當前位置:首頁 » 基礎知識 » 高一數學集合運算知識
擴展閱讀
印度之夜歌詞是什麼 2024-11-07 10:47:12

高一數學集合運算知識

發布時間: 2022-12-07 15:53:01

① 高一數學集合知識點歸納有哪些

高一數學集合知識點歸納有:

1、某些指定的對象集在一起就成為一個集合,簡稱集,其中每一個對象叫元素。比如高一二班集合,那麼所有高一二班的同學就構成了一個集合,每一個同學就稱為這個集合的元素。

2、通常用大寫字母表示集合,用小寫字母表示元素,如集合A={a,b,c}。a、b、c就是集合A中的元素,記作a∈A,相反,d不屬於集合A。

3、作為一個集合的元素,必須是確定的,這就是說,不能確定的對象就不能構成集合,也就是說,給定一個集合,任何一個對象是不是這個集合的元素也就確定了。

4、對於一個給定的集合,集合中的元素一定是不同的(或說是互異的),這就是說,集合中的任何兩個元素都是不同的對象,相同的對象歸入同一個集合時只能算作集合的一個元素。

5、含有有限個元素的集合叫做有限集,含有無限個元素的集合叫做無限集。

② 高一數學集合知識點詳解

概要:第一章 集合與函數概念 一、集合有關概念 1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。 2、集合的中元素的三個特性: 1.元素的確定性; 2.元素的互異性; 3.元素的無序性 說 ...
第一章 集合與函數概念
一、集合有關概念
1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。
2、集合的中元素的三個特性:
1.元素的確定性; 2.元素的互異性; 3.元素的無序性
說明:(1)對於一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。
(2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。
(3)集合中的元素是平等的,沒有先後順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。
(4)集合元素的三個特性使集合本身具有了確定性和整體性。
3、集合的表示:{ … } 如{我校的籃球隊員},{太平洋大西洋印度洋北冰洋}
1. 用拉丁字母表示集合:A={我校的籃球隊員}B={12345}
2.集合的表示方法:列舉法與描述法。
注意啊:常用數集及其記法:
非負整數集(即自然數集) 記作:N
正整數集 N*或 N+ 整數集Z 有理數集Q 實數集R
關於「屬於」的概念
集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬於集合A 記作 a∈A ,相反,a不屬於集合A 記作 a?A
列舉法:把集合中的元素一一列舉出來,然後用一個大括弧括上。
描述法:將集合中的元素的公共屬性描述出來,寫在大括弧內表示集合的方法。用確定的條件表示某些對象是否屬於這個集合的方法。
①語言描述法:例:{不是直角三角形的三角形}
②數學式子描述法:例:不等式x-3>2的解集是{x?R| x-3>2}或{x| x-3>2}
4、集合的分類:
1.有限集 含有有限個元素的集合
2.無限集 含有無限個元素的集合
3.空集 不含任何元素的集合 例:{x|x2=-5}
二、集合間的基本關系
1.「包含」關系子集
注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之: 集合A不包含於集合B或集合B不包含集合A記作A B或B A
2.「相等」關系(5≥5,且5≤5,則5=5)
實例:設 A={x|x2-1=0} B={-11} 「元素相同」
結論:對於兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時集合B的任何一個元素都是集合A的元素,我們就說集合A等於集合B,即:A=B
① 任何一個集合是它本身的子集。A?A
②真子集:如果A?B且A? B那就說集合A是集合B的真子集,記作A B(或B A)
③如果 A?B B?C 那麼 A?C
④ 如果A?B 同時 B?A 那麼A=B
3. 不含任何元素的集合叫做空集,記為Φ
規定: 空集是任何集合的子集, 空集是任何非空集合的真子集。
三、集合的運算
1.交集的定義:一般地,由所有屬於A且屬於B的元素所組成的集合叫做AB的交集.
記作A∩B(讀作」A交B」),即A∩B={x|x∈A,且x∈B}.
2、並集的定義:一般地,由所有屬於集合A或屬於集合B的元素所組成的集合,叫做AB的並集。記作:A∪B(讀作」A並B」),即A∪B={x|x∈A,或x∈B}.
3、交集與並集的性質:A∩A = A A∩φ= φ A∩B = B∩A,A∪A = A
A∪φ= A A∪B = B∪A.
4、全集與補集
(1)補集:設S是一個集合,A是S的一個子集(即 ),由S中所有不屬於A的元素組成的集合,叫做S中子集A的補集(或余集)
記作: CSA 即 CSA ={x ? x?S且 x?A}
(2)全集:如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集。通常用U來表示。
(3)性質:⑴CU(C UA)=A ⑵(C UA)∩A=Φ ⑶(CUA)∪A=U

③ 北師大版高一數學必修一集合知識點

集合是高一數學必修一中最基本的概念之一,那麼集合這部分有哪些知識點需要掌握呢?下面是我給大家帶來的高一數學必修一集合知識點,希望對你有幫助。

北師大版高一數學必修一集合知識點

一定范圍的,確定的,可以區別的事物,當作一個整體來看待,就叫做集合,簡稱集,其中各事物叫做集合的元素或簡稱元。如(1)阿Q正傳中出現的不同漢字(2)全體英文大寫字母 集合的分類:

並集:以屬於A或屬於B的元素為元素的集合稱為A與B的並(集),記作A∪B(或B∪A),讀作―A並B‖(或―B並A‖),即A∪B={x|x∈A,或x∈B} 交集: 以屬於A且屬於B的元素為元素的集合稱為A與B的交(集),記作A∩B(或B∩A),讀作―A交B‖(或―B交A‖),即A∩B={x|x∈A,且x∈B}

差:以屬於A而不屬於B的元素為元素的集合稱為A與B的差(集)

注:空集包含於任何集合,但不能說―空集屬於任何集合

注:空集屬於任何集合,但它不屬於任何元素.

某些指定的對象集在一起就成為一個集合,含有有限個元素叫有限集,含有無限個元素叫無限集,空集是不含任何元素的集,記做Φ。

集合的性質:

確定性:每一個對象都能確定是不是某一集合的元素,沒有確定性就不能成為集合,例如―個子高的同學‖―很小的數‖都不能構成集合。

互異性:集合中任意兩個元素都是不同的對象。不能寫成{1,1,2},應寫成{1,2}。 無序性:{a,b,c}{c,b,a}是同一個集合

集合有以下性質:若A包含於B,則A∩B=A,A∪B=B

常用數集的符號:

(1)全體非負整數的集合通常簡稱非負整數集(或自然數集),記作N

(2)非負整數集內排除0的集,也稱正整數集,記作N+(或N*)

(3)全體整數的集合通常稱作整數集,記作Z

(4)全體有理數的集合通常簡稱有理數集,記作Q

(5)全體實數的集合通常簡稱實數集,級做R

集合的運算:

1.交換律

A∩B=B∩A

A∪B=B∪A

2.結合律

(A∩B)∩C=A∩(B∩C)

(A∪B)∪C=A∪(B∪C)

3.分配律

A∩(B∪C)=(A∩B)∪(A∩C)

A∪(B∩C)=(A∪B)∩(A∪C)

北師大版高一數學必修一集合例題

1.已知集合A={a2,a+1,-3},B={a-3,2a-1,a2+1},且A∩B={-3},求實數a的值.

∵ A∩B={-3}

∴ -3∈B.

①若a-3=-3,則a=0,則A={0,1,-3},B={-3,-1,1}

∴ A∩B={-3,1}與∩B={-3}矛盾,所以a-3≠-3.

②若2a-1=-3,則a=-1,則A={1,0,-3},B={-4,-3,2}

此時A∩B={-3}符合題意,所以a=-1.

2.下列四個集合中,不 同於另外三個的是()

A.{y|y=2} B.{x=2}

C.{2} D.{x|x2-4x+4=0}

【解析】{x=2}表示的是由一個等式組成的集合.故選B.

3.下列關系中,正確的個數為________.

①12∈R;② 2∉Q;③|-3|∉N*;④| -3|∈Q.

【解析】本題考查常用數集及元素與集合的關系.顯然12∈R,①正確;2∉Q,②正確;

|-3|=3∈N*,|-3|=3∉Q,③、④不正確.

【答案】2

4.已知集合A={1,x,x2-x} ,B={1,2,x},若集合A與集合B相等,求x的值.

【解析】因為集合A與集合B相等,

所以x2-x=2.∴x=2或x=-1.

當x=2時, 與集合元素的互異性矛盾.

當x=-1時 ,符合題意.

∴x=-1.

北師大版高一數學必修一集合練習

1.下列命題中正確的()

①0與{0}表示同一個集合;②由1,2,3組成的集合可表示為{1,2,3}或{3,2,1};③方程(x-1)2(x-2)=0的所有解的集合可表示為{1,1,2};④集合{x|4

A.只有①和④ B.只有②和③

C.只有② D.以上語句都不對

【解析】{0}表示元素為0的集合,而0隻表示一個元素,故①錯誤;②符合集合中元素的無序性,正確;③不符合集 合中元素的互異性,錯誤;④中元素有無窮多個,不能一一列舉,故不能用列舉法表示.故選C.

【答案】C

2.用列舉法表示集合{x|x2-2x+1=0}為()

A.{1,1} B.{1}

C.{x=1} D.{x2-2x+1=0}

【解析】集合{x|x2-2x+1=0}實質是方程x2-2x+1=0的解集,此方程有兩相等實根,為1,故可表示為{1}.故選B.

【答案】B

3.已知集合A={x∈N*|-5≤x≤5},則必有()

A.-1∈A B.0∈A

C.3∈A D.1∈A

【解析】∵x∈N*,-5≤x≤5,

∴x=1,2,

即A={1,2},∴1∈A.故選D.

【答案】D

4.定義集合運算:A*B={z|z=xy, x∈A,y∈B}.設A={1,2},B={0,2},則集合A*B的所有元素之和為()

A.0 B.2

C.3 D.6

【解析】依題意,A*B={0,2,4},其所有元素之和為6,故選D.

④ 高一數學集合知識點總結

由一個或多個元素所構成的叫做集合,集合是數學中一個基本概念,它是集合論的研究對象,集合是指具有某種特定性質的具體的或抽象的對象匯總成的集體,這些對象稱為該集合的元素。下面給大家分享一些關於 高一數學 集合知識點 總結 ,希望對大家有所幫助。

高一數學集合知識點1

集合及其表示1、集合的含義:

「集合」這個詞首先讓我們想到的是上體育課或者開會時老師經常喊的「全體集合」。數學上的「集合」和這個意思是一樣的,只不過一個是動詞一個是名詞而已。

所以集合的含義是:某些指定的對象集在一起就成為一個集合,簡稱集,其中每一個對象叫元素。比如高一二班集合,那麼所有高一二班的同學就構成了一個集合,每一個同學就稱為這個集合的元素。

2、集合的表示

通常用大寫字母表示集合,用小寫字母表示元素,如集合A={a,b,c}。a、b、c就是集合A中的元素,記作a∈A,相反,d不屬於集合A,記作d?A。

有一些特殊的集合需要記憶:

非負整數集(即自然數集)N正整數集N-或N+

整數集Z有理數集Q實數集R

集合的表示 方法 :列舉法與描述法。

①列舉法:{a,b,c……}

②描述法:將集合中的元素的公共屬性描述出來。如{x?R|x-3>2},{x|x-3>2},{(x,y)|y=x2+1}

③語言描述法:例:{不是直角三角形的三角形}

例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2}

強調:描述法表示集合應注意集合的代表元素

A={(x,y)|y=x2+3x+2}與B={y|y=x2+3x+2}不同。集合A中是數組元素(x,y),集合B中只有元素y。

3、集合的三個特性

(1)無序性

指集合中的元素排列沒有順序,如集合A={1,2},集合B={2,1},則集合A=B。

例題:集合A={1,2},B={a,b},若A=B,求a、b的值。

解:,A=B

注意:該題有兩組解。

(2)互異性

指集合中的元素不能重復,A={2,2}只能表示為{2}

(3)確定性

集合的確定性是指組成集合的元素的性質必須明確,不允許有模稜兩可、含混不清的情況。

高一數學集合知識點2

集合間的基本關系1.子集,A包含於B,有兩種可能

(1)A是B的一部分,

(2)A與B是同一集合,A=B,A、B兩集合中元素都相同。

反之:集合A不包含於集合B。

2.不含任何元素的集合叫做空集,記為Φ。Φ是任何集合的子集。

4、有n個元素的集合,含有2n個子集,2n-1個真子集,含有2n-2個非空真子集。如A={1,2,3,4,5},則集合A有25=32個子集,25-1=31個真子集,25-2=30個非空真子集。

高一數學集合知識點3

集合的分類(1)按元素屬性分類,如點集,數集。(2)按元素的個數多少,分為有/無限集

關於集合的概念:

(1)確定性:作為一個集合的元素,必須是確定的,這就是說,不能確定的對象就不能構成集合,也就是說,給定一個集合,任何一個對象是不是這個集合的元素也就確定了。

(2)互異性:對於一個給定的集合,集合中的元素一定是不同的(或說是互異的),這就是說,集合中的任何兩個元素都是不同的對象,相同的對象歸入同一個集合時只能算作集合的一個元素。

(3)無序性:判斷一些對象時候構成集合,關鍵在於看這些對象是否有明確的標准。

集合可以根據它含有的元素的個數分為兩類:

含有有限個元素的集合叫做有限集,含有無限個元素的集合叫做無限集。

非負整數全體構成的集合,叫做自然數集,記作N;

在自然數集內排除0的集合叫做正整數集,記作N+或N-;

整數全體構成的集合,叫做整數集,記作Z;

有理數全體構成的集合,叫做有理數集,記作Q;(有理數是整數和分數的統稱,一切有理數都可以化成分數的形式。)

實數全體構成的集合,叫做實數集,記作R。(包括有理數和無理數。其中無理數就是無限不循環小數,有理數就包括整數和分數。數學上,實數直觀地定義為和數軸上的點一一對應的數。)

1.列舉法:如果一個集合是有限集,元素又不太多,常常把集合的所有元素都列舉出來,寫在花括弧「{}」內表示這個集合,例如,由兩個元素0,1構成的集合可表示為{0,1}.

有些集合的元素較多,元素的排列又呈現一定的規律,在不致於發生誤解的情況下,也可以列出幾個元素作為代表,其他元素用省略號表示。

例如:不大於100的自然數的全體構成的集合,可表示為{0,1,2,3,…,100}.

無限集有時也用上述的列舉法表示,例如,自然數集N可表示為{1,2,3,…,n,…}.

2.描述法:一種更有效地描述集合的方法,是用集合中元素的特徵性質來描述。

例如:正偶數構成的集合,它的每一個元素都具有性質:「能被2整除,且大於0」

而這個集合外的其他元素都不具有這種性質,因此,我們可以用上述性質把正偶數集合表示為

{x∈R│x能被2整除,且大於0}或{x∈R│x=2n,n∈N+},

大括弧內豎線左邊的X表示這個集合的任意一個元素,元素X從實數集合中取值,在豎線右邊寫出只有集合內的元素x才具有的性質。

一般地,如果在集合I中,屬於集合A的任意一個元素x都具有性質p(x),而不屬於集合A的元素都不具有的性質p(x),則性質p(x)叫做集合A的一個特徵性質。於是,集合A可以用它的性質p(x)描述為{x∈I│p(x)}

它表示集合A是由集合I中具有性質p(x)的所有元素構成的,這種表示集合的方法,叫做特徵性質描述法,簡稱描述法。

高一數學集合知識點4

數學是利用符號語言研究數量、結構、變化以及空間模型等概念的一門學科。我准備了高一數學必修1期末考知識點,希望你喜歡。

一、集合有關概念

1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素.

2、集合的中元素的三個特性:

1.元素的確定性; 2.元素的互異性; 3.元素的無序性

說明:(1)對於一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素.

(2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素.

(3)集合中的元素是平等的,沒有先後順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣.

(4)集合元素的三個特性使集合本身具有了確定性和整體性.

3、集合的表示:{ } 如{我校的 籃球 隊員},{太平洋,大西洋,印度洋,北冰洋}

1. 用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

2.集合的表示方法:列舉法與描述法.

注意啊:常用數集及其記法:

非負整數集(即自然數集)記作:N

正整數集 N_或N+ 整數集Z 有理數集Q 實數集R

關於屬於的概念

集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬於集合A 記作 aA ,相反,a不屬於集合A 記作 a?A

列舉法:把集合中的元素一一列舉出來,然後用一個大括弧括上.

描述法:將集合中的元素的公共屬性描述出來,寫在大括弧內表示集合的方法.用確定的條件表示某些對象是否屬於這個集合的方法.

①語言描述法:例:{不是直角三角形的三角形}

②數學式子描述法:例:不等式x-32的解集是{x?R| x-32}或{x| x-32}

4、集合的分類:

1.有限集 含有有限個元素的集合

2.無限集 含有無限個元素的集合

3.空集 不含任何元素的集合 例:{x|x2=-5}

二、集合間的基本關系

1.包含關系子集

注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合.

反之: 集合A不包含於集合B,或集合B不包含集合A,記作A B或B A

2.相等關系(55,且55,則5=5)

實例:設 A={x|x2-1=0} B={-1,1} 元素相同

結論:對於兩個集合A與B,如果集合A的任何一個元素都是集合B的.元素,同時,集合B的任何一個元素都是集合A的元素,我們就說集合A等於集合B,即:A=B

① 任何一個集合是它本身的子集.AA

②真子集:如果AB,且A1 B那就說集合A是集合B的真子集,記作A B(或B A)

③如果 AB, BC ,那麼 AC

④ 如果AB 同時 BA 那麼A=B

3. 不含任何元素的集合叫做空集,記為

規定: 空集是任何集合的子集, 空集是任何非空集合的真子集.

三、集合的運算

1.交集的定義:一般地,由所有屬於A且屬於B的元素所組成的集合,叫做A,B的交集.

記作AB(讀作A交B),即AB={x|xA,且xB}.

2、並集的定義:一般地,由所有屬於集合A或屬於集合B的元素所組成的集合,叫做A,B的並集.記作:AB(讀作A並B),即AB={x|xA,或xB}.

3、交集與並集的性質:AA = A, A=, AB = BA,AA = A,

A= A ,AB = BA.

4、全集與補集

(1)補集:設S是一個集合,A是S的一個子集(即 ),由S中所有不屬於A的元素組成的集合,叫做S中子集A的補集(或余集)

(2)全集:如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集.通常用U來表示.

(3)性質:⑴CU(C UA)=A ⑵(C UA) ⑶(CUA)A=U

高一數學集合知識點總結相關 文章 :

★ 高一數學集合知識點匯總

★ 高一數學集合知識點及例題講解

★ 高一數學集合知識點匯總(2)

★ 高一數學必修一集合公式知識點與學習方法

★ 高一數學集合知識點及練習題

★ 高一數學知識點全面總結

★ 高一數學知識點總結歸納

★ 高一數學知識點總結

★ 高一數學知識點總結期末必備

★ 高一數學知識點總結【必修一】

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

⑤ 高一數學第一章集合的知識點

高一數學集合知識點:集合的概念、關於集合的元素的特徵、元素與集合的關系、常用數集及其記法、集合的分類、集合的表示方法(自然語言法、列舉法、描述法)、集合間的基本關系、集合的基本運算(交集、並集、全集、補集)。

集合運算時的基本概念:

1、並集:一般的由屬於集合A或屬於集合B的所有元素組成的集合稱為集合A與B的並集,記作A∪B。

2、交集:一般的有屬於集合A且屬於集合B的所有元素組成的集合,稱為集合A與B的交集,記作A∩B。

3、全集:一般的如果一個集合,還有我們所研究問題中涉及的所有元素,那麼就稱這個集合為全集,通常記作U。

4、補集:對於一個集合A由全集U中不屬於集合A的所有元素組成的集合,稱為集合A相對於全集U的補集,簡稱為集合A的補集。

⑥ 高一集合數學知識點有哪些

如下:

1、集合與集合的元素是兩個不同的概念,教科書中是通過描述給出的,這與平面幾何中的點與直線的概念類似。

2、集合中的元素具有確定性、互異性和無序性。

3、集合具有兩方面的意義,即:凡是符合條件的對象都是它的元素;只要是它的元素就必須符號條件。

4、集合,在數學上是一個基礎概念。基礎概念是不能用其他概念加以定義的概念。集合的概念,可通過直觀、公理的方法來下「定義」。

5、集合是把人們的直觀的或思維中的某些確定的能夠區分的對象匯合在一起,使之成為一個整體(或稱為單體),這一整體就是集合。組成一集合的那些對象稱為這一集合的元素(或簡稱為元)。

性質

對任意集合 A,空集是 A 的子集:∀A:Ø ⊆ A。

對任意集合 A,空集和 A 的並集為 A:∀A:A ∪ Ø = A。

對任意非空集合 A,空集是 A的真子集:∀A,若A≠Ø,則Ø 真包含於 A。

對任意集合 A,空集和 A 的交集為空集:∀A,A ∩ Ø = Ø。

對任意集合 A,空集和 A 的笛卡爾積為空集:∀A,A × Ø = Ø。

空集的唯一子集是空集本身:∀A,若 A ⊆ Ø ⊆ A,則 A= Ø;∀A,若A= Ø,則A ⊆ Ø ⊆ A。

⑦ 高一數學集合知識點有哪些

高一數學集合知識點有如下:

一、某些指定的對象集在一起就成為一個集合,簡稱集,其中每一個對象叫元素。比如高一二班集合,那麼所有高一二班的同學就構成了一個集合,每一個同學就稱為這個集合的元素。

二、通常用大寫字母表示集合,用小寫字母表示元素。

三、一個集合中,每個元素的地位都是相同的,元素之間是無序的。

四、集合論的基礎是由德國數學家康托爾在19世紀70年代奠定的,經過一大批科學家半個世紀的努力,到20世紀20年代已確立了其在現代數學理論體系中的基礎地位,可以說,現代數學各個分支的幾乎所有成果都構築在嚴格的集合理論上。

五、集合中元素的數目稱為集合的基數,集合A的基數記作card(A)。當其為有限大時,集合A稱為有限集,反之則為無限集。一般的,把含有有限個元素的集合叫做有限集,含無限個元素的集合叫做無限集。