① 小學六年級上冊數學單元總結(蘇教版)
蘇教版六年級數學上冊知識點歸納總結
第一單元 略
第二單元 長方體和正方體
1、兩個面相交的線叫做棱,三條棱相交的點叫做頂點。
2、長方體相交於同一頂點的三條棱的長度,分別叫做它的長、寬、高。
3、長方體的特徵:面——有六個面,都是長方形(特殊情況下有兩個相對的面是正方形),相對的面完全相同;棱——有12條棱,相對的棱長度相等;頂點——有8個頂點。
4、正方體的特徵:面——有六個面,都是正方形,所有的面完全相同;棱——有12條棱,所有的棱長度相等;頂點——有8個頂點。
5、正方體也是一種特殊的長方體。
6、把一個長方體或正方體紙盒展開,至少要剪開7條棱。
7、長方體(或正方體)的六個面的總面積,叫做它的表面積。
8、長方體的表面積=(長×寬+寬×高+高×長)×2
正方體的表面積=棱長×棱長×6。
9、物體所佔空間的大小叫做物體的體積。
10、容器所能容納物體的體積,叫做這個容器的容積。
11、常用的體積單位有立方厘米、立方分米、立方米。1立方米=1000立方分米,1立方分米=1000立方厘米。
12、計量液體的體積,常用升和毫升作單位。1立方分米=1升,1立方厘米=1毫升, 1升=1000毫升。
13、長方體的體積=長×寬×高 V =abh
14、正方體的體積=棱長×棱長×棱長 V =a×a×a
15、長方體(或正方體)的體積=底面積×高=橫截面×長 V=Sh
16、1 =1 2 =8 3 =27 4 =64 5 =125 6 =216
7 =343 8 =512 9 =729 10 =1000
17、每相鄰兩個長度單位(除千米外)的進率都是10,每相鄰兩個面積單位之間的進率都是100,每相鄰兩個體積單位之間的進率都是1000。
18、正方體的棱長擴大n倍,表面積會擴大n 的平方倍,體積會擴大n 的立方倍。
第三單元 分數乘法
1、分數乘整數的意義與整數乘法的意義相同,是求幾個相同加數的和的簡便運算。
2、一個數乘分數表示求這個數的幾分之幾是多少,求一個數的幾分之幾是多少用乘法計算。
3、分數和分數相乘,用分子相乘的積作分子,分母相乘的積作分母。
4、乘積是1的兩個數互為倒數。
5、1的倒數是1,0沒有倒數。
6、一個數乘真分數(比1小的數)積比原數小;一個數乘比1大的假分數(比1大的數)積比原數大。
7、真分數的倒數都是假分數,都比1大;假分數的倒數是真分數或1,比1小或等於1。
第四單元 分數除法
比較量=單位「1」的量×分率;
單位「1」的量=比較量÷對應分率;
分率=比較量÷單位「1」的量
3、甲數除以乙數(0除外),等於甲數乘乙數的倒數(變號變倒數)。
4、一個數除以比1大的數商會比原數小,一個數除以比1小的數商會比原數大。
第五單元 認識比
1、兩個數相除又叫做這兩個數的比。
2、比號前面的數叫做比的前項,比號後面的數叫做比的後項。
3、比的前項相當於除式的被除數,相當於分數的分子;比號相當於除號相當於分數線:比的後項相當於除式的除數相當於分數的分母;比值相當於除式的商相當於分數的值。
4、兩個數的比可以用比號連接也可以寫成分數形式。
5、比的前項和後項同時乘或除以相同的數(0除外),比值不變,這是比的基本性質。
第八單元 可能性
概率=獲勝的情況數除以所有可能出現的情況數。
第九單元 認識百分數
1、表示一個數是另一個數的百分之幾的數叫做百分數,百分數又叫做百分比或百分率。
2、分數可以表示分率和數量,但百分數只能表示分率不能表示數量,所以百分數不能跟單位。
3、我們不能說分母是100的分數叫做百分數,因為它有可能是表示數量的分數。
4、把小數化成百分數:先把小數的小數點向右移動兩位,再添上「%」。把百分數化成小數:先去掉「%」,再把小數點向左移動兩位。
5、把分數化成百分數,除不盡時要先除到第四位小數,保留三位小數再化成百分數。把百分數化成分數先化成分母是100的分數,再約成最簡分數。
② 六年級上冊數學書一,二單元內容
六年級上冊數學書
第一單元:圓
第一課時是圓的認識(一),第二課時是圓的認識(二),第三課時是欣賞與設計。第四課時圓的周長,第五課時圓的面積(一),第六課時圓的面積(二),第七課時練習一。
第二單元:分數混合運算 第一課時分數混合運算(一),第二課時分數混合運算(二);
第三課時分數混合運算(三);第四課時練習二;第五課時單元測評
③ 六年級上冊數學書第一課圓的知識點有哪些
圓的認識,圓的周長,圓,圓環,扇形的面積,
④ 六年級數學上冊第一單元《分數乘法》的知識點整理
一、分數乘法
(一)、分數乘法的計演算法則:
1、分數與整數相乘:分子與整數相乘的積做分子,分母不變。(整數和分母約分)
2、分數與分數相乘:用分子相乘的積做分子,分母相乘的積做分母。
3、為了計算簡便,能約分的要先約分,再計算。
注意:當帶分數進行乘法計算時,要先把帶分數化成假分數再進行計算。
(二)、規律:(乘法中比較大小時)
一個數(0除外)乘大於1的數,積大於這個數。
一個數(0除外)乘小於1的數(0除外),積小於這個數。
一個數(0除外)乘1,積等於這個數。
(三)、分數混合運算的運算順序和整數的運算順序相同。
(四)、整數乘法的交換律、結合律和分配律,對於分數乘法也同樣適用。
乘法交換律: a b = b a
乘法結合律: ( a b )c = a ( b c )
乘法分配律: ( a + b )c = a c + b c a c + b c = ( a + b )c
二、分數乘法的解決問題
(已知單位1的量(用乘法),求單位1的幾分之幾是多少)
1、找單位1: 在分率句中分率的前面; 或 占、是、比的後面
2、求一個數的幾倍: 一個數幾倍; 求一個數的幾分之幾是多少: 一個數 。
3、寫數量關系式技巧:
(1)的 相當於 占、是、比相當於 =
(2)分率前是的: 單位1的量分率=分率對應量
(3)分率前是多或少的意思: 單位1的量(1 分率)=分率對應量
三、倒數
1、倒數的意義: 乘積是1的'兩個數互為倒數。
強調:互為倒數,即倒數是兩個數的關系,它們互相依存,倒數不能單獨存在。
(要說清誰是誰的倒數)。
2、求倒數的方法:
(1)、求分數的倒數:交換分子分母的位置。
(2)、求整數的倒數:把整數看做分母是1的分數,再交換分子分母的位置。
(3)、求帶分數的倒數:把帶分數化為假分數,再求倒數。
(4)、求小數的倒數: 把小數化為分數,再求倒數。
3、1的倒數是1; 0沒有倒數。 因為10乘任何數都得0, (分母不能為0)
4、 對於任意數 ,它的倒數為 ;非零整數 的倒數為 ;分數 的倒數是 ;
5、真分數的倒數大於1;假分數的倒數小於或等於1;帶分數的倒數小於1。
⑤ 六年級數學上冊知識點
圓的認識(一)
1.圓中心的一點叫圓心,用O表示。一端在圓心,另一端在圓上的線段叫半徑,用r表示。
兩端都在圓上,並過圓心的線段叫直徑,用d表示。
2.圓有無數條半徑,有無數條直徑。
3.圓心決定圓的位置,半徑決定圓的大小。
4.把圓對折,再對折就能找到圓心。
5.圓是軸對稱圖形,直徑所在的直線是圓的對稱軸。圓有無數條對稱軸。
6.在同一個圓里,直徑的長度是半徑的2倍,可以表示為d=2r或r=d/2.
圓的周長
8.圓的周長除以直徑的商是一個固定的數,叫做圓周率,用字母π表示,計算時通常取3.14.
9.C=πd或C=πr. 半圓的周長
10. 1π=3.14 2π=6.28 3π=9.42 4π=12.56 5π=15.7 6π=18.84
7π=21.98 8π=25.12 9π=28.26 10π=31.4
圓的面積
11.用S表示圓的面積, r表示圓的半徑,那麼S=πr^2 S環=π(R^2-r^2)
12. 11^2=121 12^2=144 13^2=169 14^2=196 15^2=225 16^2=256
17^2=289 18^2=324 19^2=361 20^2=400
13.周長相等時,圓的面積最大。面積相等時,圓的周長最小。
面積相同時,長方形的周長最長,正方形居中,圓周長最短。
周長相同時,圓面積最大,正方形居中,長方形面積最小。
周長相同時,圓面積最大,利用這一特點,籃子、盤子做成圓形。
第四單元:比的認識
15.兩個數相除,又叫做這兩個數的比。比的後項不能為0.
16.比的前項和後項同時乘上或除以一個相同的數(0除外)。比值不變,這叫做比的基本性質。由於在平面直角坐標系中,先畫X軸,而X軸上的坐標表示列。先用小括弧將兩個數括起來,再用逗號將兩個數隔開。括弧裡面的數由左至右為列數和行數。
列數與行數必須是具體的數,而不能用字母如(X,5)表示,它表述一條橫線,(5,Y)它表示一條豎線,都不能確定一個點。
二、分數乘法
分數乘法意義:1、分數乘整數是求幾個相同加數的和的簡便運算,與整數乘法的意義相同。
2、分數乘分數是求一個數的幾分之幾是多少。
分數的化簡:分子、分母同時除以它們的最大公因數。
關於分數乘法的計算:可在乘的過程中約分,提倡在計算過程中約分,這樣簡便。
分數的基本性質:分子分母同時乘或者除以一個相同的數時(0除外),分數值不變。
倒數的意義:乘積為1的兩個數互為倒數。
特別強調:互為倒數,即倒數是兩個數的關系,它們互相依存,倒數不能單獨存在。
求倒數的方法:1、求分數的倒數是交換分子分母的位置。
2、求整數的倒數是把整數看做分母是1的分數,再交換分子分母的位置。
1的倒數是它本身。因為1*1=1
0沒有倒數。0乘任何數都得0=0*1,1/0(分母不能為0)
三、分數除法
分數除法是分數乘法的逆運算,就是已知兩個數的積與其中一個因數,求另一個因數的運算。
除以一個數是乘這個數的倒數,除以幾就是乘這個數的幾分之一。
分數除法的基本性質:強調0除外
比:兩個數相除也叫兩個數的比。比表示兩個數的關系,可以寫成比的形式,也可以用分數表示,但仍讀幾比幾。比值是一個數,可以是整數,分數,也可以是小數。比可以表示兩個相同量的關系,即倍數關系。也可以表示兩個不同量的比,得到一個新量。例:路程/速度=時間。
化簡比:
1、用比的前項和後項同時除以它們的最大公約數。
2、兩個分數的比,用前項後項同時乘分母的最小公倍數,再按化簡整數比的方法來化簡。
3、兩個小數的比,向右移動小數點的位置。也是先化成整數比。
比和除法、分數的區別:除法是一種運算,分數是一個數,比表示兩個數的關系。
常用來做判斷的:
一個數除以小於1的數,商大於被除數。
一個數除以1,商等於被除數。
一個數除以大於1的數,商小於被除數。
五、百分數
百分數的約分:百分數化成分數,寫成分數形式,再約分。
分數表是一個數,也可以表示兩個數的關系,百分數只表示兩個數的關系,沒有單位。
百分數的意義:表示一個數是另一個數的百分之幾,也叫百分率或者百分比。
一般來講,出勤率、成活率、合格率、正確率能達到100%,出米率、出油率達不到100%,完成率、增長了百分之幾等可以超過100%。一般出粉率在70、80%,出油率在30、40%。
六、統計
條形統計圖可以知道每個數量的多少。
折現統計圖可以知數量的增減,
扇形統計圖可以知道部分和總量的關系。