❶ 介紹一下高一數學 集合的概念 (知識點)
高一數學必修1各章知識點總結
第一章 集合與函數概念
一、集合有關概念
1. 集合的含義
2. 集合的中元素的三個特性:
(1) 元素的確定性如:世界上最高的山
(2) 元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}
(3) 元素的無序性: 如:{a,b,c}和{a,c,b}是表示同一個集合
3.集合的表示:{ … } 如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}
(1) 用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
(2) 集合的表示方法:列舉法與描述法。
注意:常用數集及其記法:
非負整數集(即自然數集) 記作:N
正整數集 N*或 N+ 整數集Z 有理數集Q 實數集R
1) 列舉法:{a,b,c……}
2) 描述法:將集合中的元素的公共屬性描述出來,寫在大括弧內表示集合的方法。{xR| x-3>2} ,{x| x-3>2}
3) 語言描述法:例:{不是直角三角形的三角形}
4) Venn圖:
4、集合的分類:
(1) 有限集 含有有限個元素的集合
(2) 無限集 含有無限個元素的集合
(3) 空集 不含任何元素的集合例:{x|x2=-5}
二、集合間的基本關系
1.「包含」關系—子集
注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之: 集合A不包含於集合B,或集合B不包含集合A,記作A B或B A
2.「相等」關系:A=B (5≥5,且5≤5,則5=5)
實例:設 A={x|x2-1=0} B={-1,1} 「元素相同則兩集合相等」
即:① 任何一個集合是它本身的子集。AA
②真子集:如果AB,且A B那就說集合A是集合B的真子集,記作A B(或B A)
③如果 AB, BC ,那麼 AC
④ 如果AB 同時 BA 那麼A=B
3. 不含任何元素的集合叫做空集,記為Φ
規定: 空集是任何集合的子集, 空集是任何非空集合的真子集。
有n個元素的集合,含有2n個子集,2n-1個真子集
三、集合的運算
運算類型 交 集 並 集 補 集
定 義 由所有屬於A且屬於B的元素所組成的集合,叫做A,B的交集.記作A B(讀作『A交B』),即A B={x|x A,且x B}.
由所有屬於集合A或屬於集合B的元素所組成的集合,叫做A,B的並集.記作:A B(讀作『A並B』),即A B ={x|x A,或x B}).
設S是一個集合,A是S的一個子集,由S中所有不屬於A的元素組成的集合,叫做S中子集A的補集(或余集)
❷ 有關集合的核心概念
集合,是指按照一定的屬性組合在一起的總體。比如「水果」就是一個集合。集合,是幼兒思考和學習的基礎,也是形成數系統的基礎。因為,數字的重要功能之一就是描述一個集合有「多少」物體。要弄清楚「水果」之前,要先區分哪些是水果,哪些不是水果。所以,數數是以集合為基礎的。所以,集合被放在了核心概念解讀的第一個位置。
集合的核心概念有三條:
一、根據物體的屬性對集合進行分類;
二、同一組物體可以按不同的屬性進行分類;
三、集合之間可以進行比較和排序。
這三條核心概念是層層遞進的,幼兒對集合的理解也是有著一定發展軌跡的。
基於第一條核心概念,(一個屬性的是)其活動類型先是匹配,幼兒能識別出相同點。比如「找朋友」的活動,根據提示,找出一模一樣的另一個。然後進入到分類活動,此時是根據單一屬性進行分類,運用匹配組合成一個集合,這時就涉及到「我的規則是什麼?」比如串珠,把紅色的珠子選出來串在一起。
基於第二條核心概念,二分法分類(一個屬性的是與否),比如紅色衣服的圍成一個圈,不是的圍成一個圈。然後接著分即多元分類(根據一個或多個屬性)比如對樹葉的分類,先按照顏色分,之後在此基礎上按照形狀分。
最後,開始第三條核心概念,集合之間的比較。比如,紅色的樹葉多,還是黃色樹葉多?
❸ 幼兒園數學內容包含哪四大概念
幼兒園數學內容包括:集合概念、數概念、圖形和空間概念、量概念等四個方面。
數學是一種獨特的語言,它具有精確性、抽象性和邏輯性。它不僅能幫助孩子精確地認識事物的數量屬性,還能使孩子充分體驗並注意到蘊含在具體事物背後的抽象關系。孩子學習數學的任務不在於掌握系統的數學知識,而應獲得一種數學的思維方式。
幼兒園階段的數學教育價值
幼兒園階段的數學教育,最主要的價值在於:培養孩子的邏輯思維,使孩子能運用數學思維方式發現並解決日常生活中的問題。培養觀察力是幼兒數學思維訓練的基礎:在興趣中,玩中學是培養幼兒學數的觀察力的一種有效方法。
幼兒在學習數字3時,最容易使這一概念模糊的是幼兒總是認為只有完全一樣的3個物體才是3,而對形態、顏色稍有差異的3個物體,就不能確定它的數量,這說明,在建立數概念時,數的實際意義比較抽象,不容易把握,因此引導幼兒在觀察中進行比較,確實符合數學規律。
❹ 數學的知識點總結
集合的運算也遵循一般的代數式運算規律,也有著自己的法則和定理。下面是我整理的數學集合的知識點總結,歡迎參考閱讀!
一、集合有關概念
1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。
2、集合的中元素的三個特性:
①.元素的確定性; ②.元素的互異性; ③.元素的無序性
說明:(1)對於一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。
(2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。
(3)集合中的元素是平等的,沒有先後順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。
(4)集合元素的三個特性使集合本身具有了確定性和整體性。
3、集合的分類:
1.有限集 含有有限個元素的集合
2.無限集 含有無限個元素的集合
3.空集 不含任何元素的集合 例:{x|x2=-5}
4、集合的表示:{ } 如{我校的籃球隊員},{太平洋大西洋印度洋北冰洋}
1. 用拉丁字母表示集合:A={我校的籃球隊員}B={12345}
2.集合的表示方法:列舉法與描述法。
注意啊:常用數集及其記法:
非負整數集(即自然數集) 記作:N
正整數集 N*或 N+ 整數集Z 有理數集Q 實數集R
關於屬於的概念
集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬於集合A 記作 aA ,相反,a不屬於集合A 記作 a?A
列舉法:把集合中的元素一一列舉出來,然後用一個大括弧括上。
描述法:將集合中的元素的公共屬性描述出來,寫在大括弧內表示集合的方法。用確定的條件表示某些對象是否屬於這個集合的'方法。
①語言描述法:例:{不是直角三角形的三角形}
②數學式子描述法:例:不等式x-32的解集是{x?R| x-32}或{x| x-32}
二、集合間的基本關系
1.包含關系子集
注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之: 集合A不包含於集合B或集合B不包含集合A記作A B或B A
2. 不含任何元素的集合叫做空集,記為
規定: 空集是任何集合的子集, 空集是任何非空集合的真子集。
3.相等關系(55,且55,則5=5)
實例:設 A={x|x2-1=0} B={-11} 元素相同
結論:對於兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時集合B的任何一個元素都是集合A的元素,我們就說集合A等於集合B,即:A=B
① 任何一個集合是它本身的子集。A?A
②真子集:如果A?B且A? B那就說集合A是集合B的真子集,記作A B(或B A)
③如果 A?B B?C 那麼 A?C
④ 如果A?B 同時 B?A 那麼A=B
三、集合的運算
1、並集的定義:一般地,由所有屬於集合A或屬於集合B的元素所組成的集合,叫做AB的並集。記作:AB(讀作A並B),即AB={x|xA,或xB}.
2.交集的定義:一般地,由所有屬於A且屬於B的元素所組成的集合叫做AB的交集.
記作AB(讀作A交B),即AB={x|xA,且xB}.
3、全集與補集
(1)補集:設S是一個集合,A是S的一個子集(即 ),由S中所有不屬於A的元素組成的集合,叫做S中子集A的補集(或余集)
記作: CSA 即 CSA ={x ? x?S且 x?A}
(2)全集:如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集。通常用U來表示。
(3)性質:⑴CU(C UA)=A ⑵(C UA) ⑶(CUA)A=U
4、交集與並集的性質:AA = A A= B = BA,AA = A
A= A AB = BA.
❺ 高一數學集合知識點總結
由一個或多個元素所構成的叫做集合,集合是數學中一個基本概念,它是集合論的研究對象,集合是指具有某種特定性質的具體的或抽象的對象匯總成的集體,這些對象稱為該集合的元素。下面給大家分享一些關於 高一數學 集合知識點 總結 ,希望對大家有所幫助。
高一數學集合知識點1
集合及其表示1、集合的含義:
「集合」這個詞首先讓我們想到的是上體育課或者開會時老師經常喊的「全體集合」。數學上的「集合」和這個意思是一樣的,只不過一個是動詞一個是名詞而已。
所以集合的含義是:某些指定的對象集在一起就成為一個集合,簡稱集,其中每一個對象叫元素。比如高一二班集合,那麼所有高一二班的同學就構成了一個集合,每一個同學就稱為這個集合的元素。
2、集合的表示
通常用大寫字母表示集合,用小寫字母表示元素,如集合A={a,b,c}。a、b、c就是集合A中的元素,記作a∈A,相反,d不屬於集合A,記作d?A。
有一些特殊的集合需要記憶:
非負整數集(即自然數集)N正整數集N-或N+
整數集Z有理數集Q實數集R
集合的表示 方法 :列舉法與描述法。
①列舉法:{a,b,c……}
②描述法:將集合中的元素的公共屬性描述出來。如{x?R|x-3>2},{x|x-3>2},{(x,y)|y=x2+1}
③語言描述法:例:{不是直角三角形的三角形}
例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2}
強調:描述法表示集合應注意集合的代表元素
A={(x,y)|y=x2+3x+2}與B={y|y=x2+3x+2}不同。集合A中是數組元素(x,y),集合B中只有元素y。
3、集合的三個特性
(1)無序性
指集合中的元素排列沒有順序,如集合A={1,2},集合B={2,1},則集合A=B。
例題:集合A={1,2},B={a,b},若A=B,求a、b的值。
解:,A=B
注意:該題有兩組解。
(2)互異性
指集合中的元素不能重復,A={2,2}只能表示為{2}
(3)確定性
集合的確定性是指組成集合的元素的性質必須明確,不允許有模稜兩可、含混不清的情況。
高一數學集合知識點2
集合間的基本關系1.子集,A包含於B,有兩種可能
(1)A是B的一部分,
(2)A與B是同一集合,A=B,A、B兩集合中元素都相同。
反之:集合A不包含於集合B。
2.不含任何元素的集合叫做空集,記為Φ。Φ是任何集合的子集。
4、有n個元素的集合,含有2n個子集,2n-1個真子集,含有2n-2個非空真子集。如A={1,2,3,4,5},則集合A有25=32個子集,25-1=31個真子集,25-2=30個非空真子集。
高一數學集合知識點3
集合的分類(1)按元素屬性分類,如點集,數集。(2)按元素的個數多少,分為有/無限集
關於集合的概念:
(1)確定性:作為一個集合的元素,必須是確定的,這就是說,不能確定的對象就不能構成集合,也就是說,給定一個集合,任何一個對象是不是這個集合的元素也就確定了。
(2)互異性:對於一個給定的集合,集合中的元素一定是不同的(或說是互異的),這就是說,集合中的任何兩個元素都是不同的對象,相同的對象歸入同一個集合時只能算作集合的一個元素。
(3)無序性:判斷一些對象時候構成集合,關鍵在於看這些對象是否有明確的標准。
集合可以根據它含有的元素的個數分為兩類:
含有有限個元素的集合叫做有限集,含有無限個元素的集合叫做無限集。
非負整數全體構成的集合,叫做自然數集,記作N;
在自然數集內排除0的集合叫做正整數集,記作N+或N-;
整數全體構成的集合,叫做整數集,記作Z;
有理數全體構成的集合,叫做有理數集,記作Q;(有理數是整數和分數的統稱,一切有理數都可以化成分數的形式。)
實數全體構成的集合,叫做實數集,記作R。(包括有理數和無理數。其中無理數就是無限不循環小數,有理數就包括整數和分數。數學上,實數直觀地定義為和數軸上的點一一對應的數。)
1.列舉法:如果一個集合是有限集,元素又不太多,常常把集合的所有元素都列舉出來,寫在花括弧「{}」內表示這個集合,例如,由兩個元素0,1構成的集合可表示為{0,1}.
有些集合的元素較多,元素的排列又呈現一定的規律,在不致於發生誤解的情況下,也可以列出幾個元素作為代表,其他元素用省略號表示。
例如:不大於100的自然數的全體構成的集合,可表示為{0,1,2,3,…,100}.
無限集有時也用上述的列舉法表示,例如,自然數集N可表示為{1,2,3,…,n,…}.
2.描述法:一種更有效地描述集合的方法,是用集合中元素的特徵性質來描述。
例如:正偶數構成的集合,它的每一個元素都具有性質:「能被2整除,且大於0」
而這個集合外的其他元素都不具有這種性質,因此,我們可以用上述性質把正偶數集合表示為
{x∈R│x能被2整除,且大於0}或{x∈R│x=2n,n∈N+},
大括弧內豎線左邊的X表示這個集合的任意一個元素,元素X從實數集合中取值,在豎線右邊寫出只有集合內的元素x才具有的性質。
一般地,如果在集合I中,屬於集合A的任意一個元素x都具有性質p(x),而不屬於集合A的元素都不具有的性質p(x),則性質p(x)叫做集合A的一個特徵性質。於是,集合A可以用它的性質p(x)描述為{x∈I│p(x)}
它表示集合A是由集合I中具有性質p(x)的所有元素構成的,這種表示集合的方法,叫做特徵性質描述法,簡稱描述法。
高一數學集合知識點4
數學是利用符號語言研究數量、結構、變化以及空間模型等概念的一門學科。我准備了高一數學必修1期末考知識點,希望你喜歡。
一、集合有關概念
1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素.
2、集合的中元素的三個特性:
1.元素的確定性; 2.元素的互異性; 3.元素的無序性
說明:(1)對於一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素.
(2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素.
(3)集合中的元素是平等的,沒有先後順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣.
(4)集合元素的三個特性使集合本身具有了確定性和整體性.
3、集合的表示:{ } 如{我校的 籃球 隊員},{太平洋,大西洋,印度洋,北冰洋}
1. 用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
2.集合的表示方法:列舉法與描述法.
注意啊:常用數集及其記法:
非負整數集(即自然數集)記作:N
正整數集 N_或N+ 整數集Z 有理數集Q 實數集R
關於屬於的概念
集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬於集合A 記作 aA ,相反,a不屬於集合A 記作 a?A
列舉法:把集合中的元素一一列舉出來,然後用一個大括弧括上.
描述法:將集合中的元素的公共屬性描述出來,寫在大括弧內表示集合的方法.用確定的條件表示某些對象是否屬於這個集合的方法.
①語言描述法:例:{不是直角三角形的三角形}
②數學式子描述法:例:不等式x-32的解集是{x?R| x-32}或{x| x-32}
4、集合的分類:
1.有限集 含有有限個元素的集合
2.無限集 含有無限個元素的集合
3.空集 不含任何元素的集合 例:{x|x2=-5}
二、集合間的基本關系
1.包含關系子集
注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合.
反之: 集合A不包含於集合B,或集合B不包含集合A,記作A B或B A
2.相等關系(55,且55,則5=5)
實例:設 A={x|x2-1=0} B={-1,1} 元素相同
結論:對於兩個集合A與B,如果集合A的任何一個元素都是集合B的.元素,同時,集合B的任何一個元素都是集合A的元素,我們就說集合A等於集合B,即:A=B
① 任何一個集合是它本身的子集.AA
②真子集:如果AB,且A1 B那就說集合A是集合B的真子集,記作A B(或B A)
③如果 AB, BC ,那麼 AC
④ 如果AB 同時 BA 那麼A=B
3. 不含任何元素的集合叫做空集,記為
規定: 空集是任何集合的子集, 空集是任何非空集合的真子集.
三、集合的運算
1.交集的定義:一般地,由所有屬於A且屬於B的元素所組成的集合,叫做A,B的交集.
記作AB(讀作A交B),即AB={x|xA,且xB}.
2、並集的定義:一般地,由所有屬於集合A或屬於集合B的元素所組成的集合,叫做A,B的並集.記作:AB(讀作A並B),即AB={x|xA,或xB}.
3、交集與並集的性質:AA = A, A=, AB = BA,AA = A,
A= A ,AB = BA.
4、全集與補集
(1)補集:設S是一個集合,A是S的一個子集(即 ),由S中所有不屬於A的元素組成的集合,叫做S中子集A的補集(或余集)
(2)全集:如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集.通常用U來表示.
(3)性質:⑴CU(C UA)=A ⑵(C UA) ⑶(CUA)A=U
高一數學集合知識點總結相關 文章 :
★ 高一數學集合知識點匯總
★ 高一數學集合知識點及例題講解
★ 高一數學集合知識點匯總(2)
★ 高一數學必修一集合公式知識點與學習方法
★ 高一數學集合知識點及練習題
★ 高一數學知識點全面總結
★ 高一數學知識點總結歸納
★ 高一數學知識點總結
★ 高一數學知識點總結期末必備
★ 高一數學知識點總結【必修一】
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();❻ 幼兒園常用的集合表示方法
集合這個概念最本質的東西是分類。因此,幼兒園數學教學中,分類是重要的思想和方法。祝你進步!
❼ 集合的概念知識點歸納有哪些
集合的概念和知識點歸納如下:
1、概念:
集合是指具有某種特定性質的具體的或抽象的對象匯總而成的集體。其中,構成集合的這些對象則稱為該集合的元素。
2、地位:
集合在數學領域具有無可比擬的特殊重要性。集合論的基礎是由德國數學家康托爾在19世紀70年代奠定的,經過一大批科學家半個世紀的努力,到20世紀20年代已確立了其在現代數學理論體系中的基礎地位,可以說,現代數學各個分支的幾乎所有成果都構築在嚴格的集合理論上。
3、特性:
(1)確定性:
給定一個集合,任給一個元素,該元素或者屬於或者不屬於該集合,二者必居其一,不允許有模稜兩可的情況出現。
(2)互異性:
一個集合中,任何兩個元素都認為是不相同的,即每個元素只能出現一次。有時需要對同一元素出現多次的情形進行刻畫,可以使用多重集,其中的元素允許出現多次。
(3)無序性:
一個集合中,每個元素的地位都是相同的,元素之間是無序的。集合上可以定義序關系,定義了序關系後,元素之間就可以按照序關系排序。但就集合本身的特性而言,元素之間沒有必然的序。
4、表示方法:
表示集合的方法通常有四種,即列舉法、描述法、圖像法和符號法。
5、運算定律:
(1)交換律:A∩B=B∩A;A∪B=B∪A。
(2)結合律:A∪(B∪C)=(A∪B)∪C;A∩(B∩C)=(A∩B)∩C。
(3)分配對偶律:A∩(B∪C)=(A∩B)∪(A∩C);A∪(B∩C)=(A∪B)∩(A∪C)。
(4)對偶律:(A∪B)^C=A^C∩B^C;(A∩B)^C=A^C∪B^C。
(5)同一律:A∪∅=A;A∩U=A。
(6)求補律:A∪A'=U;A∩A'=∅。
(7)對合律:A''=A。
(8)等冪律:A∪A=A;A∩A=A。
(9)零一律:A∪U=U;A∩∅=∅。
(10)吸收律:A∪(A∩B)=A;A∩(A∪B)=A。
集合的容斥原理(特殊情況):
card(A∪B)=card(A)+card(B)-card(A∩B)
card(A∪B∪C)=card(A)+card(B)+card(C)-card(A∩B)-card(B∩C)-card(C∩A)+card(A∩B∩C)。
以上內容參考:網路-集合