當前位置:首頁 » 基礎知識 » 初中數學餘角知識點總結
擴展閱讀
兒童用品天貓在哪裡拿貨 2024-11-07 07:49:04
同學外貌特點怎麼寫 2024-11-07 07:44:43

初中數學餘角知識點總結

發布時間: 2022-12-06 23:32:32

① 初中數學知識點總結大全 重點都在這了

初中生學習數學要特別注意知識點的總結,下面我為大家總結了初中 數學知識點 ,僅供大家參考。

數學基礎知識

平方根:①如果一個正數X的平方等於A,那麼這個正數X就叫做A的算術平方根。②如果一個數X的平方等於A,那麼這個數X就叫做A的平方根。③一個正數有2個平方根/0的平方根為0/負數沒有平方根。④求一個數A的平方根運算,叫做開平方,其中A叫做被開方數。

立方根:①如果一個數X的立方等於A,那麼這個數X就叫做A的立方根。②正數的立方根是正數、0的立方根是0、負數的立方根是負數。③求一個數A的立方根的運算叫開立方,其中A叫做被開方數。

實數:①實數分有理數和無理數。②在實數范圍內,相反數,倒數,絕對值的意義和有理數范圍內的相反數,倒數,絕對值的意義完全一樣。③每一個實數都可以在數軸上的一個點來表示。

初中數學重點知識點

平行:①同一平面內,不相交的兩條直線叫做平行線。②經過直線外一點,有且只有一條直線與這條直線平行。③如果兩條直線都與第3條直線平行,那麼這兩條直線互相平行。

垂直:①如果兩條直線相交成直角,那麼這兩條直線互相垂直。②互相垂直的兩條直線的交點叫做垂足。③平面內,過一點有且只有一條直線與已知直線垂直。

垂直平分線:垂直和平分一條線段的直線叫垂直平分線。

垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據射線和直線可以無限延長有關,再看後面的,垂直平分線是一條直線,所以在畫垂直平分線的時候,確定了2點後(關於畫法,後面會講)一定要把線段穿出2點。

垂直平分線定理

性質定理:在垂直平分線上的點到該線段兩端點的距離相等;

判定定理:到線段2端點距離相等的點在這線段的垂直平分線上

角平分線:把一個角平分的射線叫該角的角平分線。

數學基本定理

1、過兩點有且只有一條直線

2、兩點之間線段最短

3、同角或等角的補角相等

4、同角或等角的餘角相等

5、過一點有且只有一條直線和已知直線垂直

6、直線外一點與直線上各點連接的所有線段中,垂線段最短

7、平行公理 經過直線外一點,有且只有一條直線與這條直線平行

8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行

9、同位角相等,兩直線平行

10、內錯角相等,兩直線平行

11、同旁內角互補,兩直線平行

12、兩直線平行,同位角相等

以上就是我為大家總結的 初中數學 知識點總結大全,僅供參考,希望對大家有所幫助。

② 初中數學知識點總結

初中數學的知識點很多,要想學好初中數學,一定要建立系統的知識框架,這篇文章我給大家梳理了初中數學的重要知識點,供參考。

初中數學的基本定理

(一)點的定理:

1.過兩點有且只有一條直線。

2.兩點之間線段最短。

(二)角的定理:

1.同角或等角的補角相等。

2.同角或等角的餘角相等。

(三)直線定理:

1.過一點有且只有一條直線和已知直線垂直。

2.直線外一點與直線上各點連接的所有線段中,垂線段最短。

(四)平行定理

1.同位角相等,兩直線平行;內錯角相等,兩直線平行;同旁內角互補,兩直線平行。

2.同位角相等,兩直線平行;內錯角相等,兩直線平行;同旁內角互補,兩直線平行。

(四)全等三角形的判定

(1)SSS(邊邊邊):三邊對應相等的三角形是全等三角形。

(2)SAS(邊角邊):兩邊及其夾角對應相等的三角形是全等三角形。

(3)ASA(角邊角):兩角及其夾邊對應相等的三角形全等。

(4)AAS(角角邊):兩角及其一角的對邊對應相等的三角形全等。

(5)RHS(直角、斜邊、邊):在一對直角三角形中,斜邊及另一條直角邊相等。

(五)平行四邊形判定定理

1.兩組對角分別相等的四邊形是平行四邊形。

2.兩組對邊分別相等的四邊形是平行四邊形。

3.對角線互相平分的四邊形是平行四邊形。

4.一組對邊平行相等的四邊形是平行四邊形。

圓的相關知識點

(一)圓

在一個平面內,一動點以一定點為中心,以一定長度為距離旋轉一周所形成的封閉曲線叫做圓。圓有無數條對稱軸。

(二)圓的相關特點

1.徑

連接圓心和圓上的任意一點的線段叫做半徑,字母表示為r。

通過圓心並且兩端都在圓上的線段叫做直徑,字母表示為d。

直徑所在的直線是圓的對稱軸。在同一個圓中,圓的直徑d=2r。

2.弦

連接圓上任意兩點的線段叫做弦.在同一個圓內最長的弦是直徑。直徑所在的直線是圓的對稱軸,因此,圓的對稱軸有無數條。

3.弧

圓上任意兩點間的部分叫做圓弧,簡稱弧,以「⌒」表示。

大於半圓的弧稱為優弧,小於半圓的弧稱為劣弧,所以半圓既不是優弧,也不是劣弧。優弧一般用三個字母表示,劣弧一般用兩個字母表示。優弧是所對圓心角大於180度的弧,劣弧是所對圓心角小於180度的弧。

在同圓或等圓中,能夠互相重合的兩條弧叫做等弧。

4.角

頂點在圓心上的角叫做圓心角。

頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角。圓周角等於相同弧所對的圓心角的一半。

一元一次方程

(一)一元一次方程指只含有一個未知數、未知數的最高次數為1且兩邊都為整式的等式,叫做一元一次方程。求出方程中未知數的值叫做方程式的解。一元一次方程是一種線性方程,且只有一個根。

(二)判斷一元一次方程的條件

(1)首先必須是方程。

(2)其次必須含有一個未知數。

(3)分母中不含有未知數。

(三)求根公式法

對於關於x的一元一次方程ax+b=0(a≠0),其求根公式為:x=-b/a.

推導過程

ax+b=0

ax=-b

x=-b/a.

一般方法

(1)去分母:去分母是指等式兩邊同時乘以分母的最小公倍數。

(2)去括弧

括弧前是"+",把括弧和它前面的"+"去掉後,原括弧里各項的符號都不改變。

括弧前是"-",把括弧和它前面的"-"去掉後,原括弧里各項的符號都要改變。(改成與原來相反的符號,例:-(x-y)=-x+y。

(3)移項:把方程兩邊都加上(或減去)同一個數或同一個整式,就相當於把方程中的某些項改變符號後,從方程的一邊移到另一邊,這樣的變形叫做移項。

(4)合並同類項

合並同類項就是利用乘法分配律,同類項的系數相加,所得的結果作為系數,字母和指數不變。

通過合並同類項把一元一次方程式化為最簡單的形式:ax=b(a≠0)

(5)系數化為1

設方程經過恆等變形後最終成為ax=b型(a≠1且a≠0),那麼過程ax=b→x=b/a叫做系數化為1。這是解方程的一個通用步驟,就是解方程最後一個步驟。即方程兩邊同時除以未知項的系數.最後得到x=a的形式。

③ 初中數學常見的重點知識點歸納

進入初三後最重要的就是提高成績,下面我就為大家來整理一下,初中數學常見的重點知識點歸納僅供參考。

常考的數學知識點
1、過兩點有且只有一條直線

2、兩點之間線段最短

3、同角或等角的補角相等

4、同角或等角的餘角相等

5、過一點有且只有一條直線和已知直線垂直

6、直線外一點與直線上各點連接的所有線段中,垂線段最短

7、平行公理經過直線外一點,有且只有一條直線與這條直線平行

8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行

9、同位角相等,兩直線平行

10、內錯角相等,兩直線平行

11、同旁內角互補,兩直線平行

12、兩直線平行,同位角相等

13、兩直線平行,內錯角相等

14、兩直線平行,同旁內角互補

15、定理 三角形 兩邊的和大於第三邊
常用的數學公式
乘法與因式分解 a2-b2=(a+b)(a-b)

a3+b3=(a+b)(a2-ab+b2)

a3-b3=(a-b(a2+ab+b2)

三角不等式 |a+b|≤|a|+|b|

|a-b|≤|a|+|b|

|a|≤b<=>-b≤a≤b

|a-b|≥|a|-|b| -|a|≤a≤|a|

一元二次方程的解 -b+√(b2-4ac)/2a

-b-√(b2-4ac)/2a

根與系數的關系 X1+X2=-b/a

X1*X2=c/a 註:韋達定理
某些數列前n項和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2

2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

13+23+33+43+53+63+…n3=n2(n+1)2/4

1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理 a/sinA=b/sinB=c/sinC=2R

註:其中 R 表示三角形的外接圓半徑

餘弦定理 b2=a2+c2-2accosB

註:角B是邊a和邊c的夾角
中數學中考知識重難點分析
1.函數(一次函數、反比例函數、二次函數)中考占總分的15%左右。

特別是 二次函數 是中考的重點,也是中考的難點,在填空、選擇、解答題中均會出現,且知識點多,題型多變。

2.應用題,中考中占總分的30%左右

包括方程(組)應用,一元一次不等式(組)應用,函數應用,解三角形應用,概率與統計應用幾種題型。

一般會出現二至三道解答題(30分左右)及2—3道選擇、填空題(10分—15分),佔中考總分的30%左右。

以上就是我為大家整理的初中數學常見的重點知識點歸納。

④ 初一下冊數學重點知識點總結歸納

在初一階段,初一下冊數學重點知識點總結歸納有哪些呢?以下是我分享給大家的初一下冊數學重點知識點,希望可以幫到你!
初一下冊數學重點知識點
1、 單項式:數字與字母的積,叫做單項式。

2、 多項式:幾個單項式的和,叫做多項式。

3、 整式:單項式和多項式統稱整式。

4、 單項式的次數:單項式中所有字母的指數的和叫單項式的次數。

5、 多項式的次數:多項式中次數最高的項的次數,就是這個多項式的次數。

6、 餘角:兩個角的和為90度,這兩個角叫做互為餘角。

7、 補角:兩個角的和為180度,這兩個角叫做互為補角。

8、 對頂角:兩個角有一個公共頂點,其中一個角的兩邊是另一個角兩邊的反向延長線。這兩個角就是對頂角。

9、 同位角:在“三線八角”中,位置相同的角,就是同位角。

10、內錯角:在“三線八角”中,夾在兩直線內,位置錯開的角,就是內錯角。

11、同旁內角:在“三線八角”中,夾在兩直線內,在第三條直線同旁的角,就是同旁內角。

12、有效數字:一個近似數,從左邊第一個不為0的數開始,到精確的那位止,所有的數字都是有效數字。

13、概率:一個事件發生的可能性的大小,就是這個事件發生的概率。

14、三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。

15、三角形的角平分線:在三角形中,一個內角的角平分線與它的對邊相交,這個角的頂點與交點之間的線段叫做三角形的角平分線。

16、三角形的中線:在三角形中連接一個頂點與它的對邊中點的線段,叫做這個三角形的中線。

17、三角形的高線:從一個三角形的一個頂點向它的對邊所在的直線作垂線,頂點和垂足之間的線段叫做三角形的高線(簡稱三角形的高)。

18、全等圖形:兩個能夠重合的圖形稱為全等圖形。

19、變數:變化的數量,就叫變數。

20、自變數:在變化的量中主動發生變化的,變叫自變數。

21、因變數:隨著自變數變化而被動發生變化的量,叫因變數。

22、軸對稱圖形:如果一個圖形沿一條直線折疊後,直線兩旁的部分能夠互相重合,那麼這個圖形叫做軸對稱圖形。

23、對稱軸:軸對稱圖形中對折的直線叫做對稱軸。
初一下冊數學重點試題
1.某中學七年級學生外出進行社會實踐活動,如果每輛車坐45人,那麼有15個學生沒車坐;如果每輛車坐60人,那麼可以空出一輛車。問共有幾輛車,幾個學生?

2.福建欣欣電子有限公司向工商銀行申請了甲、乙兩種貸款,共計68萬元,每年需付出利息8.42萬元.甲種貸款每年的利率是12%,乙種貸款每年的利率是13%,求這兩種貸款的數額各是多少?

3.某服裝廠要生產一批某種型號的學生服裝,已知3米長的布料可做上衣2件或褲子3條,一件上衣和一條褲子為一套,計劃用600米長的這種布料生產,應分別用多少布料生產上衣和褲子才能恰好配套?共能生產多少套?

4.某商場按定價銷售某種電器時,每台可獲利48元,按定價的九折銷售該電器6台與將定價降低30元銷售該電器9台所獲得的利潤相等.求該電器每台的進價、定價各是多少元?

5.一張方桌由1個桌面,4條桌腿組成,如果1m3木料可以做方桌的桌面50個或做桌腿300條,現有10m3木料,那麼用多少立方米的木料做桌面,多少立方米的木料做桌腿,做出的桌面與桌腿,恰好能配成方桌?能配成多少張方桌.

6.甲、乙二人在上午8時,自A、B兩地同時相向而行,上午10時相距36km,二人繼續前行,到12時又相距36km,已知甲每小時比乙多走2km,求A,B兩地的距離.

7.某中學組織學生春遊,原計劃租用45座客車若干輛,但有15人沒有座位;若租用同樣數量的60座客車,則多出一輛車,且其餘客車恰好坐滿,已知45座客車每日每輛租金為220元,60座客車每日每輛租金為300元.試問:

(1)春遊學生共多少人?原計劃租45座客車多少輛?

(2)若租用同一種車,要使每位同學都有座位,怎樣租車更合算?

8.光明中學9年級甲、乙兩班為希望工程捐款活動中,兩班捐款的總數相同,均多於300元且少於400元,已知甲班有一人捐6元,其餘每人捐9元;乙班有一人捐13元,其餘每人捐8元,求甲、乙兩班學生總人數共是多少人?

9.曉躍汽車銷售公司到某汽車製造廠選購A、B兩種型號的轎車,用300萬元可購進A型轎車10輛,B型轎車15輛,用300萬元也可以購進A型轎車8輛,B型轎車18輛.

(1)求A、B兩種型號的轎車每輛分別為多少萬元?

(2)若該汽車銷售公司銷售1輛A型轎車可獲取8000元,銷售1輛B型轎車可獲利5000元,該汽車銷售公司准備用不超過400萬元購進A、B兩種型號轎車共30輛,且這兩種轎車全部售出後總獲利不低於20.4萬元,問有幾種購車方案?在這幾種購車方案中,該汽車銷售公司將這些轎車全部售出後,分別獲利多少萬元?

10.雙蓉服裝店老闆到廠家選購A、B兩種型號的服裝,若購進A種型號服裝9件,B種型號服裝10件,需要1810元;若購進A種型號服裝12件,B種型號服裝8件,需要1880元.

(1)求A、B兩種型號的服裝每件分別為多少元?

(2)若銷售1件A型號服裝可獲利18元,銷售1件B型號服裝可獲利30元,根據市場需求,服裝店老闆決定,購進A型服裝的數量要比購進B型服裝數量的2倍還多4件,且A型服裝最多可購進28件,這樣服裝全部售出後,可使總的獲利不少於699元,問有幾種進貨方案?如何進貨?

11.武漢市江漢一橋維修工程中擬由甲、乙兩個工程隊共同完成某項目,從兩個工程隊的資料可以知道:若兩個工程隊合做24天恰好完成;若兩隊工程隊合做18天後,甲工程隊再單獨做10天,也恰好完成,請問:

(1)甲、乙兩個工程隊單獨完成該項目各需多少天?

(2)已知甲工程隊每天的施工費為0.6萬元,乙工程隊每天的施工費為0.35萬元,要使該項目總的施工費不超過22萬元,則乙工程隊最少施工多少天?

12.某企業在蜀南竹海收購毛竹進行粗加工,每天可加工8噸,每噸獲利800元,如果對毛竹進行精加工,每天可加工1噸,每噸獲利4000元.由於受條件限制,每天只能採用一種方式加工,要求在一月內(30天)將這批毛竹全部銷售.為此企業廠長召集職工開會,讓職工們討論如何加工銷售更合算.甲說:將毛竹全部進行粗加工銷售;乙說:30天都進行精加工,未加工的毛竹直接銷售;丙說:30天中可以幾天粗加工,再用幾天精加工後銷售,請問廠長採用哪位說的方案獲利最大?
初一數學學習方法
一、注重學習內容的銜接

1.初一數學是在小學數學的基礎上進行拓展和提高的。難度適中,廣度有所加大。它與小學數學的最大的不同在於,初一數學的概念明顯增多。小學對於一些概念只要求讀懂就可以了,初一的數學概念要求牢牢掌握,要有一種敢於較真的精神,抓住本質細摳內容,在理解的基礎上掌握概念、運用概念,它貫穿中學數學學習的始終。

2.小學數學的計算相對簡單,中學數學的計算相對繁雜。要盡量培養准確而迅速的計算習慣。這首先需要對前面概念和定義較好的理解和熟練,其次還需要專心和細致,嚴格要求自己不犯粗心大意的錯誤,不要為考試低分找客觀原因,養成凡事認真仔細的習慣。

3.在小學學習的基礎上,培養自己攻克難題的能力。有些學生小學學習過奧數,中學的學習中也會遇到難題,要發揚一種釘子精神,對習題做到一題多解、舉一反三,要知難而上,勇於探索。

二、注重學習方法的培養

1.首先要會學習,好的學習方法是努力抓好學習中的各個環節:預習、聽講、復習、總結、考試。課前預習,才能做到有針對性的聽講,帶著問題聽講,高質量的聽課是中學數學學習的基礎和關鍵,課後復習總結是學習過程的升華,認真完成作業時它的重要體現,不要忽視每一天的作業,正所謂細節決定成敗!只有落實好前面的學習任務,加之以一顆平常心、自信心對待考試,才可能在考試中立於不敗之地。

2.積極培養自主學習習慣。初一課程設置較小學要多出很多,作為老師,要培養學生獨立自主的學習習慣,作為學生更要主動適應學習習慣的改變,要及時主動地發現問題,解決問題,不要將今天的問題過夜!否則後患無窮,要總結出一套適合自己的學習計劃,定期檢查和回顧其實施情況。

3.學會取人之長,補己之短。在你的身邊一定有一些學習較輕松,成績又好的同學,多向他們學習好的學習方法。要做的一項具體的工作時,准備一個"好題本",隨時收錄一些解題的好方法,以及自己曾做錯的習題改正。幾年下來你會發現,你的學習會有飛速的提高,你的解題思路也被有效的打開了,更可貴的事,到中考前,你可以拿出來有針對性的復習,對你來說,只有"它"才是最有針對性的!這樣豈不是事半而功倍。

猜你喜歡:

1. 初一數學上冊知識點匯總整理

2. 初一數學知識點整理

3. 初一數學必考知識點

4. 初中數學知識點全總結

5. 初一下學期數學所有知識點

⑤ 初中數學知識點總結

初中數學知識點總結
一、基本知識
一、數與代數A、數與式:1、有理數有理數:①整數→正整數/0/負整數②分數→正分數/負分數
數軸:①畫一條水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規定直線上向右的方向為正方向,就得到數軸.②任何一個有理數都可以用數軸上的一個點來表示.③如果兩個數只有符號不同,那麼我們稱其中一個數為另外一個數的相反數,也稱這兩個數互為相反數.在數軸上,表示互為相反數的兩個點,位於原點的兩側,並且與原點距離相等.④數軸上兩個點表示的數,右邊的總比左邊的大.正數大於0,負數小於0,正數大於負數.
絕對值:①在數軸上,一個數所對應的點與原點的距離叫做該數的絕對值.②正數的絕對值是他的本身、負數的絕對值是他的相反數、0的絕對值是0.兩個負數比較大小,絕對值大的反而小.
有理數的運算:加法:①同號相加,取相同的符號,把絕對值相加.②異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數的符號,並用較大的絕對值減去較小的絕對值.③一個數與0相加不變.
減法:減去一個數,等於加上這個數的相反數.
乘法:①兩數相乘,同號得正,異號得負,絕對值相乘.②任何數與0相乘得0.③乘積為1的兩個有理數互為倒數.
除法:①除以一個數等於乘以一個數的倒數.②0不能作除數.
乘方:求N個相同因數A的積的運算叫做乘方,乘方的結果叫冪,A叫底數,N叫次數.
混合順序:先算乘法,再算乘除,最後算加減,有括弧要先算括弧里的.
2、實數 無理數:無限不循環小數叫無理數
平方根:①如果一個正數X的平方等於A,那麼這個正數X就叫做A的算術平方根.②如果一個數X的平方等於A,那麼這個數X就叫做A的平方根.③一個正數有2個平方根/0的平方根為0/負數沒有平方根.④求一個數A的平方根運算,叫做開平方,其中A叫做被開方數.
立方根:①如果一個數X的立方等於A,那麼這個數X就叫做A的立方根.②正數的立方根是正數、0的立方根是0、負數的立方根是負數.③求一個數A的立方根的運算叫開立方,其中A叫做被開方數.
實數:①實數分有理數和無理數.②在實數范圍內,相反數,倒數,絕對值的意義和有理數范圍內的相反數,倒數,絕對值的意義完全一樣.③每一個實數都可以在數軸上的一個點來表示.
3、代數式
代數式:單獨一個數或者一個字母也是代數式.
合並同類項:①所含字母相同,並且相同字母的指數也相同的項,叫做同類項.②把同類項合並成一項就叫做合並同類項.③在合並同類項時,我們把同類項的系數相加,字母和字母的指數不變.
4、整式與分式
整式:①數與字母的乘積的代數式叫單項式,幾個單項式的和叫多項式,單項式和多項式統稱整式.②一個單項式中,所有字母的指數和叫做這個單項式的次數.③一個多項式中,次數最高的項的次數叫做這個多項式的次數.
整式運算:加減運算時,如果遇到括弧先去括弧,再合並同類項.
冪的運算:AM+AN=A(M+N)
(AM)N=AMN
(A/B)N=AN/BN 除法一樣.
整式的乘法:①單項式與單項式相乘,把他們的系數,相同字母的冪分別相乘,其餘字母連同他的指數不變,作為積的因式.②單項式與多項式相乘,就是根據分配律用單項式去乘多項式的每一項,再把所得的積相加.③多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加.
公式兩條:平方差公式/完全平方公式
整式的除法:①單項式相除,把系數,同底數冪分別相除後,作為商的因式;對於只在被除式里含有的字母,則連同他的指數一起作為商的一個因式.②多項式除以單項式,先把這個多項式的每一項分別除以單項式,再把所得的商相加.
分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式.
方法:提公因式法、運用公式法、分組分解法、十字相乘法.
分式:①整式A除以整式B,如果除式B中含有分母,那麼這個就是分式,對於任何一個分式,分母不為0.②分式的分子與分母同乘以或除以同一個不等於0的整式,分式的值不變.
分式的運算:
乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母.
除法:除以一個分式等於乘以這個分式的倒數.
加減法:①同分母分式相加減,分母不變,把分子相加減.②異分母的分式先通分,化為同分母的分式,再加減.
分式方程:①分母中含有未知數的方程叫分式方程.②使方程的分母為0的解稱為原方程的增根.
B、方程與不等式
1、方程與方程組
一元一次方程:①在一個方程中,只含有一個未知數,並且未知數的指數是1,這樣的方程叫一元一次方程.②等式兩邊同時加上或減去或乘以或除以(不為0)一個代數式,所得結果仍是等式.
解一元一次方程的步驟:去分母,移項,合並同類項,未知數系數化為1.
二元一次方程:含有兩個未知數,並且所含未知數的項的次數都是1的方程叫做二元一次方程.
二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組.
適合一個二元一次方程的一組未知數的值,叫做這個二元一次方程的一個解.
二元一次方程組中各個方程的公共解,叫做這個二元一次方程的解.
解二元一次方程組的方法:代入消元法/加減消元法.
一元二次方程:只有一個未知數,並且未知數的項的最高系數為2的方程
1)一元二次方程的二次函數的關系
大家已經學過二次函數(即拋物線)了,對他也有很深的了解,好像解法,在圖象中表示等等,其實一元二次方程也可以用二次函數來表示,其實一元二次方程也是二次函數的一個特殊情況,就是當Y的0的時候就構成了一元二次方程了.那如果在平面直角坐標系中表示出來,一元二次方程就是二次函數中,圖象與X軸的交點.也就是該方程的解了
2)一元二次方程的解法
大家知道,二次函數有頂點式(-b/2a,4ac-b2/4a),這大家要記住,很重要,因為在上面已經說過了,一元二次方程也是二次函數的一部分,所以他也有自己的一個解法,利用他可以求出所有的一元一次方程的解
(1)配方法
利用配方,使方程變為完全平方公式,在用直接開平方法去求出解
(2)分解因式法
提取公因式,套用公式法,和十字相乘法.在解一元二次方程的時候也一樣,利用這點,把方程化為幾個乘積的形式去解
(3)公式法
這方法也可以是在解一元二次方程的萬能方法了,方程的根X1={-b+√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a
3)解一元二次方程的步驟:
(1)配方法的步驟:
先把常數項移到方程的右邊,再把二次項的系數化為1,再同時加上1次項的系數的一半的平方,最後配成完全平方公式
(2)分解因式法的步驟:
把方程右邊化為0,然後看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式
(3)公式法
就把一元二次方程的各系數分別代入,這里二次項的系數為a,一次項的系數為b,常數項的系數為c
4)韋達定理
利用韋達定理去了解,韋達定理就是在一元二次方程中,二根之和=-b/a,二根之積=c/a
也可以表示為x1+x2=-b/a,x1x2=c/a.利用韋達定理,可以求出一元二次方程中的各系數,在題目中很常用
5)一元一次方程根的情況
利用根的判別式去了解,根的判別式可在書面上可以寫為「△」,讀作「diao ta」,而△=b2-4ac,這里可以分為3種情況:
I當△>0時,一元二次方程有2個不相等的實數根;
II當△=0時,一元二次方程有2個相同的實數根;
III當△<0時,一元二次方程沒有實數根(在這里,學到高中就會知道,這里有2個虛數根)
2、不等式與不等式組
不等式:①用符號〉,=,〈號連接的式子叫不等式.②不等式的兩邊都加上或減去同一個整式,不等號的方向不變.③不等式的兩邊都乘以或者除以一個正數,不等號方向不變.④不等式的兩邊都乘以或除以同一個負數,不等號方向相反.
不等式的解集:①能使不等式成立的未知數的值,叫做不等式的解.②一個含有未知數的不等式的所有解,組成這個不等式的解集.③求不等式解集的過程叫做解不等式.
一元一次不等式:左右兩邊都是整式,只含有一個未知數,且未知數的最高次數是1的不等式叫一元一次不等式.
一元一次不等式組:①關於同一個未知數的幾個一元一次不等式合在一起,就組成了一元一次不等式組.②一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集.③求不等式組解集的過程,叫做解不等式組.
一元一次不等式的符號方向:
在一元一次不等式中,不像等式那樣,等號是不變的,他是隨著你加或乘的運算改變.
在不等式中,如果加上同一個數(或加上一個正數),不等式符號不改向;例如:A>B,A+C>B+C
在不等式中,如果減去同一個數(或加上一個負數),不等式符號不改向;例如:A>B,A-C>B-C
在不等式中,如果乘以同一個正數,不等號不改向;例如:A>B,A*C>B*C(C>0)
在不等式中,如果乘以同一個負數,不等號改向;例如:A>B,A*C<b*c(c<0)
如果不等式乘以0,那麼不等號改為等號
所以在題目中,要求出乘以的數,那麼就要看看題中是否出現一元一次不等式,如果出現了,那麼不等式乘以的數就不等為0,否則不等式不成立;
3、函數
變數:因變數,自變數.
在用圖象表示變數之間的關系時,通常用水平方向的數軸上的點自變數,用豎直方向的數軸上的點表示因變數.
一次函數:①若兩個變數X,Y間的關系式可以表示成Y=KX+B(B為常數,K不等於0)的形式,則稱Y是X的一次函數.②當B=0時,稱Y是X的正比例函數.
一次函數的圖象:①把一個函數的自變數X與對應的因變數Y的值分別作為點的橫坐標與縱坐標,在直角坐標系內描出它的對應點,所有這些點組成的圖形叫做該函數的圖象.②正比例函數Y=KX的圖象是經過原點的一條直線.③在一次函數中,當K〈0,B〈O,則經234象限;當K〈0,B〉0時,則經124象限;當K〉0,B〈0時,則經134象限;當K〉0,B〉0時,則經123象限.④當K〉0時,Y的值隨X值的增大而增大,當X〈0時,Y的值隨X值的增大而減少.
二空間與圖形
A、圖形的認識
1、點,線,面
點,線,面:①圖形是由點,線,面構成的.②面與面相交得線,線與線相交得點.③點動成線,線動成面,面動成體.
展開與折疊:①在稜柱中,任何相鄰的兩個面的交線叫做棱,側棱是相鄰兩個側面的交線,稜柱的所有側棱長相等,稜柱的上下底面的形狀相同,側面的形狀都是長方體.②N稜柱就是底面圖形有N條邊的稜柱.
截一個幾何體:用一個平面去截一個圖形,截出的面叫做截面.
視圖:主視圖,左視圖,俯視圖.
多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形.
弧、扇形:①由一條弧和經過這條弧的端點的兩條半徑所組成的圖形叫扇形.②圓可以分割成若干個扇形.
2、角
線:①線段有兩個端點.②將線段向一個方向無限延長就形成了射線.射線只有一個端點.③將線段的兩端無限延長就形成了直線.直線沒有端點.④經過兩點有且只有一條直線.
比較長短:①兩點之間的所有連線中,線段最短.②兩點之間線段的長度,叫做這兩點之間的距離.
角的度量與表示:①角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點.②一度的1/60是一分,一分的1/60是一秒.
角的比較:①角也可以看成是由一條射線繞著他的端點旋轉而成的.②一條射線繞著他的端點旋轉,當終邊和始邊成一條直線時,所成的角叫做平角.始邊繼續旋轉,當他又和始邊重合時,所成的角叫做周角.③從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線.
平行:①同一平面內,不相交的兩條直線叫做平行線.②經過直線外一點,有且只有一條直線與這條直線平行.③如果兩條直線都與第3條直線平行,那麼這兩條直線互相平行.
垂直:①如果兩條直線相交成直角,那麼這兩條直線互相垂直.②互相垂直的兩條直線的交點叫做垂足.③平面內,過一點有且只有一條直線與已知直線垂直.
垂直平分線:垂直和平分一條線段的直線叫垂直平分線.
垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據射線和直線可以無限延長有關,再看後面的,垂直平分線是一條直線,所以在畫垂直平分線的時候,確定了2點後(關於畫法,後面會講)一定要把線段穿出2點.
垂直平分線定理:
性質定理:在垂直平分線上的點到該線段兩端點的距離相等;
判定定理:到線段2端點距離相等的點在這線段的垂直平分線上
角平分線:把一個角平分的射線叫該角的角平分線.
定義中有幾個要點要注意一下的,就是角的角平分線是一條射線,不是線段也不是直線,很多時,在題目中會出現直線,這是角平分線的對稱軸才會用直線的,這也涉及到軌跡的問題,一個角個角平分線就是到角兩邊距離相等的點
性質定理:角平分線上的點到該角兩邊的距離相等
判定定理:到角的兩邊距離相等的點在該角的角平分線上
正方形:一組鄰邊相等的矩形是正方形
性質:正方形具有平行四邊形、菱形、矩形的一切性質
判定:1、對角線相等的菱形2、鄰邊相等的矩形
二、基本定理
1、過兩點有且只有一條直線
2、兩點之間線段最短
3、同角或等角的補角相等
4、同角或等角的餘角相等
5、過一點有且只有一條直線和已知直線垂直
6、直線外一點與直線上各點連接的所有線段中,垂線段最短
7、平行公理 經過直線外一點,有且只有一條直線與這條直線平行
8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9、同位角相等,兩直線平行
10、內錯角相等,兩直線平行
11、同旁內角互補,兩直線平行
12、兩直線平行,同位角相等
13、兩直線平行,內錯角相等
14、兩直線平行,同旁內角互補
15、定理 三角形兩邊的和大於第三邊
16、推論 三角形兩邊的差小於第三邊
17、三角形內角和定理 三角形三個內角的和等於180°
18、推論1 直角三角形的兩個銳角互余
19、推論2 三角形的一個外角等於和它不相鄰的兩個內角的和
20、推論3 三角形的一個外角大於任何一個和它不相鄰的內角
21、全等三角形的對應邊、對應角相等
22、邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等
23、角邊角公理( ASA)有兩角和它們的夾邊對應相等的 兩個三角形全等
24、推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等
25、邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等
26、斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等
27、定理1 在角的平分線上的點到這個角的兩邊的距離相等
28、定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上
29、角的平分線是到角的兩邊距離相等的所有點的集合
30、等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角)
31、推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊
32、等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33、推論3 等邊三角形的各角都相等,並且每一個角都等於60°
34、等腰三角形的判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)
35、推論1 三個角都相等的三角形是等邊三角形
36、推論 2 有一個角等於60°的等腰三角形是等邊三角形
37、在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半
38、直角三角形斜邊上的中線等於斜邊上的一半
39、定理 線段垂直平分線上的點和這條線段兩個端點的距離相等
40、逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42、定理1 關於某條直線對稱的兩個圖形是全等形
43、定理 2 如果兩個圖形於某直線對稱,那麼對稱軸是對應點連線的垂直平分線
44、定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上
45、逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱
46、勾股定理 直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a2+b2=c2
47、勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a2+b2=c2,那麼這個三角形是直角三角形
48、定理 四邊形的內角和等於360°
49、四邊形的外角和等於360°
50、多邊形內角和定理 n邊形的內角的和等於(n-2)×180°
51、推論 任意多邊的外角和等於360°
52、平行四邊形性質定理1 平行四邊形的對角相等
53、平行四邊形性質定理2 平行四邊形的對邊相等
54、推論 夾在兩條平行線間的平行線段相等
55、平行四邊形性質定理3 平行四邊形的對角線互相平分
56、平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形
57、平行四邊形判定定理2 兩組對邊分別相等的四邊 形是平行四邊形
58、平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形
59、平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形
60、矩形性質定理1 矩形的四個角都是直角
61、矩形性質定理2 矩形的對角線相等
62、矩形判定定理1 有三個角是直角的四邊形是矩形
63、矩形判定定理2 對角線相等的平行四邊形是矩形
64、菱形性質定理1 菱形的四條邊都相等
65、菱形性質定理2 菱形的對角線互相垂直,並且每一條對角線平分一組對角
66、菱形面積=對角線乘積的一半,即S=(a×b)÷2
67、菱形判定定理1 四邊都相等的四邊形是菱形
68、菱形判定定理2 對角線互相垂直的平行四邊形是菱形
69、正方形性質定理1 正方形的四個角都是直角,四條邊都相等
70、正方形性質定理2正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角
71、定理1 關於中心對稱的兩個圖形是全等的
72、定理2 關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分
73、逆定理 如果兩個圖形的對應點連線都經過某一點,並且被這一點平分,那麼這兩個圖形關於這一點對稱
74、等腰梯形性質定理 等腰梯形在同一底上的兩個角相等
75、等腰梯形的兩條對角線相等
76、等腰梯形判定定理 在同一底上的兩個角相等的梯 形是等腰梯形
77、對角線相等的梯形是等腰梯形
78、平行線等分線段定理 如果一組平行線在一條直線上截得的線段相等,那麼在其他直線上截得的線段也相等
79、推論1 經過梯形一腰的中點與底平行的直線,必平分另一腰
80、推論2 經過三角形一邊的中點與另一邊平行的直線,必平分第三邊
81、三角形中位線定理 三角形的中位線平行於第三邊,並且等於它的一半
82、梯形中位線定理 梯形的中位線平行於兩底,並且等於兩底和的一半 L=(a+b)÷2 S=L×h
83、(1)比例的基本性質:如果a:b=c:d,那麼ad=bc 如果 ad=bc ,那麼a:b=c:d
84、(2)合比性質:如果a/b=c/d,那麼(a±b)/b=(c±d)/d
85、(3)等比性質:如果a/b=c/d=…=m/n(b+d+…+n≠0),
那麼(a+c+…+m)/(b+d+…+n)=a/b
86、平行線分線段成比例定理 三條平行線截兩條直線,所得的對應線段成比例
87、推論 平行於三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例
88、定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那麼這條直線平行於三角形的第三邊
89、平行於三角形的一邊,並且和其他兩邊相交的直線, 所截得的三角形的三邊與原三角形三邊對應成比例
90、定理 平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似
91、相似三角形判定定理1 兩角對應相等,兩三角形相似(ASA)
92、直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
93、判定定理2 兩邊對應成比例且夾角相等,兩三角形相似(SAS)
94、判定定理3 三邊對應成比例,兩三角形相似(SSS)
95、定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那麼這兩個直角三角形相似
96、性質定理1 相似三角形對應高的比,對應中線的比與對應角平分線的比都等於相似比
97、性質定理2 相似三角形周長的比等於相似比
98、性質定理3 相似三角形面積的比等於相似比的平方
99、任意銳角的正弦值等於它的餘角的餘弦值,任意銳角的餘弦值等於它的餘角的正弦值
100、任意銳角的正切值等於它的餘角的餘切值,任意銳角的餘切值等於它的餘角的正切值
101、圓是定點的距離等於定長的點的集合
102、圓的內部可以看作是圓心的距離小於半徑的點的集合
103、圓的外部可以看作是圓心的距離大於半徑的點的集合
104、同圓或等圓的半徑相等
105、到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓
106、和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線
107、到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
108、到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線
109、定理 不在同一直線上的三點確定一個圓.
110、垂徑定理 垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧
111、推論1
①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧
②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧
112、推論2 圓的兩條平行弦所夾的弧相等
113、圓是以圓心為對稱中心的中心對稱圖形
114、定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
115、推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那麼它們所對應的其餘各組量都相等
116、定理 一條弧所對的圓周角等於它所對的圓心角的一半
117、推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
118、推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑
119、推論3 如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形
120、定理 圓的內接四邊形的對角互補,並且任何一個外角都等於它的內對角
121、①直線L和⊙O相交 d<r
②直線L和⊙O相切 d=r
③直線L和⊙O相離 d>r
122、切線的判定定理 經過半徑的外端並且垂直於這條半徑的直線是圓的切線
123、切線的性質定理 圓的切線垂直於經過切點的半徑
124、推論1 經過圓心且垂直於切線的直線必經過切點
125、推論2 經過切點且垂直於切線的直線必經過圓心
126、切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等圓心和這一點的連線平分兩條切線的夾角
127、圓的外切四邊形的兩組對邊的和相等
128、弦切角定理 弦切角等於它所夾的弧對的圓周角
129、推論 如果兩個弦切角所夾的弧相等,那麼這兩個弦切角也相等
130、相交弦定理 圓內的兩條相交弦,被交點分成的兩條線段長的積相等
131、推論 如果弦與直徑垂直相交,那麼弦的一半是它分直徑所成的兩條線段的比例中項
132、切割線定理 從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項
133、推論 從圓外一點引圓的兩條割線,這一點到每條 割線與圓的交點的兩條線段長的積相等
134、如果兩個圓相切,那麼切點一定在連心線上
135、①兩圓外離 d>R+r ②兩圓外切 d=R+r③兩圓相交 R-r<d<R+r(R>r)
④兩圓內切 d=R-r(R>r) ⑤兩圓內含 d<R-r(R>r)
136、定理 相交兩圓的連心線垂直平分兩圓的公共弦
137、定理 把圓分成n(n≥3):
⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形
⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
138、定理 任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓
139、正n邊形的每個內角都等於(n-2)×180°/n
140、定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
141、正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長
142、正三角形面積√3a/4 a表示邊長
143、如果在一個頂點周圍有k個正n邊形的角,由於這些角的和應為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
144、弧長計算公式:L=n兀R/180
145、扇形面積公式:S扇形=n兀R^2/360=LR/2
146、內公切線長= d-(R-r) 外公切線長= d-(R+r)</b*c(c<0)

⑥ 初中數學知識點總結

初中數學知識點總結
一、基本知識
一、數與代數A、數與式:1、有理數有理數:①整數→正整數/0/負整數②分數→正分數/負分數
數軸:①畫一條水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規定直線上向右的方向為正方向,就得到數軸。②任何一個有理數都可以用數軸上的一個點來表示。③如果兩個數只有符號不同,那麼我們稱其中一個數為另外一個數的相反數,也稱這兩個數互為相反數。在數軸上,表示互為相反數的兩個點,位於原點的兩側,並且與原點距離相等。④數軸上兩個點表示的數,右邊的總比左邊的大。正數大於0,負數小於0,正數大於負數。
絕對值:①在數軸上,一個數所對應的點與原點的距離叫做該數的絕對值。②正數的絕對值是他的本身、負數的絕對值是他的相反數、0的絕對值是0。兩個負數比較大小,絕對值大的反而小。
有理數的運算:加法:①同號相加,取相同的符號,把絕對值相加。②異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數的符號,並用較大的絕對值減去較小的絕對值。③一個數與0相加不變。
減法:減去一個數,等於加上這個數的相反數。
乘法:①兩數相乘,同號得正,異號得負,絕對值相乘。②任何數與0相乘得0。③乘積為1的兩個有理數互為倒數。
除法:①除以一個數等於乘以一個數的倒數。②0不能作除數。
乘方:求N個相同因數A的積的運算叫做乘方,乘方的結果叫冪,A叫底數,N叫次數。
混合順序:先算乘法,再算乘除,最後算加減,有括弧要先算括弧里的。
2、實數 無理數:無限不循環小數叫無理數
平方根:①如果一個正數X的平方等於A,那麼這個正數X就叫做A的算術平方根。②如果一個數X的平方等於A,那麼這個數X就叫做A的平方根。③一個正數有2個平方根/0的平方根為0/負數沒有平方根。④求一個數A的平方根運算,叫做開平方,其中A叫做被開方數。
立方根:①如果一個數X的立方等於A,那麼這個數X就叫做A的立方根。②正數的立方根是正數、0的立方根是0、負數的立方根是負數。③求一個數A的立方根的運算叫開立方,其中A叫做被開方數。
實數:①實數分有理數和無理數。②在實數范圍內,相反數,倒數,絕對值的意義和有理數范圍內的相反數,倒數,絕對值的意義完全一樣。③每一個實數都可以在數軸上的一個點來表示。
3、代數式
代數式:單獨一個數或者一個字母也是代數式。
合並同類項:①所含字母相同,並且相同字母的指數也相同的項,叫做同類項。②把同類項合並成一項就叫做合並同類項。③在合並同類項時,我們把同類項的系數相加,字母和字母的指數不變。
4、整式與分式
整式:①數與字母的乘積的代數式叫單項式,幾個單項式的和叫多項式,單項式和多項式統稱整式。②一個單項式中,所有字母的指數和叫做這個單項式的次數。③一個多項式中,次數最高的項的次數叫做這個多項式的次數。
整式運算:加減運算時,如果遇到括弧先去括弧,再合並同類項。
冪的運算:AM+AN=A(M+N)
(AM)N=AMN
(A/B)N=AN/BN 除法一樣。
整式的乘法:①單項式與單項式相乘,把他們的系數,相同字母的冪分別相乘,其餘字母連同他的指數不變,作為積的因式。②單項式與多項式相乘,就是根據分配律用單項式去乘多項式的每一項,再把所得的積相加。③多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。
公式兩條:平方差公式/完全平方公式
整式的除法:①單項式相除,把系數,同底數冪分別相除後,作為商的因式;對於只在被除式里含有的字母,則連同他的指數一起作為商的一個因式。②多項式除以單項式,先把這個多項式的每一項分別除以單項式,再把所得的商相加。
分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式。
方法:提公因式法、運用公式法、分組分解法、十字相乘法。
分式:①整式A除以整式B,如果除式B中含有分母,那麼這個就是分式,對於任何一個分式,分母不為0。②分式的分子與分母同乘以或除以同一個不等於0的整式,分式的值不變。
分式的運算:
乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。
除法:除以一個分式等於乘以這個分式的倒數。
加減法:①同分母分式相加減,分母不變,把分子相加減。②異分母的分式先通分,化為同分母的分式,再加減。
分式方程:①分母中含有未知數的方程叫分式方程。②使方程的分母為0的解稱為原方程的增根。
B、方程與不等式
1、方程與方程組
一元一次方程:①在一個方程中,只含有一個未知數,並且未知數的指數是1,這樣的方程叫一元一次方程。②等式兩邊同時加上或減去或乘以或除以(不為0)一個代數式,所得結果仍是等式。
解一元一次方程的步驟:去分母,移項,合並同類項,未知數系數化為1。
二元一次方程:含有兩個未知數,並且所含未知數的項的次數都是1的方程叫做二元一次方程。
二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。
適合一個二元一次方程的一組未知數的值,叫做這個二元一次方程的一個解。
二元一次方程組中各個方程的公共解,叫做這個二元一次方程的解。
解二元一次方程組的方法:代入消元法/加減消元法。
一元二次方程:只有一個未知數,並且未知數的項的最高系數為2的方程
1)一元二次方程的二次函數的關系
大家已經學過二次函數(即拋物線)了,對他也有很深的了解,好像解法,在圖象中表示等等,其實一元二次方程也可以用二次函數來表示,其實一元二次方程也是二次函數的一個特殊情況,就是當Y的0的時候就構成了一元二次方程了。那如果在平面直角坐標系中表示出來,一元二次方程就是二次函數中,圖象與X軸的交點。也就是該方程的解了
2)一元二次方程的解法
大家知道,二次函數有頂點式(-b/2a,4ac-b2/4a),這大家要記住,很重要,因為在上面已經說過了,一元二次方程也是二次函數的一部分,所以他也有自己的一個解法,利用他可以求出所有的一元一次方程的解
(1)配方法
利用配方,使方程變為完全平方公式,在用直接開平方法去求出解
(2)分解因式法
提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時候也一樣,利用這點,把方程化為幾個乘積的形式去解
(3)公式法
這方法也可以是在解一元二次方程的萬能方法了,方程的根X1={-b+√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a
3)解一元二次方程的步驟:
(1)配方法的步驟:
先把常數項移到方程的右邊,再把二次項的系數化為1,再同時加上1次項的系數的一半的平方,最後配成完全平方公式
(2)分解因式法的步驟:
把方程右邊化為0,然後看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式
(3)公式法
就把一元二次方程的各系數分別代入,這里二次項的系數為a,一次項的系數為b,常數項的系數為c
4)韋達定理
利用韋達定理去了解,韋達定理就是在一元二次方程中,二根之和=-b/a,二根之積=c/a
也可以表示為x1+x2=-b/a,x1x2=c/a。利用韋達定理,可以求出一元二次方程中的各系數,在題目中很常用
5)一元一次方程根的情況
利用根的判別式去了解,根的判別式可在書面上可以寫為「△」,讀作「diao ta」,而△=b2-4ac,這里可以分為3種情況:
I當△>0時,一元二次方程有2個不相等的實數根;
II當△=0時,一元二次方程有2個相同的實數根;
III當△<0時,一元二次方程沒有實數根(在這里,學到高中就會知道,這里有2個虛數根)
2、不等式與不等式組
不等式:①用符號〉,=,〈號連接的式子叫不等式。②不等式的兩邊都加上或減去同一個整式,不等號的方向不變。③不等式的兩邊都乘以或者除以一個正數,不等號方向不變。④不等式的兩邊都乘以或除以同一個負數,不等號方向相反。
不等式的解集:①能使不等式成立的未知數的值,叫做不等式的解。②一個含有未知數的不等式的所有解,組成這個不等式的解集。③求不等式解集的過程叫做解不等式。
一元一次不等式:左右兩邊都是整式,只含有一個未知數,且未知數的最高次數是1的不等式叫一元一次不等式。
一元一次不等式組:①關於同一個未知數的幾個一元一次不等式合在一起,就組成了一元一次不等式組。②一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。③求不等式組解集的過程,叫做解不等式組。
一元一次不等式的符號方向:
在一元一次不等式中,不像等式那樣,等號是不變的,他是隨著你加或乘的運算改變。
在不等式中,如果加上同一個數(或加上一個正數),不等式符號不改向;例如:A>B,A+C>B+C
在不等式中,如果減去同一個數(或加上一個負數),不等式符號不改向;例如:A>B,A-C>B-C
在不等式中,如果乘以同一個正數,不等號不改向;例如:A>B,A*C>B*C(C>0)
在不等式中,如果乘以同一個負數,不等號改向;例如:A>B,A*C<B*C(C<0)
如果不等式乘以0,那麼不等號改為等號
所以在題目中,要求出乘以的數,那麼就要看看題中是否出現一元一次不等式,如果出現了,那麼不等式乘以的數就不等為0,否則不等式不成立;
3、函數
變數:因變數,自變數。
在用圖象表示變數之間的關系時,通常用水平方向的數軸上的點自變數,用豎直方向的數軸上的點表示因變數。
一次函數:①若兩個變數X,Y間的關系式可以表示成Y=KX+B(B為常數,K不等於0)的形式,則稱Y是X的一次函數。②當B=0時,稱Y是X的正比例函數。
一次函數的圖象:①把一個函數的自變數X與對應的因變數Y的值分別作為點的橫坐標與縱坐標,在直角坐標系內描出它的對應點,所有這些點組成的圖形叫做該函數的圖象。②正比例函數Y=KX的圖象是經過原點的一條直線。③在一次函數中,當K〈0,B〈O,則經234象限;當K〈0,B〉0時,則經124象限;當K〉0,B〈0時,則經134象限;當K〉0,B〉0時,則經123象限。④當K〉0時,Y的值隨X值的增大而增大,當X〈0時,Y的值隨X值的增大而減少。
二空間與圖形
A、圖形的認識
1、點,線,面
點,線,面:①圖形是由點,線,面構成的。②面與面相交得線,線與線相交得點。③點動成線,線動成面,面動成體。
展開與折疊:①在稜柱中,任何相鄰的兩個面的交線叫做棱,側棱是相鄰兩個側面的交線,稜柱的所有側棱長相等,稜柱的上下底面的形狀相同,側面的形狀都是長方體。②N稜柱就是底面圖形有N條邊的稜柱。
截一個幾何體:用一個平面去截一個圖形,截出的面叫做截面。
視圖:主視圖,左視圖,俯視圖。
多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。
弧、扇形:①由一條弧和經過這條弧的端點的兩條半徑所組成的圖形叫扇形。②圓可以分割成若干個扇形。
2、角
線:①線段有兩個端點。②將線段向一個方向無限延長就形成了射線。射線只有一個端點。③將線段的兩端無限延長就形成了直線。直線沒有端點。④經過兩點有且只有一條直線。
比較長短:①兩點之間的所有連線中,線段最短。②兩點之間線段的長度,叫做這兩點之間的距離。
角的度量與表示:①角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點。②一度的1/60是一分,一分的1/60是一秒。
角的比較:①角也可以看成是由一條射線繞著他的端點旋轉而成的。②一條射線繞著他的端點旋轉,當終邊和始邊成一條直線時,所成的角叫做平角。始邊繼續旋轉,當他又和始邊重合時,所成的角叫做周角。③從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。
平行:①同一平面內,不相交的兩條直線叫做平行線。②經過直線外一點,有且只有一條直線與這條直線平行。③如果兩條直線都與第3條直線平行,那麼這兩條直線互相平行。
垂直:①如果兩條直線相交成直角,那麼這兩條直線互相垂直。②互相垂直的兩條直線的交點叫做垂足。③平面內,過一點有且只有一條直線與已知直線垂直。
垂直平分線:垂直和平分一條線段的直線叫垂直平分線。
垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據射線和直線可以無限延長有關,再看後面的,垂直平分線是一條直線,所以在畫垂直平分線的時候,確定了2點後(關於畫法,後面會講)一定要把線段穿出2點。
垂直平分線定理:
性質定理:在垂直平分線上的點到該線段兩端點的距離相等;
判定定理:到線段2端點距離相等的點在這線段的垂直平分線上
角平分線:把一個角平分的射線叫該角的角平分線。
定義中有幾個要點要注意一下的,就是角的角平分線是一條射線,不是線段也不是直線,很多時,在題目中會出現直線,這是角平分線的對稱軸才會用直線的,這也涉及到軌跡的問題,一個角個角平分線就是到角兩邊距離相等的點
性質定理:角平分線上的點到該角兩邊的距離相等
判定定理:到角的兩邊距離相等的點在該角的角平分線上
正方形:一組鄰邊相等的矩形是正方形
性質:正方形具有平行四邊形、菱形、矩形的一切性質
判定:1、對角線相等的菱形2、鄰邊相等的矩形
二、基本定理
1、過兩點有且只有一條直線
2、兩點之間線段最短
3、同角或等角的補角相等
4、同角或等角的餘角相等
5、過一點有且只有一條直線和已知直線垂直
6、直線外一點與直線上各點連接的所有線段中,垂線段最短
7、平行公理 經過直線外一點,有且只有一條直線與這條直線平行
8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9、同位角相等,兩直線平行
10、內錯角相等,兩直線平行
11、同旁內角互補,兩直線平行
12、兩直線平行,同位角相等
13、兩直線平行,內錯角相等
14、兩直線平行,同旁內角互補
15、定理 三角形兩邊的和大於第三邊
16、推論 三角形兩邊的差小於第三邊
17、三角形內角和定理 三角形三個內角的和等於180°
18、推論1 直角三角形的兩個銳角互余
19、推論2 三角形的一個外角等於和它不相鄰的兩個內角的和
20、推論3 三角形的一個外角大於任何一個和它不相鄰的內角
21、全等三角形的對應邊、對應角相等
22、邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等
23、角邊角公理( ASA)有兩角和它們的夾邊對應相等的 兩個三角形全等
24、推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等
25、邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等
26、斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等
27、定理1 在角的平分線上的點到這個角的兩邊的距離相等
28、定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上
29、角的平分線是到角的兩邊距離相等的所有點的集合
30、等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角)
31、推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊
32、等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33、推論3 等邊三角形的各角都相等,並且每一個角都等於60°
34、等腰三角形的判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)
35、推論1 三個角都相等的三角形是等邊三角形
36、推論 2 有一個角等於60°的等腰三角形是等邊三角形
37、在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半
38、直角三角形斜邊上的中線等於斜邊上的一半
39、定理 線段垂直平分線上的點和這條線段兩個端點的距離相等
40、逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42、定理1 關於某條直線對稱的兩個圖形是全等形
43、定理 2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線
44、定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上
45、逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱
46、勾股定理 直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a2+b2=c2
47、勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a2+b2=c2,那麼這個三角形是直角三角形
48、定理 四邊形的內角和等於360°
49、四邊形的外角和等於360°
50、多邊形內角和定理 n邊形的內角的和等於(n-2)×180°
51、推論 任意多邊的外角和等於360°
52、平行四邊形性質定理1 平行四邊形的對角相等
53、平行四邊形性質定理2 平行四邊形的對邊相等
54、推論 夾在兩條平行線間的平行線段相等
55、平行四邊形性質定理3 平行四邊形的對角線互相平分
56、平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形
57、平行四邊形判定定理2 兩組對邊分別相等的四邊 形是平行四邊形
58、平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形
59、平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形
60、矩形性質定理1 矩形的四個角都是直角
61、矩形性質定理2 矩形的對角線相等
62、矩形判定定理1 有三個角是直角的四邊形是矩形
63、矩形判定定理2 對角線相等的平行四邊形是矩形
64、菱形性質定理1 菱形的四條邊都相等
65、菱形性質定理2 菱形的對角線互相垂直,並且每一條對角線平分一組對角
66、菱形面積=對角線乘積的一半,即S=(a×b)÷2
67、菱形判定定理1 四邊都相等的四邊形是菱形
68、菱形判定定理2 對角線互相垂直的平行四邊形是菱形
69、正方形性質定理1 正方形的四個角都是直角,四條邊都相等
70、正方形性質定理2正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角
71、定理1 關於中心對稱的兩個圖形是全等的
72、定理2 關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分
73、逆定理 如果兩個圖形的對應點連線都經過某一點,並且被這一點平分,那麼這兩個圖形關於這一點對稱
74、等腰梯形性質定理 等腰梯形在同一底上的兩個角相等
75、等腰梯形的兩條對角線相等
76、等腰梯形判定定理 在同一底上的兩個角相等的梯 形是等腰梯形
77、對角線相等的梯形是等腰梯形
78、平行線等分線段定理 如果一組平行線在一條直線上截得的線段相等,那麼在其他直線上截得的線段也相等
79、推論1 經過梯形一腰的中點與底平行的直線,必平分另一腰
80、推論2 經過三角形一邊的中點與另一邊平行的直線,必平分第三邊
81、三角形中位線定理 三角形的中位線平行於第三邊,並且等於它的一半
82、梯形中位線定理 梯形的中位線平行於兩底,並且等於兩底和的一半 L=(a+b)÷2 S=L×h
83、(1)比例的基本性質:如果a:b=c:d,那麼ad=bc 如果 ad=bc ,那麼a:b=c:d
84、(2)合比性質:如果a/b=c/d,那麼(a±b)/b=(c±d)/d
85、(3)等比性質:如果a/b=c/d=…=m/n(b+d+…+n≠0),
那麼(a+c+…+m)/(b+d+…+n)=a/b
86、平行線分線段成比例定理 三條平行線截兩條直線,所得的對應線段成比例
87、推論 平行於三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例
88、定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那麼這條直線平行於三角形的第三邊
89、平行於三角形的一邊,並且和其他兩邊相交的直線, 所截得的三角形的三邊與原三角形三邊對應成比例
90、定理 平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似
91、相似三角形判定定理1 兩角對應相等,兩三角形相似(ASA)
92、直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
93、判定定理2 兩邊對應成比例且夾角相等,兩三角形相似(SAS)
94、判定定理3 三邊對應成比例,兩三角形相似(SSS)
95、定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那麼這兩個直角三角形相似
96、性質定理1 相似三角形對應高的比,對應中線的比與對應角平分線的比都等於相似比
97、性質定理2 相似三角形周長的比等於相似比
98、性質定理3 相似三角形面積的比等於相似比的平方
99、任意銳角的正弦值等於它的餘角的餘弦值,任意銳角的餘弦值等於它的餘角的正弦值
100、任意銳角的正切值等於它的餘角的餘切值,任意銳角的餘切值等於它的餘角的正切值
101、圓是定點的距離等於定長的點的集合
102、圓的內部可以看作是圓心的距離小於半徑的點的集合
103、圓的外部可以看作是圓心的距離大於半徑的點的集合
104、同圓或等圓的半徑相等
105、到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓
106、和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線
107、到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
108、到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線
109、定理 不在同一直線上的三點確定一個圓。
110、垂徑定理 垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧
111、推論1
①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧
②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧
112、推論2 圓的兩條平行弦所夾的弧相等
113、圓是以圓心為對稱中心的中心對稱圖形
114、定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
115、推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那麼它們所對應的其餘各組量都相等
116、定理 一條弧所對的圓周角等於它所對的圓心角的一半
117、推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
118、推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑
119、推論3 如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形
120、定理 圓的內接四邊形的對角互補,並且任何一個外角都等於它的內對角
121、①直線L和⊙O相交 d<r
②直線L和⊙O相切 d=r
③直線L和⊙O相離 d>r
122、切線的判定定理 經過半徑的外端並且垂直於這條半徑的直線是圓的切線
123、切線的性質定理 圓的切線垂直於經過切點的半徑
124、推論1 經過圓心且垂直於切線的直線必經過切點
125、推論2 經過切點且垂直於切線的直線必經過圓心
126、切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等圓心和這一點的連線平分兩條切線的夾角
127、圓的外切四邊形的兩組對邊的和相等
128、弦切角定理 弦切角等於它所夾的弧對的圓周角
129、推論 如果兩個弦切角所夾的弧相等,那麼這兩個弦切角也相等
130、相交弦定理 圓內的兩條相交弦,被交點分成的兩條線段長的積相等
131、推論 如果弦與直徑垂直相交,那麼弦的一半是它分直徑所成的兩條線段的比例中項
132、切割線定理 從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項
133、推論 從圓外一點引圓的兩條割線,這一點到每條 割線與圓的交點的兩條線段長的積相等
134、如果兩個圓相切,那麼切點一定在連心線上

135、①兩圓外離 d>R+r ②兩圓外切 d=R+r③兩圓相交 R-r<d<R+r(R>r)
④兩圓內切 d=R-r(R>r) ⑤兩圓內含 d<R-r(R>r)
136、定理 相交兩圓的連心線垂直平分兩圓的公共弦
137、定理 把圓分成n(n≥3):
⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形
⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
138、定理 任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓
139、正n邊形的每個內角都等於(n-2)×180°/n
140、定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
141、正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長
142、正三角形面積√3a/4 a表示邊長
143、如果在一個頂點周圍有k個正n邊形的角,由於這些角的和應為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
144、弧長計算公式:L=n兀R/180
145、扇形面積公式:S扇形=n兀R^2/360=LR/2
146、內公切線長= d-(R-r) 外公切線長= d-(R+r)

⑦ 七年級數學考試知識點整理

課堂臨時報佛腳,不如 課前預習 好。其實任何學科的知識都是一樣的,學習任何一門學科,勤奮都是最好的 學習 方法 ,沒有之一,書山有路勤為徑。下面是我給大家整理的一些 七年級數學 的知識點,希望對大家有所幫助。

一下冊數學知識點 總結

1、單項式:數字與字母的積,叫做單項式。

2、多項式:幾個單項式的和,叫做多項式。

3、整式:單項式和多項式統稱整式。

4、單項式的次數:單項式中所有字母的指數的和叫單項式的次數。

5、多項式的次數:多項式中次數的項的次數,就是這個多項式的次數。

6、餘角:兩個角的和為90度,這兩個角叫做互為餘角。

7、補角:兩個角的和為180度,這兩個角叫做互為補角。

8、對頂角:兩個角有一個公共頂點,其中一個角的兩邊是另一個角兩邊的反向延長線。這兩個角就是對頂角。

9、同位角:在「三線八角」中,位置相同的角,就是同位角。

10、內錯角:在「三線八角」中,夾在兩直線內,位置錯開的角,就是內錯角。

11、同旁內角:在「三線八角」中,夾在兩直線內,在第三條直線同旁的角,就是同旁內角。

12、有效數字:一個近似數,從左邊第一個不為0的數開始,到精確的那位止,所有的數字都是有效數字。

13、概率:一個事件發生的可能性的大小,就是這個事件發生的概率。

14、三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。

15、三角形的角平分線:在三角形中,一個內角的角平分線與它的對邊相交,這個角的頂點與交點之間的線段叫做三角形的角平分線。

16、三角形的中線:在三角形中連接一個頂點與它的對邊中點的線段,叫做這個三角形的中線。

17、全等圖形:兩個能夠重合的圖形稱為全等圖形。

18、變數:變化的數量,就叫變數。

19、自變數:在變化的量中主動發生變化的,變叫自變數。

20、因變數:隨著自變數變化而被動發生變化的量,叫因變數。

21、軸對稱圖形:如果一個圖形沿一條直線折疊後,直線兩旁的部分能夠互相重合,那麼這個圖形叫做軸對稱圖形。

22、對稱軸:軸對稱圖形中對折的直線叫做對稱軸。

2021七年級下冊數學知識點

概率

一、事件:

1、事件分為必然事件、不可能事件、不確定事件。

2、必然事件:事先就能肯定一定會發生的事件。也就是指該事件每次一定發生,不可能不發生,即發生的可能是100%(或1)。

3、不可能事件:事先就能肯定一定不會發生的事件。也就是指該事件每次都完全沒有機會發生,即發生的可能性為零。

4、不確定事件:事先無法肯定會不會發生的事件,也就是說該事件可能發生,也可能不發生,即發生的可能性在0和1之間。

二、等可能性:是指幾種事件發生的可能性相等。

1、概率:是反映事件發生的可能性的大小的量,它是一個比例數,一般用P來表示,P(A)=事件A可能出現的結果數/所有可能出現的結果數。

2、必然事件發生的概率為1,記作P(必然事件)=1;

3、不可能事件發生的概率為0,記作P(不可能事件)=0;

4、不確定事件發生的概率在0—1之間,記作0

三、幾何概率

1、事件A發生的概率等於此事件A發生的可能結果所組成的面積(用SA表示)除以所有可能結果組成圖形的面積(用S全表示),所以幾何概率公式可表示為P(A)=SA/S全,這是因為事件發生在每個單位面積上的概率是相同的。

2、求幾何概率:

(1)首先分析事件所佔的面積與總面積的關系;

(2)然後計算出各部分的面積;

(3)最後代入公式求出幾何概率。

初一數學 復習方法

考試與作業邏輯不同:

我們的考試不同於作業,有些孩子作業寫的還可以,准確率挺高的,但是考試成績不理想。比如學校上完課,回家就寫當天的作業,但是考試不一樣,它是階段性的、綜合性的;再比如寫作業,可以看資料,不會的可以請教同學,但是考試就得靠自己;還有寫作業時格式不一定規范,不一定符合標准,但是考試老師會要求很嚴格;另外有些孩子考試比較焦慮,考試之前,爸爸媽媽給孩子加油鼓勁,反倒孩子考不好,有些孩子甚至在考試前後一定要上廁所,排解壓力,甚至影響到考試成績。

那具體涉及到數學的復習,我以北師大版為例,可以分4個步驟:

復習方法總結

1回歸書本,梳理章節概念公式、性質定理等

就像蓋房子,房子的地基是否扎實穩固。比如我們在復習課中,要求孩子們默寫公式等,記憶單項式、多項式、整式的概念,以及冪的運算、整式乘除的法則,而且一定要記住平方差和完全平方公式以及變形。有些孩子能夠背下完全平方公式,但是一旦用的時候,就偏偏不用,因為不夠熟練,怕出錯,所以就用最復雜的公式推導一遍,費時費力,還總錯,而且重要的公式更加生疏。

比如知識點填空:

知識點填空

我們的孩子在學校大題普遍做的多,考試也能拿到一些分數,但是選擇填空老錯,考完試下來一看,錯就錯在概念不清。

比如平行線是怎麼定義,性質定理有幾條,判定定理有幾條?他們之間有什麼聯系和區別?在這一章中,哪些地方一定要加「同一平面內」這5個字?家長們可以讓孩子找找看,捋一捋。

再比如說,三角形一章,涉及到三邊關系,角的關系,以及三角形的重要線段和它們的性質,等腰等邊三角形的性質,這些一定是期末選擇題的備選項。

還有全等的幾種證明方法,常見的輔助線做法這是幾何證明題的思路。

2題型突破,對各章節常見的 熱點 問題歸納練習。

我們的數學、物理這些理科都是要做題型的,而不僅僅是做題,一定要明白思路。

大多數孩子要考的題型和難度,學校每天的作業以及每周的考試卷,你都必須分析一下,對題型歸類,你可以用不同的筆標記一下,比如第2題和第8題是一類題,是化簡求值還是公式的變形應用?通過這樣一遍的分析,孩子們都會發現,其實考來考去,就是那幾種題型反復的出,反復的練。這是非常高效的學習方法。

3、熟悉套路、模型

平行線常見的模型:鉛筆模型、豬蹄模型,比如我經常和大家說的,遇見拐點,就做平行線。

三角形倒角常見模型:8字型、飛鏢型、折角型。

三角形全等模型:角平分線的性質模型,等腰直角三角形模型,三垂直模型,翻折(對稱)。

學好這些模型相等於我們是拿著工具箱考試,效率很高,比起其他同學,省去了推導的過程,速度又快,又准確。當然前提要掌握好基礎內容,不要本末倒置。

如果孩子們能把前面的步驟都做好了,基本知識點,題型都掌握了,計算也不會出錯,那你們考試一定沒有問題,除了有些學校本來要求考很難,比如壓軸題,不在於做的多,而是在精練,你做完之後不斷的復盤,用自己的語言說出思路來,找找看裡面的邏輯關系。

4、堅持改錯題

把整個學期的試卷裝訂在一起,每周花半天的時間,訂正錯題,不會的標記星號,問老師問同學,直到會了為止,下周繼續改,看自己是否真的懂了,對於錯題,就像駱駝吃草一樣,不停地咀嚼,錯題也需要孩子們不斷反復的看思路,才能在考試的時候避免在同類型的題上反復錯。


七年級數學考試知識點整理相關 文章 :

★ 七年級數學知識點整理大全

★ 初一數學考試知識點總結

★ 初中七年級數學知識點歸納整理

★ 初一數學知識點歸納梳理

★ 七年級上冊數學月考知識點整理

★ 初一數學必考的21個知識點,附考試重難點

★ 七年級數學知識點整理部編版

★ 七年級數學知識點梳理總結

★ 初中數學知識點整理:

★ 七年級數學的知識點歸納總結

⑧ 初中七年級數學知識點匯總

初一是初中學習的基礎階段,同學們一定要打好基礎。這篇文章我給大家整理了七年級數學課本的重要知識點,方便同學們參考學習。

概率

1.一般地,在大量重復試驗中,如果事件A發生的頻率n/m會穩定在某個常數p附近,那麼這個常數p就叫做事件A的概率。

2.隨機事件:在一定的條件下可能發生也可能不發生的事件,叫做隨機事件。

3.互斥事件:不可能同時發生的兩個事件叫做互斥事件。

4.對立事件:即必有一個發生的互斥事件叫做對立事件。

5.必然事件:那些無需通過實驗就能夠預先確定它們在每一次實驗中都一定會發生的事件稱為必然事件。

6.不可能事件:那些在每一次實驗中都一定不會發生的事件稱為不可能事件。

不等式與不等式組

1.不等式

用不等號(<,>,≥,≤,≠)連接的式子叫做不等式。

2.不等式的性質

①對稱性;②傳遞性;

③加法單調性,即同向不等式可加性;④乘法單調性;

⑤同向正值不等式可乘性;⑥正值不等式可乘方;⑦正值不等式可開方;

3.一元一次不等式

用不等號連接的,含有一個未知數,並且未知數的次數都是1,未知數的系數不為0,左右兩邊為整式的式子叫做一元一次不等式。

4.一元一次不等式組

一元一次不等式組是由幾個含有同一個未知數的一元一次不等式組成的不等式組。

角的知識點

1.角:角是由兩條有公共端點的射線組成的幾何對象。

2.角的度量單位:度、分、秒

3.頂點:角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點

4.角的比較:

(1)角可以看成是由一條射線繞著他的端點旋轉而成的。

(2)平角和周角:一條射線繞著他的端點旋轉,當始邊和終邊成一條直線時,所成的角叫平角。當它又和始邊重合的時候,所成的角角周角。平角等於108度,周角等於360度,直角等於90度。

(3)平分線:從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。

5.餘角和補角:

(1)餘角:如果兩個角的和是90度,那麼稱這兩個角「互為餘角」,簡稱「互余」。

性質:等角的餘角相等。

(2)補角:如果兩個角的和是180度,那麼稱這兩個角「互為補角」,簡稱「互補」。

性質:等角的補角相等。

代數

1.代數式:用運算符號「+-×÷……」連接數及表示數的字母的式子稱為代數式(字母所取得數應保證它所在的式子有意義,其次字母所取得數還應使實際生活或生產有意義;單獨一個數或一個字母也是代數式)

2.列代數式的幾個注意事項:

(1)數與字母相乘,或字母與字母相乘通常使用「·」乘,或省略不寫;

(2)數與數相乘,仍應使用「×」乘,不用「·」乘,也不能省略乘號;

(3)數與字母相乘時,一般在結果中把數寫在字母前面,如a×5應寫成5a;

(4)帶分數與字母相乘時,要把帶分數改成假分數形式,如a×應寫成a;

(5)在代數式中出現除法運算時,一般用分數線將被除式和除式聯系,如3÷a寫成的形式;

(6)a與b的差寫作a-b,要注意字母順序;若只說兩數的差,當分別設兩數為a、b時,則應分類,寫做a-b和b-a。

有理數

1.定義:由整數和分數組成的數。包括:正整數、0、負整數,正分數、負分數。可以寫成兩個整之比的形式。

2.數軸:在數學中,可以用一條直線上的點表示數,這條直線叫做數軸。

3.相反數:相反數是一個數學術語,指絕對值相等,正負號相反的兩個數互為相反數。

4.絕對值:絕對值是指一個數在數軸上所對應點到原點的距離。正數的絕對值是它本身,負數的絕對值是它的相反數;0的絕對值是0,兩個負數,絕對值大的反而小。

5.有理數的加減法

同號相加,到相同符號,並把絕對值相加。異號相加,取絕對值大的加數的符號,並用較大的絕對值減去較小的絕對值。

6.有理數的乘法

兩數相乘,同號得正,異號得負,並把絕對值相乘。

任何數與0相乘,積為0。例:0×1=0。

7.有理數的除法

除以一個不為0的數,等於乘這個數的倒數。

兩數相除,同號得正,異號得負,並把絕對值相除。0除

以任何一個不為0的數,都得0。

8.有理數的乘方

求n個相同因數乘積的運算,叫做乘方,乘方的結果叫做冪。其中,a叫做底數,n叫做指數。當aⁿ看作a的n次乘方的結果時,也可讀作「a的n次冪」或「a的n次方」。

⑨ 七年級數學課本重要知識點總結

偉大的成績和辛勤勞動是成正比例的,有一分勞動就有一分收獲,積累,從少到多,奇跡就可以創造出來。學習也是一樣的,需要積累,從少變多。下面是我給大家整理的一些 七年級數學 的知識點,希望對大家有所幫助。

初一上冊數學第三章《圖形認識初步》知識點

圖形認識初步

3.1 多姿多彩的圖形

現實生活中的物體我們只管它的形狀、大小、位置而得到的圖形,叫做幾何圖形。

3.1.1立體圖形與平面圖形

長方體、正方體、球、圓柱、圓錐等都是立體圖形。此外稜柱、棱錐也是常見的立體圖形。

長方形、正方形、三角形、圓等都是平面圖形。

許多立體圖形是由一些平面圖形圍成的,將它們適當地剪開,就可以展開成平面圖形。

3.1.2點、線、面、體

幾何體也簡稱體。長方體、正方體、圓柱、圓錐、球、稜柱、棱錐等都是幾何體。

包圍著體的是面。面有平的面和曲的面兩種。

面和 面相 交的地方形成線。

線和線相交的地方是點。

幾何圖形都是由點、線、面、體組成的,點是構成圖形的基本元素。

3.2 直線、射線、線段

經過兩點有一條直線,並且只有一條直線。

兩點確定一條直線。

點C線段AB分成相等的兩條線段AM與MB,點M叫做線段AB的中點。類似的還有線段的三等分點、四等分點等。

直線桑一點和它一旁的部分叫做射線。

兩點的所有連線中,線段最短。簡單說成:兩點之間,線段最短。

3.3 角的度量

角也是一種基本的幾何圖形。

度、分、秒是常用的角的度量單位。

把一個周角360等分,每一份就是一度的角,記作1;把1度的角60等分,每份叫做1分的角,記作1;把1分的角60等分,每份叫做1秒的角,記作1。

3.4角的比較與運算

3.4.1角的比較

從一個角的頂點出發,把這個角分成相等的兩個角的射線,叫做這個角的平分線。類似的,還有叫的三等分線。

3.4.2餘角和補角

如果兩個角的和等於90(直角),就說這兩個角互為餘角。

如果兩個角的和等於180(平角),就說這兩個角互為補角。

等角的補角相等。

等角的餘角相等。

初一下冊數學知識點:不等式與不等式組

1.不等式:用符號"<",">","≤","≥"表示大小關系的式子叫做不等式。

2.不等式分類:不等式分為嚴格不等式與非嚴格不等式。

一般地,用純粹的大於號、小於號">","<"連接的不等式稱為嚴格不等式,用不小於號(大於或等於號)、不大於號(小於或等於號)"≥","≤"連接的不等式稱為非嚴格不等式,或稱廣義不等式。

3.不等式的解:使不等式成立的未知數的值,叫做不等式的解。

4.不等式的解集:一個含有未知數的不等式的所有解,組成這個不等式的解集。

5.不等式解集的表示 方法 :

(1)用不等式表示:一般的,一個含未知數的不等式有無數個解,其解集是一個范圍,這個范圍可用最簡單的不等式表達出來,例如:x-1≤2的解集是x≤3

(2)用數軸表示:不等式的解集可以在數軸上直觀地表示出來,形象地說明不等式有無限多個解,用數軸表示不等式的解集要注意兩點:一是定邊界線;二是定方向。

6.解不等式可遵循的一些同解原理

(1)不等式F(x)< G(x)與不等式 G(x)>F(x)同解。

(2)如果不等式F(x)< G(x)的定義域被解析式H(x)的定義域所包含,那麼不等式 F(x)< G(x)與不等式H(x)+F(x)

(3)如果不等式F(x)< G(x)的定義域被解析式H(x)的定義域所包含,並且H(x)>0,那麼不等式F(x)< G(x)與不等式H(x)F(x)0,那麼不等式F(x)< G(x)與不等式H(x)F(x)>H(x)G(x)同解。

7.不等式的性質:

(1)如果x>y,那麼yy;(對稱性)

(2)如果x>y,y>z;那麼x>z;(傳遞性)

(3)如果x>y,而z為任意實數或整式,那麼x+z>y+z;(加法則)

(4)如果x>y,z>0,那麼xz>yz;如果x>y,z<0,那麼xz

(5)如果x>y,z>0,那麼x÷z>y÷z;如果x>y,z<0,那麼x÷z

(6)如果x>y,m>n,那麼x+m>y+n(充分不必要條件)

(7)如果x>y>0,m>n>0,那麼xm>yn

(8)如果x>y>0,那麼x的n次冪>y的n次冪(n為正數)

8.一元一次不等式:不等式的左、右兩邊都是整式,只有一個未知數,並且未知數的次數是1,像這樣的不等式,叫做一元一次不等式。

9.解一元一次不等式的一般順序:

(1)去分母 (運用不等式性質2、3)

(2)去括弧

(3)移項 (運用不等式性質1)

(4)合並同類項

(5)將未知數的系數化為1 (運用不等式性質2、3)

(6)有些時候需要在數軸上表示不等式的解集

初一下冊數學輔導復習資料

1.幾何圖形:點、線、面、體這些可幫助人們有效的刻畫錯綜復雜的世界,它們都稱為幾何圖形。從實物中抽象出的各種圖形統稱為幾何圖形。有些幾何圖形的各部分不在同一平面內,叫做立體圖形。有些幾何圖形的各部分都在同一平面內,叫做平面圖形。雖然立體圖形與平面圖形是兩類不同的幾何圖形,但它們是互相聯系的。

2.幾何圖形的分類:幾何圖形一般分為立體圖形和平面圖形。

3.直線:幾何學基本概念,是點在空間內沿相同或相反方向運動的軌跡。從平面解析幾何的角度來看,平面上的直線就是由平面直角坐標系中的一個二元一次方程所表示的圖形。求兩條直線的交點,只需把這兩個二元一次方程聯立求解,當這個聯立方程組無解時,二直線平行;有無窮多解時,二直線重合;只有一解時,二直線相交於一點。常用直線與X軸正向的夾角(叫直線的傾斜角)或該角的正切(稱直線的斜率)來表示平面上直線(對於X軸)的傾斜程度。

4.射線:在歐幾里德幾何學中,直線上的一點和它一旁的部分所組成的圖形稱為射線或半直線。

5.線段:指一個或一個以上不同線素組成一段連續的或不連續的圖線,如實線的線段或由「長劃、短間隔、點、短間隔、點、短間隔」組成的雙點長劃線的線段。

線段有如下性質:兩點之間線段最短。

6. 兩點間的距離:連接兩點間線段的長度叫做這兩點間的距離。

7. 端點:直線上兩個點和它們之間的部分叫做線段,這兩個點叫做線段的端點。

線段用表示它兩個端點的字母或一個小寫字母表示,有時這些字母也表示線段長度,記作線段AB或線段BA,線段a。其中AB表示直線上的任意兩點。

8.直線、射線、線段區別:直線沒有距離。射線也沒有距離。因為直線沒有端點,射線只有一個端點,可以無限延長。

9.角:具有公共端點的兩條不重合的射線組成的圖形叫做角。這個公共端點叫做角的頂點,這兩條射線叫做角的兩條邊。

一條射線繞著它的端點從一個位置旋轉到另一個位置所形成的圖形叫做角。所旋轉射線的端點叫做角的頂點,開始位置的射線叫做角的始邊,終止位置的射線叫做角的終邊。

10.角的靜態定義:具有公共端點的兩條不重合的射線組成的圖形叫做角。這個公共端點叫做角的頂點,這兩條射線叫做角的兩條邊。

1.單項式:在代數式中,若只含有乘法(包括乘方)運算。或雖含有除法運算,但除式中不含字母的一類代數式叫單項式;數字或字母的乘積叫單項式(單獨的一個數字或字母也是單項式)。

2.系數:單項式中的數字因數叫做這個單項式的系數。所有字母的指數之和叫做這個單項式的次數。任何一個非零數的零次方等於1。

3.多項式:幾個單項式的和叫多項式。

4.多項式的項數與次數:多項式中所含單項式的個數就是多項式的項數,每個單項式叫多項式的項;多項式里,次數項的次數叫多項式的次數。

5.常數項:不含字母的項叫做常數項。


七年級數學課本重要知識點 總結 相關 文章 :

★ 初一數學課本知識點總結

★ 初中七年級數學知識點歸納整理

★ 七年級數學課本知識點

★ 七年級數學知識點整理大全

★ 七年級數學知識點梳理總結

★ 初一上冊數學重點知識點歸納總結

★ 七年級數學知識點總結

★ 初一人教版數學上冊知識點總結歸納

★ 七年級數學知識點整理部編版

★ 初一數學知識點梳理歸納

⑩ 初中數學知識點總結

很多的學生到了初中之後,發現自己的分數會有一定的下降,這可能是由於上初中之後數學科目的難度加大,所以分數會有一定的降低,那麼初中數學應該怎樣學?應該使用什麼方式哪?

知識點

當老師在講完內容之後會講一些課外的內容,一般是定理、概念等等,會讓你對這些知識更加的了解,所以如果對這類題目有問題的同學可以多看一些課外的題目,當然想要提升分數是離不開練習題的,想要多好就需要多做一些習題,但是不可以過多,需要邊做邊思考才可以,這樣所學的知識就會運用出來.

以上就是初中數學應該怎樣學習的內容,如果在這個階段對自己分數不滿意的同學可以借鑒一下以上的內容,或許會對你有一定的幫助,將自身的分數提升.