『壹』 初一政治知識樹怎麼畫
知識樹就要先從大標題作為樹干。小標題作為樹枝說到知識點,作為葉子那樣畫。
『貳』 初一數學整式思維導圖
數學思維導圖是提升課堂教學效能的一個重要途徑。 下面我精心整理了初一數學整式思維導圖,供大家參考,希望你們喜歡!
初一數學整式思維導圖欣賞 初一數學整式思維導圖1
初一數學整式思維導圖2
初一數學整式思維導圖3
初一數學整式思維導圖4
初一數學整式思維導圖5
初一數學整式思維導圖6
初一數學整式思維導圖7
初一數學整式思維導圖8
初一數學整式思維導圖相關文章:
1. 7年級數學有理數的思維導圖
2. 7年級數學的思維導圖
3. 思維導圖作圖規則和繪制方法詳解
4. 初一上語文思維導圖
5. 思維導圖要怎麼繪制
6. 初一上冊數學手抄報經典圖片大全
『叄』 初一有理數的知識樹圖
『肆』 下冊數學知識樹怎麼畫
首先畫樹的根部,樹根里用文字寫上單元的主要內容,然後畫雲朵或橢圓的圈作為樹的枝和葉,里邊寫上每一章的課程內容,然後在外邊分叉,周圍依次畫幾個小的雲朵或者圓圈。里邊分別寫上每一課的大綱或者大體內容。
學生一般學習的東西比較多,經常會出現遺忘或者不清楚重點的情況,尤其是數學,各種計算,方程,公式等,很多需要記憶的東西,這時,將需要記憶的東西進行分類,放入知識樹里,美觀不凌亂,也更方便記憶和整理。
『伍』 一本塗書初中七年級上冊數學的知識樹那頁長什麼樣急現需要圖
根據教科書的目錄來做. 每一章作為一個大的「樹枝」,同一章的不同節變成「大樹枝」的分支,關鍵的知識點,就是相應「樹枝」上的「果實」. 整體上,就呈現出樹的形狀.
『陸』 初一數學各章內容的知識樹
過兩點有且只有一條直線
2 兩點之間線段最短
3 同角或等角的補角相等
4 同角或等角的餘角相等
5 過一點有且只有一條直線和已知直線垂直
6 直線外一點與直線上各點連接的所有線段中,垂線段最短
7 平行公理 經過直線外一點,有且只有一條直線與這條直線平行
8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9 同位角相等,兩直線平行
10 內錯角相等,兩直線平行
11 同旁內角互補,兩直線平行
12兩直線平行,同位角相等
13 兩直線平行,內錯角相等
14 兩直線平行,同旁內角互補
15 定理 三角形兩邊的和大於第三邊
16 推論 三角形兩邊的差小於第三邊
17 三角形內角和定理 三角形三個內角的和等於180°
18 推論1 直角三角形的兩個銳角互余
19 推論2 三角形的一個外角等於和它不相鄰的兩個內角的和
20 推論3 三角形的一個外角大於任何一個和它不相鄰的內角
21 全等三角形的對應邊、對應角相等
22邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等
23 角邊角公理( ASA)有兩角和它們的夾邊對應相等的兩個三角形全等
24 推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等
25 邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等
26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等
27 定理1 在角的平分線上的點到這個角的兩邊的距離相等
28 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上
29 角的平分線是到角的兩邊距離相等的所有點的集合
30 等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角)
31 推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊
32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33 推論3 等邊三角形的各角都相等,並且每一個角都等於60°
34 等腰三角形的判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)
35 推論1 三個角都相等的三角形是等邊三角形
36 推論 2 有一個角等於60°的等腰三角形是等邊三角形
37 在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半
38 直角三角形斜邊上的中線等於斜邊上的一半
39 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等
40 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42 定理1 關於某條直線對稱的兩個圖形是全等形
43 定理 2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線
44定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上
45逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱
46勾股定理 直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a^2+b^2=c^2
47勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a^2+b^2=c^2 ,那麼這個三角形是直角三角形
48定理 四邊形的內角和等於360°
49四邊形的外角和等於360°
50多邊形內角和定理 n邊形的內角的和等於(n-2)×180°
51推論 任意多邊的外角和等於360°
52平行四邊形性質定理1 平行四邊形的對角相等
53平行四邊形性質定理2 平行四邊形的對邊相等
54推論 夾在兩條平行線間的平行線段相等
55平行四邊形性質定理3 平行四邊形的對角線互相平分
56平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形
57平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形
58平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形
59平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形
60矩形性質定理1 矩形的四個角都是直角
61矩形性質定理2 矩形的對角線相等
62矩形判定定理1 有三個角是直角的四邊形是矩形
63矩形判定定理2 對角線相等的平行四邊形是矩形
64菱形性質定理1 菱形的四條邊都相等
65菱形性質定理2 菱形的對角線互相垂直,並且每一條對角線平分一組對角
66菱形面積=對角線乘積的一半,即S=(a×b)÷2
67菱形判定定理1 四邊都相等的四邊形是菱形
68菱形判定定理2 對角線互相垂直的平行四邊形是菱形
69正方形性質定理1 正方形的四個角都是直角,四條邊都相等
70正方形性質定理2正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角
71定理1 關於中心對稱的兩個圖形是全等的
72定理2 關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分
73逆定理 如果兩個圖形的對應點連線都經過某一點,並且被這一
點平分,那麼這兩個圖形關於這一點對稱
74等腰梯形性質定理 等腰梯形在同一底上的兩個角相等
75等腰梯形的兩條對角線相等
76等腰梯形判定定理 在同一底上的兩個角相等的梯形是等腰梯形
77對角線相等的梯形是等腰梯形
78平行線等分線段定理 如果一組平行線在一條直線上截得的線段
相等,那麼在其他直線上截得的線段也相等
79 推論1 經過梯形一腰的中點與底平行的直線,必平分另一腰
80 推論2 經過三角形一邊的中點與另一邊平行的直線,必平分第
三邊
『柒』 求七年級上冊數學知識樹樣式
七年級上數學復習提綱
第一章 豐富的圖形世界
1、 生活中常見的幾何體:圓柱、 、正方體、長方體、 、球
2、 常見幾何體的分類:球體、柱體(圓柱、稜柱、正方體、長方體)、錐體(圓錐、棱錐)
3、 平面圖形折成立體圖形應注意:側面的個數與底面圖形的邊數相等.
4、 圓柱的側面展開圖是一個長方形;表面全部展開是兩個 和一個 ;圓錐的表面全部展開圖是一個 和一個 ;正方體表面展開圖是一個 和兩個小正方形,;長方形的展開圖是一個大 和兩個 .
5、 特殊立體圖形的截面圖形:
(1)長方體、正方形的截面是:三角形、四邊形(長方形、正方形、梯形、平行四邊形)、五邊形、 .
(2)圓柱的截面是: 、圓
(3)圓錐的截面是:三角形、 .
(4)球的截面是:
6、我們經常把從 看到的圖形叫做主視圖,從 看到的圖叫做左視圖,從 看到的圖叫做俯視圖.
7、常見立體圖形的俯視圖
幾何體 長方體 正方體 圓錐 圓柱 球
主視圖 正方形 長方形
俯視圖 長方形 圓 圓
左視圖 長方形 正方形
8、點動成 ,線動成 ,面動成 .
第二章 有理數
1 、正數與負數
在以前學過的0以外的數前面加上負號「—」的數叫負數.
與負數具有相反意義,即以前學過的0以外的數叫做正數(根據需要,有時在正數前面也加上「+」).
2 、有理數
(1) 正整數、0、負整數統稱 ,正分數和負分數統稱 .
整數和分數統稱 .0既不是 數,也不是 數.
(2) 通常用一條直線上的點表示數,這條直線叫數軸.
數軸三要素:原點、 、單位長度.
在直線上任取一個點表示數0,這個點叫做 .
(3) 只有符號不同的兩個數叫做互為相反數.
例:2的相反數是 ;-2的相反數是 ;0的相反數是
(4) 數軸上表示數a的點與原點的距離叫做數a的絕對值,記作|a|.
一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;0的絕對值是0.兩個負數,絕對值大的反而小.
3 、有理數的加減法
(1)有理數加法法則:
①同號兩數相加,取相同的 ,並把絕對值 相加.
②絕對值不相等的異號兩數相加,取 符號,並用 減去較小的絕對值.
互為相反數的兩個數相加和為0.
③一個數同0相加,仍得這個數.
(2) 有理數減法法則:減去一個數,等於加這個數的相反數.
4、 有理數的乘除法
(1) 有理數乘法法則:兩數相乘,同號得正,異號得負,並把絕對值相乘.任何數同0相乘,都得0.
(2) 乘積是1的兩個數互為倒數.例:- 的倒數是 ;絕對值是 ;相反數是 .
(3) 有理數除法法則1:除以一個不等於0的數,等於乘這個數的倒數.
有理數除法法則2:兩數相除,同號得 ,異號得 ,並把 相除.0除以任何一個不等於0的數,都得0.
(4) 求n個相同因數的積的運算,叫乘方,乘方的結果叫冪(power).在a的n次方中,a叫做底數(base number),n叫做指數(exponent).
負數的奇次冪是負數,負數的偶次冪是 .正數的任何次冪都是正數,0的任何次冪都是0.-1的奇次方是 ;-1的偶次方是 .
第三章、字母表示數
1、用運算符號把數和表示數的字母連接而成的字母叫做代數式.
2、求代數式值要注意:字母的取值必須確保代數式有意義;字母的取值要確保它本身所表示的數量有意義.
3、代數式的系數應包括這一項前的符號;如果代數式的某一項只含有字母因數,它的系數就是1或-1,而不是0.
4、同類項所含的 相同;相同字母的 也相同.
注意:同類項與系數無關,與字母的排列順序無關;幾個常數項也是同類項.
5、合並同類項法則:在合並同類項時,把同類項的系數相加, 不變.
6、去括弧法則:
(1)括弧前是「+」號,把括弧和它前面的「+」號去掉後,原括弧里的
(2)括弧前市「-」號,把括弧和它前面的「-」號去掉後,原括弧里
第四章 平面圖形及位置關系
1、直線、射線、線段
(1) 直線、射線、線段的區別:直線 端點:射線 個端點:線段有 個端點.
(2) 線段公理:兩點的所有連線中,線段 (兩點之間,線段最短).
連接兩點間的線段的長度,叫做 .
(3)線段的比較方法:疊和法和度量法.
(4)線段的中點:如果M是AB的中點,那麼 ;反之,如果點M在
線段AB上,並且有(AB=BM),那麼點M是AB的中點.
例:C是線段AB的中點,可得AC= = ,或者2AC= =AB,
AC+ =AB , BC=AB- .
2、角的度量與表示
(1) 1度= ; 1分= ; 1周角= 度 ;1平角= 度= 周角
(2)角的三種表示方法:用三個大寫英文字母表示或用一個大寫英文字母表示(如:<ABC,<A;用希臘字母表示(如<β);用數字表示(如<1,<2
3、 角的比較與運算
(1)角按大小分可分為銳角、直角、鈍角、平角、周角.
(2)角平分線把一個角分成兩個相等的角,角平分線是一條射線.
如果射線OC是
『捌』 (人教版)初中數學1-15章知識樹怎麼畫
這是精銳的智慧樹,不知道對你有沒有用~~
『玖』 七年級下冊數學第五章的知識點以知識樹的形式整理出來!! 快 快 快啊
七年級數學(下)期末復習知識點整理
5.1相交線
1、鄰補角與對頂角
兩直線相交所成的四個角中存在幾種不同關系的角,它們的概念及性質如下表:
圖形 頂點 邊的關系 大小關系
對頂角
∠1與∠2 有公共頂點 ∠1的兩邊與∠2的兩邊互為反向延長線 對頂角相等
即∠1=∠2
鄰補角
∠3與∠4 有公共頂點 ∠3與∠4有一條邊公共,另一邊互為反向延長線。 ∠3+∠4=180°
注意點:⑴對頂角是成對出現的,對頂角是具有特殊位置關系的兩個角;
⑵如果∠α與∠β是對頂角,那麼一定有∠α=∠β;反之如果∠α=∠β,那麼∠α與∠β不一定是對頂角
⑶如果∠α與∠β互為鄰補角,則一定有∠α+∠β=180°;反之如果∠α+∠β=180°,則∠α與∠β不一定是鄰補角。
⑶兩直線相交形成的四個角中,每一個角的鄰補角有兩個,而對頂角只有一個。
2、垂線
⑴定義,當兩條直線相交所成的四個角中,有一個角是直角時,就說這兩條直線互相垂直,其中的一條直線叫做另一條直線的垂線,它們的交點叫做垂足。
符號語言記作:
如圖所示:AB⊥CD,垂足為O
⑵垂線性質1:過一點有且只有一條直線與已知直線垂直 (與平行公理相比較記)
⑶垂線性質2:連接直線外一點與直線上各點的所有線段中,垂線段最短。簡稱:垂線段最短。
3、垂線的畫法:
⑴過直線上一點畫已知直線的垂線;⑵過直線外一點畫已知直線的垂線。
注意:①畫一條線段或射線的垂線,就是畫它們所在直線的垂線;②過一點作線段的垂線,垂足可在線段上,也可以在線段的延長線上。
畫法:⑴一靠:用三角尺一條直角邊靠在已知直線上,⑵二移:移動三角尺使一點落在它的另一邊直角邊上,⑶三畫:沿著這條直角邊畫線,不要畫成給人的印象是線段的線。
4、點到直線的距離
直線外一點到這條直線的垂線段的長度,叫做點到直線的距離
記得時候應該結合圖形進行記憶。
5、如何理解「垂線」、「垂線段」、「兩點間距離」、「點到直線的距離」這些相近而又相異的概念
分析它們的聯系與區別
⑴垂線與垂線段 區別:垂線是一條直線,不可度量長度;垂線段是一條線段,可以度量長度。 聯系:具有垂直於已知直線的共同特徵。(垂直的性質)
⑵兩點間距離與點到直線的距離 區別:兩點間的距離是點與點之間,點到直線的距離是點與直線之間。 聯系:都是線段的長度;點到直線的距離是特殊的兩點(即已知點與垂足)間距離。
⑶線段與距離 距離是線段的長度,是一個量;線段是一種圖形,它們之間不能等同。
5.2平行線
1、平行線的概念:
在同一平面內,不相交的兩條直線叫做平行線,直線 與直線 互相平行,記作 ‖ 。
2、兩條直線的位置關系
在同一平面內,兩條直線的位置關系只有兩種:⑴相交;⑵平行。
因此當我們得知在同一平面內兩直線不相交時,就可以肯定它們平行;反過來也一樣(這里,我們把重合的兩直線看成一條直線)
判斷同一平面內兩直線的位置關系時,可以根據它們的公共點的個數來確定:
①有且只有一個公共點,兩直線相交;
②無公共點,則兩直線平行;
③兩個或兩個以上公共點,則兩直線重合(因為兩點確定一條直線)
3、平行公理――平行線的存在性與惟一性
經過直線外一點,有且只有一條直線與這條直線平行
4、平行公理的推論:
如果兩條直線都與第三條直線平行,那麼這兩條直線也互相平行
7、兩直線平行的判定方法
方法一 兩條直線被第三條直線所截,如果同位角相等,那麼這兩條直線平行
簡稱:同位角相等,兩直線平行
方法二 兩條直線被第三條直線所截,如果內錯角相等,那麼這兩條直線平行
簡稱:內錯角相等,兩直線平行
方法三 兩條直線被第三條直線所截,如果同旁內角互補,那麼這兩條直線平行
簡稱:同旁內角互補,兩直線平行
注意:⑴幾何中,圖形之間的「位置關系」一般都與某種「數量關系」有著內在的聯系,常由「位置關系」決定其「數量關系」,反之也可從「數量關系」去確定「位置關系」。上述平行線的判定方法就是根據同位角或內錯角「相等」或同旁內角「互補」這種「數量關系」,判定兩直線「平行」這種「位置關系」。
⑵根據平行線的定義和平行公理的推論,平行線的判定方法還有兩種:①如果兩條直線沒有交點(不相交),那麼兩直線平行。②如果兩條直線都平行於第三條直線,那麼這兩條直線平行。
典型例題:判斷下列說法是否正確,如果不正確,請給予改正:
⑴不相交的兩條直線必定平行線。
⑵在同一平面內不相重合的兩條直線,如果它們不平行,那麼這兩條直線一定相交。
⑶過一點可以且只可以畫一條直線與已知直線平行
解答:⑴錯誤,平行線是「在同一平面內不相交的兩條直線」。「在同一平面內」是一項重要條件,不能遺漏。
⑵正確
⑶不正確,正確的說法是「過直線外一點」而不是「過一點」。因為如果這一點不在已知直線上,是作不出這條直線的平行線的。
1、平行線的性質:
性質1:兩直線平行,同位角相等;
性質2:兩直線平行,內錯角相等;
性質3:兩直線平行,同旁內角互補。
兩條平行線的距離
直線AB‖CD,EF⊥AB於E,EF⊥CD於F,則稱線段EF的長度為兩平行線AB與CD間的距離。
注意:直線AB‖CD,在直線AB上任取一點G,過點G作CD的垂線段GH,則垂線段GH的長度也就是直線AB與CD間的距離。
3、命題:
⑴命題的概念:
判斷一件事情的語句,叫做命題。
⑵命題的組成
每個命題都是題設、結論兩部分組成。題設是已知事項;結論是由已知事項推出的事項。命題常寫成「如果……,那麼……」的形式。具有這種形式的命題中,用「如果」開始的部分是題設,用「那麼」開始的部分是結論。
有些命題,沒有寫成「如果……,那麼……」的形式,題設和結論不明顯。對於這樣的命題,要經過分析才能找出題設和結論,也可以將它們改寫成「如果……,那麼……」的形式。
注意:命題的題設(條件)部分,有時也可用「已知……」或者「若……」等形式表述;命題的結論部分,有時也可用「求證……」或「則……」等形式表述。
4、平行線的性質與判定
①平行線的性質與判定是互逆的關系
兩直線平行 同位角相等;
兩直線平行 內錯角相等;
兩直線平行 同旁內角互補。
其中,由角的相等或互補(數量關系)的條件,得到兩條直線平行(位置關系)這是平行線的判定;由平行線(位置關系)得到有關角相等或互補(數量關系)的結論是平行線的性質。
5.4平移
1、平移變換
①把一個圖形整體沿某一方向移動,會得到一個新的圖形,新圖形與原圖形的形狀和大小完全相同。
②新圖形的每一點,都是由原圖形中的某一點移動後得到的,這兩個點是對應點
③連接各組對應點的線段平行且相等
2、平移的特徵:
①經過平移之後的圖形與原來的圖形的對應線段平行(或在同一直線上)且相等,對應角相等,圖形的形狀與大小都沒有發生變化。
②經過平移後,對應點所連的線段平行(或在同一直線上)且相等。
『拾』 七年級數學下冊的知識點
各個科目都有自己的 學習 方法 ,但其實都是萬變不離其中的,基本離不開背、記,練,數學作為最燒腦的科目之一,也是一樣的。下面是我給大家整理的一些 七年級數學 的知識點,希望對大家有所幫助。
初一下冊數學知識點 總結 北師大版
一、同底數冪的乘法
(m,n都是整數)是冪的運算中最基本的法則,在應用法則運算時,要注意以下幾點:
a)法則使用的前提條件是:冪的底數相同而且是相乘時,底數a可以是一個具體的數字式字母,也可以是一個單項或多項式;
b)指數是1時,不要誤以為沒有指數;
c)不要將同底數冪的乘法與整式的加法相混淆,對乘法,只要底數相同指數就可以相加;而對於加法,不僅底數相同,還要求指數相同才能相加;
二、冪的乘方與積的乘方
三、同底數冪的除法
(1)運用法則的前提是底數相同,只有底數相同,才能用此法則
(2)底數可以是具體的數,也可以是單項式或多項式
(3)指數相減指的是被除式的指數減去除式的指數,要求差不為負
四、整式的乘法
1、單項式的概念:由數與字母的乘積構成的代數式叫做單項式。單獨的一個數或一個字母也是單項式。單項式的數字因數叫做單項式的系數,所有字母指數和叫單項式的次數。
如:bca22-的系數為2-,次數為4,單獨的一個非零數的次數是0。
2、多項式:幾個單項式的和叫做多項式。多項式中每個單項式叫多項式的項,次數項的次數叫多項式的次數。
五、平方差公式
表達式:(a+b)(a-b)=a^2-b^2,兩個數的和與這兩個數差的積,等於這兩個數的平方差,這個公式就叫做乘法的平方差公式
公式運用
可用於某些分母含有根號的分式:
1/(3-4倍根號2)化簡:
北師大版初中 一年級數學 上冊知識點
整式的加減
一、代數式
1、用運算符號把數或表示數的字母連結而成的式子,叫做代數式。單獨的一個數或字母也是代數式。
2、用數值代替代數式里的字母,按照代數式里的運算關系計算得出的結果,叫做代數式的值。
二、整式
1、單項式:
(1)由數和字母的乘積組成的代數式叫做單項式。
(2)單項式中的數字因數叫做這個單項式的系數。
(3)一個單項式中,所有字母的指數的和叫做這個單項式的次數。
2、多項式
(1)幾個單項式的和,叫做多項式。
(2)每個單項式叫做多項式的項。
(3)不含字母的項叫做常數項。
3、升冪排列與降冪排列
(1)把多項式按x的指數從大到小的順序排列,叫做降冪排列。
(2)把多項式按x的指數從小到大的順序排列,叫做升冪排列。
三、整式的加減
1、整式加減的理論根據是:去括弧法則,合並同類項法則,以及乘法分配率。
去括弧法則:如果括弧前是「十」號,把括弧和它前面的「+」號去掉,括弧里各項都不變符號;如果括弧前是「一」號,把括弧和它前面的「一」號去掉,括弧里各項都改變符號。
2、同類項:所含字母相同,並且相同字母的指數也相同的項叫做同類項。
合並同類項:
(1)合並同類項的概念:把多項式中的同類項合並成一項叫做合並同類項。
(2)合並同類項的法則:同類項的系數相加,所得結果作為系數,字母和字母的指數不變。
(3)合並同類項步驟:
a.准確的找出同類項。
b.逆用分配律,把同類項的系數加在一起(用小括弧),字母和字母的指數不變。
c.寫出合並後的結果。
(4)在掌握合並同類項時注意:
a.如果兩個同類項的系數互為相反數,合並同類項後,結果為0.
b.不要漏掉不能合並的項。
c.只要不再有同類項,就是結果(可能是單項式,也可能是多項式)。
說明:合並同類項的關鍵是正確判斷同類項。
3、幾個整式相加減的一般步驟:
(1)列出代數式:用括弧把每個整式括起來,再用加減號連接。
(2)按去括弧法則去括弧。
(3)合並同類項。
4、代數式求值的一般步驟:
(1)代數式化簡
(2)代入計算
(3)對於某些特殊的代數式,可採用「整體代入」進行計算。
初一數學主要知識點
代數初步知識
1. 代數式:用運算符號「+ - × ÷ …… 」連接數及表示數的字母的式子稱為代數式.注意:用字母表示數有一定的限制,首先字母所取得數應保證它所在的式子有意義,其次字母所取得數還應使實際生活或生產有意義;單獨一個數或一個字母也是代數式。
2. 幾個重要的代數式:(m、n表示整數)
(1)a與b的平方差是: a2-b2 ; a與b差的平方是:(a-b)2 ;
(2)若a、b、c是正整數,則兩位整數是: 10a+b ,則三位整數是:100a+10b+c;
(3)若m、n是整數,則被5除商m余n的數是: 5m+n ;偶數是:2n ,奇數是:2n+1;三個連續整數是: n-1、n、n+1 ;
(4)若b>0,則正數是:a2+b ,負數是: -a2-b ,非負數是: a2 ,非正數是:-a2 .
有理數
凡能寫成q/p(p,q為整數且p≠0)形式的數,都是有理數.正整數、0、負整數統稱整數;正分數、負分數統稱分數;整數和分數統稱有理數.注意:0既不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;p不是有理數;
有理數加法法則:
(1)同號兩數相加,取相同的符號,並把絕對值相加;
(2)異號兩數相加,取絕對值較大的符號,並用較大的絕對值減去較小的絕對值;
(3)一個數與0相加,仍得這個數.
有理數加法的運算律:
(1)加法的交換律:a+b=b+a ;(2)加法的結合律:(a+b)+c=a+(b+c).
有理數減法法則:減去一個數,等於加上這個數的相反數;即a-b=a+(-b).
有理數乘法法則:
(1)兩數相乘,同號為正,異號為負,並把絕對值相乘;
(2)任何數同零相乘都得零;
(3)幾個數相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數決定.
有理數乘法的運算律:
(1)乘法的交換律:ab=ba;(2)乘法的結合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac .
有理數除法法則:除以一個數等於乘以這個數的倒數;注意:零不能做除數。
整式的加減
單項式:在代數式中,若只含有乘法(包括乘方)運算。或雖含有除法運算,但除式中不含字母的一類代數式叫單項式.
單項式的系數與次數:單項式中不為零的數字因數,叫單項式的數字系數,簡稱單項式的系數;系數不為零時,單項式中所有字母指數的和,叫單項式的次數.
多項式:幾個單項式的和叫多項式.
多項式的項數與次數:多項式中所含單項式的個數就是多項式的項數,每個單項式叫多項式的項;多項式里,次數項的次數叫多項式的次數;注意:(若a、b、c、p、q是常數)ax2+bx+c和x2+px+q是常見的兩個二次三項式.
整式:凡不含有除法運算,或雖含有除法運算但除式中不含字母的代數式叫整式.
一元一次方程
一元一次方程:只含有一個未知數,並且未知數的次數是1,並且含未知數項的系數不是零的整式方程是一元一次方程.
一元一次方程的標准形式: ax+b=0(x是未知數,a、b是已知數,且a≠0).
一元一次方程的最簡形式: ax=b(x是未知數,a、b是已知數,且a≠0).
一元一次方程解法的一般步驟: 整理方程 …… 去分母 …… 去括弧 …… 移項 …… 合並同類項 …… 系數化為1 …… (檢驗方程的解).
列方程解應用題的常用公式:
(1)行程問題:距離=速度·時間;
(2)工程問題:工作量=工效·工時;
(3)比率問題:部分=全體·比率;
(4)順逆流問題:順流速度=靜水速度+水流速度,逆流速度=靜水速度-水流速度;
(5)商品價格問題:售價=定價·折·0.1 ,利潤=售價-成本;
(6)周長、面積、體積問題:C圓=2πR,S圓=πR2,C長方形=2(a+b),S長方形=ab, C正方形=4a,S正方形=a2,S環形=π(R2-r2),V長方體=abc ,V正方體=a3,V圓柱=πR2h ,V圓錐=1/3πR2h.
七年級數學下冊的知識點相關 文章 :
★ 初一數學下冊知識點歸納總結
★ 初一數學下冊基本知識點總結
★ 七年級數學下冊知識點總結
★ 七年級數學下冊知識點
★ 七年級數學知識點下冊
★ 七年級數學下冊知識點及練習題
★ 七年級下數學知識點總結
★ 七年級下冊數學的知識點
★ 七年級數學知識點整理大全