當前位置:首頁 » 基礎知識 » 九上數學滬科版21章知識點
擴展閱讀
兒童術後吃什麼排便 2024-11-05 20:58:37

九上數學滬科版21章知識點

發布時間: 2022-11-29 15:31:39

㈠ 九年級上冊數學知識點歸納

第21章 二次根式

學生已經學過整式與分式,知道用式子可以表示實際問題中的數量關系。解決與數量關系有關的問題還會遇到二次根式。二次根式 一章就來認識這種式子,探索它的性質,掌握它的運算。

在這一章,首先讓學生了解二次根式的概念,並掌握以下重要結論:

註:關於二次根式的運算,由於二次根式的乘除相對於二次根式的加減來說更易於掌握,教科書先安排二次根式的乘除,再安排二次根式的加減。二次根式的乘除一節的內容有兩條發展的線索。一條是用具體計算的例子體會二次根式乘除法則的合理性,並運用二次根式的乘除法則進行運算;一條是由二次根式的乘除法則得到

並運用它們進行二次根式的化簡。

二次根式的加減一節先安排二次根式加減的內容,再安排二次根式加減乘除混合運算的內容。在本節中,注意類比整式運算的有關內容。例如,讓學生比較二次根式的加減與整式的加減,又如,通過例題說明在二次根式的運算中,多項式乘法法則和乘法公式仍然適用。這些處理有助於學生掌握本節內容。

第22章 一元二次方程

學生已經掌握了用一元一次方程解決實際問題的方法。在解決某些實際問題時還會遇到一種新方程 一元二次方程。一元二次方程一章就來認識這種方程,討論這種方程的解法,並運用這種方程解決一些實際問題。

本章首先通過雕像設計、製作方盒、排球比賽等問題引出一元二次方程的概念,給出一元二次方程的一般形式。然後讓學生通過數值代入的方法找出某些簡單的一元二次方程的解,對一元二次方程的解加以體會,並給出一元二次方程的根的概念,

22.2降次解一元二次方程一節介紹配方法、公式法、因式分解法三種解一元二次方程的方法。下面分別加以說明。

(1)在介紹配方法時,首先通過實際問題引出形如 的方程。這樣的方程可以化為更為簡單的形如 的方程,由平方根的概念,可以得到這個方程的解。進而舉例說明如何解形如 的方程。然後舉例說明一元二次方程可以化為形如 的方程,引出配方法。最後安排運用配方法解一元二次方程的例題。在例題中,涉及二次項系數不是1的一元二次方程,也涉及沒有實數根的一元二次方程。對於沒有實數根的一元二次方程,學了公式法以後,學生對這個內容會有進一步的理解。

(2)在介紹公式法時,首先藉助配方法討論方程 的解法,得到一元二次方程的求根公式。然後安排運用公式法解一元二次方程的例題。在例題中,涉及有兩個相等實數根的一元二次方程,也涉及沒有實數根的一元二次方程。由此引出一元二次方程的解的三種情況。

(3)在介紹因式分解法時,首先通過實際問題引出易於用因式分解法的一元二次方程,引出因式分解法。然後安排運用因式分解法解一元二次方程的例題。最後對配方法、公式法、因式分解法三種解一元二次方程的方法進行小結。

22.3實際問題與一元二次方程一節安排了四個探究欄目,分別探究傳播、成本下降率、面積、勻變速運動等問題,使學生進一步體會方程是刻畫現實世界的一個有效的數學模型。

第23章 旋轉

學生已經認識了平移、軸對稱,探索了它們的性質,並運用它們進行圖案設計。本書中圖形變換又增添了一名新成員――旋轉。旋轉一章就來認識這種變換,探索它的性質。在此基礎上,認識中心對稱和中心對稱圖形。

23.1旋轉一節首先通過實例介紹旋轉的概念。然後讓學生探究旋轉的性質。在此基礎上,通過例題說明作一個圖形旋轉後的圖形的方法。最後舉例說明用旋轉可以進行圖案設計。

23.2中心對稱一節首先通過實例介紹中心對稱的概念。然後讓學生探究中心對稱的性質。在此基礎上,通過例題說明作與一個圖形成中心對稱的圖形的方法。這些內容之後,通過線段、平行四邊形引出中心對稱圖形的概念。最後介紹關於原點對稱的.點的坐標的關系,以及利用這一關系作與一個圖形成中心對稱的圖形的方法。

23.3課題學習 圖案設計一節讓學生探索圖形之間的變換關系(平移、軸對稱、旋轉及其組合),靈活運用平移、軸對稱、旋轉的組合進行圖案設計。

第24章 圓

圓是一種常見的圖形。在圓這一章,學生將進一步認識圓,探索它的性質,並用這些知識解決一些實際問題。通過這一章的學習,學生的解決圖形問題的能力將會進一步提高。

24.1圓一節首先介紹圓及其有關概念。然後讓學生探究與垂直於弦的直徑有關的結論,並運用這些結論解決問題。接下來,讓學生探究弧、弦、圓心角的關系,並運用上述關系解決問題。最後讓學生探究圓周角與圓心角的關系,並運用上述關系解決問題。

24.2與圓有關的位置關系一節首先介紹點和圓的三種位置關系、三角形的外心的概念,並通過證明在同一直線上的三點不能作圓引出了反證法。然後介紹直線和圓的三種位置關系、切線的概念以及與切線有關的結論。最後介紹圓和圓的位置關系。

24.3正多邊形和圓一節揭示了正多邊形和圓的關系,介紹了等分圓周得到正多邊形的方法。

24.4弧長和扇形面積一節首先介紹弧長公式。然後介紹扇形及其面積公式。最後介紹圓錐的側面積公式。

第25 章 概率初步

將一枚硬幣拋擲一次,可能出現正面也可能出現反面,出現正面的可能性大還是出現反面的可能性大呢?學了概率一章,學生就能更好地認識這個問題了。掌握了概率的初步知識,學生還會解決更多的實際問題。

25.1概率一節首先通過實例介紹隨機事件的概念,然後通過擲幣問題引出概率的概念。

25.2用列舉法求概率一節首先通過具體試驗引出用列舉法求概率的方法。然後安排運用這種方法求概率的例題。在例題中,涉及列表及畫樹形圖。

25.3利用頻率估計概率一節通過幼樹成活率和柑橘損壞率等問題介紹了用頻率估計概率的方法。

25.4課題學習 鍵盤上字母的排列規律一節讓學生通過這一課題的研究體會概率的廣泛應用。

㈡ 初三九年級上冊數學的知識點歸納

初三九年級上冊數學的知識點歸納1

九年級上冊包括二次根式、一元二次方程、旋轉、圓、概率初步五章內容,學習內容涉及到了《課程標准》的四個領域。本冊書內容分析如下:

第21章 二次根式

學生已經學過整式與分式,知道用式子可以表示實際問題中的數量關系。解決與數量關系有關的問題還會遇到二次根式。二次根式 一章就來認識這種式子,探索它的性質,掌握它的運算。

在這一章,首先讓學生了解二次根式的概念,並掌握以下重要結論:

註:關於二次根式的運算,由於二次根式的乘除相對於二次根式的加減來說更易於掌握,教科書先安排二次根式的乘除,再安排二次根式的加減。二次根式的乘除一節的內容有兩條發展的線索。一條是用具體計算的例子體會二次根式乘除法則的合理性,並運用二次根式的乘除法則進行運算;一條是由二次根式的乘除法則得到並運用它們進行二次根式的化簡。

二次根式的加減一節先安排二次根式加減的內容,再安排二次根式加減乘除混合運算的內容。在本節中,注意類比整式運算的有關內容。例如,讓學生比較二次根式的加減與整式的加減,又如,通過例題說明在二次根式的運算中,多項式乘法法則和乘法公式仍然適用。這些處理有助於學生掌握本節內容。

第22章 一元二次方程

學生已經掌握了用一元一次方程解決實際問題的方法。在解決某些實際問題時還會遇到一種新方程 一元二次方程。一元二次方程一章就來認識這種方程,討論這種方程的解法,並運用這種方程解決一些實際問題。

本章首先通過雕像設計、製作方盒、排球比賽等問題引出一元二次方程的概念,給出一元二次方程的一般形式。然後讓學生通過數值代入的方法找出某些簡單的一元二次方程的解,對一元二次方程的解加以體會,並給出一元二次方程的根的概念,

22.2降次解一元二次方程一節介紹配方法、公式法、因式分解法三種解一元二次方程的方法。下面分別加以說明。

(1)在介紹配方法時,首先通過實際問題引出形如 的方程。這樣的方程可以化為更為簡單的形如 的方程,由平方根的概念,可以得到這個方程的解。進而舉例說明如何解形如 的方程。然後舉例說明一元二次方程可以化為形如 的方程,引出配方法。最後安排運用配方法解一元二次方程的例題。在例題中,涉及二次項系數不是1的一元二次方程,也涉及沒有實數根的一元二次方程。對於沒有實數根的一元二次方程,學了公式法以後,學生對這個內容會有進一步的理解。

(2)在介紹公式法時,首先藉助配方法討論方程 的解法,得到一元二次方程的求根公式。然後安排運用公式法解一元二次方程的例題。在例題中,涉及有兩個相等實數根的一元二次方程,也涉及沒有實數根的一元二次方程。由此引出一元二次方程的解的三種情況。

(3)在介紹因式分解法時,首先通過實際問題引出易於用因式分解法的一元二次方程,引出因式分解法。然後安排運用因式分解法解一元二次方程的例題。最後對配方法、公式法、因式分解法三種解一元二次方程的方法進行小結。

22.3實際問題與一元二次方程一節安排了四個探究欄目,分別探究傳播、成本下降率、面積、勻變速運動等問題,使學生進一步體會方程是刻畫現實世界的一個有效的數學模型。

第23章 旋轉

學生已經認識了平移、軸對稱,探索了它們的性質,並運用它們進行圖案設計。本書中圖形變換又增添了一名新成員――旋轉。旋轉一章就來認識這種變換,探索它的性質。在此基礎上,認識中心對稱和中心對稱圖形。

23.1旋轉一節首先通過實例介紹旋轉的概念。然後讓學生探究旋轉的性質。在此基礎上,通過例題說明作一個圖形旋轉後的圖形的方法。最後舉例說明用旋轉可以進行圖案設計。

23.2中心對稱一節首先通過實例介紹中心對稱的概念。然後讓學生探究中心對稱的性質。在此基礎上,通過例題說明作與一個圖形成中心對稱的圖形的方法。這些內容之後,通過線段、平行四邊形引出中心對稱圖形的概念。最後介紹關於原點對稱的點的坐標的關系,以及利用這一關系作與一個圖形成中心對稱的圖形的方法。

23.3課題學習 圖案設計一節讓學生探索圖形之間的變換關系(平移、軸對稱、旋轉及其組合),靈活運用平移、軸對稱、旋轉的組合進行圖案設計。

第24章 圓

圓是一種常見的圖形。在圓這一章,學生將進一步認識圓,探索它的性質,並用這些知識解決一些實際問題。通過這一章的學習,學生的解決圖形問題的能力將會進一步提高。

24.1圓一節首先介紹圓及其有關概念。然後讓學生探究與垂直於弦的直徑有關的結論,並運用這些結論解決問題。接下來,讓學生探究弧、弦、圓心角的關系,並運用上述關系解決問題。最後讓學生探究圓周角與圓心角的關系,並運用上述關系解決問題。

24.2與圓有關的位置關系一節首先介紹點和圓的三種位置關系、三角形的外心的概念,並通過證明在同一直線上的三點不能作圓引出了反證法。然後介紹直線和圓的三種位置關系、切線的概念以及與切線有關的結論。最後介紹圓和圓的位置關系。

24.3正多邊形和圓一節揭示了正多邊形和圓的關系,介紹了等分圓周得到正多邊形的方法。

24.4弧長和扇形面積一節首先介紹弧長公式。然後介紹扇形及其面積公式。最後介紹圓錐的側面積公式。

第25 章 概率初步

將一枚硬幣拋擲一次,可能出現正面也可能出現反面,出現正面的可能性大還是出現反面的可能性大呢?學了概率一章,學生就能更好地認識這個問題了。掌握了概率的初步知識,學生還會解決更多的實際問題。

25.1概率一節首先通過實例介紹隨機事件的概念,然後通過擲幣問題引出概率的概念。

25.2用列舉法求概率一節首先通過具體試驗引出用列舉法求概率的方法。然後安排運用這種方法求概率的例題。在例題中,涉及列表及畫樹形圖。

25.3利用頻率估計概率一節通過幼樹成活率和柑橘損壞率等問題介紹了用頻率估計概率的方法。

25.4課題學習 鍵盤上字母的排列規律一節讓學生通過這一課題的研究體會概率的廣泛應用。

初三九年級上冊數學的知識點歸納2

一、圓周角定理

在同圓或等圓中,同弧或等弧所對的圓周角相等,都等於這條弧所對的圓心角的一半。

①定理有三方面的意義:

a.圓心角和圓周角在同一個圓或等圓中;(相關知識點 如何證明四點共圓 )

b.它們對著同一條弧或者對的兩條弧是等弧

c.具備a、b兩個條件的圓周角都是相等的,且等於圓心角的一半.

②因為圓心角的度數與它所對的弧的度數相等,所以圓周角的度數等於它所對的弧的度數的一半.

二、圓周角定理的推論

推論1:同弧或等弧所對的圓周角相等,同圓或等圓中,相等的圓周角所對的弧也相等

推論2:半圓(或直徑)所對的圓周角等於90°;90°的圓周角所對的弦是直徑

推論3:如果三角形一邊的中線等於這邊的一半,那麼這個三角形是直角三角形

三、推論解釋說明

圓周角定理在九年級數學知識點中屬於幾何部分的重要內容。

①推論1是圓中證明角相等最常用的方法,若將推論1中的「同弧或等弧」改為「同弦或等弦」結論就不成立.因為一條弦所對的圓周角有兩個.

②推論2中「相等的圓周角所對的弧也相等」的前提條件是「在同圓或等圓中」

③圓周角定理的推論2的應用非常廣泛,要把直徑與90°圓周角聯系起來,一般來說,當條件中有直徑時,通常會作出直徑所對的圓周角,從而得到直角三角形,為進一步解題創造條件

④推論3實質是直角三角形的斜邊上的中線等於斜邊的一半的逆定理.

初三九年級上冊數學的知識點歸納3

知識點一: 二次根式的概念

形如a(a0)的式子叫做二次根式。

註:在二次根式中,被開放數可以是數,也可以是單項式、多項式、分式等代數式,但必須注意:因為負數沒有平方根,所以a0是a為二次根式的前提條件,如5,(x2+1),

(x-1) (x1)等是二次根式,而(-2),(-x2-7)等都不是二次根式。

知識點二:取值范圍

1. 二次根式有意義的條件:由二次根式的意義可知,當a0時a有意義,是二次根式,所以要使二次根式有意義,只要使被開方數大於或等於零即可。

2. 二次根式無意義的條件:因負數沒有算術平方根,所以當a﹤0時,a沒有意義。

知識點三:二次根式a(a0)的非負性

a(a0)表示a的算術平方根,也就是說,a(a0)是一個非負數,即0(a0)。

註:因為二次根式a表示a的算術平方根,而正數的算術平方根是正數,0的算術平方根是0,所以非負數(a0)的算術平方根是非負數,即0(a0),這個性質也就是非負數的算術平方根的性質,和絕對值、偶次方類似。這個性質在解答題目時應用較多,如若a+b=0,則a=0,b=0;若a+|b|=0,則a=0,b=0;若a+b2=0,則a=0,b=0。

知識點四:二次根式(a) 的性質

(a)2=a(a0)

文字語言敘述為:一個非負數的算術平方根的平方等於這個非負數。

註:二次根式的性質公式(a)2=a(a0)是逆用平方根的定義得出的結論。上面的公式也可以反過來應用:若a0,則

a=(a)2,如:2=(2)2,1/2=(1/2)2.

知識點五:二次根式的性質

a2=|a|

文字語言敘述為:一個數的平方的算術平方根等於這個數的絕對值。

註:

1、化簡a2時,一定要弄明白被開方數的底數a是正數還是負數,若是正數或0,則等於a本身,即a2=|a|=a (a若a是負數,則等於a的相反數-a,即a2=|a|=-a (a﹤0);

2、a2中的a的取值范圍可以是任意實數,即不論a取何值,a2一定有意義;

3、化簡a2時,先將它化成|a|,再根據絕對值的意義來進行化簡。

知識點六:(a)2與a2的異同點

1、不同點:(a)2與a2表示的意義是不同的,(a)2表示一個非負數a的算術平方根的平方,而a2表示一個實數a的平方的算術平方根;在(a)2中,而a2中a可以是正實數,0,負實數。但(a)2與a2都是非負數,即(a)20,a20。因而它的運算的結果是有差別的,(a)2=a(a0) ,而a2=|a|。

2、相同點:當被開方數都是非負數,即a0時,(a)2=a﹤0時,(a)2無意義,而a2=|a|=-a.

初三九年級上冊數學的知識點歸納4

單項式與多項式

僅含有一些數和字母的乘法包括乘方運算的式子叫做單項式單獨的一個數或字母也是單項式。

單項式中的數字因數叫做這個單項式或字母因數的數字系數,簡稱系數。

當一個單項式的系數是1或—1時,「1」通常省略不寫。

一個單項式中,所有字母的指數的和叫做這個單項式的次數。

如果在幾個單項式中,不管它們的系數是不是相同,只要他們所含的字母相同,並且相同字母的指數也分別相同,那麼,這幾個單項式就叫做同類單項式,簡稱同類項所有的常數都是同類項。

1、多項式

有有限個單項式的代數和組成的式子,叫做多項式。

多項式里每個單項式叫做多項式的項,不含字母的項,叫做常數項。

單項式可以看作是多項式的特例

把同類單項式的系數相加或相減,而單項式中的字母的乘方指數不變。

在多項式中,所含的不同未知數的個數,稱做這個多項式的元數經過合並同類項後,多項式所含單項式的個數,稱為這個多項式的項數所含個單項式中次項的次數,就稱為這個多項式的次數。

2、多項式的值

任何一個多項式,就是一個用加、減、乘、乘方運算把已知數和未知數連接起來的式子。

3、多項式的.恆等

對於兩個一元多項式fx、gx來說,當未知數x同取任一個數值a時,如果它們所得的值都是相等的,即fa=ga,那麼,這兩個多項式就稱為是恆等的記為fx==gx,或簡記為fx=gx。

性質1如果fx==gx,那麼,對於任一個數值a,都有fa=ga。

性質2如果fx==gx,那麼,這兩個多項式的個同類項系數就一定對應相等。

4、一元多項式的根

一般地,能夠使多項式fx的值等於0的未知數x的值,叫做多項式fx的根。

多項式的加、減法,乘法

1、多項式的加、減法

2、多項式的乘法

單項式相乘,用它們系數作為積的系數,對於相同的字母因式,則連同它的指數作為積的一個因式。

3、多項式的乘法

多項式與多項式相乘,先用一個多項式等每一項乘以另一個多項式的各項,再把所得的積相加。

常用乘法公式

公式I平方差公式

a+ba—b=a^2—b^2

兩個數的和與這兩個數的差的積等於這兩個數的平方差。

初三九年級上冊數學的知識點歸納5

一、等腰三角形

1、定義:有兩邊相等的三角形是等腰三角形。

2、性質:1.等腰三角形的兩個底角相等(簡寫成「等邊對等角」)

2.等腰三角形的頂角的平分線,底邊上的中線,底邊上的高的重合(「三線合一」)

3.等腰三角形的兩底角的平分線相等。(兩條腰上的中線相等,兩條腰上的高相等)

4.等腰三角形底邊上的垂直平分線上的點到兩條腰的距離相等。

5.等腰三角形的一腰上的高與底邊的夾角等於頂角的一半

6.等腰三角形底邊上任意一點到兩腰距離之和等於一腰上的高(可用等面積法證)

7.等腰三角形是軸對稱圖形,只有一條對稱軸,頂角平分線所在的直線是它的對稱軸

3、判定:在同一三角形中,有兩個角相等的三角形是等腰三角形(簡稱:等角對等邊)。

特殊的等腰三角形

等邊三角形

1、定義:三條邊都相等的三角形叫做等邊三角形,又叫做正三角形。

(注意:若三角形三條邊都相等則說這個三角形為等邊三角形,而一般不稱這個三角形為等腰三角形)。

2、性質:⑴等邊三角形的內角都相等,且均為60度。

⑵等邊三角形每一條邊上的中線、高線和每個角的角平分線互相重合。

⑶等邊三角形是軸對稱圖形,它有三條對稱軸,對稱軸是每條邊上的中線、高線或所對角的平分線所在直線。

3、判定:⑴三邊相等的三角形是等邊三角形。

⑵三個內角都相等的三角形是等邊三角形。

⑶有一個角是60度的等腰三角形是等邊三角形。

⑷有兩個角等於60度的三角形是等邊三角形。

二、直角三角形全等

1、直角三角形全等的判定有5種:

(1)、兩角及其夾邊對應相等的兩個三角形全等;(asa)

(2)、兩邊及其夾角對應相等的兩個三角形全等;(sas)

(3)、三邊對應相等的兩個三角形全等;(sss)

(4)、兩角及其中一角的對邊對應相等的兩個三角形全等;(aas)

(5)、斜邊及一條直角邊對應相等的兩個三角形全等;(hl)

2、在直角三角形中,如有一個內角等於30,那麼它所對的直角邊等於斜邊的一半

3、在直角三角形中,斜邊上的中線等於斜邊的一半

4垂直平分線:垂直於一條線段並且平分這條線段的直線。

性質:線段垂直平分線上的點到這一條線段兩個端點距離相等。

判定:到一條線段兩端點距離相等的點,在這條線段的垂直平分線上。

5、三角形的三邊的垂直平分線交於一點,並且這個點到三個頂點的距離相等,交點為三角形的外心。

6、角平分線上的點到角兩邊的距離相等。

7、在角內部的,如果一點到角兩邊的距離相等,則它在該角的平分線上。

8、角平分線是到角的兩邊距離相等的所有點的集合。

9、三角形三條角平分線交於一點,並且交點到三邊距離相等,交點即為三角形的內心。

10、三角形三條中線交於一點,交點為三角形的重心。

11、三角形三條高線交於一點,交點為三角形的垂心。

三、平行四邊的定義

1、定義:兩線對邊分別平行的四邊形叫做平行四邊形,

2、性質:(1)平行四邊形的對邊相等,(2)對角相等,(3)對角線互相平分。

3、判定:(1)一組對邊平行且相等的四邊形是平行四邊形。

(2)兩條對角線互相平分的四邊形是平行四邊形。

(3)兩組對邊分別相等的四邊形是平行四邊形。

(4)兩組對角分別相等的四邊形是平行四邊形。

(5)一組對邊平行,一組對角相等的四邊形是平行四邊形。

(6)一組對邊平行,一條對角線被另一條對角線平分的四邊形是平行四邊形。

兩個假命題:(1)一組對邊平行,另一組對邊相等的四邊形是平行四邊形。

(2)一組對邊相等,一組對角相等的四邊形是平行四邊形。

四、矩形

1、定義:有一個角是直角的平行四邊形叫矩形。矩形是特殊的平行四邊形。

2、性質:(1)具有平行四邊形的性質,(2)對角線相等,(3)四個角都是直角。

(4)矩形是軸對稱圖形,有兩條對稱軸。

3、判定:(1)有三個角是直角的四邊形是矩形。

(2)對角線相等的平行四邊形是矩形。

五、菱形

1、定義:一組鄰邊相等的平行四邊形叫做菱形。

2、性質:(1)具有平行四邊形的性質,(2)四條邊都相等,(3)兩條對角線互相垂直,每一條對角線平分一組對角。(4)菱形是軸對稱圖形,每條對角線所在的直線都是對稱軸。

3、判定:(1)四條邊都相等的四邊形是菱形。

(2)對角線互相垂直的平行四邊形是菱形。

(3)一條對角線平分一組對角的平行四邊形是菱形。

六、正方形

1、定義:一組鄰邊相等且有一個角是直角的平行四邊形叫做正方形。

2、性質:正方形具有平行四邊形、矩形、菱形的一切性質。

3、判定:(1)有一個內角是直角的菱形是正方形;

(2)有一組鄰邊相等的矩形是正方形;

(3)對角線相等的菱形是正方形;

(4)對角線互相垂直的矩形是正方形。

七、梯形定義:

一組對邊平行且另一組對邊不平行的四邊形叫做梯形。

八、等腰梯形

1、定義:兩條腰相等的梯形叫做等腰梯形。

2、性質:等腰梯形同一底上的兩個內角相等,對角線相等。

3、同一底上的兩個內角相等的梯形是等腰梯形。

九、三角形的中位線

定義:連接三角形兩邊中點的線段。

性質:平行於第三邊,並且等於第三邊的一半。

十、梯形的中位線

定義:連接梯形兩腰中點的線段。

性質:平行於兩底,並且等於兩底和的一半。

㈢ 初三數學上冊重點知識點

偉大的成績和辛勤勞動是成正比例的,有一分勞動就有一分收獲,積累,從少到多,奇跡就可以創造出來。學習也是一樣的,需要積累,從少變多。下面是我給大家整理的一些初三數學的知識點,希望對大家有所幫助。

初三新學期數學知識點

一元一次方程:

①在一個方程中,只含有一個未知數,並且未知數的指數是

1、這樣的方程叫一元一次方程。

②等式兩邊同時加上或減去或乘以或除以(不為0)一個代數式,所得結果仍是等式。

解一元一次方程的步驟:

去分母,移項,合並同類項,未知數系數化為1。

二元一次方程:含有兩個未知數,並且所含未知數的項的次數都是1的方程叫做二元一次方程。

二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。適合一個二元一次方程的一組未知數的值,叫做這個二元一次方程的一個解。二元一次方程組中各個方程的公共解,叫做這個二元一次方程的解。

解二元一次方程組的 方法 :代入消元法/加減消元法。

2、不等式與不等式組

不等式:

①用符號」=「號連接的式子叫不等式。

②不等式的兩邊都加上或減去同一個整式,不等號的方向不變。

③不等式的兩邊都乘以或者除以一個正數,不等號方向不變。

④不等式的兩邊都乘以或除以同一個負數,不等號方向相反。

不等式的解集:

①能使不等式成立的未知數的值,叫做不等式的解。

②一個含有未知數的不等式的所有解,組成這個不等式的解集。

③求不等式解集的過程叫做解不等式。

一元一次不等式:左右兩邊都是整式,只含有一個未知數,且未知數的次數是1的不等式叫一元一次不等式。

一元一次不等式組:

①關於同一個未知數的幾個一元一次不等式合在一起,就組成了一元一次不等式組。

②一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。

③求不等式組解集的過程,叫做解不等式組。

初三數學上冊知識點歸納

二元一次方程組

1、定義:含有兩個未知數,並且未知項的次數是1的整式方程叫做二元一次方程。

2、二元一次方程組的解法

(1)代入法

由一個二次方程和一個一次方程所組成的方程組通常用代入法來解,這是基本的消元降次方法。

(2)因式分解法

在二元二次方程組中,至少有一個方程可以分解時,可採用因式分解法通過消元降次來解。

(3)配方法

將一個式子,或一個式子的某一部分通過恆等變形化為完全平方式或幾個完全平方式的和。

(4)韋達定理法

通過韋達定理的逆定理,可以利用兩數的和積關系構造一元二次方程。

(5)消常數項法

當方程組的兩個方程都缺一次項時,可用消去常數項的方法解。

解一元二次方程

解一元二次方程的基本思想方法是通過「降次」將它化為兩個一元一次方程。

1、直接開平方法:

用直接開平方法解形如(x-m)2=n(n≥0)的方程,其解為x=±m.

直接開平方法就是平方的逆運算.通常用根號表示其運算結果.

2、配方法

通過配成完全平方式的方法,得到一元二次方程的根的方法。這種解一元二次方程的方法稱為配方法,配方的依據是完全平方公式。

(1)轉化:將此一元二次方程化為ax^2+bx+c=0的形式(即一元二次方程的一般形式)

(2)系數化1:將二次項系數化為1

(3)移項:將常數項移到等號右側

(4)配方:等號左右兩邊同時加上一次項系數一半的平方

(5)變形:將等號左邊的代數式寫成完全平方形式

(6)開方:左右同時開平方

(7)求解:整理即可得到原方程的根

數學 學習方法 技巧

自學能力的培養是深化學習的必由之路

在學習新概念、新運算時,老師們總是通過已有知識自然而然過渡到新知識,水到渠成,亦即所謂「溫故而知新」。因此說,數學是一門能自學的學科,自學成才最典型的例子就是數學家華羅庚。

我們在課堂上聽老師講解,不光是學習新知識,更重要的是潛移默化老師的那種數學思維習慣,逐漸地培養起自己對數學的一種悟性。我去佛山一中開家長會時,一中校長的一番話使我感觸良多。他說:我是教物理的,學生物理學得好,不是我教出來的,而是他們自己悟出來的。當然,校長是謙虛的,但他說明了一個道理,學生不能被動地學習,而應主動地學習。一個班裡幾十個學生,同一個老師教,差異那麼大,這就是學習主動性問題了。

自學能力越強,悟性就越高。隨著年齡的增長,同學們的依賴性應不斷減弱,而自學能力則應不斷增強。因此,要養成預習的習慣。在老師講新課前,能不能運用自己所學過的已掌握的舊知識去預習新課,結合新課中的新規定去分析、理解新的學習內容。由於數學知識的無矛盾性,你所學過的數學知識永遠都是有用的,都是正確的,數學的進一步學習只是加深拓廣而已。因此,以前的數學學得扎實,就為以後的進取奠定了基礎,就不難自學新課。同時,在預習新課時,碰到什麼自己解決不了的問題,帶著問題去聽老師講解新課,收獲之大是不言而喻的。有些同學為什麼聽老師講新課時總有一種似懂非懂的感覺,或者是「一聽就懂、一做就錯」,就是因為沒有預習,沒有帶著問題學,沒有將「要我學」真正變為「我要學」,力求把知識變為自己的。學來學去,知識還是別人的。檢驗數學學得好不好的標准就是會不會解題。聽懂並記憶有關的定義、法則、公式、定理,只是學好數學的必要條件,能獨立解題、解對題才是學好數學的標志。


初三數學上冊重點知識點相關 文章 :

★ 初三數學知識點上冊總結歸納

★ 初三數學上冊知識點總結

★ 初三數學知識點考點歸納總結

★ 九年級上冊數學知識點歸納整理

★ 初三上冊數學知識點總結

★ 初三數學中考復習重點章節知識點歸納

★ 初三上冊數學知識點歸納

★ 初三上冊數學知識點

★ 初三數學復習知識點總結

㈣ 九年級上冊數學知識點

北師大版本九年級上冊知識點:

第一章特殊平行四邊形
第二章一元二次方程
第三章概率的進一步認識
第四章圖形的相似
第五章投影與視圖
1.投影
2.視圖
第六章反比例函數
1.反比例函數
2.反比例函數的圖象與性質

華師大版本九年級上知識點:

第二十一章二次根式
第二十二章一元二次方程
第二十三章圖形的相似
第二十四章解直角三角形
第二十五章隨機事件的概率
25.1在重復試驗中觀察不確定現象
25.2隨機事件的概率

人教版九年級上知識點:

第21章一元二次方程
1一元二次方程
2降次──解一元二次方程
3實際問題與一元二次方程
第22章二次函數
1二次函數的圖象和性質
2二次函數與一元二次方程
3實際問題與二次函數
第23章旋轉
1圖形的旋轉
2中心對稱
第24章圓
1圓的有關性質
2與圓有關的位置關系
3正多邊形和圓
4弧長和扇形面積
第25章概率初步

如果對你有很幫助,可以來個好評哈!~~~~~~~~~~~~~~~~

㈤ 初三數學上冊知識點

初三數學上冊知識點1

三角形的外心定義:

外心:是三角形三條邊的垂直平分線的交點,即外接圓的圓心。

外心定理:三角形的三邊的垂直平分線交於一點。該點叫做三角形的外心。

三角形的外心的性質:

1、三角形三條邊的垂直平分線的交於一點,該點即為三角形外接圓的圓心;

2、三角形的外接圓有且只有一個,即對於給定的三角形,其外心是的,但一個圓的內接三角形卻有無數個,這些三角形的外心重合;

3、銳角三角形的外心在三角形內;

鈍角三角形的外心在三角形外;

直角三角形的外心與斜邊的中點重合。

在△ABC中

4、OA=OB=OC=R

5、∠BOC=2∠BAC,∠AOB=2∠ACB,∠COA=2∠CBA

6、S△ABC=abc/4R

初三數學上冊知識點2

不等式的概念

1、不等式:用不等號表示不等關系的式子,叫做不等式。

2、不等式的解集:對於一個含有未知數的不等式,任何一個適合這個不等式的未知數的值,都叫做這個不等式的解。

3、對於一個含有未知數的不等式,它的所有解的集合叫做這個不等式的解的集合,簡稱這個不等式的解集。

4、求不等式的解集的過程,叫做解不等式。

5、用數軸表示不等式的方法。

不等式基本性質

1、不等式兩邊都加上或減去同一個數或同一個整式,不等號的方向不變。

2、不等式兩邊都乘以或除以同一個正數,不等號的方向不變。

3、不等式兩邊都乘以或除以同一個負數,不等號的方向改變。

4、說明:①在一元一次不等式中,不像等式那樣,等號是不變的,是隨著加或乘的運算改變。②如果不等式乘以0,那麼不等號改為等號所以在題目中,要求出乘以的數,那麼就要看看題中是否出現一元一次不等式,如果出現了,那麼不等式乘以的數就不等為0,否則不等式不成立。

一元一次不等式

1、一元一次不等式的概念:一般地,不等式中只含有一個未知數,未知數的次數是1,且不等式的兩邊都是整式,這樣的不等式叫做一元一次不等式。

2、解一元一次不等式的一般步驟:1去分母2去括弧3移項4合並同類項5將x項的系數化為1。

一元一次不等式組

1、一元一次不等式組的概念:幾個一元一次不等式合在一起,就組成了一個一元一次不等式組。

2、幾個一元一次不等式的解集的公共部分,叫做它們所組成的一元一次不等式組的解集。

3、求不等式組的解集的過程,叫做解不等式組。

4、當任何數x都不能使不等式同時成立,我們就說這個不等式組無解或其解為空集。

5、一元一次不等式組的解法

1分別求出不等式組中各個不等式的解集。

2利用數軸求出這些不等式的解集的公共部分,即這個不等式組的解集。

6、不等式與不等式組

不等式:①用符號〉,=,〈號連接的式子叫不等式。②不等式的兩邊都加上或減去同一個整式,不等號的方向不變。③不等式的兩邊都乘以或者除以一個正數,不等號方向不變。④不等式的兩邊都乘以或除以同一個負數,不等號方向相反。

7、不等式的解集:

①能使不等式成立的未知數的值,叫做不等式的解。

②一個含有未知數的不等式的所有解,組成這個不等式的解集。

③求不等式解集的過程叫做解不等式。

初三數學上冊知識點3

矩形知識點

1、矩形的概念

有一個角是直角的平行四邊形叫做矩形。

2、矩形的性質

(1)具有平行四邊形的一切性質

(2)矩形的四個角都是直角

(3)矩形的對角線相等

(4)矩形是軸對稱圖形

3、矩形的判定

(1)定義:有一個角是直角的平行四邊形是矩形(2)定理1:有三個角是直角的四邊形是矩形

(3)定理2:對角線相等的平行四邊形是矩形

4、矩形的面積:S矩形=長×寬=ab

正方形知識點

1、正方形的概念

有一組鄰邊相等並且有一個角是直角的平行四邊形叫做正方形。

2、正方形的性質

(1)具有平行四邊形、矩形、菱形的一切性質;

(2)正方形的四個角都是直角,四條邊都相等;

(3)正方形的兩條對角線相等,並且互相垂直平分,每一條對角線平分一組對角;

(4)正方形是軸對稱圖形,有4條對稱軸;

(5)正方形的一條對角線把正方形分成兩個全等的等腰直角三角形,兩條對角線把正方形分成四個全等的小等腰直角三角形;

(6)正方形的一條對角線上的一點到另一條對角線的兩端點的距離相等。

3、正方形的判定

(1)判定一個四邊形是正方形的主要依據是定義,途徑有兩種:

先證它是矩形,再證有一組鄰邊相等。

先證它是菱形,再證有一個角是直角。

(2)判定一個四邊形為正方形的一般順序如下:

先證明它是平行四邊形;

再證明它是菱形(或矩形);

最後證明它是矩形(或菱形)。

圓知識點

圓的面積s=π×r×r

其中,π是周圍率,約等於3.14

r是圓的半徑。

圓的周長計算公式為:C=2πR.C代表圓的周長,r代表圓的半徑。圓的面積公式為:S=πR2(R的平方).S代表圓的面積,r為圓的半徑。

橢圓周長計算公式

橢圓周長公式:L=2πb+4(a-b)

橢圓周長定理:橢圓的周長等於該橢圓短半軸長為半徑的圓周長(2πb)加上四倍的該橢圓長半軸長(a)與短半軸長(b)的差。

橢圓面積計算公式

橢圓面積公式:S=πab

橢圓面積定理:橢圓的面積等於圓周率(π)乘該橢圓長半軸長(a)與短半軸長(b)的乘積。

以上橢圓周長、面積公式中雖然沒有出現橢圓周率T,但這兩個公式都是通過橢圓周率T推導演變而來。常數為體,公式為用。

對數公式

對數公式是數學中的'一種常見公式,如果a^x=N(a>0,且a≠1),則x叫做以a為底N的對數,記做x=log(a)(N),其中a要寫於log右下。其中a叫做對數的底,N叫做真數。通常我們將以10為底的對數叫做常用對數,以e為底的對數稱為自然對數。

數學學習技巧

1.求教與自學相結合

在學習過程中,即要爭取教師的指導和幫助,但是又不能過分依賴教師, 必須自己主動地去學習、去探索、去獲取,應該在自己認真學習和研究的基礎上去尋求教師和同學的幫助。

2.學習與思考相結合

在學習過程中,對課本的內容要認真研究,提出疑問,追本究源。對每一個概念、公式、定理都要弄清其來龍去脈、前因後果、內在聯系,以及蘊含於推導過程中的數學思想和方法。在解決問題時,要盡量採用不同的途徑和方法,要克服那種死守書本、機械呆板、不知變通的學習方法。

3.學用結合,勤於實踐

在學習過程中,要准確地掌握抽象概念的本質含義,了解從實際模型中抽象為理論的演變過程。對所學理論知識,要在更大范圍內尋求它的具體實例,使之具體化,盡量將所學的理論知識和思維方法應用於實踐。

4.博觀約取,由博返約

課本是獲得知識的主要來源,但不是唯一的來源。在學習過程中,除了認真研究課本以外,還要閱讀有關的課外資料,來擴大知識領域。同時在廣泛閱讀的基礎上,進行認真研究,掌握其知識結構。

5.既有模仿,又有創新

模仿是數學學習中不可缺少的學習方法,但是決不能機械地模仿,應該在消化理解的基礎上,開動腦筋,提出自己的見解和看法,而不拘泥於已有的框框,不囿於現成的模式。

6.及時復習增強記憶

課堂上學習的內容,必須當天消化,要先復習,後做練習,復習工作必須經常進行,每一單元結束後,應將所學知識進行概括整理,使之系統化、深刻化。

7.總結學習經驗,評價學習效果

學習中的總結和評價有利於知識體系的建立、解題規律的掌握、學習方法與態度的調整和評判能力的提高。在學習過程中,應注意總結聽課、閱讀和解題中的收獲和體會。

初三數學上冊知識點4

(三角形中位線的定理)

三角形的中位線平行於三角形的第三邊,並且等於第三邊的一半。

(平行四邊形的性質)

①平行四邊形的對邊相等;

②平行四邊形的對角相等;

③平行四邊形的對角線互相平分。

(矩形的性質)

①矩形具有平行四邊形的一切性質;

②矩形的四個角都是直角;

③矩形的對角線相等。

正方形的判定與性質

1、判定方法:

1鄰邊相等的矩形;

2鄰邊垂直的菱形;

3對角線垂直的矩形;

4對角線相等的菱形;

2、性質:

1邊:四邊相等,對邊平行;

2角:四個角都相等都是直角,鄰角互補;

3對角線互相平分、垂直、相等,且每長對角線平分一組內角。

等腰三角形的判定定理

(等腰三角形的判定方法)

1、有兩條邊相等的三角形是等腰三角形。

2、判定定理:如果一個三角形有兩個角相等,那麼這個三角形是等腰三角形簡稱:等角對等邊。

角平分線:把一個角平分的射線叫該角的角平分線。

定義中有幾個要點要注意一下的,學習方法,就是角的角平分線是一條射線,不是線段也不是直線,很多時,在題目中會出現直線,這是角平分線的對稱軸才會用直線的,這也涉及到軌跡的問題,一個角個角平分線就是到角兩邊距離相等的點

性質定理:角平分線上的點到該角兩邊的距離相等

判定定理:到角的兩邊距離相等的點在該角的角平分線上

標准差與方差

極差是什麼:一組數據中數據與最小數據的差叫做極差,即極差=值—最小值。

計算器——求標准差與方差的一般步驟:

1、打開計算器,按「ON」鍵,按「MODE」「2」進入統計SD狀態。

2、在開始數據輸入之前,請務必按「SHIFT」「CLR」「1」「=」鍵清除統計存儲器。

3、輸入數據:按數字鍵輸入數值,然後按「M+」鍵,就能完成一個數據的輸入。如果想對此輸入同樣的數據時,還可在步驟3後按「SHIET」「;」,後輸入該數據出現的頻數,再按「M+」鍵。

4、當所有的數據全部輸入結束後,按「SHIFT」「2」,選擇的是「標准差」,就可以得到所求數據的標准差;

5、標准差的平方就是方差。

初三數學上冊知識點5

1、必然事件、不可能事件、隨機事件的區別

2、概率

一般地,在大量重復試驗中,如果事件A發生的頻率

會穩定在某個常數p附近,那麼這個常數p就叫做事件A的概率(probability), 記作P(A)=p.

注意:(1)概率是隨機事件發生的可能性的大小的數量反映。

(2)概率是事件在大量重復試驗中頻率逐漸穩定到的值,即可以用大量重復試驗中事件發生的頻率去估計得到事件發生的概率,但二者不能簡單地等同。

3、求概率的方法

(1)用列舉法求概率(列表法、畫樹形圖法)

(2)用頻率估計概率:一大面,可用大量重復試驗中事件發生頻率來估計事件發生的概率。另一方面,大量重復試驗中事件發生的頻率穩定在某個常數(事件發生的概率)附近,說明概率是個定值,而頻率隨不同試驗次數而有所不同,是概率的近似值,二者不能簡單地等同.

初三數學上冊知識點6

直角三角形的判定方法:

判定1:定義,有一個角為90°的三角形是直角三角形。

判定2:判定定理:以a、b、c為邊的三角形是以c為斜邊的直角三角形。如果三角形的三邊a,b,c滿足a2+b2=c2,那麼這個三角形就是直角三角形。(勾股定理的逆定理)。

判定3:若一個三角形30°內角所對的邊是某一邊的一半,則這個三角形是以這條長邊為斜邊的直角三角形。

判定4:兩個銳角互為餘角(兩角相加等於90°)的三角形是直角三角形。

判定5:若兩直線相交且它們的斜率之積互為負倒數,則兩直線互相垂直。那麼

判定6:若在一個三角形中一邊上的中線等於其所在邊的一半,那麼這個三角形為直角三角形。

判定7:一個三角形30°角所對的邊等於這個三角形斜邊的一半,則這個三角形為直角三角形。(與判定3不同,此定理用於已知斜邊的三角形。)

初三數學上冊知識點7

1.數的分類及概念 數系表:

說明:分類的原則:1)相稱(不重、不漏) 2)有標准

2.非負數:正實數與零的統稱。(表為:x0)

性質:若干個非負數的和為0,則每個非負數均為0。

3.倒數: ①定義及表示法

②性質:A.a1/a(a1);B.1/a中,aC.0

4.相反數: ①定義及表示法

②性質:A.a0時,aB.a與-a在數軸上的位置;C.和為0,商為-1。

5.數軸:①定義(三要素)

②作用:A.直觀地比較實數的大小;B.明確體現絕對值意義;C.建立點與實數的一一對應關系。

6.奇數、偶數、質數、合數(正整數自然數)

定義及表示:

奇數:2n-1

偶數:2n(n為自然數)

7.絕對值:①定義(兩種):

代數定義:

幾何定義:數a的絕對值頂的幾何意義是實數a在數軸上所對應的點到原點的距離。

②│a│0,符號││是非負數的標志;③數a的絕對值只有一個;④處理任何類型的題目,只要其中有││出現,其關鍵一步是去掉││符號。

初三數學上冊知識點8

1、 必然事件、不可能事件、隨機事件的區別

2、概率

一般地,在大量重復試驗中,如果事件A發生的頻率 會穩定在某個常數p附近,那麼這個常數p就叫做事件A的概率(probability), 記作P(A)= p.

注意:(1)概率是隨機事件發生的可能性的大小的數量反映.

(2)概率是事件在大量重復試驗中頻率逐漸穩定到的值,即可以用大量重復試驗中事件發生的頻率去估計得到事件發生的概率,但二者不能簡單地等同.

3、求概率的方法

(1)用列舉法求概率(列表法、畫樹形圖法)

(2)用頻率估計概率:一大面,可用大量重復試驗中事件發生頻率來估計事件發生的概率.另一方面,大量重復試驗中事件發生的頻率穩定在某個常數(事件發生的概率)附近,說明概率是個定值,而頻率隨不同試驗次數而有所不同,是概率的近似值,二者不能簡單地等同.

初三數學上冊知識點9

單項式與多項式

僅含有一些數和字母的乘法包括乘方運算的式子叫做單項式單獨的一個數或字母也是單項式。

單項式中的數字因數叫做這個單項式或字母因數的數字系數,簡稱系數。

當一個單項式的系數是1或—1時,「1」通常省略不寫。

一個單項式中,所有字母的指數的和叫做這個單項式的次數。

如果在幾個單項式中,不管它們的系數是不是相同,只要他們所含的字母相同,並且相同字母的指數也分別相同,那麼,這幾個單項式就叫做同類單項式,簡稱同類項所有的常數都是同類項。

1、多項式

有有限個單項式的代數和組成的式子,叫做多項式。

多項式里每個單項式叫做多項式的項,不含字母的項,叫做常數項。

單項式可以看作是多項式的特例

把同類單項式的系數相加或相減,而單項式中的字母的乘方指數不變。

在多項式中,所含的不同未知數的個數,稱做這個多項式的元數經過合並同類項後,多項式所含單項式的個數,稱為這個多項式的項數所含個單項式中次項的次數,就稱為這個多項式的次數。

2、多項式的值

任何一個多項式,就是一個用加、減、乘、乘方運算把已知數和未知數連接起來的式子。

3、多項式的恆等

對於兩個一元多項式fx、gx來說,當未知數x同取任一個數值a時,如果它們所得的值都是相等的,即fa=ga,那麼,這兩個多項式就稱為是恆等的記為fx==gx,或簡記為fx=gx。

性質1如果fx==gx,那麼,對於任一個數值a,都有fa=ga。

性質2如果fx==gx,那麼,這兩個多項式的個同類項系數就一定對應相等。

4、一元多項式的根

一般地,能夠使多項式fx的值等於0的未知數x的值,叫做多項式fx的根。

多項式的加、減法,乘法

1、多項式的加、減法

2、多項式的乘法

單項式相乘,用它們系數作為積的系數,對於相同的字母因式,則連同它的指數作為積的一個因式。

3、多項式的乘法

多項式與多項式相乘,先用一個多項式等每一項乘以另一個多項式的各項,再把所得的積相加。

常用乘法公式

公式I平方差公式

a+ba—b=a^2—b^2

兩個數的和與這兩個數的差的積等於這兩個數的平方差。

初三數學上冊知識點10

I.定義與定義表達式

一般地,自變數x和因變數y之間存在如下關系:y=ax^2+bx+c

a,b,c為常數,a≠0,且a決定函數的開口方向,a0時,開口方向向上,a0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大,則稱y為x的二次函數。

二次函數表達式的右邊通常為二次三項式。

II.二次函數的三種表達式

一般式:y=ax^2+bx+c(a,b,c為常數,a≠0)

頂點式:y=a(x-h)^2+k [拋物線的頂點P(h,k)]

交點式:y=a(x-x)(x-x ) [僅限於與x軸有交點A(x ,0)和 B(x,0)的拋物線]

註:在3種形式的互相轉化中,有如下關系:

h=-b/2a k=(4ac-b^2)/4a x,x=(-b±√b^2-4ac)/2a

III.二次函數的圖像

在平面直角坐標系中作出二次函數y=x^2的圖像,可以看出,二次函數的圖像是一條拋物線。

初三數學上冊知識點11

知識點一: 二次根式的概念

形如a(a0)的式子叫做二次根式。

註:在二次根式中,被開放數可以是數,也可以是單項式、多項式、分式等代數式,但必須注意:因為負數沒有平方根,所以a0是a為二次根式的前提條件,如5,(x2+1),

(x-1) (x1)等是二次根式,而(-2),(-x2-7)等都不是二次根式。

知識點二:取值范圍

1. 二次根式有意義的條件:由二次根式的意義可知,當a0時a有意義,是二次根式,所以要使二次根式有意義,只要使被開方數大於或等於零即可。

2. 二次根式無意義的條件:因負數沒有算術平方根,所以當a﹤0時,a沒有意義。

知識點三:二次根式a(a0)的非負性

a(a0)表示a的算術平方根,也就是說,a(a0)是一個非負數,即0(a0)。

註:因為二次根式a表示a的算術平方根,而正數的算術平方根是正數,0的算術平方根是0,所以非負數(a0)的算術平方根是非負數,即0(a0),這個性質也就是非負數的算術平方根的性質,和絕對值、偶次方類似。這個性質在解答題目時應用較多,如若a+b=0,則a=0,b=0;若a+|b|=0,則a=0,b=0;若a+b2=0,則a=0,b=0。

知識點四:二次根式(a) 的性質

(a)2=a(a0)

文字語言敘述為:一個非負數的算術平方根的平方等於這個非負數。

註:二次根式的性質公式(a)2=a(a0)是逆用平方根的定義得出的結論。上面的公式也可以反過來應用:若a0,則

a=(a)2,如:2=(2)2,1/2=(1/2)2.

知識點五:二次根式的性質

a2=|a|

文字語言敘述為:一個數的平方的算術平方根等於這個數的絕對值。

註:

1、化簡a2時,一定要弄明白被開方數的底數a是正數還是負數,若是正數或0,則等於a本身,即a2=|a|=a (a若a是負數,則等於a的相反數-a,即a2=|a|=-a (a﹤0);

2、a2中的a的取值范圍可以是任意實數,即不論a取何值,a2一定有意義;

3、化簡a2時,先將它化成|a|,再根據絕對值的意義來進行化簡。

知識點六:(a)2與a2的異同點

1、不同點:(a)2與a2表示的意義是不同的,(a)2表示一個非負數a的算術平方根的平方,而a2表示一個實數a的平方的算術平方根;在(a)2中,而a2中a可以是正實數,0,負實數。但(a)2與a2都是非負數,即(a)20,a20。因而它的運算的結果是有差別的,(a)2=a(a0) ,而a2=|a|。

2、相同點:當被開方數都是非負數,即a0時,(a)2=a﹤0時,(a)2無意義,而a2=|a|=-a.

初三數學上冊知識點12

1、 二次函數的一般形式:y=ax2+bx+c。(a0)

2、 關於二次函數的幾個概念:二次函數的圖象是拋物線,所以也叫拋物線y=ax2+bx+c;拋物線關於對稱軸對稱且以對稱軸為界,一半圖象上坡,另一半圖象下坡;其中c叫二次函數在y軸上的截距, 即二次函數圖象必過(0,c)點。

3、 y=ax2 (a0)的特性:當y=ax2+bx+c (a0)中的b=0且c=0時二次函數為y=ax2 (a這個二次函數是一個特殊的二次函數,有下列特性:(1)圖象關於y軸對稱;(2)頂點(0,0);

4、求二次函數的解析式:已知二次函數圖象上三點的坐標,可設解析式y=ax2+bx+c,並把這三點的坐標代入,解關於a、b、c的三元一次方程組,求出a、b、c的值, 從而求出解析式———————待定系數法。

5、二次函數的頂點式: y=a(x—h)2+k (a 由頂點式可直接得出二次函數的頂點坐標(h, k),對稱軸方程 x=h 和函數的最值 y最值= k。

初三數學上冊知識點13

首先,我們知道sin(a+b)=sina*cosb+cosa*sinb,sin(a-b)=sina*cosb-cosa*sinb

我們把兩式相加就得到sin(a+b)+sin(a-b)=2sina*cosb

所以,sina*cosb=(sin(a+b)+sin(a-b))/2

同理,若把兩式相減,就得到cosa*sinb=(sin(a+b)-sin(a-b))/2

同樣的,我們還知道cos(a+b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb+sina*sinb

所以,把兩式相加,我們就可以得到cos(a+b)+cos(a-b)=2cosa*cosb

所以我們就得到,cosa*cosb=(cos(a+b)+cos(a-b))/2

同理,兩式相減我們就得到sina*sinb=-(cos(a+b)-cos(a-b))/2

這樣,我們就得到了積化和差的四個公式:

sina*cosb=(sin(a+b)+sin(a-b))/2

cosa*sinb=(sin(a+b)-sin(a-b))/2

cosa*cosb=(cos(a+b)+cos(a-b))/2

sina*sinb=-(cos(a+b)-cos(a-b))/2

好,有了積化和差的四個公式以後,我們只需一個變形,就可以得到和差化積的四個公式.

我們把上述四個公式中的a+b設為x,a-b設為y,那麼a=(x+y)/2,b=(x-y)/2

把a,b分別用x,y表示就可以得到和差化積的四個公式:

sinx+siny=2sin((x+y)/2)*cos((x-y)/2)

sinx-siny=2cos((x+y)/2)*sin((x-y)/2)

cosx+cosy=2cos((x+y)/2)*cos((x-y)/2)

cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2)

初三數學上冊知識點14

1.定義:兩組對邊分別平行的四邊形叫平行四邊形

2.平行四邊形的性質

(1)平行四邊形的對邊平行且相等;

(2)平行四邊形的鄰角互補,對角相等;

(3)平行四邊形的對角線互相平分;

3.平行四邊形的判定

平行四邊形是幾何中一個重要內容,如何根據平行四邊形的性質,判定一個四邊形是平行四邊形是個重點,下面就對平行四邊形的五種判定方法,進行劃分:

第一類:與四邊形的對邊有關

(1)兩組對邊分別平行的四邊形是平行四邊形;

(2)兩組對邊分別相等的四邊形是平行四邊形;

(3)一組對邊平行且相等的四邊形是平行四邊形;

第二類:與四邊形的對角有關

(4)兩組對角分別相等的四邊形是平行四邊形;

第三類:與四邊形的對角線有關

(5)對角線互相平分的四邊形是平行四邊形

初三數學上冊知識點15

1.一元二次方程:在整式方程中,只含 個未知數,並且未知數的最高次數是 的方程叫做一元二次方程.一元二次方程的一般形式是( ).其中( )叫做二次項,( )叫做一次項,( )叫做常數項;( )叫做二次項的系數,( )叫做一次項的系數.

2.易錯知識辨析:

(1)判斷一個方程是不是一元二次方程,應把它進行整理,化成一般形式後再進行判斷,注意一元二次方程一般形式中 .

(2)用公式法和因式分解的方法解方程時要先化成一般形式.

(3)用配方法時二次項系數要化1.

(4)用直接開平方的方法時要記得取正、負.

㈥ 急求數學九年級上冊21、22章概念及定理

21、方差
1.
描述一組數據的離散程度可採取許多方法,在統計中常先求這組數據的平均數,再求這組數據與平均數的差的平方和的平均數,用這個平均數來衡量這組數據的波動大小:
設在一組數據
中,各數據與它們的平均數
的差的平方分別是
,那麼我們求它們的平均數,即用
2.標准差概念
有些情況下,需用到方差的算術平方根,即

並把它叫做這組數據的標准差.它也是一個用來衡量一組數據的波動大小的重要的量.
22、二次函數:
1.二次函數的定義:形如y=ax2+bx+c(a≠0,a,b,c為常數)的函數為二次
函數.頂點式:y=a(x+m)2+k(a≠0)
2.二次函數的圖象及性質:
(1)開口方向:當a>0時,函數開口方向向上;當a<0時,函數開口方向向下;
(2)對稱軸:直線x=-b/2a;頂點坐標:(

);(3)增減性:當a>0時,在對稱軸左側,y隨著x的增大而減少;在對稱軸右
側,y隨著x的增大而增大;當a<0時,在對稱軸左側,y隨著x的增大而增大;
在對稱軸右側,y隨著x的增大而減少;
(4)最大或最小值:當a>0時,函數有最小值,並且當x=
,y最小值=

當a<0時,函數有最大值,並且當x=
,y最大值=
;3.二次函數中a、b、c的符號的判別:
(1)a的符號:a的符號由拋物線的開口方向決定.拋物線開口向上,則a>0;
物線開口向下,則a<0.
(2)b的符號出的符號由對稱軸決定,若對稱軸是y軸,則b=0;若拋物線的頂
點在y軸左側,,則a、b為同號;若拋物線的頂點在y軸右側,則a、b異號.間
"左同有異".
(3)c的符號:c的符號由拋物線與y軸的交點位置確定.若拋物線交y軸於正
半,則c>0,拋物線交y軸於負半軸.則c<0;若拋物線過原點,則c=0.
(4)a+b+c與a-b+c的符號:a+b+c是拋物線
(a≠0)上的點(1,a+b+c)的縱坐標,a-b+c是拋物線
(a≠0)上的點(-1,a-b+c)的縱坐標.根據點的位置,可確定它們的符號.

㈦ 九年級上冊數學知識點歸納

學習中的困難莫過於一節一節的台階,雖然台階很陡,但只要一步一個腳印的踏,攀登一層一層的台階,才能實現學習的理想。下面就是我為大家梳理歸納的知識,希望能夠幫助到大家。

九年級上冊數學知識點歸納一

圓的定義

1、以定點為圓心,定長為半徑的點組成的圖形。

2、在同一平面內,到一個定點的距離都相等的點組成的圖形。

二、圓的各元素

1、半徑:圓上一點與圓心的連線段。

2、直徑:連接圓上兩點有經過圓心的線段。

3、弦:連接圓上兩點線段(直徑也是弦)。

4、弧:圓上兩點之間的曲線部分。半圓周也是弧。

(1)劣弧:小於半圓周的弧。

(2)優弧:大於半圓周的弧。

5、圓心角:以圓心為頂點,半徑為角的邊。

6、圓周角:頂點在圓周上,圓周角的兩邊是弦。

7、弦心距:圓心到弦的垂線段的長。

三、圓的基本性質

1、圓的對稱性

(1)圓是圖形,它的對稱軸是直徑所在的直線。

(2)圓是中心對稱圖形,它的對稱中心是圓心。

(3)圓是對稱圖形。

2、垂徑定理。

(1)垂直於弦的直徑平分這條弦,且平分這條弦所對的兩條弧。

(2)推論:

平分弦(非直徑)的直徑,垂直於弦且平分弦所對的兩條弧。

平分弧的直徑,垂直平分弧所對的弦。

3、圓心角的度數等於它所對弧的度數。圓周角的度數等於它所對弧度數的一半。

(1)同弧所對的圓周角相等。

(2)直徑所對的圓周角是直角;圓周角為直角,它所對的弦是直徑。

4、在同圓或等圓中,兩條弦、兩條弧、兩個圓周角、兩個圓心角、兩條弦心距五對量中只要有一對量相等,其餘四對量也分別相等。

5、夾在平行線間的兩條弧相等。

6、設⊙O的半徑為r,OP=d。

7、(1)過兩點的圓的圓心一定在兩點間連線段的中垂線上。

(2)不在同一直線上的三點確定一個圓,圓心是三邊中垂線的交點,它到三個點的距離相等。

(直角的外心就是斜邊的中點。)

8、直線與圓的位置關系。d表示圓心到直線的距離,r表示圓的半徑。

直線與圓有兩個交點,直線與圓相交;直線與圓只有一個交點,直線與圓相切;

直線與圓沒有交點,直線與圓相離。

9、中,A(x1,y1)、B(x2,y2)。

10、圓的切線判定。

(1)d=r時,直線是圓的切線。

切點不明確:畫垂直,證半徑。

(2)經過半徑的外端且與半徑垂直的直線是圓的切線。

切點明確:連半徑,證垂直。

11、圓的切線的性質(補充)。

(1)經過切點的直徑一定垂直於切線。

(2)經過切點並且垂直於這條切線的直線一定經過圓心。

12、切線長定理。

(1)切線長:從圓外一點引圓的兩條切線,切點與這點之間連線段的長叫這個點到圓的切線長。

(2)切線長定理。

∵PA、PB切⊙O於點A、B

∴PA=PB,∠1=∠2。

13、內切圓及有關計算。

(1)內切圓的圓心是三個內角平分線的交點,它到三邊的距離相等。

(2)如圖,△ABC中,AB=5,BC=6,AC=7,⊙O切△ABC三邊於點D、E、F。

求:AD、BE、CF的長。

分析:設AD=x,則AD=AF=x,BD=BE=5-x,CE=CF=7-x.

可得方程:5-x+7-x=6,解得x=3

(3)△ABC中,∠C=90°,AC=b,BC=a,AB=c。

求內切圓的半徑r。

分析:先證得正方形ODCE,

得CD=CE=r

AD=AF=b-r,BE=BF=a-r

b-r+a-r=c

14、(1)弦切角:角的頂點在圓周上,角的一邊是圓的切線,另一邊是圓的弦。

BC切⊙O於點B,AB為弦,∠ABC叫弦切角,∠ABC=∠D。

(2)相交弦定理。

圓的兩條弦AB與CD相交於點P,則PA?PB=PC?PD。

(3)切割線定理。

如圖,PA切⊙O於點A,PBC是⊙O的割線,則PA2=PB?PC。

(4)推論:如圖,PAB、PCD是⊙O的割線,則PA?PB=PC?PD。

15、圓與圓的位置關系。

(1)外離:d>r1+r2,交點有0個;

外切:d=r1+r2,交點有1個;

相交:r1-r2

內切:d=r1-r2,交點有1個;

內含:0≤d

(2)性質。

相交兩圓的連心線垂直平分公共弦。

相切兩圓的連心線必經過切點。

16、圓中有關量的計算。

(1)弧長有L表示,圓心角用n表示,圓的半徑用R表示。

(2)扇形的面積用S表示。

(3)圓錐的側面展開圖是扇形。

r為底面圓的半徑,a為母線長。

九年級上冊數學知識點歸納二

1二次根式:形如式子為二次根式;

性質:是一個非負數;

2二次根式的乘除:

3二次根式的加減:二次根式加減時,先將二次根式華為最簡二次根式,再將被開方數相同的二次根式進行合並.

4海倫-秦九韶公式:,S是的面積,p為.

1:等號兩邊都是整式,且只有一個未知數,未知數的次是2的方程.

2配 方法 :將方程的一邊配成完全平方式,然後兩邊開方;

因式分解法:左邊是兩個因式的乘積,右邊為零.

3一元二次方程在實際問題中的應用

4韋達定理:設是方程的兩個根,那麼有

1:一個圖形繞某一點轉動一個角度的圖形變換

性質:對應點到中心的距離相等;

對應點與旋轉中心所連的線段的夾角等於旋轉角

旋轉前後的圖形全等.

2中心對稱:一個圖形繞一個點旋轉180度,和另一個圖形重合,則兩個圖形關於這個點中心對稱;

中心對稱圖形:一個圖形繞某一點旋轉180度後得到的圖形能夠和原來的圖形重合,則說這個圖形是中心對稱圖形;

3關於原點對稱的點的坐標

1圓、圓心、半徑、直徑、圓弧、弦、半圓的定義

2垂直於弦的直徑

圓是圖形,任何一條直徑所在的直線都是它的對稱軸;

垂直於弦的直徑平分弦,並且平方弦所對的兩條弧;

平分弦的直徑垂直弦,並且平分弦所對的兩條弧.

3弧、弦、圓心角

在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦也相等.

4圓周角

在同圓或等圓中,同弧或等弧所對的圓周角相等,都等於這條弧所對的圓心角的一半;

半圓(或直徑)所對的圓周角是直角,90度的圓周角所對的弦是直徑.

5點和圓的位置關系

點在圓外d>r

點在圓上d=r

點在圓內dR+r

外切d=R+r

相交R-r

九年級上冊數學知識點歸納三

拋物線頂點坐標公式

y=ax2+bx+c(a=?0)的頂點坐標公式是(-b/2a,(4ac-b2)/4a)

y=ax2+bx的頂點坐標是(-b/2a,-b2/4a)

相關結論

過拋物線y^2=2px(p>0)焦點F作傾斜角為θ的直線L,L與拋物線相交於A(x1,y1),B(x2,y2),有

①x1 x2=p^2/4,y1 y2=—P^2,要在直線過焦點時才能成立;

②焦點弦長:|AB|=x1+x2+P=2P/[(sinθ)^2];

③(1/|FA|)+(1/|FB|)=2/P;

④若OA垂直OB則AB過定點M(2P,0);

⑤焦半徑:|FP|=x+p/2(拋物線上一點P到焦點F距離等於到准線L距離);

⑥弦長公式:AB=√(1+k^2) │x2-x1│;

⑦△=b^2-4ac;

⑧由拋物線焦點到其切線的垂線距離,是焦點到切點的距離,與到頂點距離的比例中項;

⑨標准形式的拋物線在x0,y0點的切線就是:yy0=p(x+x0)。

⑴△=b^2-4ac>0有兩個實數根;

⑵△=b^2-4ac=0有兩個一樣的實數根;

⑶△=b^2-4ac<0沒實數根。


九年級上冊數學知識點歸納相關 文章 :

★ 九年級數學上冊重要知識點總結

★ 九年級上冊數學知識點歸納整理

★ 人教版九年級數學知識點歸納

★ 初三上冊數學知識點歸納

★ 初三數學知識點上冊總結歸納

★ 初三數學知識點考點歸納總結

★ 初三九年級上冊數學知識點

★ 初中九年級數學知識點總結

★ 初中九年級數學知識點總結歸納

★ 初中數學必備知識點總結初三數學上冊一二章知識點

㈧ 滬教版初三數學知識點歸納

知識是一座寶庫,而實踐就是開啟寶庫的鑰匙。學習任何學科,不僅需要大量的記憶,還需要大量的練習,從而達到鞏固知識的效果。下面是我給大家整理的一些初三數學的知識點,希望對大家有所幫助。

九年級下冊數學知識點歸納

★重點★①圓的重要性質;②直線與圓、圓與圓的位置關系;③與圓有關的角的定理;④與圓有關的比例線段定理。

☆內容提要☆

一、圓的基本性質

1.圓的定義(兩種)

2.有關概念:弦、直徑;弧、等弧、優弧、劣弧、半圓;弦心距;等圓、同圓、同心圓。

3.「三點定圓」定理

4.垂徑定理及其推論

5.「等對等」定理及其推論

6.與圓有關的角:⑴圓心角定義(等對等定理)

⑵圓周角定義(圓周角定理,與圓心角的關系)

⑶弦切角定義(弦切角定理)

二、直線和圓的位置關系

1.切線的性質(重點)

2.切線的判定定理(重點)

3.切線長定理

三、圓換圓的位置關系

1.五種位置關系及判定與性質:(重點:相切)

2.相切(交)兩圓連心線的性質定理

3.兩圓的公切線:⑴定義⑵性質

四、與圓有關的比例線段

1.相交弦定理

2.切割線定理

五、與和正多邊形

1.圓的內接、外切多邊形(三角形、四邊形)

2.三角形的外接圓、內切圓及性質

3.圓的外切四邊形、內接四邊形的性質

4.正多邊形及計算

中心角:初中數學復習提綱

內角的一半:初中數學復習提綱(右圖)

(解Rt△OAM可求出相關元素,初中數學復習提綱、初中數學復習提綱等)

六、一組計算公式

1.圓周長公式

2.圓面積公式

3.扇形面積公式

4.弧長公式

5.弓形面積的計算 方法

6.圓柱、圓錐的側面展開圖及相關計算

九年級上冊數學單元知識點

第一章證明

一、等腰三角形

1、定義:有兩邊相等的三角形是等腰三角形。

2、性質:1.等腰三角形的兩個底角相等(簡寫成「等邊對等角」)

2.等腰三角形的頂角的平分線,底邊上的中線,底邊上的高的重合(「三線合一」)

3.等腰三角形的兩底角的平分線相等。(兩條腰上的中線相等,兩條腰上的高相等)

4.等腰三角形底邊上的垂直平分線上的點到兩條腰的距離相等。

5.等腰三角形的一腰上的高與底邊的夾角等於頂角的一半

6.等腰三角形底邊上任意一點到兩腰距離之和等於一腰上的高(可用等面積法證)

7.等腰三角形是軸對稱圖形,只有一條對稱軸,頂角平分線所在的直線是它的對稱軸

3、判定:在同一三角形中,有兩個角相等的三角形是等腰三角形(簡稱:等角對等邊)。

特殊的等腰三角形

等邊三角形

1、定義:三條邊都相等的三角形叫做等邊三角形,又叫做正三角形。

(注意:若三角形三條邊都相等則說這個三角形為等邊三角形,而一般不稱這個三角形為等腰三角形)。

2、性質:⑴等邊三角形的內角都相等,且均為60度。

⑵等邊三角形每一條邊上的中線、高線和每個角的角平分線互相重合。

⑶等邊三角形是軸對稱圖形,它有三條對稱軸,對稱軸是每條邊上的中線、高線或所對角的平分線所在直線。

3、判定:⑴三邊相等的三角形是等邊三角形。

⑵三個內角都相等的三角形是等邊三角形。

⑶有一個角是60度的等腰三角形是等邊三角形。

⑷有兩個角等於60度的三角形是等邊三角形。

初三 數學 學習方法

概念課

要重視教學過程,要積極體驗知識產生、發展的過程,要把知識的來龍去脈搞清楚,認識知識發生的過程,理解公式、定理、法則的推導過程,改變死記硬背的方法,這樣我們就能從知識形成、發展過程當中,理解到學會它的樂趣;在解決問題的過程中,體會到成功的喜悅。

習題課

要掌握「聽一遍不如看一遍,看一遍不如做一遍,做一遍不如講一遍,講一遍不如辯一辯」的訣竅。除了聽老師講,看老師做以外,要自己多做習題,而且要把自己的體會主動、大膽地講給大家聽,遇到問題要和同學、老師辯一辯,堅持真理,改正錯誤。在聽課時要注意老師展示的解題思維過程,要多思考、多探究、多嘗試,發現創造性的證法及解法,學會「小題大做」和「大題小做」的解題方法,即對選擇題、填空題一類的客觀題要認真對待絕不粗心大意,就像對待大題目一樣,做到下筆如有神;對綜合題這樣的大題目不妨把「大」拆「小」,以「退」為「進」,也就是把一個比較復雜的問題,拆成或退為最簡單、最原始的問題,把這些小題、簡單問題想通、想透,找出規律,然後再來一個飛躍,進一步升華,就能湊成一個大題,即退中求進了。如果有了這種分解、綜合的能力,加上有扎實的基本功還有什麼題目難得倒我們。

復習課

在數學學習過程中,要有一個清醒的復習意識,逐漸養成良好的復習習慣,從而逐步學會學習。數學復習應是一個 反思 性學習過程。要反思對所學習的知識、技能有沒有達到課程所要求的程度;要反思學習中涉及到了哪些數學思想方法,這些數學思想方法是如何運用的,運用過程中有什麼特點;要反思基本問題(包括基本圖形、圖像等),典型問題有沒有真正弄懂弄通了,平時碰到的問題中有哪些問題可歸結為這些基本問題;要反思自己的錯誤,找出產生錯誤的原因,訂出改正的 措施 。在新學期大家准備一本數學學習「病例卡」,把平時犯的錯誤記下來,找出「病因」開出「處方」,並且經常拿出來看看、想想錯在哪裡,為什麼會錯,怎麼改正,通過你的努力,到中考時你的數學就沒有什麼「病例」了。並且數學復習應在數學知識的運用過程中進行,通過運用,達到深化理解、發展能力的目的,因此在新的一年要在教師的指導下做一定數量的數學習題,做到舉一反三、熟練應用,避免以「練」代「復」的題海戰術。


滬教版初三數學知識點歸納相關 文章 :

★ 初三數學知識點整理歸納

★ 初三數學知識點考點歸納總結

★ 初中數學知識點總結(滬科版)

★ 初三數學知識點歸納總結

★ 初三上冊數學知識點歸納有哪些

★ 初三數學知識點上冊總結歸納

★ 初三數學知識點歸納

★ 初三數學的知識點歸納

★ 最新初三數學知識點總結大全

★ 初三數學知識點整理