕對值大的反而小。

7、有理數的運算:

(1)五種運算:加、減、乘、除、乘方

多個數相乘,積的符號由負因數的個數決定,當負因數有奇數個時,積的符號為負;當負因數有偶數個時,積的符號為正。只要有一個數為零,積就為零。

有理數加法法則:

同號兩數相加,取相同的符號,並把絕對值相加。

異號兩數相加,絕對值值相等時和為0;絕對值不相等時,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值。

一個數同0相加,仍得這個數。

互為相反數的兩個數相加和為0。

有理數減法法則:減去一個數,等於加上這個數的相反數!

有理數乘法法則:

兩數相乘,同號得正,異號得負,並把絕對值相乘。

任何數與0相乘,積仍為0。

整式及其加減

1、代數式

用運算符號(加、減、乘、除、乘方、開方等)把數或表示數的字母連接而成的式子叫做代數式。單獨的一個數或一個字母也是代數式。

注意:①代數式中除了含有數、字母和運算符號外,還可以有括弧;

②代數式中不含有「=、>、<、≠」等符號。等式和不等式都不是代數式,但等號和不等號兩邊的式子一般都是代數式;

③代數式中的字母所表示的數必須要使這個代數式有意義,是實際問題的要符合實際問題的意義。

※代數式的書寫格式:

①代數式中出現乘號,通常省略不寫,如vt;

②數字與字母相乘時,數字應寫在字母前面,如4a;

③帶分數與字母相乘時,應先把帶分數化成假分數,如應寫作;

④數字與數字相乘,一般仍用「×」號,即「×」號不省略;

⑤在代數式中出現除法運算時,一般寫成分數的形式,如4÷(a-4)應寫作;注意:分數線具有「÷」號和括弧的雙重作用。

⑥在表示和(或)差的代數式後有單位名稱的,則必須把代數式括起來,再將單位名稱寫在式子的後面,如平方米。

2、整式:單項式和多項式統稱為整式。

①單項式:都是數字和字母乘積的形式的代數式叫做單項式。單項式中,所有字母的指數之和叫做這個單項式的次數;數字因數叫做這個單項式的系數。

注意:1.單獨的一個數或一個字母也是單項式;2.單獨一個非零數的次數是0;3.當單項式的系數為1或-1時,這個「1」應省略不寫,如-ab的系數是-1,a3b的系數是1。

②多項式:幾個單項式的和叫做多項式。多項式中,每個單項式叫做多項式的項;次數最高的項的次數叫做多項式的次數。

3、同類項:所含字母相同,並且相同字母的指數也相同的項叫做同類項。

注意:①同類項有兩個條件:a.所含字母相同;b.相同字母的指數也相同。

②同類項與系數無關,與字母的排列順序無關;

③幾個常數項也是同類項。

以上就是我為大家整理的七年級上冊數學重要知識點總結 。

I. 七年級上冊數學重點知識點總結

為了方便大家更好的學習以及復習初一上冊的數學知識,下面總結了七年級上冊數學知識點,供大家參考。

代數式

1.用運算符號把數或表示數的字母連結而成的式子,叫做代數式。單獨的一個數或字母也是代數式。

2.用數值代替代數式里的字母,按照代數式里的運算關系計算得出的結果,叫做代數式的值。

整式

1.整式:單項式和多項式的統稱叫整式。

2.單項式:數與字母的乘積組成的式子叫單項式。單獨的一個數或一個字母也是單項式。

3.系數;一個單項式中,數字因數叫做這個單項式的系數。

4.次數:一個單項式中,所有字母的指數和叫做這個單項式的次數。

5.多項式:幾個單項式的和叫做多項式。

6.項:組成多項式的每個單項式叫做多項式的項。

7.常數項:不含字母的項叫做常數項。

8.多項式的次數:多項式中,次數最高的項的次數叫做這個多項式的次數。

9.同類項:多項式中,所含字母相同,並且相同字母的指數也相同的項叫做同類項。

10.合並同類項:把多項式中的同類項合並成一項,叫做合並同類項。

1.角:角是由兩條有公共端點的射線組成的幾何對象。

2.角的度量單位:度、分、秒

3.頂點:角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點

4.角的比較:

(1)角可以看成是由一條射線繞著他的端點旋轉而成的。

(2)平角和周角:一條射線繞著他的端點旋轉,當始邊和終邊成一條直線時,所成的角叫平角。當它又和始邊重合的時候,所成的角角周角。平角等於108度,周角等於360度,直角等於90度。

(3)平分線:從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。

5.餘角和補角:

(1)餘角:如果兩個角的和是90度,那麼稱這兩個角「互為餘角」,簡稱「互余」。

性質:等角的餘角相等

(2)補角:如果兩個角的和是180度,那麼稱這兩個角「互為補角」,簡稱「互補」。

性質:等角的補角相等

平行線

1.在同一平面內,兩條直線沒有交點,則這兩條直線互相平行,記作:a∥b。

2.平行公理:經過直線外一點,有且只有一條直線與這條直線平行。

3.如果兩條直線都與第三條直線平行,那麼這兩條直線也互相平行。

4.判定兩條直線平行的方法:

(1)兩條直線被第三條直線所截,如果同位角相等,那麼這兩條直線平行。簡單說成:同位角相等,兩直線平行。

(2)兩條直線被第三條直線所截,如果內錯角相等,那麼這兩條直線平行。簡單說成:內錯角相等,兩直線平行。

(3)兩條直線被第三條直線所截,如果同旁內角互補,那麼這兩條直線平行。簡單說成:同旁內角互補,兩直線平行。

三角形

1.三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。

2.三角形的分類

3.三角形的三邊關系:三角形任意兩邊的和大於第三邊,任意兩邊的差小於第三邊。

4.高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。

5.中線:在三角形中,連接一個頂點和它的對邊中點的線段叫做三角形的中線。

6.角平分線:三角形的一個內角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。

7.高線、中線、角平分線的意義和做法

8.三角形的穩定性:三角形的形狀是固定的,三角形的這個性質叫三角形的穩定性。

9.三角形內角和定理:三角形三個內角的和等於180°

推論1直角三角形的兩個銳角互余;

推論2三角形的一個外角等於和它不相鄰的兩個內角和;

推論3三角形的一個外角大於任何一個和它不相鄰的內角;

三角形的內角和是外角和的一半。

10.三角形的外角:三角形的一條邊與另一條邊延長線的夾角,叫做三角形的外角。

J. 七年級數學上冊知識點總結歸納

沒有加倍的勤奮,就沒有才能,也沒有天才。天才其實就是可以持之以恆的人。勤能補拙是良訓,一分辛苦一分才,勤奮一直都是學習通向成功的最好捷徑。下面是我給大家整理的一些 七年級數學 的知識點,希望對大家有所幫助。

七年級數學知識點

整式的加減

1.單項式:表示數字或字母乘積的式子,單獨的一個數字或字母也叫單項式。

2.單項式的系數與次數:單項式中的數字因數,稱單項式的系數;

單項式中所有字母指數的和,叫單項式的次數.

3.多項式:幾個單項式的和叫多項式.

4.多項式的項數與次數:多項式中所含單項式的個數就是多項式的項數,每個單項式叫多項式的項;多項式里,次數項的次數叫多項式的次數;

5..

6.同類項:所含字母相同,並且相同字母的指數也相同的單項式是同類項.

7.合並同類項法則:系數相加,字母與字母的指數不變.

8.去(添)括弧法則:

去(添)括弧時,若括弧前邊是「+」號,括弧里的各項都不變號;若括弧前邊是「-」號,括弧里的各項都要變號.

9.整式的加減:一找:(劃線);二「+」(務必用+號開始合並)三合:(合並)

10.多項式的升冪和降冪排列:把一個多項式的各項按某個字母的指數從小到大(或從大到小)排列起來,叫做按這個字母的升冪排列(或降冪排列).

一元一次方程

1.等式:用「=」號連接而成的式子叫等式.

2.等式的性質:

等式性質1:等式兩邊都加上(或減去)同一個數或同一個整式,所得結果仍是等式;

等式性質2:等式兩邊都乘以(或除以)同一個不為零的數,所得結果仍是等式.

3.方程:含未知數的等式,叫方程.

4.方程的解:使等式左右兩邊相等的未知數的值叫方程的解;注意:「方程的解就能代入」!

5.移項:改變符號後,把方程的項從一邊移到另一邊叫移項.移項的依據是等式性質1.

6.一元一次方程:只含有一個未知數,並且未知數的次數是1,並且含未知數項的系數不是零的整式方程是一元一次方程.

7.一元一次方程的標准形式:ax+b=0(x是未知數,a、b是已知數,且a≠0).

第一學期初一數學復習資料

一幾何圖形

幾何學:數學中以空間形式為研究對象的分支叫做幾何學。

從實物中抽象出的各種圖形統稱為幾何圖形。幾何圖形可分為立體圖形和平面圖形;各個部分不都在同一平面內的幾何圖形叫做立體圖形,各個部分都在同一平面內的幾何圖形叫做平面圖形。

1、幾何圖形的投影問題

每一種幾何體從不同的方向去看它,可以得到不同的簡單平面幾何圖形。實際上投影所得到的簡單平面幾何圖形是被投影幾何體可遮擋視線的部分在平面內所留下的影子。2、立體圖形的展開問題

將立體圖形的表面適當剪開,一、點、線、面、體

1、點、線、面、體的概念點動成線,線動成面,面動成體由平面和曲成圍成一個幾何體2、點、線、面和體之間的關系(1)點動成線、線動成面、面動成體;

(2)體是由面組成、面與 面相 交成線、線與線相交成點;

二、線段、射線、直線1、線段、射線、直線的定義

(1)線段:線段可以近似地看成是一條有兩個端點的崩直了的線。線段可以量出長度。(2)射線:將線段向一個方向無限延伸就形成了射線,射線有一個端點。射線無法量出長度。(3)直線:將線段向兩個方向無限延伸就形成了直線,直線沒有端點。直線無法量出長度。概念剖析:①線段有兩個端點,射線有一個端點,直線沒有端點;

②「線段可以量出長度」,即線段有明確的長度,「射線和直線都無法量出其長度」,即射線和直線既沒有明確的長度,

也沒有射線與射線、直線與直線、射線與直線之間的長短比較之說;

③線段只有長短之分,而沒有大小之別,射線和直線既沒有長短之分,也沒有大小之別;例1、下列說法正確的是()

A、5㎝長的直線比3㎝長的直線要長2㎝;B、線段向兩個方向無限延伸就形成了直線;

C、直線和射線都是不可度量的,所以它們都無法表示;D、直線AB、射線AB和線段AB表示的都是同一幾何圖形;

2、線段、射線、直線的表示 方法

(1)線段的表示方法有兩種:一是用兩個端點來表示,二是用一個小寫的英文字母來表示。(2)射線的表示方法只有一種:用端點和射線上的另一個點來表示,端點要寫在前面。

(3)直線的表示方法有兩種:一是用直線上的兩個點來表示,二是用一個小寫的英文字母來表示。

概念剖析:①將線段的兩個端點位置顛倒,得到的新線段與原來的線段是同一線段,即線段AB與線段BA是同一線段;

②將表示射線的兩個點位置顛倒,得到的新射線與原來的射線不是同一射線,即射線AB與射線BA不是同一射線,因為它們的端點和方向不同;

③將表示直線的兩個點位置顛倒,得到的新直線與原來的直線是同一直線,即直線AB與直線BA是同一直線;④識別圖中線段的條數要把握一點:只要有一個端點不相同,就是不同的線段;⑤識別圖中射線的條數要把握兩點:端點和方向缺一不可;

初一新生必看:數學 學習方法 指導

1.做好預習:單元預習時粗讀,了解近階段的學習內容,課時預習時細讀,注重知識的形成過程,對難以理解的概念、公式和法則等要做好記錄,以便帶著問題聽課。堅持預習,找到疑點,變被動學習為主動學習,能大大提高學習效率噢,興趣是的老師嘛。

2.認真聽課:聽課應包括聽、思、記三個方面。聽,聽知識形成的來龍去脈,聽重點和難點(記住預習中的疑點了嗎?更要聽仔細了),聽例題的解法和要求,聽蘊含的數學思想和方法,聽課堂小結。思,一是要善於聯想、類比和歸納,二是要敢於質疑,提出問題,大膽猜想。記,當然是指課堂筆記了,不是記得多就是有效的知道嗎?影響了聽課可就不如不記了,記什麼,什麼時候記,可是有學問的哩,記方法,記技巧,記疑點,記要求,記注意點,記住課後一定要整理筆記。

3.認真解題:課堂練習是最及時最直接的反饋,一定不能錯過的,不要急於完成作業,要先看看你的 筆記本 ,回顧學習內容,加深理解,強化記憶,很重要噢。

4.及時糾錯:課堂練習、作業、檢測,反饋後要及時查閱,分析錯題的原因,審題出問題了嗎?概念模糊了嗎?時間緊沒來得及?不會做嗎?切忌不要動不動就以粗心放過自己(形成習慣可就麻煩了),如果思路正確而計算出錯,及時訂正,必要時強化相關計算的訓練。概念模糊和審題出錯都說明你的學習容易出現似懂非懂卻還不自知的狀態,這可是學習數學的大忌,要堅決克服。至於不會做,當然要及時向同學和老師請教了,不能將問題處於懸而未解的狀態,養成今日事今日畢的好習慣。

5.學會 總結 :大人們常說,數學是一環扣一環,這意思是說知識間是緊密相關的,階段性總結,不僅能夠起到復習鞏固的作用,還能找到知識間的聯系,學習的目的性,必要性,知識性做到瞭然於心,融會貫通,解題時就能做到入手快,方法直接簡單,即使平時課堂上沒練到的題型,也能得心應手,即舉一反三。

6.學會管理:管理好自己的筆記本,作業本,糾錯本,還有做過的所有練習卷和測試卷,這可是大考復習時最有用的資料知道嗎?


七年級數學上冊知識點總結歸納相關 文章 :

★ 初一數學上冊知識點歸納

★ 初一數學上冊知識點匯總歸納

★ 初一人教版數學上冊知識點總結歸納

★ 初一上冊數學知識點歸納整理

★ 初一數學上冊知識點

★ 初一數學上冊知識點總結

★ 初中七年級數學知識點歸納整理

★ 七年級數學上冊知識點匯總

★ 初一數學上冊重點知識整理

★ 七年級數學上冊知識歸納